WO2015099129A1 - 水素製造方法及び水素製造装置 - Google Patents

水素製造方法及び水素製造装置 Download PDF

Info

Publication number
WO2015099129A1
WO2015099129A1 PCT/JP2014/084526 JP2014084526W WO2015099129A1 WO 2015099129 A1 WO2015099129 A1 WO 2015099129A1 JP 2014084526 W JP2014084526 W JP 2014084526W WO 2015099129 A1 WO2015099129 A1 WO 2015099129A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
hydrogen
sheet
reaction
container
Prior art date
Application number
PCT/JP2014/084526
Other languages
English (en)
French (fr)
Inventor
平尾 一之
浩二 永嶋
石坂 整
一夫 岡田
崇 佐伯
Original Assignee
国立大学法人京都大学
アクアフェアリー株式会社
ラッポルトエナジー株式会社
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, アクアフェアリー株式会社, ラッポルトエナジー株式会社, ローム株式会社 filed Critical 国立大学法人京都大学
Priority to CN201480071355.8A priority Critical patent/CN105849033A/zh
Priority to US15/108,465 priority patent/US20160318761A1/en
Priority to DE112014006076.3T priority patent/DE112014006076T5/de
Priority to JP2015555048A priority patent/JP6175604B2/ja
Publication of WO2015099129A1 publication Critical patent/WO2015099129A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method and apparatus for producing hydrogen used as fuel for fuel cells and the like, and more particularly, to a hydrogen production method and hydrogen production apparatus utilizing a reaction between aluminum and water.
  • a fuel cell is one of the power generation devices that extract electric power through a chemical reaction between hydrogen and oxygen. Compared with existing power generation devices, the power generation efficiency is very high, and noise and vibration are low. In addition, since it emits almost no environmental pollutants, it is expected to be used in various fields such as portable devices such as notebook computers and mobile phones, home appliances, and automobiles. In such a fuel cell, improvement of production efficiency of hydrogen gas as a fuel is one of the problems.
  • Patent Document 1 discloses a method of generating hydrogen gas by bringing a hydrogen generator containing particulate aluminum and calcium hydroxide into contact with water.
  • a hydrogen generator containing particulate aluminum and calcium hydroxide containing particulate aluminum and calcium hydroxide into contact with water.
  • an unreacted aluminum metal surface is formed by solubilizing an insoluble layer (aluminum oxide or a passive layer of aluminum hydroxide) formed on the particle surface by the reaction of aluminum and water with calcium hydroxide. By doing so, the generation efficiency of hydrogen is increased.
  • the problem to be solved by the present invention is to generate hydrogen continuously for a long time without reducing the total generation amount of hydrogen in a hydrogen production method and apparatus utilizing a reaction between water and aluminum, and It is an object of the present invention to provide a hydrogen production method and a hydrogen production apparatus in which handling of materials for generating hydrogen is easy.
  • the present inventor can not only maintain the hydrogen generation reaction for a long time by using sheet-like aluminum as a material for hydrogen generation, but also As a result, the present invention has been found.
  • the hydrogen production method which has been made to solve the above problems, Dissolve calcium hydroxide in water to make an aqueous solution,
  • the total surface area to the aqueous solution characterized in that to generate hydrogen gas by immersing a sheet of aluminum in the range of 150cm 2 ⁇ 3000cm 2.
  • the “total surface area” refers to an area where the sheet-like aluminum comes into contact with the aqueous solution and contributes to the hydrogen gas generation reaction.
  • the surface area of each sheet-like aluminum is added up. This is called “total surface area”.
  • the surface area of the sheet-like aluminum can be approximated by twice the area.
  • sheet-like aluminum with different thicknesses are prepared, When sheet-like aluminum having a thickness corresponding to the generation amount of hydrogen gas is selected and immersed in the aqueous solution to generate hydrogen gas, a desired amount of hydrogen gas can be obtained. In this case, sheet-like aluminum having a thickness of 6.5 to 100 ⁇ m is preferably used.
  • a sheet-like aluminum having an appropriate thickness according to the amount of hydrogen gas generated based on the correlation between the thickness of the sheet-like aluminum determined in advance and the amount of hydrogen generated.
  • the hydrogen production apparatus includes: a) a container for water, b) disposed in said container, and the sheet-shaped aluminum with a total surface area in the range of 150 cm 2 ⁇ 3000 cm 2, c) It is characterized by comprising solid calcium hydroxide contained in the container.
  • Hydrogen gas can be generated continuously for a long time by using sheet-like aluminum instead of granular aluminum that is usually used in a hydrogen production method and a hydrogen production apparatus using a reaction between aluminum and water.
  • sheet-like aluminum having a total surface area of 150 cm 2 to 3000 cm 2 , particularly sheet-like aluminum having a thickness of 6.5 ⁇ m to 100 ⁇ m, is used, it is possible to prevent the hydrogen generation reaction from stopping halfway. The generation efficiency can be improved.
  • the schematic block diagram of the hydrogen production apparatus which concerns on 1st embodiment of this invention.
  • the graph which shows the relationship between the thickness of aluminum foil, and the amount of hydrogen generation per unit area. 10 is a graph showing the temporal change in the hydrogen generation rate, which is the result of Example 3.
  • FIG. 4A to 4C are diagrams for explaining a method for producing roll-shaped aluminum
  • FIG. 3D is a schematic perspective view illustrating a state in which the roll-shaped aluminum is held in a folder.
  • the hydrogen production apparatus 1 includes an acrylic container 3 with a lid, a sheet-like aluminum 5 and granular calcium hydroxide 7 accommodated therein.
  • the container 3 has a holding portion (not shown) capable of holding a plurality of sheet-like aluminum 5 and holds an appropriate number of sheet-like aluminum 5 according to the target hydrogen gas generation amount. It is supposed to be.
  • the container 3 also has a discharge port 3a for discharging the generated hydrogen gas.
  • aluminum foil sheet-like aluminum
  • Example 1 95 ml of pure water was put into a rectangular acrylic container 3 having a capacity of 100 ml, and 1 g of granular calcium hydroxide was dissolved therein. Then, an aluminum foil having a thickness of 12 ⁇ m (manufactured by Nippon Foil Co., Ltd., 1N30 (aluminum purity 99 .3% or more)) A hydrogen generation reaction was carried out by immersing 1 g in a strip shape.
  • FIG. 5 shows temporal changes in the total generation amount (ml) of hydrogen gas and the generation rate (ml / min) at this time.
  • a membrane type flow meter was used to measure the total generation amount and generation rate.
  • Example 2 25 ml of pure water is put into a rectangular acrylic container 3 having a capacity of 100 ml, 1 g of granular calcium hydroxide is dissolved in the container, and then 10 kinds of aluminum foils 1 g having different thicknesses are cut into strips.
  • the hydrogen generation reaction was carried out by immersion, and the hydrogen gas generation rate (ml / min) at that time was measured.
  • the thicknesses of the 10 types of aluminum foils were 6.5 ⁇ m, 9 ⁇ m, 11 ⁇ m (2 types), 12 ⁇ m, 15 ⁇ m, 17 ⁇ m, 20 ⁇ m, 25 ⁇ m, and 50 ⁇ m, respectively.
  • 11 ⁇ m aluminum foil uses Toyo Aluminum Echo Products Sunfoil (trade name) 2 types (ver.1, ver.2), and other than that, Nippon Foil Co., Ltd. aluminum foil (1N30) is used. It was. Moreover, the area of each aluminum foil is as follows. 6.5 ⁇ m: 1150cm 2, 9 ⁇ m: 830cm 2, 11 ⁇ m: 680cm 2, 12 ⁇ m: 625cm 2, 15 ⁇ m: 500cm 2, 17 ⁇ m: 440cm 2, 20 ⁇ m: 375cm 2, 25 ⁇ m: 300cm 2, 50 ⁇ m: 150cm 2
  • FIG. 6 shows the temporal change in the hydrogen generation rate of each aluminum foil. From FIG. 6, it was found that the smaller the thickness of the aluminum foil, the higher the hydrogen generation rate at the initial stage of the reaction and the shorter the duration of the hydrogen generation reaction. Sun foil ver.1 and ver.2 have the same thickness and area, but different results were obtained. When the reaction rate of both was examined, the reaction rate of ver.1 was 96%. The reaction rate of ver.2 was found to be as low as 75%. Therefore, when elemental analysis was performed using an ICP emission analyzer, the aluminum purity of ver.1 and ver.2 was 99% and 97%, respectively, and the purity of ver.2 was lower. That is, the decrease in purity is considered to be the cause of the decrease in the reaction rate.
  • Example 3 After putting 300 ml of pure water in a cylindrical glass container 3 having a capacity of 500 ml and dissolving 1 g of granular calcium hydroxide in this, six types having different thicknesses (thickness 6.5 ⁇ m, 12 ⁇ m, 20 ⁇ m, 50 ⁇ m, 100 ⁇ m) aluminum foil is cut so that the area is 200mm x 250mm, and then cut into a 25mm square, and hydrogen generation reaction is performed, and the hydrogen gas generation rate (ml / min) at that time is measured. did. In this example, a stirrer was placed in the glass container 3 to stir the solution during the hydrogen generation reaction. The generation rate was measured using a membrane flow meter.
  • the weight of the aluminum foil of each thickness used in this example is as follows. 6.5 ⁇ m: 1.01 g, 12 ⁇ m: 1.66 g, 17 ⁇ m: 2.19 g, 20 ⁇ m: 2.56 g, 50 ⁇ m: 6.55 g, 100 ⁇ m: 13.24 g
  • FIGS. FIG. 10 shows the generation rate at the beginning of the reaction in FIG. 9 with the horizontal axis enlarged.
  • the hydrogen generation time of the 300 ⁇ m thick aluminum foil may be about three times that of the 100 ⁇ m thick aluminum foil.
  • FIG. 12 shows the results of examining the relationship between the thickness and the hydrogen generation time for six types of aluminum foils having a thickness of 6.5 ⁇ m to 100 ⁇ m. It can be seen from FIG. 12 that the hydrogen generation time increases as the thickness of the aluminum foil increases.
  • Example 4 100 ml of pure water is put into a rectangular acrylic container 3 having a capacity of 100 ml, 1 g of granular calcium hydroxide is dissolved in the container, and then 1 g of 12 ⁇ m thick aluminum foil (manufactured by Nihon Foil Co., Ltd., 1N30) is used as a strip. What was cut into a shape was immersed, and the reaction temperature was changed to 22 ° C., 40 ° C., 53 ° C., and 80 ° C. to perform a hydrogen generation reaction.
  • FIG. 14 shows the temporal change in the hydrogen gas generation rate (ml / min) at this time
  • FIG. 15 shows a photograph showing the state of the aluminum foil after completion of the reaction.
  • the yield is 97% when the reaction temperature is 22 ° C (room temperature), 70% when the reaction temperature is 40 ° C, and the yield when the reaction temperature is 53 ° C.
  • the rate was 53%, and the yield at 80 ° C. was found to be 40%.
  • Example 5 300 ml of pure water is placed in a cylindrical glass container 3 having a capacity of 500 ml, and 1 g of granular calcium hydroxide is dissolved therein. Then, an aluminum foil having a thickness of 12 ⁇ m is cut into 25 mm square, and the total area is 100 ⁇ 250 mm 2. The amounts of (x1), 200x250 mm 2 (x2), 300x250 mm 2 (x3), 400x250 mm 2 (x4), and 600x250 mm 2 (x6) were immersed, and the hydrogen generation rate was measured while stirring. The result is shown in FIG. The number in the parenthesis after the numerical value representing the total area indicates the ratio when 100 ⁇ 250 mm 2 is 1.
  • the hydrogen generation rate and total generation amount can be controlled by setting the thickness and area (total surface area) of the aluminum foil (sheet-like aluminum) to appropriate values. . From this, if the hydrogen production apparatus of the present invention is used as the hydrogen supply source of the fuel cell, the output and utilization time of the fuel cell to be used can be selected by the combination of the thickness of the sheet-like aluminum and the total surface area. It turns out that it is useful as a hydrogen gas supply source for fuel cells.
  • FIG. 20 shows a hydrogen production apparatus 21 according to the second embodiment of the present invention.
  • the hydrogen production apparatus 21 includes an acrylic container 23 with a lid, a PET (polyethylene terephthalate) folder 24 accommodated therein, a roll-shaped aluminum 25 held in the folder 24, and an inside of the container 23. And granular calcium hydroxide 27 contained in the container.
  • the shape of the container 23 is cylindrical, but the shape is not particularly limited as long as it is a size that can accommodate the entire folder 24.
  • the container 23 has a discharge port 23 a for discharging the generated hydrogen gas.
  • a membrane type flow meter 9 is connected to the discharge port 23a.
  • the membrane flow meter 9 is connected to the PC 10 so that the amount of hydrogen generated can be measured.
  • the folder 24 has a cylindrical shape as a whole, and includes an annular portion 24a, five elongated rectangular pieces 24b extending downward from the lower end portion of the annular portion 24a, and an upper opening of the annular portion 24a. It is comprised from five strip
  • the roll-shaped aluminum 25 is configured by winding a sheet-shaped aluminum 26 (manufactured by Nippon Foil Co., Ltd., 1N30, weight 5 g) having a thickness of 12 ⁇ m, a width of 50 mm, and a length of 3000 mm. As shown in FIG. 22, the roll-shaped aluminum 25 has a spacer 28 having the same size and the same shape as the sheet-shaped aluminum 26, and is stacked on the sheet-shaped aluminum 26 (FIG. 22A). A plurality of turns are wound around the rod 40 (FIG. 22B), and the rod 40 is pulled out (FIG. 22C).
  • the rolled aluminum 25 is accommodated in the folder 24 so that the center thereof coincides with the cylindrical portion 24d of the folder 24 (FIG. 22D). At this time, the cylindrical portion 24 d is inserted into the center of the rolled aluminum 25. And the folder 24 in which the roll-shaped aluminum 25 was accommodated is installed in the container 23 with the annular portion 24a facing upward (FIG. 20). As a result, the rolled aluminum 25 is placed in a state in which the rolled sheet-like aluminum 26 is substantially perpendicular to the horizontal plane (hereinafter, this state is referred to as a “vertically placed state”).
  • this state is referred to as a “vertically placed state”.
  • toilet paper (trade name “Nepia Long Roll (Double)” manufactured by Oji Napier Co., Ltd.) cut into a width of 50 mm and a length of 3000 mm was used as the spacer 28.
  • 5 g of calcium hydroxide 27 was placed in the bottom of the container 23.
  • 400 ml of pure water is added to the container 23, and the entire roll-shaped aluminum 25 is immersed in pure water. Hydrogen generation reaction was performed.
  • FIG. 23 shows temporal changes in the generation rate and temperature. As can be seen from FIG. 23, although the generation rate greatly increases or decreases at the beginning of the reaction, the generation rate is stable until 60 minutes have passed since the start of the reaction, and between 10 and 14 (ml / min). It changed in. Thereafter, although the hydrogen generation rate gradually decreased, hydrogen generation was observed even when 330 minutes had elapsed from the start of the reaction.
  • the reaction rate of aluminum was calculated from the total hydrogen generation amount, and it was 40%. The temperature from the start of the reaction until 330 minutes passed was about 22 ° C. to about 29 ° C.
  • FIGS. 24 (a) to (e) The rolled aluminum 25 after the completion of the reaction is cut vertically and developed, and photographs taken are shown in FIGS. 24 (a) to (e).
  • corrosion of aluminum has progressed in the entire surface in the layer near the center of the rolled aluminum 25 and the outermost layer, but in the other layers, the upper end and the lower end Only the corrosion progressed, and many other unreacted portions remained in the other portions. From FIG.
  • Example 7 In order to investigate the influence of the presence of calcium ions and hydroxide ions between the respective layers of the rolled aluminum 25 on the hydrogen generation reaction, the same hydrogen as in Example 6 was used by using the rolled aluminum 29 instead of the rolled aluminum 25. A developmental reaction was performed.
  • the roll-shaped aluminum 29 is formed by dispersing 5 g of granular calcium hydroxide 27 substantially uniformly on the entire sheet-shaped aluminum 26 and overlaying a spacer 28 made of toilet paper thereon. It is made by winding.
  • the calcium hydroxide 27 is held between the roll-shaped aluminum 29 and the spacer 28, the calcium hydroxide 27 is not put in the bottom of the container 23.
  • Other conditions are the same as in Example 6.
  • FIG. 26 shows the temporal change in the hydrogen gas generation rate (ml / min) and temperature in this example. Also, photographs taken by vertically cutting a part or all of the rolled aluminum 29 after completion of the reaction are shown in FIGS. 27 (a) to (d).
  • the generation rate greatly increases and decreases at the beginning of the reaction as in Example 6, unlike in Example 6, the generation rate increases rapidly from about 60 minutes after the start of the reaction and reaches 100 minutes. The generation rate reached around 45 ml / min at the time when the time elapses. Thereafter, the generation rate dropped rapidly, the generation rate when 210 minutes passed from the start of the reaction was 10 ml / min, and the generation rate when 300 minutes passed was 2.5 ml / min.
  • the reaction rate of aluminum was calculated from the total hydrogen generation amount and was 97%. Further, the temperature of the aqueous solution, which was about 20 ° C. immediately after the start of the reaction, gradually increased thereafter, and exceeded 35 ° C. when 140 minutes had elapsed from the start of the reaction. Further, after 180 minutes had passed since the start of the reaction, the temperature gradually decreased, but it was less than 30 ° C. after 270 minutes had passed since the start of the reaction.
  • FIGS. 27A to 27D it can be seen that in the present embodiment, the entire roll-shaped aluminum 29 is corroded. Moreover, as can be seen from FIG. 27 (a), even when the corrosion of the aluminum has progressed, most of the residue remains attached to the spacer 28, so that the shape of the rolled aluminum 29 was maintained.
  • this example was superior to Example 6 in all of the hydrogen generation rate, the aluminum reaction rate, and the size of the area where aluminum corrosion was observed.
  • the toilet paper which is a water-absorbing material, is used as the spacer 28, and the calcium hydroxide 27 is interposed between the spacer 28 and each layer of the rolled aluminum 29. This is probably because the formation of the dynamic layer was suppressed.
  • toilet paper since toilet paper has a large number of minute holes, granular calcium hydroxide 27 enters and is held in these holes. For this reason, the calcium hydroxide 27 existing between the layers of the roll-shaped aluminum 29 is prevented from flowing down, and the reaction between aluminum and water seems to have been further sustained.
  • Example 8 In order to investigate the function of the spacer 28 of the rolled aluminum 29, the same hydrogen generation reaction as in Example 7 was performed using toilet paper, copy paper, mesh, and glass fiber sheet as the spacer 28.
  • Recycled PPC from Daio Paper Co., Ltd. is used for copy paper
  • Crown Net made by Dio Kasei Co., Ltd. used for screen doors (mesh spacing 0.84 mm)
  • Mutsikagaku Glass Co., Ltd. is used for glass fiber sheets. Using glass fiber cloth made by Seisakusho, respectively
  • FIG. 28 shows the temporal change in the hydrogen gas generation rate (ml / min) at this time.
  • the reaction rate of aluminum in each spacer 28 was, in descending order, 98% toilet paper, 80% mesh, 64% copy paper, and 30% glass fiber sheet. From FIG. 28, when toilet paper or mesh is used as the spacer 28, the reaction rate of aluminum is higher than when copy paper or glass fiber sheet is used, but the hydrogen generation reaction proceeds rapidly, and 300 seconds from the start of the reaction. It can be seen that the reaction almost stops in minutes (toilet paper) and 210 minutes (mesh). On the other hand, when copy paper was used as the spacer 28, although the hydrogen generation rate was low, the fluctuation was small and the hydrogen generation reaction proceeded slowly.
  • the glass fiber sheet does not absorb water like toilet paper or copy paper, and does not have pores that allow granular calcium hydroxide to enter like toilet paper or mesh. For this reason, it is considered that the glass fiber sheet could not allow water, calcium ions, or hydroxide ions to exist between the respective layers of the rolled aluminum 29.
  • toilet paper is excellent in water absorption and can swell due to water absorption to widen the gap between the layers of the roll-shaped aluminum 29. For this reason, the reaction between aluminum and water proceeds efficiently, and it is considered that the effect of suppressing the formation of a passive layer by calcium ions and hydroxide ions was obtained. From the above, as the spacer, materials other than toilet paper, such as paper having a large number of fine holes, cloth, nonwoven fabric, etc., which are excellent in water absorption and swell by water absorption are suitable.
  • Example 9 The effect of the amount of calcium hydroxide 27 retained between the layers of the roll-shaped aluminum 29 on the hydrogen generation reaction was confirmed by the following two-stage experiment.
  • (I) Experiment using the hydrogen production apparatus 1 according to the first embodiment In an aqueous solution obtained by dissolving calcium hydroxide 27 (0.5 g, 1 g, 1.5 g, 2 g, 3 g, 4 g, or 5 g) in 300 ml of pure water. Then, 20 ⁇ m ⁇ 25 cm of sheet-like aluminum having a thickness of 12 ⁇ m (manufactured by Nippon Foil Co., Ltd., 1N30, weight 1.6 g) was immersed, and a hydrogen generation reaction was performed while stirring.
  • FIG. 29A shows a temporal change in the hydrogen gas generation rate (ml / min) at this time
  • FIG. 29B shows a temporal change in the hydrogen gas generation amount (total hydrogen generation amount).
  • the present invention is not limited to the embodiments described above, and appropriate modifications are possible.
  • the material and shape of the folder are not particularly limited as long as the folder does not hinder the contact between the rolled aluminum and water while holding the rolled aluminum in the hydrogen generation container.
  • the hydrogen generating agent accommodated in the hydrogen generating container according to the present invention is not limited to aluminum, and metals such as magnesium, silicon, and zinc can be used.
  • metals such as magnesium, silicon, and zinc can be used.
  • calcium hydroxide, potassium hydroxide, sodium hydroxide, or the like may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 本発明は、水とアルミニウムの反応を利用した水素製造方法及び装置において、水素の総発生量を低下させることなく長時間継続して水素を発生させることができる水素製造方法及び水素製造装置を提供することを目的とする。本発明の一実施形態に係る水素製造装置1は、容器3内に配置されたシート状アルミニウム5と該容器3内に収容された水酸化カルシウム7とを有している。上記構成の水素製造装置1では、容器3内に水を加え、水酸化カルシウム7を溶かして水溶液として該水溶液にシート状アルミニウム5を浸漬させる。これにより、水素発生反応が開始され、水素ガスが発生する。この場合、シート状アルミニウム5の面積や厚さを調整することにより、水素ガスの発生量や発生速度、発生時間を調整することができる。

Description

水素製造方法及び水素製造装置
 本発明は、燃料電池の燃料等に利用される水素の製造方法及び装置に関し、特に、アルミニウムと水との反応を利用した水素製造方法及び水素製造装置に関する。
 燃料電池は、水素と酸素の化学反応により電力を取り出す発電装置の一つであり、既存の発電装置に比べると発電効率が非常に高く、騒音や振動が少ない。また、環境汚染物質をほとんど排出しないことから、ノートパソコン・携帯電話等の携帯機器、家電製品、自動車等の様々な分野での利用が期待されている。このような燃料電池においては、燃料となる水素ガスの生産効率の向上が課題の一つとなっている。
 例えば、特許文献1には、粒子状のアルミニウムと水酸化カルシウムを含む水素発生剤を水と接触させることにより水素ガスを発生させる方法が開示されている。この方法では、アルミニウムと水との反応により粒子表面に形成される不溶層(アルミ酸化物又はアルミ水酸化物の不動態層)を水酸化カルシウムによって可溶化して未反応のアルミニウム金属面を形成することにより、水素の発生効率を高めている。
特開2013-6734号公報
 上記方法では、不溶層の形成を抑えて水素ガスの総発生量を増加させるためには、アルミニウムの粒径を小さくして比表面積(表面積/体積)を大きくすることが望ましい。ところが、アルミニウムの粒径を小さくすると水との反応が急激に進行するため、短時間で反応が終了してしましまう。しかも、粒径が150μm以下のアルミニウム粉末は消防法において危険物(第一種可燃性固体(危険等級II))として指定されており(危険物の規制に関する政令第1条の11、別表第三)、取り扱い量によっては届出が必要となるという問題があった。
 本発明が解決しようとする課題は、水とアルミニウムの反応を利用した水素製造方法及び装置において、水素の総発生量を低下させることなく長時間継続して水素を発生させることができ、しかも、水素を発生させるための材料の取り扱いが容易な水素製造方法及び水素製造装置を提供することである。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、シート状のアルミニウムを水素発生の材料として用いることにより、水素の発生反応を長時間持続させることができるだけでなく、危険物の指定の枠から外せることを見出し、本発明に至った。
 すなわち、上記課題を解決するために成された本発明の第1の態様に係る水素製造方法は、
 水酸化カルシウムを水に溶解させて水溶液を作製し、
 該水溶液に総表面積が150cm~3000cmの範囲にあるシート状アルミニウムを浸漬させることにより水素ガスを発生させることを特徴とする。
 ここで、「総表面積」とは、シート状アルミニウムが前記水溶液と接触して水素ガスの発生反応に寄与する面積を指し、シート状アルミニウムが複数枚の場合は、各シート状アルミニウムの表面積を合算したものを「総表面積」という。但し、シート状アルミニウムの厚さが非常に小さい場合は、該シート状アルミニウムの表面積は面積の2倍で近似できる。
 上記構成においては、厚さの異なる複数種のシート状アルミニウムを用意し、
 水素ガスの発生量に応じた厚さのシート状アルミニウムを選択し、前記水溶液に浸漬させて水素ガスを発生させるようにすると、所望の量の水素ガスを得ることができる。この場合、厚さが6.5μm~100μmのシート状アルミニウムを用いるとよい。
 さらに、予め求めたシート状アルミニウムの厚さと水素発生量の相関関係に基づいて水素ガスの発生量に応じた適宜の厚さのシート状アルミニウムを選択するようにすると良い。
 また、本発明の第2態様に係る水素製造装置は、
 a) 水が収容される容器と、
 b) 前記容器内に配置された、総表面積が150cm~3000cmの範囲にあるシート状アルミニウムと、
 c) 前記容器内に収容された固体状の水酸化カルシウムと
 を備えることを特徴とする。
 上記構成の水素製造装置においては、容器内に水を加え、水酸化カルシウムを溶かして水溶液として該水溶液にシート状アルミニウムを浸漬させる。これにより、水素発生反応が開始され、水素ガスが発生する。このとき、水酸化カルシウムは水に対して難溶性のため、容器内に収容された固体状の水酸化カルシウムは完全に溶解するわけではなく、一部が溶解する。
 この場合、前記容器が、複数枚のシート状アルミニウムを互いに離間した状態で保持可能な保持部を備えるようにすれば、水素ガスの発生量に応じた枚数のシート状アルミニウム、あるいは水素ガスの発生量に応じた厚さのシート状アルミニウムを前記保持部に保持させることができる。
 アルミニウムと水との反応を利用した水素製造方法及び水素製造装置において通常用いられていた粒状のアルミニウムに代えてシート状アルミニウムを用いることにより、長時間継続して水素ガスを発生させることができる。しかも、総表面積が150cm~3000cmのシート状アルミニウム、特に、厚さが6.5μm~100μmのシート状アルミニウムを用いたため、水素発生反応が途中で停止することを防止することができ、水素発生効率を向上することができる。
本発明の第一実施形態に係る水素製造装置の概略構成図。 参考実験1の結果である、アルミニウム粒子の直径と総水素発生量の関係を示すグラフ。 アルミニウムと水との反応機構の説明図。 参考実験2の結果である、添加剤と収率との関係を示すグラフ。 実施例1の結果である、総水素発生量と水素発生速度の時間的変化を示すグラフ。 実施例2の結果である、シート状アルミニウム(アルミ箔)の厚さを変えたときの水素発生速度の時間的変化を示すグラフ。 アルミ箔の厚さと水素の発生率の関係を示すグラフ。 アルミ箔の厚さと単位面積あたりの水素発生量の関係を示すグラフ。 実施例3の結果である、水素発生速度の時間的変化を示すグラフ。 図9の反応開始初期における水素発生速度の時間的変化を拡大して示すグラフ。 厚さ100μmと300μmのアルミ箔の水素発生速度の時間的変化を示すグラフ。 アルミ箔の厚さと水素発生時間の関係を示すグラフ。 異なる厚さのアルミ箔における、水素発生速度とpHの時間的変化を示すグラフ。 反応温度を変えて行った実施例4における水素ガスの発生速度の時間的変化を示すグラフ。 反応終了後のアルミ箔の状態を示す写真。 X線構造解析結果を示す図。 反応後のアルミ箔のSEM画像。 実施例5の結果を示す、水素発生速度の時間的変化を示すグラフ。 面積と水素発生速度の関係を示すグラフ。 本発明の第二実施形態に係る水素製造装置の概略構成図。 同水素製造装置のフォルダーの概略斜視図。 ロール状アルミニウムの作製方法を説明する図(a)~(c)、及びロール状アルミニウムをフォルダーに保持した状態を示す概略斜視図(d)。 実施例6の結果である、水素発生速度の時間的変化を示すグラフ。 実施例6の反応終了後のアルミニウムを撮影した写真であり、(a)はロールを縦に裁断して帯状に展開した写真、(b)は重なった帯状のアルミニウムの内側部分((a)の矢印部分)の写真、(c)は(a)の断面部分を拡大した写真、(d)はロールの最も外側の部分の写真、及び(e)は未反応部分を拡大した写真である。 実施例7のロール状アルミニウムの作製方法を説明する図。 実施例7の結果である、水素発生速度の時間的変化を示すグラフ。 実施例7の反応終了後のアルミニウムを撮影した写真であり、(a)はロールの一部を縦に裁断して帯状に展開した写真、(b)はロールの中心まで裁断した写真、(c)は反応部分の写真、及び(d)は未反応部分の写真である。 実施例8の結果である、水素発生速度の時間的変化を示すグラフ。 実施例9の(I)の結果である、水素発生速度(a)及び総水素発生量(b)の時間的変化を示すグラフ。 実施例9の(II)の結果である、水素発生速度の時間的変化を示すグラフ。
 上述したように、本発明は、粒子状のアルミニウムに代えてシート状のアルミニウムに水を接触させ、水素ガスを発生させたものである。以下、本発明のいくつかの実施形態について詳細に説明する。
 まず、図1を参照して、本発明の第1実施形態に係る水素製造装置を説明する。この水素製造装置1は、蓋付きアクリル製容器3と、この中に収容されるシート状アルミニウム5及び粒状の水酸化カルシウム7とから構成される。なお、図1では容器3の形状を四角筒状としたが、これに限らず円筒状でもよい。容器3は、シート状アルミニウム5を複数枚保持することができる保持部(図示せず)を有しており、目的とする水素ガスの発生量に応じた適宜の枚数のシート状アルミニウム5を保持するようになっている。また、容器3は発生した水素ガスを排出するための排出口3aを有している。
 上記の水素製造装置1を用いて水素ガスを発生させる際は、容器3内に水を入れ、水酸化カルシウム7を溶かして水溶液を作製する。これにより、アルミニウムと水が接触して水素発生反応が開始され、水素ガスが発生する。発生した水素ガスは排出口3aから排出され、燃料電池等に供給される。なお、図1では、水素ガスの発生量を測定するために排出口3aに膜式流量計9及びパーソナルコンピュータ(PC)10を水素製造装置1に接続しているが、これらは水素製造装置の構成要素ではない。
 以下、上記水素製造装置1を用いて水素ガスの発生反応を行った具体的な例について説明する。
 まずは、本実施形態の特徴であるシート状アルミニウムを用いた実施例に先立ち、粒状のアルミニウムを用いた参考実験を行った。以下に、参考実験について説明する。
[参考実験1]
 室温(20℃)下で、丸底フラスコに入れた15mlの純水に粒状の水酸化カルシウム3gを溶解し、これに3gの粒状のアルミニウムを浸漬させて水素発生反応を行った。用いた粒状のアルミニウムの粒径は、10μm、45μm、90μm、150μm、250μmの5種類とした。そのときの総水素発生量と時間との関係を図2に示す。この実験では、粒径が10μmのアルミニウムを用いたときに約100%の反応率が得られた。ただし、図2から分かるように、このときの水素発生反応は爆発的に進行し、反応は約5分で終了した。
 また、粒径が250μmのアルミニウム粒子を用いた場合は、水素ガスはほとんど発生することなく反応が終了した。これは、反応開始とほぼ同時にアルミニウム粒子の表面に不動態層が形成されてしまい、アルミニウムと水との反応がほとんど生じなかったためと思われる。
 以上の結果から推測されるアルミニウムと水との反応機構を図3に示す。図3に示すように、水酸化カルシウムを添加することにより、アルミニウムと水は、3段階の反応(開始反応、反応初期の反応、反応後期の反応)が順に進行することが推測された。
[参考実験2]
 丸底フラスコに入れた200mlの純水に粒状の水酸化カルシウム9gと粒径が45μmの粒状のアルミニウム9gを加えて撹拌し、これに、塩化ナトリウム6.0g又はグルコース6.0gを添加して水素発生反応を行った。その他の条件は参考実験1と同じにした。このときの、水素発生量の時間的変化を図4に示す。比較のために、図4には添加剤を無添加(blank)の結果も併せて示す。
 図4から分かるように、塩化ナトリウムを添加すると反応が加速された。これは塩素イオン(Cl-)によって孔食腐食反応が起き、アルミニウム粒子の腐食反応が促進されたためと推測された。一方、グルコースを添加すると反応が抑えられ、反応開始から30分近く経過してから水素の発生が開始された。以上より、塩化ナトリウムやグルコースが、反応速度を調節する添加剤として利用可能であることが分かった。
 次に、シート状のアルミニウム(以下では「アルミ箔」という。)を用いた本実施形態の具体的な実施例について説明する。
[実施例1]
 容量が100mlの矩形状アクリル製容器3に95mlの純水を入れ、これに粒状の水酸化カルシウム1gを溶解した後、厚さ12μmのアルミ箔(日本製箔株式会社製、1N30(アルミニウム純度99.3%以上))1gを短冊状にカットしたものを浸漬させて水素発生反応を行った。このときの水素ガスの総発生量(ml)と、発生速度(ml/min)の時間的変化を図5に示す。総発生量及び発生速度の測定は膜式流量計を用いた。
 図5から、反応開始初期では発生速度が大きく増減するものの、反応開始から60分経過する頃から水素の発生速度が安定し、反応開始後180分あたりまではほぼ一定の流量で水素が発生することが分かった。
[実施例2]
 容量が100mlの矩形状アクリル製容器3に25mlの純水を入れ、これに粒状の水酸化カルシウム1gを溶解した後、厚さが異なる10種のアルミ箔1gを短冊状にカットしたものをそれぞれ浸漬させて水素発生反応を行い、そのときの水素ガスの発生速度(ml/min)を測定した。
 10種のアルミ箔の厚さは、それぞれ6.5μm、9μm、11μm(2種)、12μm、15μm、17μm、20μm、25μm、50μmとした。このうち、11μmのアルミ箔は東洋アルミエコープロダクツ株式会社のサンホイル(商品名)2種(ver.1 、ver.2)を、それ以外は、日本製箔株式会社のアルミ箔(1N30)を用いた。
 また、各アルミ箔の面積は次の通りである。
 6.5μm:1150cm、9μm:830cm、11μm:680cm、12μm:625cm、15μm:500cm、17μm:440cm、20μm:375cm、25μm:300cm、50μm:150cm
 各アルミ箔の水素発生速度の時間的変化を図6に示す。
 図6より、アルミ箔の厚さが小さいほど、反応初期の水素発生速度が大きく、水素発生反応の継続時間が短いことが分かった。また、サンホイルver.1、ver.2は厚さ、面積が共に同じであるが、異なる結果が得られたことから、両者の反応率について調べたところ、ver.1の反応率が96%であったのに対し、ver.2の反応率は75%と低いことが分かった。そこで、ICP発光分析装置を用いて元素分析を行ったところ、ver.1 、ver.2のアルミニウム純度はそれぞれ99%、97%であり、ver.2の方が純度が低かった。つまり、純度の低下が反応率の低下の原因であると考えられる。
 また、日本製箔株式会社製のアルミ箔(1N30)8種について、上述した10種のアルミ箔について行った方法と同じ方法で水素発生反応を行い、水素の発生率と厚さとの関係、及び単位面積当たりの水素の発生量を調べた。その結果を図7、図8に示す。
 図7及び図8より、厚さが50μm以外のアルミ箔では、厚さが大きくなるにつれて単位面積あたりの水素発生量が増加するものの、厚さが大きくなると水素の発生率が低下することが分かった。
[実施例3]
 容量が500mlの円筒状ガラス製容器3に300mlの純水を入れ、これに粒状の水酸化カルシウム1gを溶解した後、厚さが異なる6種(厚さ6.5μm、12μm、20μm、50μm、100μm)のアルミ箔を面積が200mm×250mmとなるようにカットし、さらに25mm角にカットしたものを浸漬させて水素発生反応を行い、そのときの水素ガスの発生速度(ml/min)を測定した。また、この実施例では、ガラス製容器3内に撹拌子を入れて水素発生反応の間、溶液を撹拌した。なお、発生速度の測定は膜式流量計を用いた。
 本実施例で用いた各厚さのアルミ箔の重量は次の通りである。
 6.5μm:1.01g、12μm:1.66g、17μm:2.19g、20μm:2.56g、50μm:6.55g、100μm:13.24g
 その結果を図9及び図10に示す。図10は図9のうち反応開始初期の発生速度を、横軸を拡大して示したものである。
 図9および10の結果より、アルミ箔の厚さが6.5μmから100μmまで増すにつれて水素の発生時間が延びていることがわかる。また、各厚さにおける総水素発生量から、アルミニウムの反応率を算出したところ、全て95%以上の反応率で進行しており、アルミ箔の厚さの増大に伴い反応率が衰退した実施例2とは異なる結果であったことが判明した。これはアルミニウム表面に生成した水酸化アルミニウムやカルシウムアルミネートといった反応生成物が、撹拌により引き剥がされ、常にフレッシュな金属表面が水酸化カルシウム溶液中に暴露し、最後まで効率よく反応が進行したためと考えられる。
 また、厚さが300μmで面積が200mm×250mmアルミ箔を上記した方法と同じ方法で水素発生反応を行ったときの水素発生速度の時間的変化を調べた。その結果を100μmのアルミ箔の結果と共に図11に示す。
 図11の結果から、厚さが300μmのアルミ箔の水素発生時間は100μmと同程度であり、アルミニウムの反応率は30%に留まったことが判明した。この原因を調べたところ、反応途中でアルミ箔と撹拌子が接触し、その際、アルミ箔によって撹拌子が容器底面から弾かれていたことが分かった。このことから、撹拌子がうまくスターラーと噛み合わなくなって撹拌が停止し、水素発生反応の途中から浸漬状態になったため、結果として、反応生成物がアルミ箔から剥がれず、さらにアルミ箔同士が容器底面で重なり合い、重みでアルミ箔表面と水酸化カルシウム溶液の接触面が減少したことが原因であると考えられる。
 従って、撹拌子とアルミ箔との接触を防止するような構造、例えば、容器内にアルミ箔を吊り下げた状態で保持し、アルミ箔が容器底面と接触しないようにしたり、容器内のアルミ箔が、容器底面の上方1~2cmよりも下に位置することを規制するような段部や棚部材を設けたりすれば、水素発生反応時における撹拌子の回転が妨げられることがなく、水素発生反応を効率よく進行させることができ、この結果、厚さ300μのアルミ箔の水素発生時間が厚さ100μmのアルミ箔の3倍程度になる可能性がある。
 さらに、6.5μmから100μmまでの厚さの6種のアルミ箔について、厚さと水素発生時間の関係を調べた結果を図12に示す。
 図12からアルミ箔の厚さが大きくなると水素発生時間が長くなることが分かる。
 さらにまた、厚さ6.5μm、12μm、20μm、50μmのアルミ箔を用いて図10と同様の実験条件で水素発生反応を行い、その時の水素発生速度の変化とpHの時間的変化を調べた結果を図13に示す。図13から、水素発生速度はpHの変化に追従することが分かった。
[実施例4]
 容量が100mlの矩形状アクリル製容器3に100mlの純水を入れ、これに粒状の水酸化カルシウム1gを溶解した後、厚さ12μmのアルミ箔(日本製箔株式会社製、1N30)1gを短冊状にカットしたものを浸漬させ、反応温度を22℃、40℃、53℃、80℃に変えて水素発生反応を行った。このときの水素ガスの発生速度(ml/min)の時間的変化を図14に、反応終了後のアルミ箔の状態を示す写真を図15に示す。
 反応開始前と反応終了後のアルミ箔の重量の比較から、反応温度が22℃(室温)のときの収率は97%、40℃のときの収率は70%、53℃のときの収率は53%、80℃のときの収率は40%であることが分かった。
 反応温度が22℃、40℃、60℃のときの反応後のアルミ箔のX線構造解析を行った。その結果を図16に示す。構造解析の結果から、温度の上昇に伴い、アルミ箔表面にKatoite(カトアイト)が形成され、表面を硬化させるために反応が継続しないことが推測された。さらに、22℃と60℃反応時のアルミ箔のSEM画像(図17)を撮影したところ、60℃のときのSEM画像では、カトアイト表面に水酸化アルミニウムが析出している様子が観察された。
 これらの結果から、温度が上昇するほど、反応は初期で停止する傾向があり、中期反応が優勢になることが推測された。
[実施例5]
 容量が500mlの円筒状ガラス製容器3に300mlの純水を入れ、これに粒状の水酸化カルシウム1gを溶解した後、厚さが12μmのアルミ箔を25mm角にカットし、総面積が100x250mm(x1)、 200x250mm(x2)、 300x250mm(x3)、 400x250mm(x4)、600x250mm(x6)となる分量を浸漬し、撹拌しながら水素発生速度を測定した。その結果を図18に示す。総面積を表す数値の後の括弧内の倍率の数字は、100x250mmを1としたときの比を示す。
 また、図18の結果から、各総面積における平均速度を算出し、アルミ箔の総面積と流速度との関係を求めた。その結果を図19に示す。
 図18及び図19から、アルミ箔の総面積が大きくなると、水素発生速度が上昇し、平均速度も右肩上がりに上昇した。また、全ての総面積の場合において、アルミニウムの反応率は95%以上を示した。ただし、総面積が600x250mm以外のアルミ箔では、面積と平均流速の関係は線形であったが、総面積が600x250mmのアルミ箔では非線形になった。これはアルミと水の反応が発熱反応であり、総面積が400x250mmのアルミ箔を用いた時の反応温度は38℃であったが、600x250mmのアルミ箔では反応温度が52℃であり、40℃を超えたことが原因であると推測された。反応温度が40℃を超えると、アルミニウムと水の反応が暴走するためである。
 実施例1~5までの結果から、アルミ箔(シート状アルミニウム)の厚さや面積(総表面積)を適宜の値に設定することにより、水素の発生速度や、総発生量を制御できることが分かった。このことから、本発明の水素製造装置を燃料電池の水素供給源とすれば、シート状アルミニウムの厚さと総表面積の組み合わせにより、利用する燃料電池の出力と利用時間を選択することができるため、燃料電池用の水素ガス供給源として有用であることが分かる。
 次に、本発明の第二実施形態に係る水素製造装置について説明する。
 前述のように、撹拌子とシート状アルミニウムの接触や撹拌子の回転の停止などによって水とアルミニウムの反応が途中で停止し、反応率が低下することがある。そこで、本発明者らは、撹拌子を用いなくてもアルミニウムと水を継続的に反応させる方法を検討した。その結果、得られたものが本実施形態の水素製造装置である。
 図20に、本発明の第二実施形態に係る水素製造装置21を示す。この水素製造装置21は、蓋付きのアクリル製の容器23と、この中に収容されるPET(polyethylene terephthalate)製のフォルダー24と、該フォルダー24に保持されたロール状アルミニウム25と、容器23内に収容される粒状の水酸化カルシウム27とから構成される。図20では容器23の形状は円筒状としたが、フォルダー24全体を収容できる大きさであれば形状は特に限定されない。容器23は、水素製造装置1の容器3と同様に、発生した水素ガスを排出するための排出口23aを有している。この排出口23aには膜式流量計9が接続されている。膜式流量計9はPC10に接続されており、水素の発生量を測定できるようになっている。
 図21に示すように、フォルダー24は全体として円筒形状であり、環状部24aと、この環状部24aの下端部から下方に延びる5個の細長い矩形片部24bと、環状部24aの上部開口の中心に位置する円筒部24dから環状部24aの上端部に向かって放射状に延びる5本の帯状部24cとから構成されている。
 ロール状アルミニウム25は、厚さ12μm、幅50mm、長さ3000mmのシート状アルミニウム26(日本製箔株式会社製、1N30、重量5g)を巻回して構成されている。図22に示すように、ロール状アルミニウム25は、シート状アルミニウム26とほぼ同じ大きさで且つ同じ形状のスペーサ28をシート状アルミニウム26に重ねた後(図22(a))、これを芯となる棒40の周りに複数回巻回し(図22(b))、棒40を抜いて形成される(図22(c))。
 ロール状アルミニウム25は、その中心がフォルダー24の円筒部24dと一致するようにフォルダー24に収容される(図22(d))。このとき、ロール状アルミニウム25の中心に円筒部24dが差し込まれる。そして、ロール状アルミニウム25が収容されたフォルダー24を、環状部24aを上向きにして容器23内に設置する(図20)。これによって、ロール状アルミニウム25は、巻回されているシート状アルミニウム26が水平面とほぼ垂直な状態に配置されることになる(以下、この状態を「縦置き状態」という。)。
 以下、本実施形態に係る水素製造装置21を用いて水素ガスの発生反応を行った具体的な実施例について説明する。なお、以下の実施例ではいずれも撹拌子を用いていない。
[実施例6]
 本実施例では、スペーサ28として吸水性材料であるトイレットペーパー(商品名「ネピアロングロール(ダブル)」、王子ネピア株式会社製)を幅50mm、長さ3000mmにカットしたものを用いた。
 まず、5gの水酸化カルシウム27を容器23の底に入れた。その容器23内に、フォルダー24に保持したロール状アルミニウム25を上記のように縦置き状態で配置した後、容器23に純水400mlを加え、ロール状アルミニウム25の全体を純水に浸漬させて水素発生反応を行った。
 このときの水素ガスの発生速度(流速(ml/min))を膜式流量計9で測定した。また、水素発生反応時の温度を測定した。発生速度及び温度の時間的変化を図23に示す。図23から分かるように、反応開始初期では発生速度が大きく増減するものの、反応開始から60分を経過する頃から180分経過するまで発生速度は安定し、10~14(ml/min)の間で推移した。その後、水素発生速度は徐々に低下するものの、反応開始から330分経過した時点でも水素の発生が観察された。総水素発生量からアルミニウムの反応率を算出したところ、40%であった。また、反応開始から330分経過するまでの温度は約22℃~約29℃であった。
 アルミニウムを縦置き状態にして水素発生反応を行った本実施例では、シート状アルミニウムを水溶液中で撹拌させて行った場合のような泡が発生せず、トイレットペーパーは原型を維持した状態で存在し続けていた。その結果、トイレットペーパーに吸収された水によって長時間にわたってアルミニウムを継続的に反応させることが可能になる。
 また、スペーサによってロール状アルミニウムの各層間に確実に間隙を形成することができるため、アルミニウムと水の反応効率を向上させることができるという効果や、アルミニウムと水と反応により発生した水素の通路をロール状アルミニウムの各層間に確保することができるという効果もあると考えられる。
 反応終了後のロール状アルミニウム25を縦に裁断して展開し、撮影した写真を図24(a)~(e)に示す。
 図24(a)~(e)から分かるように、ロール状アルミニウム25の中心付近の層と最も外側の層では全面においてアルミニウムの腐食が進行していたが、その他の層では上端部及び下端部のみ腐食が進行し、それ以外の部分では未反応部分が多く残っていた。図24(d)および(e)より、トイレットペーパーの吸水能によりロール状アルミニウム25の各層間にも水が存在していたと考えられることから、ロール状アルミニウム25のうち純水及び水酸化カルシウムから成る水溶液中に露出している部分では水と反応が継続し、それ以外の部分では水との反応が途中で止まってしまったものと思われる。
 以上より、水素の発生反応を継続するためには水の存在だけでは不十分であり、カルシウムイオン及び水酸化イオンによる不動態層(Al被膜)の除去が必要であると考えられる。
 なお、シート状アルミニウムを25mm角にカットしたものを撹拌せずに水素発生反応を行った場合、容器の底の水酸化カルシウムの層の上に灰色のアルミニウムの残渣の層が積層されたが、ロール状アルミニウム25を用いた本実施例では容器23の底の水酸化カルシウムの層の上にアルミニウムの残渣の層は観察されなかった。
[実施例7]
 ロール状アルミニウム25の各層間におけるカルシウムイオン及び水酸化イオンの存在の、水素発生反応に及ぼす影響を調べるために、ロール状アルミニウム25に代えてロール状アルミニウム29を用いて実施例6と同様の水素発生反応を行った。
 図25に示すように、ロール状アルミニウム29は、シート状アルミニウム26上の全体に5gの粒状の水酸化カルシウム27を略均等に分散させ、その上にトイレットペーパーから成るスペーサ28を重ね合わせて複数回巻回して作製されている。本実施例では、ロール状アルミニウム29とスペーサ28の間に水酸化カルシウム27が保持されているため、容器23の底に水酸化カルシウム27は入れられていない。その他の条件は実施例6と同じである。
 本実施例における水素ガスの発生速度(ml/min)及び温度の時間的変化を図26に示す。また、反応終了後のロール状アルミニウム29の一部又は全部を縦に裁断して撮影した写真を図27(a)~(d)に示す。
 図26から分かるように、反応開始初期では実施例6と同様に発生速度が大きく増減するものの、実施例6と異なり反応開始から60分を経過する頃から発生速度は急激に上昇し、100分を経過した頃には発生速度は45ml/min前後に達した。その後、発生速度は急激に低下し、反応開始から210分を経過する頃の発生速度は10ml/minに、300分を経過したときの発生速度は2.5ml/minであった。総水素発生量からアルミニウムの反応率を算出したところ、97%であった。また、反応開始直後は約20℃であった水溶液の温度は、その後、徐々に上昇し、反応開始から140分を経過する頃には35℃を超えていた。また、反応開始から180分を経過した後、温度は徐々に低下したが、30℃を下回ったのは反応開始から270分経過してからであった。
 また、図27(a)~(d)より、本実施例では、ロール状アルミニウム29の全体において腐食が進んでいることが分かる。しかも、図27(a)から分かるように、アルミニウムの腐食が進んだ状態であっても、残渣の多くはスペーサ28に付着したままのため、ロール状アルミニウム29の形状は維持されていた。
 このように、本実施例は、水素発生速度、アルミニウムの反応率、アルミニウムの腐食が見られた領域の広さ、のいずれにおいても実施例6より優れていた。これは、吸水性材料であるトイレットペーパーをスペーサ28として用い、さらに、スペーサ28とロール状アルミニウム29の各層の間に水酸化カルシウム27を介在させたことにより、ロール状アルミニウム29の全体において、不動態層の形成が抑制されたためと考えられる。特に、トイレットペーパーは多数の微小な孔を有するため、これらの孔に粒状の水酸化カルシウム27が入り込んで保持される。このため、ロール状アルミニウム29の各層間に存在する水酸化カルシウム27が流れ落ちることが防止され、一層、アルミニウムと水の反応が持続したものと思われる。
[実施例8]
 ロール状アルミニウム29のスペーサ28の機能を調べるため、トイレットペーパーの他、コピー用紙、メッシュ、ガラス繊維シートをスペーサ28として使用して、実施例7と同様の水素発生反応を行った。コピー用紙には大王製紙株式会社製のリサイクルPPCを、メッシュには網戸に用いられているダイオ化成株式会社製のクラウンネット(網目間隔0.84mm)を、ガラス繊維シートには株式会社相互理化学硝子製作所製のガラス繊維クロスを、それぞれ用いた
 このときの水素ガスの発生速度(ml/min)の時間的変化を図28に示す。また、それぞれのスペーサ28でのアルミニウムの反応率は、大きい順に、トイレットペーパー98%、メッシュ80%、コピー用紙64%、ガラス繊維シート30%であった。図28より、スペーサ28としてトイレットペーパーやメッシュを用いた場合は、コピー用紙やガラス繊維シートを用いた場合よりもアルミニウムの反応率が高いが、水素発生反応が急激に進行し、反応開始から300分(トイレットペーパー)、210分(メッシュ)でほぼ反応が停止することが分かる。一方、スペーサ28としてコピー用紙を用いた場合は、水素発生速度は低いものの変動が小さく、水素発生反応がゆっくりと進行した。このため、反応開始から170~200分を超えるとコピー用紙の水素発生速度はトイレットペーパーやメッシュの水素発生速度を上回った。これに対して、ガラス繊維シートを用いた場合は、反応開始直後から発生速度が低く、また、反応率も他に比べて低かった。
 ガラス繊維シートは、トイレットペーパーやコピー用紙のような吸水性もなく、また、トイレットペーパーやメッシュのように粒状の水酸化カルシウムが入り込むような孔を有しない。このため、ガラス繊維シートはロール状アルミニウム29の各層間に水やカルシウムイオン、水酸化イオンを存在させることができなかったものと思われる。一方、トイレットペーパーは吸水性に優れ、しかも吸水によって膨潤しロール状アルミニウム29の各層間の間隙を広げることができる。このため、アルミニウムと水と反応が効率よく進み、また、カルシウムイオン及び水酸化イオンによる不動態層の形成抑制効果が得られたものと思われる。
 以上より、スペーサとしては、トイレットペーパーの他、多数の微細な孔を有する紙や布、不織布等の吸水性に優れ、且つ吸水により膨潤する材料が好適である。
[実施例9]
 ロール状アルミニウム29の各層間に保持させる水酸化カルシウム27の量が水素発生反応に及ぼす影響を、以下の2段階の実験により確認した。
 (I)第一実施形態に係る水素製造装置1を用いた実験
 純水300mlに水酸化カルシウム27(0.5g、1g、1.5g、2g、3g、4g、又は5g)を溶かした水溶液に、厚さ12μmのシート状アルミニウム20cm×25cm(日本製箔株式会社製、1N30、重量1.6g)を浸漬させ、撹拌しながら水素発生反応を行った。このときの水素ガスの発生速度(ml/min)の時間的変化を図29(a)に、水素ガスの発生量(総水素発生量)の時間的変化を図29(b)に示す。
 図29(a)より分かるように、水酸化カルシウム27の量が0.5g~4gの場合、水素発生速度は反応開始直後から上昇した後、一旦低下した。その後、水素発生速度は再び上昇した後、適宜の時間が経過した後、低下し、水素発生反応は終了した。反応開始から水素発生速度が一旦低下するまでの時間は、水酸化カルシウム27の量が少ないほど短くなる傾向にあった。また、水素発生速度が再び上昇してから水素発生反応が終了するまでの時間は水酸化カルシウム27の量が少ないほど長くなる傾向にあった。
 一方、水酸化カルシウム27の量が5gの場合は、水素発生速度が上昇する状態が反応開始から約60分経過するまで継続し、その後、低下して水素発生反応は終了した。つまり、水酸化カルシウム27の量が5gの場合は、水素発生速度が一旦低下する状態が見られなかった。
 また、図29(b)に示すように、水酸化カルシウムの量の違いによる水素の総発生量の違いはなく、いずれの場合も水素発生反応はほぼ100%進行していた。
 (II)第二実施形態に係る水素製造装置21を用いた実験
 実験(I)の結果から、水酸化カルシウムの量を増やすと、水素発生速度が一旦低下する現象がなくなることが予想されることから、ロール状アルミニウム29の各層間に保持する水酸化カルシウム27の量を20gにして、実施例7と同様の水素発生反応を行った。このときの水素ガスの発生速度(ml/min)の時間的変化を図30に示す。図30には、比較のために実施例7の結果も併せて示す。なお、この実験でのアルミニウムの反応率は88%であった。
 図30より、第2実施形態の水素製造装置21の場合は、水酸化カルシウム27の量を20gにしても、水素発生速度が一旦低下する現象はなくならなかったが、水酸化カルシウム27の量が5gの場合に比べて水素発生速度の低下量が小さくなることが分かった。
 本発明は上記した実施例に限定されるものではなく、適宜の変更が可能である。
 例えば、フォルダーは、ロール状アルミニウムを水素発生容器内に固定して保持しつつ、保持したロール状アルミニウムと水の接触を妨げないものであれば、素材や形状は特に限定されない。
 本発明に係る水素発生容器に収容される水素発生剤はアルミニウムに限らず、マグネシウムやシリコン、亜鉛等の金属を用いることができる。また、水酸化カルシウムの他、水酸化カリウム、水酸化ナトリウム等を用いても良い。
1、21…水素発生装置
3、23…容器
 3a、23a…排出口
5、26…シート状アルミニウム
7、27…水酸化カルシウム
9…膜式流量計
10…パーソナルコンピュータ
24…フォルダー
25、29…ロール状アルミニウム
28…スペーサ

Claims (19)

  1.  水酸化カルシウムを含む水溶液に、1又は複数のシート状アルミニウムを縦置き状態で浸漬させることにより水素ガスを発生させる水素製造方法。
  2.  複数枚の前記シート状アルミニウムが縦置き状態で配置される場合、隣接するシート状アルミニウムの間にはスペーサが介装されていることを特徴とする請求項1に記載の水素製造方法。
  3.  1枚のシート状アルミニウムを複数回巻回したロール状アルミニウムを、水酸化カルシウムを含む水溶液に縦置き状態で浸漬させることにより水素ガスを発生させる水素製造方法。
  4.  前記ロール状アルミニウムの各層の間にはスペーサが介装されていることを特徴とする請求項3に記載の水素製造方法。
  5.  前記スペーサが吸水性材料から構成され、該スペーサに粒状の水酸化カルシウムが保持されていることを特徴とする請求項2又は4に記載の水素製造方法。
  6.  a) 水が収容される容器と、
     b) 前記容器内に縦置き状態に配置された、1枚のシート状アルミニウムを複数回巻回したロール状アルミニウムと、
     c) 前記容器内に収容された粒状の水酸化カルシウムと
     を備える水素製造装置。
  7.  前記ロール状アルミニウムの各層の間にはスペーサが介装されていることを特徴とする請求項6に記載の水素製造装置。
  8.  前記スペーサが吸水性材料から構成され、該スペーサに前記粒状の水酸化カルシウムが保持されていることを特徴とする請求項7に記載の水素製造装置。
  9.  さらに
     d) 前記容器内に設置される、前記ロール状のアルミニウムを保持するフォルダー
     を備える請求項6~8のいずれかに記載の水素製造装置。
  10.  水酸化カルシウムを水に溶解させて水溶液を作製し、
     該水溶液に総表面積が150cm~3000cmの範囲にあるシート状アルミニウムを浸漬させることにより水素ガスを発生させる水素製造方法。
  11.  厚さの異なる複数種のシート状アルミニウムを用意し、
     水素ガスの発生量に応じた厚さのシート状アルミニウムを選択し、前記水溶液に浸漬させて水素ガスを発生させることを特徴とする請求項10に記載の水素製造方法。
  12.  前記シート状アルミニウムは厚さが6.5μm~100μmの範囲にあることを特徴とする請求項11に記載の水素製造方法。
  13.  予め求めた前記シート状アルミニウムの厚さと水素発生量の相関関係に基づいて水素ガスの発生量に応じた厚さのシート状アルミニウムを選択することを特徴とする請求項11又は12に記載の水素製造方法。
  14.  前記水溶液が、さらにグルコースを含むことを特徴とする請求項10~13のいずれかに記載の水素製造方法。
  15.  a) 水が収容される容器と、
     b) 前記容器内に配置された、総表面積が150cm~3000cmの範囲にあるシート状アルミニウムと、
     c) 前記容器内に収容された粒状の水酸化カルシウムと
     を備える水素製造装置。
  16.  前記容器が、複数枚のシート状アルミニウムを互いに離間した状態で保持可能な保持部を備え、
     前記保持部に、複数枚のシート状アルミニウムが保持されていることを特徴とする請求項15に記載の水素製造装置。
  17.  厚さが異なる複数種のシート状アルミニウムを備え、
     前記保持部に、水素ガスの発生量に応じた厚さのシート状アルミニウムを複数枚保持されることを特徴とする請求項16に記載の水素製造装置。
  18.  前記シート状アルミニウムは厚さが6.5μm~100μmの範囲にあることを特徴とする請求項17に記載の水素製造装置。
  19.  前記容器内に、さらに、グルコースが収容されていることを特徴とする請求項15~18のいずれかに記載の水素製造装置。
PCT/JP2014/084526 2013-12-27 2014-12-26 水素製造方法及び水素製造装置 WO2015099129A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480071355.8A CN105849033A (zh) 2013-12-27 2014-12-26 氢气制造方法和氢气制造装置
US15/108,465 US20160318761A1 (en) 2013-12-27 2014-12-26 Hydrogen production method and hydrogen production system
DE112014006076.3T DE112014006076T5 (de) 2013-12-27 2014-12-26 Wasserstofferzeugungsverfahren und Wasserstofferzeugungssystem
JP2015555048A JP6175604B2 (ja) 2013-12-27 2014-12-26 水素製造方法及び水素製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-272618 2013-12-27
JP2013272618 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099129A1 true WO2015099129A1 (ja) 2015-07-02

Family

ID=53478968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084526 WO2015099129A1 (ja) 2013-12-27 2014-12-26 水素製造方法及び水素製造装置

Country Status (5)

Country Link
US (1) US20160318761A1 (ja)
JP (1) JP6175604B2 (ja)
CN (1) CN105849033A (ja)
DE (1) DE112014006076T5 (ja)
WO (1) WO2015099129A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388268B1 (ja) * 2017-11-17 2018-09-12 国立研究開発法人理化学研究所 水素ガス発生剤及び水素ガス発生装置
JP2019181850A (ja) * 2018-04-13 2019-10-24 王子ホールディングス株式会社 機能性シートおよび機能性シートキット
KR20200056669A (ko) * 2018-11-15 2020-05-25 대우조선해양 주식회사 금속을 이용한 수소 생산 장치
WO2021125226A1 (ja) * 2019-12-17 2021-06-24 岩谷産業株式会社 染色繊維物の製造方法及び染料溶液の製造方法
US11465902B2 (en) 2017-09-08 2022-10-11 Osamu Sugiyama Method for producing hydrogen gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504243A (ja) * 2000-07-13 2004-02-12 ハイドロジェン エナジー アメリカ エルエルスィー 水分解による水素生成を制御する方法及び装置
JP2008166248A (ja) * 2006-12-26 2008-07-17 Samsung Electro-Mechanics Co Ltd 水素貯蔵タンクを有する燃料電池
JP2010143779A (ja) * 2008-12-17 2010-07-01 Aquafairy Kk 水素発生方法および水素発生装置
US20100280293A1 (en) * 2000-07-20 2010-11-04 Erling Reidar Andersen Method and apparatus for hydrogenating hydrocarbon fuels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035845A2 (en) * 2005-09-21 2007-03-29 Millennium Cell, Inc. Compositions and methods for hydrogen generation
EP2737564A4 (en) * 2011-07-25 2015-06-24 Douglas Howard Phillips METHODS AND SYSTEMS FOR GENERATING HYDROGEN

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504243A (ja) * 2000-07-13 2004-02-12 ハイドロジェン エナジー アメリカ エルエルスィー 水分解による水素生成を制御する方法及び装置
US20100280293A1 (en) * 2000-07-20 2010-11-04 Erling Reidar Andersen Method and apparatus for hydrogenating hydrocarbon fuels
JP2008166248A (ja) * 2006-12-26 2008-07-17 Samsung Electro-Mechanics Co Ltd 水素貯蔵タンクを有する燃料電池
JP2010143779A (ja) * 2008-12-17 2010-07-01 Aquafairy Kk 水素発生方法および水素発生装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465902B2 (en) 2017-09-08 2022-10-11 Osamu Sugiyama Method for producing hydrogen gas
JP6388268B1 (ja) * 2017-11-17 2018-09-12 国立研究開発法人理化学研究所 水素ガス発生剤及び水素ガス発生装置
JP2019094219A (ja) * 2017-11-17 2019-06-20 国立研究開発法人理化学研究所 水素ガス発生剤及び水素ガス発生装置
JP2019181850A (ja) * 2018-04-13 2019-10-24 王子ホールディングス株式会社 機能性シートおよび機能性シートキット
KR20200056669A (ko) * 2018-11-15 2020-05-25 대우조선해양 주식회사 금속을 이용한 수소 생산 장치
KR102614524B1 (ko) 2018-11-15 2023-12-14 한화오션 주식회사 금속을 이용한 수소 생산 장치
WO2021125226A1 (ja) * 2019-12-17 2021-06-24 岩谷産業株式会社 染色繊維物の製造方法及び染料溶液の製造方法

Also Published As

Publication number Publication date
DE112014006076T5 (de) 2016-09-22
US20160318761A1 (en) 2016-11-03
JP6175604B2 (ja) 2017-08-09
CN105849033A (zh) 2016-08-10
JPWO2015099129A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6175604B2 (ja) 水素製造方法及び水素製造装置
Du Preez et al. Hydrogen generation by the hydrolysis of mechanochemically activated aluminum-tin-indium composites in pure water
US8475968B2 (en) Direct liquid fuel cell having hydrazine or derivatives thereof as fuel
WO2006073113A1 (ja) 水素発生材料、水素の製造装置および燃料電池
Sasikala et al. Simultaneous graphite exfoliation and N doping in supercritical ammonia
WO2007018244A1 (ja) 水素発生材料及び水素発生装置
JP6151329B2 (ja) 金属空気燃料電池の負極セル及びその製造方法並びに金属空気燃料電池
Sugimoto et al. Synthesis of ordered mesoporous ruthenium by lyotropic liquid crystals and its electrochemical conversion to mesoporous ruthenium oxide with high surface area
US8205608B2 (en) Hydrogen elimination and thermal energy generation in water-activated chemical heaters
CA2986516C (en) A system and a process for generating hydrogen
JP5753987B1 (ja) 水素発生合金、水素発生合金の製造方法、水素発生カートリッジ、水素製造装置、水素製造方法及び燃料電池システム
JP5438957B2 (ja) 水素発生方法および水素発生装置
JP4838952B2 (ja) 水素ガス生成装置及び発電機
Davies et al. Utilization of hyper-dendritic zinc during high rate discharge in alkaline electrolytes
Ng et al. Photocatalytic generation of hydrogen coupled with in-situ hydrogen storage
Yu et al. Highly porous copper with hollow microsphere structure from polystyrene templates via electroless plating
Lenhart et al. A Scalable Method for Enhancing the Crystallinity of Zn Powder to Reduce Corrosion and Boost Achievable Capacity
KR100842810B1 (ko) 블록 공중합체와 금속의 산화반응을 이용한 수소의제조방법
US8673233B2 (en) Solid reactant sheet, solid reactant stack, and fuel cartridge
JP6673791B2 (ja) シート状空気電池
JP2010017700A (ja) 軽量構造材の廃材利用方法。
CN213278241U (zh) 一种能够防止电芯局部膨胀的镁发电装置
Yagi et al. Formation of tin nanoparticles embedded in poly (L-lactic acid) fiber by electrospinning
JP5382302B2 (ja) 塩化アルミニウム溶液の製造方法
Oloye Design and engineering of nanostructured liquid metal composites for catalytic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555048

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15108465

Country of ref document: US

Ref document number: 112014006076

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874577

Country of ref document: EP

Kind code of ref document: A1