WO2015099195A1 - カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法 - Google Patents

カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法 Download PDF

Info

Publication number
WO2015099195A1
WO2015099195A1 PCT/JP2014/084750 JP2014084750W WO2015099195A1 WO 2015099195 A1 WO2015099195 A1 WO 2015099195A1 JP 2014084750 W JP2014084750 W JP 2014084750W WO 2015099195 A1 WO2015099195 A1 WO 2015099195A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
cnt
catalyst
thin film
aggregate
Prior art date
Application number
PCT/JP2014/084750
Other languages
English (en)
French (fr)
Inventor
貢 上島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015555081A priority Critical patent/JP6519485B2/ja
Publication of WO2015099195A1 publication Critical patent/WO2015099195A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the present invention relates to a carbon nanotube, a carbon nanotube aggregate, and a method for producing a carbon nanotube aggregate.
  • Carbon nanotubes are excellent in various properties such as electrical conductivity and thermal conductivity, and are attracting attention in various fields. And CNT has the structure which rounded graphite and made it cylindrical shape, and space exists in the inside. Conventionally, studies have been made to utilize this internal space to extract the potential characteristics of CNTs. Examples of the method of utilizing the internal space of the CNT include a method of opening the tip of the CNT and a method of opening the side wall of the CNT.
  • Patent Document 1 describes a technique for growing a CNT having an open end.
  • Patent Document 2 describes a technique for increasing the specific surface area by performing an opening process in which holes are formed in the tips and side walls of single-walled carbon nanotubes (single-walled CNTs) by oxidation.
  • an object of this invention is to provide the carbon nanotube which can utilize the internal space by providing a specific cross-sectional shape, and the carbon nanotube aggregate (CNT aggregate) containing the said carbon nanotube. Moreover, an object of this invention is to provide the manufacturing method of a carbon nanotube aggregate which can manufacture the carbon nanotube which can utilize the internal space by providing a specific cross-sectional shape.
  • the present inventor has intensively studied to achieve the above object. And this inventor manufactures the base material (catalyst base material) provided with a catalyst through a specific process in the method of supplying raw material gas to a catalyst and growing CNT by a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • the gist configuration of the present invention completed based on the above findings is as follows.
  • the carbon nanotube of the present invention is characterized by having a structure in which at least a part is crushed.
  • the carbon nanotube of the present invention preferably has a single-layer structure.
  • the carbon nanotube of the present invention preferably has a portion where fullerene is not inserted by the fullerene insertion treatment.
  • the average width length of the collapsed portion is 5 nm or more and 9 nm or less.
  • carbon nanotube aggregate of the present invention includes the above-mentioned carbon nanotube.
  • the carbon nanotube aggregate of the present invention preferably has a collapsed structure content of 5% or more. Furthermore, the aggregate of carbon nanotubes of the present invention preferably has a BET specific surface area of 600 m 2 / g or more.
  • the coating liquid A containing an aluminum compound is applied on a substrate, the coating liquid A is dried, and an aluminum thin film is formed on the substrate.
  • the carbon nanotube aggregate of the present invention is manufactured by the above-described manufacturing method.
  • the carbon nanotube which can utilize the internal space, and the carbon nanotube aggregate containing the said carbon nanotube can be provided.
  • the carbon nanotube of the present invention has a structure in which at least a part is crushed.
  • a carbon nanotube having a structure in which at least a part is crushed may be referred to as “collapsed CNT”.
  • the aggregate of carbon nanotubes of the present invention includes a plurality of CNTs. At least one of the CNTs is the crushed CNT described above.
  • the manufacturing method of the carbon nanotube aggregate of this invention is used for manufacture of the carbon nanotube aggregate containing the carbon nanotube of this invention which has a structure where at least one part was crushed.
  • the carbon nanotube of the present invention has a structure in which at least a part is crushed.
  • “having a crushed structure” means that CNT and fullerene (C60) are sealed in a quartz tube, and the fullerene-inserted CNT obtained by heat treatment (fullerene insertion processing) under reduced pressure is transmitted through a transmission electron microscope (TEM). ) Means that the CNT has a portion in which fullerene is not inserted. For example, in the TEM image of FIG. 1, near the location indicated by the arrow, fullerenes are inserted at both ends of the CNT width direction (direction perpendicular to the extending direction of the CNT), and fullerenes are inserted at the other ends. Absent.
  • CNT having a structure in which at least a part is crushed may include one “collapsed structure” in one CNT, or a plurality of “collapsed structures”. .
  • Carbon nanotubes “having a structure in which at least a part is crushed” are cylindrical bodies made by rolling graphene, and at least a part of a cross-sectional shape perpendicular to the extending direction (axial direction) of the cylindrical body is Carbon nanotubes that are non-circular are preferred.
  • the cross-sectional shape is such that the maximum width in the direction perpendicular to the cross-sectional longitudinal direction in the vicinity of both ends in the cross-sectional longitudinal direction is the direction perpendicular to the cross-sectional longitudinal direction in the vicinity of the central part in the cross-sectional longitudinal direction.
  • a shape larger than the maximum width is more preferable, and a dumbbell shape (a shape in which the longitudinal center of the cross section is crushed) is particularly preferable.
  • the vicinity of the central portion in the longitudinal direction of the cross section means the longitudinal width of the cross section from the longitudinal center line of the cross section (a straight line passing through the longitudinal center and perpendicular to the longitudinal axis).
  • “near both end portions in the longitudinal direction of the cross section” means a region on the outer side in the longitudinal direction of “near the central portion in the longitudinal direction of the cross section”.
  • the crushed CNT has a structure in which at least a part is crushed from the time of synthesis, and a normal carbon nanotube having a cylindrical structure or a structure crushed at the time of synthesis is used.
  • the carbon nanotubes have properties that are significantly different from those of carbon nanotubes that are formed in a cylindrical structure and then undergo structural deformation.
  • the collapsed CNT of the present invention is presumed to be a substance in which a six-membered ring network formed by SP 2 bonding of carbon atoms is formed so as to have the above-mentioned “collapsed structure”. It is thought that this is a new substance that is different from the carbon structure.
  • the internal space of the collapsed CNT also has a structure different from that of the conventional CNT.
  • the CNT aggregate containing CNTs having such a collapsed structure can improve the density of a carbon nanotube molded product (CNT molded product) obtained by processing the CNT aggregate into an arbitrary shape. It is considered that the electrical properties and thermal properties of the molded product can be improved.
  • the crushed CNT of the present invention is not particularly limited, and may be a single layer structure or a multilayer structure, but a single layer structure is preferable. That is, the crushed CNT of the present invention is preferably a single-walled carbon nanotube.
  • the content of the collapsed structure of the CNT is preferably 5% or more, more preferably 10% or more, still more preferably 20% or more, particularly preferably 30% or more. It is. If the content rate of the crushed structure is 5% or more, a CNT molded product excellent in various properties can be obtained.
  • the “content ratio of the collapsed structure” of the CNT aggregate is obtained by observing 100 arbitrary carbon nanotubes using a transmission electron microscope and counting the number of the collapsed CNTs in the 100. Can be obtained.
  • the average width length of the crushed part of CNT (the part where fullerene is not inserted during the fullerene insertion process) is 5 nm or more and 9 nm or less. If the average width length of the collapsed portion of the CNT is 5 nm or more and 9 nm or less, it is preferable because the BET specific surface area of the CNT aggregate containing the collapsed CNT can be increased.
  • the “average width length of the crushed portion of the CNT” is a measurement of the length in the CNT width direction of the crushed portion of 10 CNTs having an arbitrary crushed structure using a transmission electron microscope. , And define their arithmetic mean. Further, the length of the crushed CNTs in the width direction is preferably distributed within a range of 1 nm to 10 nm.
  • the BET specific surface area of the CNT aggregate of the present invention is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, preferably 1400 m 2 / g or less, more preferably 1200 m 2 / g or less. is there.
  • the BET specific surface area of the CNT aggregate is 600 m 2 / g or more, the content of the collapsed structure can be increased. And it is thought that the outstanding characteristic (an electrical characteristic, a thermal characteristic, etc.) can be exhibited in the CNT molded object obtained using a CNT aggregate.
  • the upper limit of the BET specific surface area of the CNT aggregate is preferably 1400 m 2 / g or less.
  • the “BET specific surface area” refers to a specific surface area measured using the BET method, and specifically, a nitrogen adsorption isotherm at 77K can be measured and obtained by the BET method.
  • BELSORP registered trademark
  • -max manufactured by Nippon Bell Co., Ltd.
  • the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum is preferably 1 or more, preferably 50 or less, and preferably 10 or less. More preferably. By being 10 or less, it has shown that many amorphous parts exist.
  • the G / D ratio is an index generally used for evaluating the quality of CNTs.
  • the G band is a vibration mode derived from a hexagonal lattice structure of graphite
  • the D band is a vibration mode derived from an amorphous part.
  • the higher the peak intensity ratio (G / D ratio) between the G band and the D band the higher the crystallinity of the CNT.
  • the CNT aggregate of the present invention is usually obtained as an aligned CNT aggregate on the catalyst base during its production, but the height (length) during production is preferably 100 ⁇ m or more and 5000 ⁇ m or less.
  • the carbon purity of the CNT aggregate of the present invention is preferably 98% by mass or more, more preferably 99% by mass or more, and still more preferably 99.9% by mass or more, without performing purification treatment.
  • Such carbon purity can be achieved without performing a purification treatment by employing, for example, a “carbon nanotube production method” described later.
  • the purification treatment is not performed, the carbon purity immediately after the growth becomes the purity of the final product. If desired, a purification treatment may be performed.
  • Carbon purity can be determined by elemental analysis using fluorescent X-rays.
  • the method for producing a CNT aggregate of the present invention employs a CVD method.
  • the two steps (1) and (2) are collectively referred to as a “catalyst carrying layer forming step”, and the two steps (3) and (4) are collectively referred to as a “catalyst layer forming step”.
  • the catalyst base material was produced by a wet process, and the drying temperature at the time of obtaining the catalyst layer by drying was 50 ° C. or less.
  • a CNT aggregate containing CNTs can be produced.
  • ⁇ Catalyst support layer forming step> First, the coating liquid A containing an aluminum compound is apply
  • the aluminum thin film thus formed on the substrate functions as a catalyst supporting layer for supporting an iron thin film (catalyst layer) described later on the aluminum thin film.
  • the base material used for the catalyst base material is, for example, a flat plate-like member, and is preferably one that can maintain the shape even at a high temperature of 500 ° C. or higher.
  • metals such as iron, nickel, chromium, molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, germanium, and antimony And alloys and oxides containing these metals, or non-metals such as silicon, quartz, glass, mica, graphite, and diamond, and ceramics.
  • the metal material is preferable because it is low in cost and easy to process as compared with silicon and ceramic, and in particular, Fe-Cr (iron-chromium) alloy, Fe-Ni (iron-nickel) alloy, Fe-Cr-Ni ( An iron-chromium-nickel alloy or the like is preferred.
  • the thickness of the substrate is not particularly limited, and for example, a thin film having a thickness of about several ⁇ m to a thickness of about several cm can be used. Preferably, it is 0.05 mm or more and 3 mm or less.
  • a base material Preferably it is 20 cm ⁇ 2 > or more, More preferably, it is 30 cm ⁇ 2 > or more.
  • the shape of the substrate is not particularly limited, but can be rectangular or square.
  • the coating liquid A is obtained by dissolving or dispersing an aluminum compound in an organic solvent.
  • the aluminum compound contained in the coating liquid A will not be specifically limited if it is a compound containing an aluminum atom,
  • the metal organic compound and metal salt which can form an alumina thin film as an aluminum thin film are preferable.
  • metal organic compounds that can form an alumina thin film include aluminum trimethoxide, aluminum triethoxide, aluminum tri-n-propoxide, aluminum tri-i-propoxide, aluminum tri-n-butoxide, aluminum tri- Examples thereof include aluminum alkoxides such as sec-butoxide and aluminum tri-tert-butoxide.
  • Other examples of the metal organic compound containing aluminum include a complex such as tris (acetylacetonato) aluminum (III).
  • the metal salt that can form an alumina thin film include aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum bromide, aluminum iodide, aluminum lactate, basic aluminum chloride, basic aluminum nitrate and the like. Among these, it is preferable to use aluminum alkoxide. These can be used alone or as a mixture.
  • organic solvent contained in the coating liquid A various organic solvents such as alcohols, glycols, ketones, ethers, esters, hydrocarbons and the like can be used, but the solubility of metal organic compounds and metal salts is good.
  • Alcohol or glycol is preferably used. These organic solvents may be used alone or in combination of two or more.
  • As the alcohol, methanol, ethanol, isopropyl alcohol, and the like are preferable in terms of handling properties and storage stability.
  • a stabilizer for suppressing the condensation polymerization reaction of the metal organic compound and the metal salt may be added.
  • the stabilizer is preferably at least one selected from the group consisting of ⁇ -diketones and alkanolamines.
  • ⁇ -diketones include acetylacetone, methyl acetoacetate, ethyl acetoacetate, benzoylacetone, dibenzoylmethane, benzoyltrifluoroacetone, furoylacetone, and trifluoroacetylacetone, and acetylacetone and ethyl acetoacetate are particularly preferable. .
  • alkanolamines include monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N, N-dimethylaminoethanol, diisopropanolamine, and triisopropanolamine.
  • a secondary alkanolamine is preferred.
  • the amount of the aluminum compound in the coating liquid A is not particularly limited, but is preferably 0.1 g or more, more preferably 0.5 g or more, preferably 30 g or less, more preferably 5 g or less per 100 ml of the organic solvent. .
  • the amount of the stabilizer in the coating liquid A is not particularly limited, but is preferably 0.01 g or more, more preferably 0.1 g or more, preferably 20 g or less, more preferably 3 g or less per 100 ml of the organic solvent. It is.
  • the above-mentioned coating liquid A is apply
  • the method for applying the coating liquid A onto the substrate is not particularly limited, but any method such as spray coating, brush coating, spin coating, dip coating, etc. may be used. From the viewpoint of control, dip coating is preferred. Dip coating is a method in which a substrate is dipped in a coating object (here, coating liquid A) for a certain period of time and then pulled up to apply the coating object to the surface of the substrate.
  • a coating object here, coating liquid A
  • the coating liquid A on a base material is dried, and an aluminum thin film (catalyst carrying layer) is formed on a base material.
  • the method of drying the coating liquid A on a base material is not specifically limited, Air drying at room temperature, a heating (baking process), etc. are mentioned, A heating is preferable.
  • the heating temperature is preferably about 50 ° C. or higher and 400 ° C. or lower, and more preferably 350 ° C. or lower.
  • the heating time is preferably 5 minutes or more and 60 minutes or less, and more preferably 40 minutes or less.
  • a coating liquid B containing an iron compound is applied onto the aluminum thin film formed in the catalyst support layer forming step, and the coating liquid is dried at 50 ° C. or lower to form an iron thin film on the aluminum thin film.
  • a catalyst base material provided with an aluminum thin film (catalyst support layer) and an iron thin film (catalyst layer) on the base material can be obtained.
  • the coating liquid B is obtained by dissolving or dispersing an iron compound in an organic solvent.
  • the iron compound contained in the coating liquid B will not be specifically limited if it is a compound containing an iron atom,
  • the metal organic compound and metal salt which can form an iron thin film are preferable.
  • metal organic compounds that can form an iron thin film include iron pentacarbonyl, ferrocene, acetylacetone iron (II), acetylacetone iron (III), trifluoroacetylacetone iron (II), trifluoroacetylacetone iron (III), and the like. It is done.
  • metal salt that can form an iron thin film include iron sulfate, iron nitrate, iron phosphate, iron chloride, iron bromide and other inorganic acid iron, iron acetate, iron oxalate, iron citrate, iron lactate, etc.
  • Organic acid iron etc. are mentioned. Among these, it is preferable to use organic acid iron. These can be used alone or as a mixture.
  • the organic solvent contained in the coating liquid B is not specifically limited, The thing similar to the organic solvent described in the term of the above-mentioned ⁇ catalyst carrying
  • the amount of the iron compound in the coating liquid B is not particularly limited, but is preferably 0.05 g or more, more preferably 0.1 g or more, preferably 5 g or less, more preferably 1 g or less per 100 ml of the organic solvent. .
  • the amount of the stabilizer in the coating liquid B is not particularly limited, but is preferably 0.05 g or more, more preferably 0.1 g or more, preferably 5 g or less, more preferably 1 g or less per 100 ml of the organic solvent. It is.
  • the method for applying the coating liquid B on the aluminum thin film is not particularly limited, and the same method as that described in the above section ⁇ Catalyst carrying layer forming step> can be used. Similar to the application of the coating liquid A in the ⁇ catalyst support layer forming step>, it is preferable to use dip coating as the application method of the coating liquid B. And when employ
  • the coating liquid B on an aluminum thin film is dried, and an iron thin film is formed on a base material.
  • the coating liquid B needs to be dried at 50 ° C. or lower, preferably 40 ° C. or lower, more preferably 30 ° C. or lower. If the drying temperature is higher than 50 ° C., a CNT aggregate containing crushed CNTs cannot be obtained in the subsequent growth process.
  • the minimum of drying temperature is not specifically limited, Usually, it is 10 degreeC or more.
  • air drying at room temperature is usually preferable. If the drying temperature is 50 ° C. or lower, drying may be performed by heating, but air drying is preferable from the viewpoint of efficiently producing crushed CNTs.
  • the formation process is a process in which at least one of the catalyst and the reducing gas is heated while the surrounding environment of the catalyst is set as a reducing gas (reducing gas) environment.
  • reducing gas reducing gas
  • the catalyst base is provided with an alumina-iron thin film composed of an alumina thin film and an iron thin film
  • the iron catalyst is reduced into fine particles, and many nanometer-sized iron fine particles are formed on the alumina thin film (catalyst support layer).
  • an iron thin film (catalyst layer) will be in a state suitable for manufacture of an aligned CNT aggregate. Even if this step is omitted, it is possible to produce CNTs, but the production amount and quality of CNTs can be dramatically improved by performing this step.
  • a gas capable of producing CNTs may be used.
  • hydrogen gas, ammonia, water vapor, and a mixed gas thereof can be applied.
  • a mixed gas obtained by mixing hydrogen gas with an inert gas such as helium gas, argon gas, or nitrogen gas may be used.
  • the reducing gas may be used in the formation process or may be used as appropriate in the growth process.
  • the temperature of the catalyst and / or reducing gas in the formation step is preferably 400 ° C. or higher and 1100 ° C. or lower.
  • the time for the formation step is preferably 3 minutes to 20 minutes, and more preferably 3 minutes to 10 minutes. Thereby, it can suppress that baking of an iron thin film (catalyst layer) advances during a formation process, and a film thickness reduces.
  • a raw material gas is supplied to the catalyst base obtained through the catalyst support layer forming step and the catalyst layer forming step, and carbon nanotubes (CNT aligned aggregates) are grown on the catalyst base.
  • the growth step at least one of the catalyst layer and the raw material gas is usually heated, but it is preferable to heat at least the raw material gas from the viewpoint of growing CNTs with a uniform density.
  • the heating temperature is preferably 400 ° C to 1100 ° C.
  • a raw material gas, an inert gas, and optionally a reducing gas and / or a catalyst activation material are introduced into a CNT growth furnace containing a catalyst base material.
  • a gaseous substance containing a carbon source at the growth temperature is used.
  • hydrocarbons such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptane, propylene, and acetylene are preferable.
  • a lower alcohol such as methanol and ethanol
  • an oxygen-containing compound having a low carbon number such as acetone and carbon monoxide may be used. Mixtures of these can also be used.
  • the source gas may be diluted with an inert gas.
  • the inert gas may be any gas that is inert at the temperature at which the CNT grows and does not react with the growing CNT, and preferably does not reduce the activity of the catalyst.
  • noble gases such as helium, argon, neon and krypton; nitrogen; hydrogen; and a mixed gas thereof can be exemplified.
  • a catalyst activator may be added.
  • the catalyst activator used here is generally a substance containing oxygen, and is preferably a substance that does not significantly damage the CNT at the growth temperature.
  • low carbon number oxygen-containing compounds such as water, oxygen, ozone, acid gas, nitric oxide, carbon monoxide, and carbon dioxide; alcohols such as ethanol and methanol; ethers such as tetrahydrofuran; ketones such as acetone Aldehydes; esters; as well as mixtures thereof are useful.
  • water, oxygen, carbon dioxide, carbon monoxide, and ethers are preferable, and water is particularly preferable.
  • the volume concentration of the catalyst activator is not particularly limited, but a small amount is preferable.
  • the volume of gas introduced into the furnace is usually 10 to 10,000 ppm, preferably 50 to 1000 ppm.
  • the pressure in the reaction furnace and the treatment time in the growth process may be appropriately set in consideration of other conditions.
  • the pressure is 10 2 to 10 7 Pa
  • the treatment time is about 1 to 60 minutes. it can.
  • the manufacturing method of CNT of this invention is equipped with a cooling process after a growth process.
  • the cooling step is a step of cooling the aligned CNT aggregate and the catalyst base material under a cooling gas after the growth step. Since the aligned CNT aggregate and the catalyst base material after the growth step are in a high temperature state, there is a risk of oxidation when placed in an oxygen-existing environment.
  • the aligned CNT aggregate and the catalyst substrate are cooled to, for example, 400 ° C. or lower, more preferably 200 ° C. or lower, in a cooling gas environment.
  • the cooling gas an inert gas is preferable, and nitrogen is particularly preferable from the viewpoint of safety and cost.
  • the manufacturing method of CNT of this invention is equipped with the process (peeling process) which peels the aligned CNT aggregate obtained on the catalyst base material from a catalyst base material.
  • peeling process there is a method of physically, chemically or mechanically peeling from the catalyst substrate, for example, peeling using an electric field, a magnetic field, centrifugal force, or surface tension.
  • Methods A method of mechanically peeling directly from a substrate; a method of peeling from a substrate using pressure and heat, and the like can be used.
  • As a simple peeling method there is a method of picking and peeling directly from a catalyst substrate with tweezers.
  • a thin blade such as a cutter blade can be used to cut off the catalyst substrate.
  • a vacuum pump and a vacuum cleaner can be used to suck and peel off from the catalyst substrate. Further, after peeling, the catalyst remains on the base material, and it becomes possible to newly grow vertically aligned CNTs using the catalyst.
  • the manufacturing apparatus used in the CNT manufacturing method of the present invention is not particularly limited as long as it includes a growth furnace (reaction chamber) having a catalyst base and can grow CNTs by a CVD method.
  • An apparatus such as a MOCVD reactor can be used.
  • the G / D ratio, BET specific surface area and carbon purity of the CNT aggregate, the arithmetic average roughness Ra of the base material, and the component analysis of the catalyst support layer were measured using the following methods. And the presence or absence of the crushed structure and the content rate of the crushed structure were evaluated using the following methods.
  • ⁇ G / D ratio> Using the aligned CNT aggregate as a sample, CNT near the center of the substrate was measured using a microscopic laser Raman system (NicoletAlmega XR manufactured by Thermo Fisher Scientific Co., Ltd.). ⁇ BET specific surface area, carbon purity> Measured and calculated by the method described above. ⁇ Arithmetic mean roughness> Arithmetic mean roughness Ra was measured with a laser microscope (VK-9700 manufactured by KEYENCE) at an objective magnification of 50 times.
  • Example 1 Preparation of catalyst substrate> 1.9 g of aluminum tri-sec-butoxide as an aluminum compound was dissolved in 100 ml of 2-propanol as an organic solvent. Further, 0.9 g of triisopropanolamine as a stabilizer was added and dissolved to prepare a coating liquid A for forming a catalyst support layer.
  • Fe-Cr alloy SUS430 substrate (40 mm ⁇ 100 mm, thickness 0.3 mm, Cr 18%, arithmetic average roughness Ra ⁇ 0.59 ⁇ m) as a base material, room temperature 25 ° C., relative humidity
  • the above-mentioned coating liquid A was applied by dip coating in a 50% environment. Specifically, the substrate was dipped in the coating liquid A and then held for 20 seconds, and the substrate was pulled up at a pulling rate of 10 mm / second. Thereafter, it was air-dried for 5 minutes, heated in an air environment at 300 ° C. for 30 minutes, and then cooled to room temperature, thereby forming an alumina thin film (catalyst carrying layer) having a film thickness of 40 nm on the substrate.
  • the above-mentioned coating solution B was applied by dip coating on the alumina thin film provided on the substrate in an environment of room temperature of 25 ° C. and relative humidity of 50%. Specifically, the substrate provided with the alumina thin film was dipped in the coating solution B, then held for 20 seconds, and the substrate provided with the alumina thin film was pulled up at a lifting speed of 3 mm / second. Then, an iron thin film (catalyst layer) having a film thickness of 3 nm was formed by air drying for 5 minutes (drying temperature: 45 ° C.). Thus, the catalyst base material 1 which has an alumina thin film and an iron thin film in this order on the base material was obtained.
  • CNT aggregate 1 has a yield of 1.8 mg / cm 2 , a G / D ratio of 3.7, a density of 0.03 g / cm 3 , and a BET specific surface area of 1,060 m 2 / g, The carbon purity was 99.9%.
  • Example 2 Preparation of catalyst substrate>
  • the catalyst base material was operated in the same manner as in Example 1 except that the pulling speed was changed from 3 mm / second to 6 mm / second. 2 was produced.
  • An aligned CNT aggregate 2 was produced in the same manner as in Example 1, except that the catalyst substrate 2 was used instead of the catalyst substrate 1.
  • the produced aligned CNT aggregate 2 was peeled from the catalyst base 2 to obtain a CNT aggregate 2.
  • the obtained aligned CNT aggregate 2 (CNT aggregate 2) has a yield of 1.4 mg / cm 2 , a G / D ratio of 2.1, a density of 0.03 g / cm 3 , a BET specific surface area of 680 m 2 / g, The carbon purity was 99.9%.
  • An aligned CNT aggregate 3 was produced in the same manner as in Example 1 except that the catalyst substrate 3 was used instead of the catalyst substrate 1.
  • the produced aligned CNT aggregate 3 was peeled from the catalyst substrate 3 to obtain a CNT aggregate 3.
  • the obtained aligned CNT aggregate 3 (CNT aggregate 3) has a yield of 1.8 mg / cm 2 , a G / D ratio of 4.8, a density of 0.03 g / cm 3 , and a BET specific surface area of 1,010 m 2 / g, The carbon purity was 99.9%.
  • the carbon nanotube which can utilize the internal space, and the carbon nanotube aggregate containing the said carbon nanotube can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブを提供することを目的とする。本発明のカーボンナノチューブは、少なくとも一部が潰れた構造を有することを特徴とする。

Description

カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法
 本発明は、カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法に関する。
 カーボンナノチューブ(CNT)は、電気伝導性、熱伝導性などの種々の特性に優れ、様々な分野で注目されている材料である。そしてCNTは、グラファイトを丸めて円筒状とした構造を有し、その内部には空間が存在している。この内部空間を活用し、CNTの潜在的な特性を引き出すための検討が従来からされている。CNTの内部空間を活用する方法としては、例えばCNTの先端を開口させる方法、CNTの側壁を開口させる方法が挙げられる。
 例えば特許文献1には、先端を開口させたCNTを成長させる技術が記載されている。そして例えば特許文献2には、酸化によって単層カーボンナノチューブ(単層CNT)の先端や側壁に穴をあける開口処理を行い、比表面積を増大させる技術が記載されている。
特開2007− 84431号公報 特開2011−207758号公報
 これらの従来技術は、いずれもCNTの内部空間と外部とを繋ぐ開口を形成することで、CNTの比表面積を増大させうる。そしてCNTの比表面積を増大させることにより、物質やエネルギーの保存性、エネルギー伝達性、およびエネルギー分散性といった諸特性を向上させることができる。
 このように、CNTの内部空間を活用する技術は、幅広く検討されている。一方、内部空間の断面形状を変更することで、該内部空間の活用を図る技術については、その検討が十分なされていなかった。
 そこで、本発明は、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブ、および当該カーボンナノチューブを含むカーボンナノチューブ集合体(CNT集合体)を提供することを目的とする。
 また、本発明は、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブを製造しうる、カーボンナノチューブ集合体の製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、原料ガスを触媒に供給し、化学気相成長法(CVD法)によってCNTを成長させる方法において、触媒を備える基材(触媒基材)を特定の工程を経て製造することで、従来にはない特殊な断面形状を備えるCNTを製造することができることを新たに見出し、本発明を完成させた。
 上記知見に基づき完成した本発明の要旨構成は以下のとおりである。
 本発明のカーボンナノチューブは、少なくとも一部が潰れた構造を有することを特徴とする。
 ここで、本発明のカーボンナノチューブは、単層構造であることが好ましい。
 また、本発明のカーボンナノチューブは、フラーレン挿入処理によりフラーレンが挿入されない部分を有することが好ましい。
 さらに、本発明のカーボンナノチューブは、潰れた部分の平均幅長が5nm以上9nm以下であることが好ましい。
 そして、本発明のカーボンナノチューブ集合体は、上述のカーボンナノチューブを含む。
 ここで、本発明のカーボンナノチューブ集合体は、潰れた構造の含有率が5%以上であることが好ましい。
 さらに、本発明のカーボンナノチューブ集合体は、BET比表面積が600m/g以上であることが好ましい。
 また、本発明のカーボンナノチューブ集合体の製造方法は、アルミニウム化合物を含む塗工液Aを基材上に塗布する工程、前記塗工液Aを乾燥し、前記基材上にアルミニウム薄膜を形成する工程、前記アルミニウム薄膜の上に、鉄化合物を含む塗工液Bを塗布する工程、前記塗工液Bを50℃以下で乾燥し、前記アルミニウム薄膜上に鉄薄膜を形成することで触媒基材を得る工程、および、前記触媒基材に原料ガスを供給し、前記触媒基材上にカーボンナノチューブを成長させる工程、を備えることを特徴とする。
 また、本発明のカーボンナノチューブ集合体は、上述の製造方法で製造されることを特徴とする。
 本発明によれば、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブ、および当該カーボンナノチューブを含むカーボンナノチューブ集合体を提供することができる。
 また、本発明によれば、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブを製造しうる、カーボンナノチューブ集合体の製造方法を提供することができる。
フラーレン挿入処理後の潰れた構造を有するCNTのTEM画像である。 実施例2のCNTの、フラーレン挿入処理後のTEM画像である。 比較例1のCNTの、フラーレン挿入処理後のTEM画像である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のカーボンナノチューブは、少なくとも一部が潰れた構造を有することを大きな特徴の1つとする。(以下、少なくとも一部が潰れた構造を有するカーボンナノチューブを「潰れたCNT」と称することがある。)また、本発明のカーボンナノチューブ集合体は、複数本のCNTを含んでなり、複数本のCNTのうちの少なくとも一本が、上述の潰れたCNTである。そして、本発明のカーボンナノチューブ集合体の製造方法は、少なくとも一部が潰れた構造を有する本発明のカーボンナノチューブを含むカーボンナノチューブ集合体の製造に用いられる。
(カーボンナノチューブ)
 本発明のカーボンナノチューブは、少なくとも一部が潰れた構造を有する。ここでCNTが「潰れた構造を有する」とは、CNTとフラーレン(C60)を石英管に密封し、減圧下で加熱処理(フラーレン挿入処理)し得られるフラーレン挿入CNTを透過型電子顕微鏡(TEM)で観察した際、CNT中に、フラーレンが挿入されない部分を有することをいう。
 例えば図1のTEM画像において、矢印で示す箇所付近は、CNTの幅方向(CNTの延在方向に直行する方向)両端部にフラーレンが挿入されており、両端部以外にはフラーレンが挿入されていない。従って、該CNTは、フラーレンが挿入されていない部分が潰れており、潰れた構造を有することがわかる。
 なお、「少なくとも一部が潰れた構造を有するCNT」は、1本のCNT内に一つの「潰れた構造」が存在してもよく、複数の「潰れた構造」が存在していてもよい。
 「少なくとも一部が潰れた構造を有する」カーボンナノチューブとしては、グラフェンを丸めてなる筒状体であって、該筒状体の延在方向(軸線方向)に直行する断面形状の少なくとも一部が、非円形であるカーボンナノチューブが好ましい。また、該断面形状は、断面長手方向のそれぞれの両端部近傍における、断面長手方向に直交する方向の最大幅が、いずれも、断面長手方向の中央部近傍における、断面長手方向に直交する方向の最大幅よりも大きい形状であることがより好ましく、ダンベル状(断面長手中央部が潰れている形状)であることが特に好ましい。
 ここで、潰れたCNTの断面形状において、「断面長手方向の中央部近傍」とは、断面の長手中心線(長手方向中心を通り、長手方向軸線に直交する直線)から、断面の長手方向幅の30%以内の領域をいい、「断面長手方向の両端部近傍」とは、「断面長手方向の中央部近傍」の長手方向外側の領域をいう。
 なお、本発明者の研究によれば、潰れたCNTは、その合成時から少なくとも一部が潰れた構造を有しており、円筒状構造を有する通常のカーボンナノチューブや、合成時には潰れた構造を有さず、円筒状構造で形成された後に構造的変形を生じさせてなるカーボンナノチューブとは大きく異なった性質を有していると推察される。即ち、本発明の潰れたCNTは、上述した「潰れた構造」を有するように、炭素原子同士がSP結合してなる六員環ネットワークが形成された物質であると推察され、公知のいずれの炭素よりなる構造体とも異なる新規物質であると考えられる。
 そして、「潰れた構造を有する」ことで、潰れたCNTの内部空間も従来のCNTとは異なる構造となる。このような潰れた構造を有するCNTを含むCNT集合体は、当該CNT集合体を任意の形状に加工して得られるカーボンナノチューブ成形物(CNT成形物)の密度を向上させることができ、当該CNT成形物の電気特性や熱特性などを改善することができると考えられる。
 また、本発明の潰れたCNTは、特に限定されることなく、単層構造であっても多層構造であってもよいが、単層構造であることが好ましい。すなわち、本発明の潰れたCNTは、単層カーボンナノチューブであることが好ましい。
(カーボンナノチューブ集合体)
 上述した潰れたCNTを含んでなるCNT集合体において、CNTの潰れた構造の含有率は、好ましくは5%以上、より好ましくは10%以上、更に好ましくは20%以上、特に好ましくは30%以上である。潰れた構造の含有率が5%以上であれば、各種特性に優れるCNT成形物を得ることができる。
 なお、本発明においてCNT集合体の「潰れた構造の含有率」は、透過型電子顕微鏡を用いて任意のカーボンナノチューブ100本を観察し、その100本中、上記潰れたCNTの数を数えることで求めることができる。
 ここで、CNTの潰れた部分(フラーレン挿入処理時にフラーレンが挿入されない部分)の平均幅長は、5nm以上9nm以下であることが好ましい。CNTの潰れた部分の平均幅長が5nm以上9nm以下であれば、潰れたCNTを含むCNT集合体のBET比表面積を大きくできるので好適である。
 なお、本発明において、「CNTの潰れた部分の平均幅長」は、透過型電子顕微鏡を用いて、任意の潰れた構造を有するCNT10本の潰れた部分のCNT幅方向の長さを測定し、それらの算術平均値と定義する。また、潰れたCNTの幅方向の長さは1nm以上10nm以下の範囲内に分布することが好ましい。
 そして、本発明のCNT集合体のBET比表面積は、好ましくは600m/g以上、より好ましくは800m/g以上であり、好ましくは1400m/g以下、より好ましくは1200m/g以下である。CNT集合体のBET比表面積が600m/g以上であれば、潰れた構造の含有率を上げることができる。そして、CNT集合体を用いて得られるCNT成形物に優れた特性(電気特性や熱特性など)を発揮させることが出来ると考えられる。また、潰れた構造のCNTの生産効率を考慮すると、CNT集合体のBET比表面積の上限としては1400m/g以下が好適である。
 なお、「BET比表面積」とは、BET法を用いて測定した比表面積を指し、具体的には、77Kにおける窒素吸着等温線を測定し、BET法により求めることができる。ここで、BET比表面積の測定には、例えば、「BELSORP(登録商標)−max」(日本ベル(株)製)を用いることができる。
 また、本発明のCNT集合体は、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が1以上であることが好ましく、50以下であることが好ましく、10以下であることがより好ましい。10以下であることにより、非晶箇所が多く存在していることを示している。G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm−1付近)とDバンド(1350cm−1付近)と呼ばれる振動モードが観測される。Gバンドはグラファイトの六方格子構造由来の振動モードであり、Dバンドは非晶箇所に由来する振動モードである。GバンドとDバンドのピーク強度比(G/D比)が高いものほど、結晶性の高いCNTと評価できる。
 本発明のCNT集合体は、通常、その製造時に触媒基材の上にCNT配向集合体として得られるが、製造時における高さ(長さ)が100μm以上5000μm以下であることが好ましい。
 本発明のCNT集合体の炭素純度は、精製処理を行わなくても、好ましくは98質量%以上、より好ましくは99質量%以上、さらに好ましくは99.9質量%以上である。このような炭素純度は、例えば後述する「カーボンナノチューブの製造方法」を採用することで、精製処理を行わずとも達成可能である。精製処理を行わない場合には、成長直後での炭素純度が最終品の純度となる。所望により、精製処理を行ってもよい。なお、炭素純度は、蛍光X線を用いた元素分析により求めることができる。
(カーボンナノチューブ集合体の製造方法)
 次に、本発明のカーボンナノチューブ集合体の製造方法(CNT集合体の製造方法)について説明する。本発明のCNT集合体の製造方法は、CVD法を採用するものであり、詳しくは、
(1)アルミニウム化合物を含む塗工液Aを基材上に塗布する工程、
(2)前記塗工液Aを乾燥し、前記基材上にアルミニウム薄膜を形成する工程、
(3)前記アルミニウム薄膜の上に、鉄化合物を含む塗工液Bを塗布する工程、(4)前記塗工液Bを50℃以下で乾燥し、前記アルミニウム薄膜上に鉄薄膜を形成することで触媒基材を得る工程、および、
(5)前記触媒基材に原料ガスを供給し、前記触媒基材上にカーボンナノチューブを成長させる工程(成長工程)、
を少なくとも備える。なお、以下では、(1)と(2)の二工程を併せて「触媒担持層形成工程」と、(3)と(4)の二工程を併せて「触媒層形成工程」と称する。
 そして、本発明のCNT集合体の製造方法によれば、ウェットプロセスにより触媒基材を作製し、かつ、乾燥により触媒層を得る際の乾燥温度が50℃以下であるため、製造当初より潰れたCNTを含むCNT集合体を製造することができる。
<触媒担持層形成工程>
 まず、アルミニウム化合物を含む塗工液Aを基材上に塗布し、該塗工液を乾燥することで、基材上にアルミニウム薄膜を形成する。このようにして基材上に形成されたアルミニウム薄膜は、その上に後述の鉄薄膜(触媒層)を担持する、触媒担持層として機能する。
[基材]
 触媒基材に用いる基材は、例えば平板状の部材であり、500℃以上の高温でも形状を維持できるものが好ましい。具体的には、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ゲルマニウム、及びアンチモンなどの金属、並びにこれらの金属を含む合金及び酸化物、又はシリコン、石英、ガラス、マイカ、グラファイト、及びダイヤモンドなどの非金属、並びにセラミックなどが挙げられる。金属材料はシリコン及びセラミックと比較して、低コスト且つ加工が容易であるから好ましく、特に、Fe−Cr(鉄−クロム)合金、Fe−Ni(鉄−ニッケル)合金、Fe−Cr−Ni(鉄−クロム−ニッケル)合金などは好適である。
 基材の厚さに特に制限はなく、例えば数μm程度の薄膜から数cm程度までのものを用いることができる。好ましくは、0.05mm以上3mm以下である。
 基材の面積は特に制限はなく、好ましくは20cm以上、より好ましくは30cm以上である。基材の形状は特に限定されないが、長方形または正方形とすることができる。
[塗工液A]
 塗工液Aは、アルミニウム化合物を有機溶剤に溶解又は分散させたものである。塗工液Aに含まれるアルミニウム化合物は、アルミニウム原子を含む化合物であれば特に限定されないが、アルミニウム薄膜としてアルミナ薄膜を形成しうる金属有機化合物、金属塩が好ましい。
 アルミナ薄膜を形成しうる金属有機化合物としては、例えば、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリ−n−プロポキシド、アルミニウムトリ−i−プロポキシド、アルミニウムトリ−n−ブトキシド、アルミニウムトリ−sec−ブトキシド、アルミニウムトリ−tert−ブトキシド等のアルミニウムアルコキシドが挙げられる。アルミニウムを含む金属有機化合物としては他に、トリス(アセチルアセトナト)アルミニウム(III)などの錯体が挙げられる。アルミナ薄膜を形成しうる金属塩としては、例えば、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、臭化アルミニウム、よう化アルミニウム、乳酸アルミニウム、塩基性塩化アルミニウム、塩基性硝酸アルミニウム等が挙げられる。これらのなかでも、アルミニウムアルコキシドを用いることが好ましい。これらは、単独あるいは混合物として用いることができる。
 塗工液Aに含まれる有機溶剤としては、アルコール、グリコール、ケトン、エーテル、エステル類、炭化水素類等の種々の有機溶剤が使用できるが、金属有機化合物及び金属塩の溶解性が良いことから、アルコール又はグリコールを用いることが好ましい。これらの有機溶剤は単独で用いてもよいし、2種類以上を混合して用いてもよい。アルコールとしては、メタノール、エタノール、イソプロピルアルコールなどが、取り扱い性、保存安定性といった点で好ましい。
 塗工液Aには、金属有機化合物及び金属塩の縮合重合反応を抑制するための安定剤を添加してもよい。安定剤としては、β−ジケトン類及びアルカノールアミン類からなる群より選ばれる少なくとも一つであることが好ましい。β−ジケトン類ではアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、ベンゾイルアセトン、ジベンゾイルメタン、ベンゾイルトリフルオルアセトン、フロイルアセトンおよびトリフルオルアセチルアセトンなどがあるが、特にアセチルアセトン、アセト酢酸エチルを用いることが好ましい。アルカノールアミン類ではモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N,N−ジメチルアミノエタノール、ジイソプロパノールアミン、トリイソプロパノールアミンなどがあるが、第2級又は第3級アルカノールアミンであることが好ましい。
 塗工液A中のアルミニウム化合物の量は特に限定されないが、有機溶剤100ml当たり、好ましくは0.1g以上、より好ましくは0.5g以上であり、好ましくは30g以下、より好ましくは5g以下である。
 また、塗工液A中の安定剤の量は特に限定されないが、有機溶剤100ml当たり、好ましくは0.01g以上、より好ましくは0.1g以上であり、好ましくは20g以下、より好ましくは3g以下である。
[塗布]
 上述の塗工液Aを、基材上に塗布する。塗工液Aを基材上に塗布する方法は特に限定されないが、スプレー、ハケ塗り等により塗布する方法、スピンコーティング、ディップコーティング等、いずれの方法を用いてもよいが、生産性および膜厚制御の観点からディップコーティングが好ましい。
 ディップコーティングは、基材を、塗布対象(ここでは、塗工液A)に一定時間浸漬し、その後引き上げることで、基材表面に塗布対象を塗布する方法である。
[乾燥]
 そして、基材上の塗工液Aを乾燥し、基材上にアルミニウム薄膜(触媒担持層)を形成する。基材上の塗工液Aを乾燥する方法は特に限定されないが、室温での風乾、加熱(焼成処理)などが挙げられ、加熱が好ましい。加熱温度はおよそ50℃以上400℃以下が好ましく、350℃以下がより好ましい。加熱時間は5分以上60分以下が好ましく、40分以下がより好ましい。
<触媒層形成工程>
 次に、触媒担持層形成工程で形成されたアルミニウム薄膜上に、鉄化合物を含む塗工液Bを塗布し、該塗工液を50℃以下で乾燥させ、前記アルミニウム薄膜上に鉄薄膜を形成する。この工程により、アルミニウム薄膜(触媒担持層)と鉄薄膜(触媒層)とを基材上に備えた、触媒基材を得ることができる。
[塗工液B]
 塗工液Bは、鉄化合物を有機溶剤に溶解又は分散させたものである。塗工液Bに含まれる鉄化合物は、鉄原子を含む化合物であれば特に限定されないが、鉄薄膜を形成しうる金属有機化合物、金属塩が好ましい。
 鉄薄膜を形成しうる金属有機化合物としては、例えば、鉄ペンタカルボニル、フェロセン、アセチルアセトン鉄(II)、アセチルアセトン鉄(III)、トリフルオロアセチルアセトン鉄(II)、トリフルオロアセチルアセトン鉄(III)等が挙げられる。鉄薄膜を形成しうる金属塩としては、例えば、硫酸鉄、硝酸鉄、リン酸鉄、塩化鉄、臭化鉄等の無機酸鉄、酢酸鉄、シュウ酸鉄、クエン酸鉄、乳酸鉄等の有機酸鉄等が挙げられる。これらのなかでも、有機酸鉄を用いることが好ましい。これらは、単独あるいは混合物として用いることができる。
 塗工液Bに含まれる有機溶剤は、特に限定されず、上述の<触媒担持層形成工程>の項に記載した有機溶剤と同様のものを用いることができる。また、塗工液Bには、<触媒担持層形成工程>で上述した安定剤が含まれていてもよい。
 塗工液B中の鉄化合物の量は特に限定されないが、有機溶剤100ml当たり、好ましくは0.05g以上、より好ましくは0.1g以上であり、好ましくは5g以下、より好ましくは1g以下である。
 また、塗工液B中の安定剤の量は特に限定されないが、有機溶剤100ml当たり、好ましくは0.05g以上、より好ましくは0.1g以上であり、好ましくは5g以下、より好ましくは1g以下である。
[塗布]
 塗工液Bを、アルミニウム薄膜上に塗布する方法は特に限定されず、上述の<触媒担持層形成工程>の項に記載した方法と同様のものを用いることができる。
 <触媒担持層形成工程>における塗工液Aの塗布同様、塗工液Bの塗布方法としてはディップコーティングを用いることが好ましい。
 そして、ディップコーティングを採用する場合、塗布対象である塗工液Bへの、アルミニウム薄膜付き基材の浸漬時間は、1秒間以上30秒間以下が好ましい。加えて、浸漬後、該基材を塗工液Bからの引き上げ速度は、1mm/秒以上5mm/秒以下が好ましい。引き上げ速度が、5mm/秒超であると、基材への塗工液Bの付着が十分でなく、得られるCNT集合体の潰れた構造の含有率が低下する虞があるからである。
[乾燥]
 そして、アルミニウム薄膜上の塗工液Bを乾燥し、基材上に鉄薄膜を形成する。ここで、塗工液Bは、50℃以下で乾燥する必要があり、好ましくは40℃以下、より好ましくは30℃以下で乾燥する。乾燥温度が50℃超であると、続く成長工程において、潰れたCNTを含むCNT集合体を得ることができない。なお、乾燥温度の下限は特に限定されないが、通常10℃以上である。基材上の塗工液Bを乾燥する方法としては通常、室温での風乾が好ましい。乾燥温度が50℃以下であれば加熱により乾燥しても良いが、潰れたCNTを効率よく製造する観点からは風乾が好適である。
<フォーメーション工程>
 本発明のCNTの製造方法において、成長工程の前にフォーメーション工程を行なうことが好ましい。フォーメーション工程とは、触媒の周囲環境を還元ガス(還元性を有するガス)環境とすると共に、触媒及び還元ガスの少なくとも一方を加熱する工程である。この工程により、触媒の還元、CNTの成長に適合した状態としての触媒の微粒子化促進、触媒の活性向上の少なくとも一つの効果が現れる。例えば、触媒基材が、アルミナ薄膜と鉄薄膜からなるアルミナ−鉄薄膜を備える場合、鉄触媒は還元されて微粒子化し、アルミナ薄膜(触媒担持層)上にナノメートルサイズの鉄微粒子が多数形成される。これにより鉄薄膜(触媒層)はCNT配向集合体の製造に好適な状態となる。この工程を省略してもCNTを製造することは可能であるが、この工程を行なうことでCNTの製造量及び品質を飛躍的に向上させることができる。
[還元ガス]
 フォーメーション工程に用いる還元ガスとしては、CNTの製造が可能なものを用いればよく、例えば水素ガス、アンモニア、水蒸気及びそれらの混合ガスを適用することができる。また、水素ガスをヘリウムガス、アルゴンガス、窒素ガスなどの不活性ガスと混合した混合ガスでもよい。還元ガスは、フォーメーション工程で用いてもよく、適宜成長工程に用いてもよい。
 フォーメーション工程における触媒及び/又は還元ガスの温度は、好ましくは400℃以上1100℃以下である。またフォーメーション工程の時間は、3分以上20分以下が好ましく、3分以上10分以下がより好ましい。これにより、フォーメーション工程中に鉄薄膜(触媒層)の焼成が進行して膜厚が減少するのを抑えることができる。
<成長工程>
 次に、触媒担持層形成工程および触媒層形成工程を経て得られた触媒基材に原料ガスを供給し、前記触媒基材上にカーボンナノチューブ(CNT配向集合体)を成長させる。
 そして、成長工程においては、通常、触媒層および原料ガスの少なくとも一方を加熱するが、均一な密度でCNTを成長させる観点からは、少なくとも原料ガスを加熱することが好ましい。加熱の温度は、400℃~1100℃が好ましい。成長工程では、触媒基材を収容するCNT成長炉内に、原料ガス、不活性ガス、随意に還元ガス及び/又は触媒賦活物質を導入して行う。
 なお、CNTの製造効率を高める観点からは、還元ガス及び原料ガスをガスシャワーによって触媒基材上の触媒に供給するのが好ましい。
[原料ガス]
 原料ガスとしては、成長温度において炭素源を含むガス状物質が用いられる。なかでもメタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、プロピレン、及びアセチレンなどの炭化水素が好適である。この他にも、メタノール、エタノールなどの低級アルコール、アセトン、一酸化炭素などの低炭素数の含酸素化合物でもよい。これらの混合物も使用可能である。
[不活性ガス]
 原料ガスは不活性ガスで希釈されてもよい。不活性ガスとしては、CNTが成長する温度で不活性であり、且つ成長するCNTと反応しないガスであればよく、触媒の活性を低下させないものが好ましい。例えば、ヘリウム、アルゴン、ネオン及びクリプトンなどの希ガス;窒素;水素;並びにこれらの混合ガスを例示できる。
[触媒賦活物質]
 CNTの成長工程において、触媒賦活物質を添加してもよい。触媒賦活物質の添加によって、CNTの生産効率や純度をより一層改善することができる。ここで用いる触媒賦活物質としては、一般には酸素を含む物質であり、成長温度でCNTに多大なダメージを与えない物質であることが好ましい。例えば、水、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素、及び二酸化炭素などの低炭素数の含酸素化合物;エタノール、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;アルデヒド類;エステル類;並びにこれらの混合物が有効である。この中でも、水、酸素、二酸化炭素、一酸化炭素、およびエーテル類が好ましく、特に水が好適である。
 触媒賦活物質の体積濃度は、特に限定されないが微量が好ましく、例えば水の場合、炉内への導入ガスにおいて、通常、10~10000ppm、好ましくは50~1000ppmとする。
[その他の条件]
 成長工程における反応炉内の圧力、処理時間は、他の条件を考慮して適宜設定すればよいが、例えば、圧力は10~10Pa、処理時間は1~60分程度とすることができる。
<冷却工程>
 本発明のCNTの製造方法は、成長工程後に冷却工程を備えることが好ましい。冷却工程とは、成長工程後にCNT配向集合体、触媒基材を冷却ガス下に冷却する工程である。成長工程後のCNT配向集合体、触媒基材は高温状態にあるため、酸素存在環境下に置かれると酸化してしまうおそれがある。それを防ぐために冷却ガス環境下でCNT配向集合体、触媒基材を例えば400℃以下、さらに好ましくは200℃以下に冷却する。冷却ガスとしては不活性ガスが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。
<剥離工程>
 また、本発明のCNTの製造方法は、触媒基材上に得られたCNT配向集合体を、触媒基材から剥離する工程(剥離工程)を備えることが好ましい。CNT配向集合体を触媒基材から剥離する方法としては、物理的、化学的あるいは機械的に触媒基材上から剥離する方法があり、たとえば電場、磁場、遠心力、表面張力を用いて剥離する方法;機械的に直接、基材より剥ぎ取る方法;圧力、熱を用いて基材より剥離する方法などが使用可能である。簡単な剥離法としては、ピンセットで直接触媒基材より、つまみ、剥離させる方法がある。より好適には、カッターブレードなどの薄い刃物を使用して触媒基材より切り離すこともできる。またさらには、真空ポンプ、掃除機を用い、触媒基材上より吸引し、剥ぎ取ることも可能である。また、剥離後、触媒は基材上に残余し、新たにそれを利用して垂直配向したCNTを成長させることが可能となる。
<製造装置>
 本発明のCNTの製造方法に用いる製造装置は、触媒基材を有する成長炉(反応チャンバ)を備え、CVD法によりCNTを成長させることができるものであれば、特に限定されず、熱CVD炉、MOCVD反応炉等の装置を使用できる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、CNT集合体のG/D比、BET比表面積および炭素純度、並びに基材の算術平均粗さRa、触媒担持層の成分分析は、以下の方法を用いて測定した。そして、潰れた構造の有無、潰れた構造の含有率は以下の方法を用いて評価した。
<G/D比>
 CNT配向集合体を試料とし、顕微レーザラマンシステム(サーモフィッシャーサイエンティフィック(株)製NicoletAlmega XR)を用い、基材中心部付近のCNTを測定した。
<BET比表面積、炭素純度>
 既述の方法で測定・算出した。
<算術平均粗さ>
 算術平均粗さRaは、レーザ顕微鏡(キーエンス製VK−9700)を用いて、対物倍率50倍で測定した。
<潰れた構造の有無、および潰れた構造の含有率>
 得られたCNT集合体と単離精製されたフラーレン(C60)を共に石英管内に密封し、1.07×10−3Paに保持したまま、500℃の温度で24時間加熱処理を行うことにより、フラーレン挿入処理を行った。フラーレン挿入処理後のCNTを透過型電子顕微鏡(TEM)で観測することにより、潰れた構造を有するCNTの有無を確認した。加えて任意のカーボンナノチューブ100本を観察し、その100本中、上記潰れた構造を少なくとも一箇所有するカーボンナノチューブの数を数え、潰れた構造の含有率(%)を算出した。
(実施例1)
<触媒基材の作製>
 アルミニウム化合物としてのアルミニウムトリ−sec−ブトキシド1.9gを、有機溶剤としての2−プロパノール100mlに溶解させた。さらに、安定剤としてのトリイソプロパノールアミン0.9gを加えて溶解させて、触媒担持層形成用の塗工液Aを調製した。
 また、鉄化合物としての酢酸鉄174mgを有機溶剤としての2−プロパノール100mlに溶解させた。さらに、安定剤としてのトリイソプロパノールアミン190mgを加えて溶解させて、触媒層形成用の塗工液Bを調製した。
 基材としてのFe−Cr合金SUS430基板(JFEスチール株式会社製、40mm×100mm、厚さ0.3mm、Cr18%、算術平均粗さRa≒0.59μm)の表面に、室温25℃、相対湿度50%の環境下でディップコーティングにより、上述の塗工液Aを塗布した。具体的には、基材を塗工液Aに浸漬後、20秒間保持して、10mm/秒の引き上げ速度で基材を引き上げた。その後、5分間風乾し、300℃の空気環境下で30分間加熱後、室温まで冷却することにより、基材上に膜厚40nmのアルミナ薄膜(触媒担持層)を形成した。
 次いで、室温25℃、相対湿度50%の環境下で、基材に設けられたアルミナ薄膜の上に、ディップコーティングにより上述の塗工液Bを塗布した。具体的には、アルミナ薄膜を備える基材を塗工液Bに浸漬後、20秒間保持して、3mm/秒の引き上げ速度でアルミナ薄膜を備える基材を引き上げた。その後、5分間風乾(乾燥温度45℃)することにより、膜厚3nmの鉄薄膜(触媒層)を形成した。このようにして、基材の上に、アルミナ薄膜、鉄薄膜をこの順に有してなる触媒基材1が得られた。
<CNTの合成>
 作製した触媒基板1を、炉内温度:750℃、炉内圧力:1.02×10Paに保持されたCVD装置の反応炉内に設置し、この反応炉内に、He:100sccm及びH:800sccmの混合ガスを10分間導入した(フォーメーション工程)。次いで、炉内温度:750℃、炉内圧力:1.02×10Paに保持された状態の反応炉内に、He:850sccm、エチレン:100sccm及びHO含有He(相対湿度23%):50sccmの混合ガスを8分間供給した(成長工程)。
 その後、反応炉内にHe:1000sccmを供給し、残余の原料ガス及び触媒賦活剤を排除した。これにより、CNT配向集合体1が得られた。作製したCNT配向集合体1を触媒基材1から剥離し、CNT集合体1を得た。得られたCNT配向集合体1(CNT集合体1)は、収量1.8mg/cm、G/D比3.7、密度:0.03g/cm、BET比表面積:1,060m/g、炭素純度99.9%であった。
<潰れた構造の評価>
 得られたCNT集合体1を、上述の方法でTEMにて観察した結果、潰れた構造を有する単層CNTが確認された(図2)。また、100本中32本の潰れた構造を有する単層CNTが存在していることが確認され、すなわち、潰れた構造の含有率は32%であった。そして、CNT集合体1の潰れた部分の平均幅長は6nmであった。
(実施例2)
<触媒基材の作製>
 実施例1のアルミナ薄膜を備える基材への鉄薄膜(触媒層)の塗布において、引上げ速度を3mm/秒から6mm/秒に替えた以外は、実施例1と同様の操作により、触媒基材2を作製した。
<CNTの合成>
 触媒基材1に替えて触媒基材2を使用した以外は、実施例1と同様の操作により、CNT配向集合体2を作製した。作製したCNT配向集合体2を触媒基材2から剥離し、CNT集合体2を得た。得られたCNT配向集合体2(CNT集合体2)は、収量1.4mg/cm、G/D比2.1、密度:0.03g/cm、BET比表面積:680m/g、炭素純度99.9%であった。
<潰れた構造の評価>
 得られたCNT集合体2を、上述の方法でTEMにて観察した結果、潰れた構造を有する単層CNTが確認された。また、100本中8本の潰れた構造を有する単層CNTが存在していることが確認され、すなわち、潰れた構造の含有率は8%であった。そして、CNT集合体2の潰れた部分の平均幅長は8nmであった。
(比較例1)
<触媒基材の作製>
 特許4,621,896号公報に記載の手順に従い、基材としてのシリコンウェハー上に、スパッタ蒸着装置を用い、厚さ1nmの鉄薄膜(触媒層)を形成した。このようにして、基材の上に鉄薄膜を有してなる触媒基材3が得られた。
<CNTの合成>
 触媒基材1に替えて触媒基材3を使用した以外は、実施例1と同様の操作により、CNT配向集合体3を作製した。作製したCNT配向集合体3を触媒基材3から剥離し、CNT集合体3を得た。得られたCNT配向集合体3(CNT集合体3)は、収量1.8mg/cm、G/D比4.8、密度:0.03g/cm、BET比表面積:1,010m/g、炭素純度99.9%であった。
<潰れた構造の評価>
 得られたCNT集合体3を、上述の方法でTEMにて観察した結果、フラーレンはCNTの内部空間中に万遍なく挿入されており、潰れた構造を有しているCNTは存在しなかった。
 本発明によれば、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブ、および当該カーボンナノチューブを含むカーボンナノチューブ集合体を提供することができる。
 また、本発明によれば、特定の断面形状を備えることで、その内部空間を活用可能なカーボンナノチューブを製造しうる、カーボンナノチューブ集合体の製造方法を提供することができる。

Claims (9)

  1.  少なくとも一部が潰れた構造を有する、カーボンナノチューブ。
  2.  単層構造である、請求項1に記載のカーボンナノチューブ。
  3.  フラーレン挿入処理によりフラーレンが挿入されない部分を有する、請求項1または2に記載のカーボンナノチューブ。
  4.  潰れた部分の平均幅長が5nm以上9nm以下である、請求項1~3いずれかに記載のカーボンナノチューブ。
  5.  請求項1~4いずれかに記載のカーボンナノチューブを含む、カーボンナノチューブ集合体。
  6.  潰れた構造の含有率が5%以上である、請求項5に記載のカーボンナノチューブ集合体。
  7.  BET比表面積が600m/g以上である、請求項5又は6に記載のカーボンナノチューブ集合体。
  8.  アルミニウム化合物を含む塗工液Aを基材上に塗布する工程、
     前記塗工液Aを乾燥し、前記基材上にアルミニウム薄膜を形成する工程、
     前記アルミニウム薄膜の上に、鉄化合物を含む塗工液Bを塗布する工程、
     前記塗工液Bを50℃以下で乾燥し、前記アルミニウム薄膜上に鉄薄膜を形成することで触媒基材を得る工程、および、
     前記触媒基材に原料ガスを供給し、前記触媒基材上にカーボンナノチューブを成長させる工程、を備えるカーボンナノチューブ集合体の製造方法。
  9.  請求項8に記載の製造方法で製造される、カーボンナノチューブ集合体。
PCT/JP2014/084750 2013-12-27 2014-12-25 カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法 WO2015099195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015555081A JP6519485B2 (ja) 2013-12-27 2014-12-25 カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273234 2013-12-27
JP2013273234 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099195A1 true WO2015099195A1 (ja) 2015-07-02

Family

ID=53479033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084750 WO2015099195A1 (ja) 2013-12-27 2014-12-25 カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法

Country Status (2)

Country Link
JP (1) JP6519485B2 (ja)
WO (1) WO2015099195A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170351A1 (ja) * 2016-03-31 2017-10-05 アイシン精機株式会社 配向性カーボンナノチューブ成長触媒含有塗布液及び配向性カーボンナノチューブの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155127A (ja) * 2007-12-25 2009-07-16 Sonac Kk カーボンナノチューブおよび該カーボンナノチューブの製造方法
JP2011500978A (ja) * 2007-10-11 2011-01-06 ジョージア テック リサーチ コーポレイション カーボンファイバおよびフィルムならびにその製造方法
WO2011108492A1 (ja) * 2010-03-01 2011-09-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
WO2012070527A1 (ja) * 2010-11-25 2012-05-31 株式会社インキュベーション・アライアンス 新規カーボンナノチューブ及びその製造方法
JP2014058432A (ja) * 2012-09-19 2014-04-03 Fujitsu Ltd カーボンナノチューブ及び電界効果トランジスタ
JP2014227331A (ja) * 2013-05-27 2014-12-08 日立造船株式会社 カーボンナノチューブシートおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500978A (ja) * 2007-10-11 2011-01-06 ジョージア テック リサーチ コーポレイション カーボンファイバおよびフィルムならびにその製造方法
JP2009155127A (ja) * 2007-12-25 2009-07-16 Sonac Kk カーボンナノチューブおよび該カーボンナノチューブの製造方法
WO2011108492A1 (ja) * 2010-03-01 2011-09-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
WO2012070527A1 (ja) * 2010-11-25 2012-05-31 株式会社インキュベーション・アライアンス 新規カーボンナノチューブ及びその製造方法
JP2014058432A (ja) * 2012-09-19 2014-04-03 Fujitsu Ltd カーボンナノチューブ及び電界効果トランジスタ
JP2014227331A (ja) * 2013-05-27 2014-12-08 日立造船株式会社 カーボンナノチューブシートおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170351A1 (ja) * 2016-03-31 2017-10-05 アイシン精機株式会社 配向性カーボンナノチューブ成長触媒含有塗布液及び配向性カーボンナノチューブの製造方法

Also Published As

Publication number Publication date
JP6519485B2 (ja) 2019-05-29
JPWO2015099195A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6048591B2 (ja) カーボンナノチューブ
EP2543632B1 (en) Method for producing aligned carbon nanotube aggregate
JP4730707B2 (ja) カーボンナノチューブ合成用触媒及びその製造方法、触媒分散液、並びに、カーボンナノチューブの製造方法
CA2578725A1 (en) Carbon nanotube assembly and manufacturing method thereof
JP4706852B2 (ja) カーボンナノチューブの製造方法
EP3015425A1 (en) Method for producing carbon nanotubes
JP6079539B2 (ja) 炭素ナノ構造体の製造方法
US20080279752A1 (en) Method for producing a single-wall carbon nanotube
JP4977982B2 (ja) 線状炭素材料の製造方法及び機能デバイスの製造方法
WO2017170579A1 (ja) 炭素ナノ構造体集合物の製造方法及び炭素ナノ構造体集合物
JP6623512B2 (ja) 炭素ナノ構造体集合物およびその製造方法
JP6519485B2 (ja) カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法
JP2006298684A (ja) 炭素系一次元材料およびその合成方法ならびに炭素系一次元材料合成用触媒およびその合成方法ならびに電子素子およびその製造方法
JP6476759B2 (ja) カーボンナノチューブ配向集合体の製造方法
JP2018083169A (ja) カーボンナノチューブ集合体製造用触媒基材とカーボンナノチューブ集合体の製造方法
JP6762005B2 (ja) カーボンナノチューブ集合体の製造方法
JP6171805B2 (ja) 炭素ナノ構造体の製造方法
WO2016072096A1 (ja) 炭素ナノ構造体集合物およびその製造方法
WO2023233932A1 (ja) カーボンナノチューブ積層構造体、カーボンナノチューブ分散液、電子素子製造用塗布液、カーボンナノチューブ膜、および電子素子
JP6950939B2 (ja) カーボンナノチューブ集合体合成用触媒担持体及びカーボンナノチューブ集合体合成用部材
JP2016088814A (ja) グラフェンナノテープ、炭素ナノ構造体集合物およびその製造方法
JP6458594B2 (ja) カーボンナノチューブを含む炭素ナノ構造体の製造方法
WO2016157787A1 (ja) カーボンナノチューブを含む炭素ナノ構造体の製造方法
Sarangi et al. Carbon nanotubes grown on metallic wires by cold plasma technique
Kemmochi et al. Preparation of Catalytic Nanoparticles in Mesoporous Silica Film for Oriented Growth of Single-Walled Carbon Nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874170

Country of ref document: EP

Kind code of ref document: A1