WO2015098981A1 - 水素機器用の基材及びその製造方法 - Google Patents

水素機器用の基材及びその製造方法 Download PDF

Info

Publication number
WO2015098981A1
WO2015098981A1 PCT/JP2014/084181 JP2014084181W WO2015098981A1 WO 2015098981 A1 WO2015098981 A1 WO 2015098981A1 JP 2014084181 W JP2014084181 W JP 2014084181W WO 2015098981 A1 WO2015098981 A1 WO 2015098981A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
film
base material
layer
aluminum
Prior art date
Application number
PCT/JP2014/084181
Other languages
English (en)
French (fr)
Inventor
村上 敬宜
松岡 三郎
純一郎 山辺
中村 薫
豊 小嶋
Original Assignee
国立大学法人九州大学
豊田通商株式会社
株式会社明豊エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 豊田通商株式会社, 株式会社明豊エンジニアリング filed Critical 国立大学法人九州大学
Priority to JP2015554967A priority Critical patent/JPWO2015098981A1/ja
Publication of WO2015098981A1 publication Critical patent/WO2015098981A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition

Definitions

  • the present invention relates to a base material for a hydrogen device and a method for producing the same, and more specifically, for a hydrogen device in which a hydrogen-resistant permeation film excellent in both hydrogen gas barrier properties and strength properties is applied to a steel material affected by hydrogen.
  • the present invention relates to a substrate and a manufacturing method thereof.
  • a fuel cell using hydrogen as a fuel and a device including a hydrogen station for supplying hydrogen to the fuel cell components are exposed to a hydrogen gas environment.
  • a phenomenon is known in which tensile strength, elongation, drawing, or the like decreases due to hydrogen that has entered the material. This phenomenon is called hydrogen embrittlement. Because of this hydrogen embrittlement problem, the Japan Automobile Research Institute Technical Standard JARIS001 (2004) stipulates that only austenitic stainless steel SUS316L and aluminum alloy 6061-T6 are used for high-pressure hydrogen containers for automobiles with a pressure of 35 MPa. is doing.
  • Ni equivalent material in which the Ni equivalent of austenitic stainless steel (SUS316 and SUS316L) is limited to the hydrogen infrastructure equipment of pressure 70 MPa and pressure 82 MPa. It regulates use.
  • 6061-T6 and Ni equivalent materials have low strength and high cost.
  • high-pressure hydrogen gas at a maximum pressure of 100 MPa (1000 atm) is used.
  • the hydrogen equipment is required to have high durability without causing hydrogen embrittlement under such use conditions, and it is required to suppress the equipment manufacturing cost as much as possible. For this reason, development of a low-cost material excellent in both hydrogen embrittlement resistance and strength properties is expected to replace 6061-T6 and Ni equivalent materials.
  • Hydrogen embrittlement is caused by hydrogen that has penetrated into the material. Therefore, hydrogen embrittlement may be suppressed if a technology for controlling hydrogen from entering the material in a high-pressure hydrogen gas environment can be developed. A surface film capable of suppressing hydrogen intrusion is expected to be one of the leading technologies for suppressing hydrogen embrittlement of materials.
  • the high-pressure hydrogen gas is a hydrogen gas pressure of atmospheric pressure (0.1 MPa) or more.
  • the carbon steel and low alloy steel with a surface coating are expected to be used for pressure vessels for high-pressure hydrogen gas and piping for high-pressure hydrogen gas. If hydrogen embrittlement can be suppressed by providing a surface film capable of suppressing hydrogen intrusion, instead of 6061-T6 and Ni equivalent material, carbon steel or low alloy steel that is affected by hydrogen alone is used. It can be used for pressure vessels and piping.
  • Martensitic stainless steel with a tensile strength of 1000 MPa or more has a large elastic region and is used for flow meters and pressure gauges.
  • the influence of hydrogen is extremely large, so if a surface coating capable of suppressing hydrogen intrusion is applied to suppress hydrogen embrittlement, a flow meter or pressure gauge can be used even in high-pressure hydrogen gas. It is possible to use martensitic stainless steel.
  • Patent Document 1 discloses a pressure vessel for high-pressure hydrogen gas and a pipe for high-pressure hydrogen gas in which a base material that is extremely less affected by hydrogen is covered with aluminum or an aluminum alloy.
  • the target hydrogen equipment is limited to only a pressure vessel for high-pressure hydrogen gas and a pipe for high-pressure hydrogen gas. Furthermore, it is intended to apply a film to a base material that is extremely less affected by hydrogen, and is not intended for base materials that are affected by hydrogen (carbon steel, low alloy steel, martensitic stainless steel). It is considered that the formation state of the surface film and the hydrogen penetration characteristics strongly depend on the type of the base material.
  • Patent Document 1 defines only the thickness of the aluminum layer, and the formation state and film thickness of the aluminum-based intermetallic compound layer (Fe—Al alloy layer), which are extremely important from the viewpoint of the film strength, are unknown. .
  • Patent Document 2 discloses an alumina film formed on ferritic stainless steel as a component of a solid oxide fuel cell.
  • Patent Document 3 discloses a catalyst supporting layer of an alumina film formed in a tunnel-like flow path on a bonding surface of a set of substrates as a hydrogen production apparatus for a fuel cell.
  • an alumina coating is used to prevent cracking due to thermal stress in a high temperature environment, and does not prevent hydrogen from entering the base material in a high temperature and high pressure hydrogen environment.
  • the alumina coating of Patent Document 3 absorbs thermal strain due to the difference in thermal expansion coefficient between the metal substrate and the catalyst by increasing the surface area of the catalyst support layer, and can be used as a base material in a high temperature / high pressure hydrogen environment. It is not a technology to prevent hydrogen intrusion.
  • Patent Document 4 discloses a catalyst carrier having a layer of niobium, titanium, tantalum or the like between a stainless steel plate of a base material and a porous alumina layer formed by anodization in a dehydrogenation catalyst body of a hydrogen supply device. Has been. This catalyst carrier is intended to improve the high-temperature heat resistance of the hydrogen supply device by uniformly forming an anodic oxide film, and does not prevent hydrogen from entering the base material.
  • Patent Documents 2 to 4 cannot effectively prevent hydrogen intrusion into the base material in a high-temperature and high-pressure hydrogen environment, and Patent Document 1 discloses an aluminum-metal interface that is important for increasing the strength of the film. Since no consideration is given to the thickness of the compound layer, it is not possible to effectively prevent hydrogen from entering the base metal in a high-temperature and high-pressure hydrogen environment, and the base metal is susceptible to hydrogen other than austenitic stainless steel. The applicability to this case was not given.
  • An object of the present invention is to positively impart a durable surface film to a steel material affected by hydrogen, to suppress hydrogen embrittlement of the steel material, and to reduce manufacturing costs.
  • the present invention is intended to solve the above-mentioned problems with respect to imparting a hydrogen permeation film to steel materials (carbon steel, low alloy steel, martensitic stainless steel, etc.) that are affected by hydrogen alone.
  • the base material for hydrogen equipment according to claim 1 of the present invention has one selected from carbon steel, low alloy steel, ferritic stainless steel and martensitic stainless steel as a base material on the surface of the base material.
  • the average thickness of the hydrogen-resistant permeation film is 3 ⁇ m or more and less than 35 ⁇ m.
  • the base material for hydrogen equipment according to claim 2 is a base material selected from carbon steel, low alloy steel, ferritic stainless steel and martensitic stainless steel, and a hydrogen permeation film is formed on the surface of the base material.
  • the thickness of the intermetallic compound layer is 1 to 22 ⁇ m, and the average thickness of the hydrogen-resistant permeation film is less than 35 ⁇ m.
  • the base material for hydrogen equipment according to claim 3 is an Al-Si-based aluminum alloy in which the hydrogen-resistant permeation film has an added Si amount of 1 to 5%, and is hot-dipped in a temperature range above the melting temperature and below the transformation point. Is formed on the base material.
  • the base material for hydrogen equipment according to claim 4 is such that the material of the base material is low alloy steel or martensitic stainless steel.
  • a method for producing a base material for hydrogen equipment wherein one selected from carbon steel, low alloy steel, ferritic stainless steel and martensitic stainless steel is used as a base material, and the surface of the base material is resistant to hydrogen.
  • an aluminum intermetallic compound layer, an aluminum layer, and an alumina layer are sequentially laminated on the surface of the base material to form a three-layer structure film, and the average of the hydrogen permeation resistance film
  • the thickness is 3 ⁇ m or more and less than 35 ⁇ m.
  • a method for manufacturing a base material for hydrogen equipment wherein one selected from carbon steel, low alloy steel, ferritic stainless steel and martensitic stainless steel is used as a base material, and the surface of the base material is resistant to hydrogen.
  • the aluminum-based intermetallic compound layer is formed by forming a three-layer structure film in which an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer are sequentially laminated on the surface of the base material by performing hot-dip plating in a temperature range below the transformation point.
  • the hydrogen resistant permeation film has an average thickness of less than 35 ⁇ m.
  • a seventh aspect of the present invention there is provided a method for manufacturing a base material for hydrogen equipment, wherein the base material is low alloy steel or martensitic stainless steel.
  • the base material for hydrogen equipment according to the present invention is made of a molten aluminum alloy for a steel material (carbon steel, low alloy steel, martensitic stainless steel, etc.) that is affected by hydrogen alone, and an aluminum base material.
  • a three-layer structure film (referred to as a hydrogen permeation film) having an average thickness of less than 35 ⁇ m is formed by sequentially laminating an intermetallic compound layer, an aluminum layer, and an alumina layer.
  • a film obtained by further laminating a layer on the surface of the alumina layer is used as a base material for the hydrogen equipment of the present invention regardless of the material / structure.
  • FIG. 2 is an optical micrograph of a hydrogen resistant permeation film and a normal film when austenitic stainless steel SUS304 is used as a base material, (a) is a hydrogen permeation film, (b) is a normal film, and (c) is a test piece. It is a figure which shows the observation method. 2 is a reflected electron image obtained by observing a cross section of an aluminum layer-intermetallic compound layer portion of a hydrogen-resistant permeation film. It is an optical microscope photograph of the Vickers indentation of the aluminum system intermetallic compound layer of a hydrogen-resistant permeation
  • the figure which shows the relationship between the hydrogen permeation film formed on SUS304, SUS630 and SCM435, the thickness of the Fe—Al layer of the normal film formed on SUS304, and the Vickers hardness by holding the Fe—Al layer at a load of 100 mN for 30 seconds. It is. It is a graph which shows the relationship between the hydrogen penetration
  • FIG. 2 shows the state of cracking of the coating after a single load of a round bar test piece made of SUS304 with a hydrogen resistant permeation coating and a normal coating applied to the entire surface, (a) is a hydrogen permeation coating, (b) Is the case of a normal film.
  • FIG. 3 is a schematic diagram of a crack initiation and delamination process of a test piece provided with a hydrogen-resistant permeation film and a normal film under a single load. It is a figure which shows the FEM model used for a stress analysis, and pays attention to the stress of the direction perpendicular
  • FIG. 6 is a diagram showing the relationship between the degree of stress concentration at the Fe—Al layer and base metal interface calculated by FEM and the thickness of the Fe—Al layer, and the direction perpendicular to the tensile direction generated between the layers and after the cracks are generated. This shows the stress.
  • a film is formed on the surface of the material to prevent hydrogen from entering the material. It is thought that the conversion can be suppressed. In that case, it is important that the surface film is excellent in both hydrogen gas barrier properties and strength characteristics under the use conditions.
  • the hydrogen permeation film in the base material for hydrogen equipment of the present invention has a three-layer structure of an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer (Al 2 O 3 ), and has an average film thickness.
  • the surface film is less than 35 ⁇ m.
  • the average film thickness is about 1/5 to 1/10 of the normal film thickness of the order of 100 ⁇ m.
  • the normal film is a film thickness that satisfies the standard of JISH8642 molten aluminum plating (HAD1: film thickness 60 ⁇ m or more, HAD2: film thickness 70 ⁇ m or more, HAD3: aluminum-based intermetallic compound layer thickness 50 ⁇ m or more) It is what has.
  • the material as a base material is not limited, and is particularly applicable to steel materials (carbon steel, low alloy steel, martensitic stainless steel, etc.) that are affected by hydrogen.
  • austenitic stainless steel SUS304 In order to clarify the influence of the base material on the formation state of the surface film, austenitic stainless steel SUS304, martensitic stainless steel SUS630 and low alloy steel SCM435 were used as the base material.
  • the chemical components of SUS304, SUS630 and SCM435 are as shown in Table 1.
  • the unit is mass%.
  • the low alloy steel is an alloy steel having an alloy element amount other than iron and carbon of 5% or less.
  • SUS304 is subjected to solution treatment
  • SUS630 is subjected to aging treatment after solution treatment
  • SCM435 is subjected to quenching and tempering treatment.
  • the material to be the base material is not particularly limited.
  • the base material is degreased, washed with water and pickled, then washed with water and dried.
  • the base material is immersed in a bath in which the aluminum alloy is melted. After soaking for a predetermined time, post-treatment and finishing are performed.
  • the base material is austenitic stainless steel SUS304, the three-layer structure film shown in FIG. 1A is formed.
  • the average thickness of the hydrogen-resistant permeation film in particular, the thickness of the aluminum-based intermetallic compound layer that greatly affects the strength and durability of the film is 1 to 22 ⁇ m, and the average thickness of the hydrogen-resistant film is less than 35 ⁇ m.
  • the molten aluminum alloy in which the base material is immersed is added with 1 to 5% of Si, and the molten aluminum alloy temperature in the bath is set to the melting temperature or higher. Hot dipping is performed in a temperature range below the transformation point.
  • the thickness of the aluminum-based intermetallic compound layer does not depend on the immersion time, but greatly depends on the immersion temperature and the amount of Si added.
  • a test piece with a film formed on the entire surface and a test piece without a film were prepared.
  • a hydrogen-resistant permeation film and an aluminum-based two-layer film composed of a two-layer structure of an aluminum-based intermetallic compound layer and an alumina layer were prepared for comparison.
  • the aluminum-based two-layer coating is obtained by heat-treating the hydrogen-resistant permeation coating.
  • FIG. 1B shows an optical micrograph of the normal film.
  • the base material is austenitic stainless steel SUS304.
  • Both the hydrogen permeation resistant film and the normal film have a three-layer structure of an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer (Al 2 O 3 ).
  • the average thickness of the film and the hardness of the aluminum-based intermetallic compound layer are Different. Usually, the average film thickness of the film is 100 ⁇ m or more.
  • the average film thickness of the hydrogen-resistant permeation film (aluminum-based three-layer film) is less than about 15 ⁇ m regardless of the type of the base material. It is about twice as thick.
  • FIG. 1 also shows the Vickers hardness HV of the aluminum-based intermetallic compound layer measured with a load of 100 mN and holding for 30 seconds, and the Vickers hardness HV of the aluminum-based intermetallic compound layer of the hydrogen-resistant permeation film is the normal film. It is about 1 ⁇ 2 compared to.
  • FIG. 1C shows a method for observing a test piece. Since the first alumina layer is thin and difficult to observe with an optical microscope, the test piece is embedded in a resin and observed.
  • FIG. 2 is a backscattered electron image obtained by observing a cross section of the hydrogen-resistant permeation film, and points B1 (aluminum layer), B2 (intermetallic compound layer), and B3 (intermetallic compound layer) in the cross-sectional direction in the hydrogen-resistant permeation film part.
  • Table 2 shows the results of measurement of local chemical components in the sample by energy dispersive X-ray analysis (EDX).
  • the component ratio of Si at B1 in the aluminum layer is significantly reduced from the component ratio in the case of the molten aluminum alloy,
  • it is increased at the locations B2 and B3 of the intermetallic compound layer on the aluminum layer side.
  • Si in the molten aluminum alloy is shifted to the intermetallic compound layer side during the formation of the hydrogen permeation-resistant film, and the Si component in the aluminum layer is reduced accordingly.
  • FIG. 2 since Si segregates in the intermetallic compound layer and makes the intermetallic compound layer itself brittle, it is necessary to avoid the addition of a large amount of Si.
  • FIG. 3 shows an optical micrograph of the Vickers indentation of the aluminum-based intermetallic compound layer of the hydrogen-resistant permeation film and the normal film.
  • a crack is generated around the indentation in the aluminum-based intermetallic compound layer of the normal film.
  • the hydrogen-resistant permeation film is broken from the aluminum-based intermetallic compound layer. For this reason, it is considered that the hydrogen-resistant permeation film has better durability as the hardness of the aluminum-based intermetallic compound layer is lower and the intermetallic compound is more flexible. From the results shown in FIGS. 1A and 1B, the thinner the aluminum-based intermetallic compound layer, the lower the hardness of the intermetallic compound layer. Therefore, in order to keep the hardness of the aluminum-based intermetallic compound layer low, it is important to control the average thickness of the film by adjusting the components and processing conditions of the molten aluminum alloy.
  • FIG. 4 shows an optical micrograph when a hydrogen-resistant permeation film is applied to the base material of low alloy steel SCM435 and martensitic stainless steel SUS630. Regardless of the type of base material, a three-layer structure film having an average film thickness of less than 35 ⁇ m is formed on the surface of the base material.
  • the figure also shows the Vickers hardness HV of the aluminum-based intermetallic compound layer measured with a load of 100 mN and holding for 30 seconds, and between the aluminum-based metal of the hydrogen-resistant permeation film formed on the surface of SUS304, SUS630, and SCM435.
  • the Vickers hardness of the compound layer shows almost the same value, and is usually about 1 ⁇ 2 of the Vickers hardness of the aluminum-based intermetallic compound of the film.
  • the hardness of the aluminum-based intermetallic compound layer constituting the film is about 1 ⁇ 2 that of the normal film. Can be suppressed.
  • the Fe—Al alloy includes an Fe 3 Al phase, an FeAl phase, an Fe 2 Al 5 phase, and the like depending on the component ratio of Fe and Al. Among these phases, the Fe 2 Al 5 phase has a high hardness and a brittle structure. In an actual aluminum-based intermetallic compound layer, these phases are considered to be mixed.
  • FIG. 6 shows a film formed on the surface of low alloy steel SCM435 using a molten Al alloy to which 6% of Si is added, (a) is a secondary electron image, and (b) is an energy dispersive X-ray analysis. Si mapping.
  • FIG. 7 shows the hydrogen-resistant permeation film formed on SUS304, SUS630, and SCM435, the thickness of the Fe—Al layer of the normal film formed on SUS304, and the Vickers hardness of the Fe—Al layer (held at a load of 100 mN for 30 seconds). The relationship is shown.
  • the Vickers hardness of the Fe—Al layer increases in proportion to the thickness of the Fe—Al layer.
  • the thickness of the Fe—Al layer of the hydrogen permeation film corresponding to this range is 1 to 22 ⁇ m.
  • the thickness of the Al layer of the hydrogen resistant permeation film formed on SUS304, SUS630 and SCM435 is 6 ⁇ m.
  • the thickness range of the Al layer of the hydrogen-resistant permeation film is 2 to 10 ⁇ m.
  • the range of the film thickness of the hydrogen permeation film is determined from the variation in the Vickers hardness of the Fe—Al layer constituting the hydrogen permeation film applied to various base materials.
  • the thickness of the Fe—Al layer of the hydrogen-resistant permeation film formed on SUS304, SUS630 and SCM435 is 1 to 22 ⁇ m, and the total thickness of the film is 3 to 35 ⁇ m.
  • the hydrogen-resistant permeation film has an excellent hydrogen barrier function, and the scope of the present invention is Excellent film strength compared to normal film with film thickness exceeding.
  • the addition of a large amount of Si not only promotes embrittlement of the Fe—Al layer by Si segregation, but also causes the formation of a eutectic Si phase in the Al layer, so the Si layer is controlled to 1 to 5%, It is necessary to control the thickness of the Fe—Al layer to 1 to 22 ⁇ m and the total thickness of the film to 3 to 35 ⁇ m.
  • the film formation state varies slightly depending on the type of base material.
  • low alloy steel and carbon steel which have a smaller amount of alloy component in the base material than stainless steel, the film thickness increases when the film is processed under the same conditions.
  • the average thickness of the film In order for the average thickness of the film to be less than 35 ⁇ m, it is necessary to adjust the components and processing conditions of the molten aluminum alloy for each base material within the range of the Si amount and the processing temperature described in [0043]. .
  • the hydrogen exposure test was a test in which a test piece is exposed to high-pressure hydrogen gas, and the amount of hydrogen that has entered the test piece is measured using a gas chromatograph mass spectrometer (TDA).
  • TDA gas chromatograph mass spectrometer
  • the test piece was exposed to a hydrogen gas environment at an exposure pressure of 10 to 100 MPa and an exposure temperature of 270 ° C. for 200 hours. Under this exposure condition, regardless of the material, the amount of hydrogen in the test piece not provided with the surface film is saturated, and the hydrogen concentration distribution in the base material becomes uniform.
  • the saturated hydrogen amount C S of hydrogen entering the steel material is generally calculated by the following equation using the exposure pressure P and the exposure temperature T.
  • the saturated hydrogen amount is the amount of hydrogen in an equilibrium state where the hydrogen concentration inside the test piece of the material determined by the external pressure and temperature is uniform.
  • S hydrogen solubility
  • f fugacity
  • S 0 and ⁇ H S are coefficients determined depending on the material.
  • the saturated hydrogen amount of the base material of each material is approximated by least squares using equation (1).
  • Hydrogen solubility S of the base material at a temperature 270 ° C. is, SUS304 in 8.53 mass ppm ⁇ MPa -1/2, SUS630 in 1.33 mass ppm ⁇ MPa -1/2, 0.098 mass ppm ⁇ In SCM435 MPa -1/2 .
  • the hydrogen solubility of SUS630 is about 1/6 that of SUS304.
  • the hydrogen solid solubility of SCM435 is about 1/100 that of SUS304, and the amount of saturated hydrogen is extremely small.
  • FIG. 9 shows the relationship between the hydrogen intrusion amount and the exposure pressure of a test piece without a coating using austenitic stainless steel SUS304 as a base material and a test coating provided with a surface coating (hydrogen-resistant permeation coating, aluminum-based two-layer coating).
  • the amount of hydrogen in the unexposed specimen without coating is 1 mass ppm.
  • FIG. 10 shows a hydrogen thermal desorption spectrum of a test piece using SUS304 exposed in hydrogen gas at a pressure of 100 MPa and a temperature of 270 ° C. as a base material.
  • the hydrogen penetration amount of the test piece provided with the hydrogen permeation resistant film is extremely small compared to the test piece without the film, and the hydrogen permeation resistant film has a high hydrogen penetration suppression function.
  • the aluminum-based two-layer coating has a function of suppressing hydrogen intrusion, similar to the hydrogen-resistant permeation coating, but its function is inferior to that of the hydrogen-resistant permeation coating.
  • the peak of the hydrogen release rate of the test piece without the film and the test piece provided with the aluminum-based two-layer film is almost the same (around 330 ° C.).
  • the peak of the hydrogen release rate of the test piece provided with the hydrogen permeation resistant film is around 300 ° C. From this result, the hydrogen content of the test piece provided with the hydrogen permeation film is mainly measured because the amount of hydrogen that has entered the base material is small.
  • FIG. 11 shows the relationship between the hydrogen penetration amount and the exposure pressure of a test piece provided with a coating without a coating based on martensitic stainless steel SUS630 and a surface coating (hydrogen-resistant permeation coating, aluminum-based two-layer coating).
  • the amount of hydrogen in the unexposed film-free test piece is 0.05 to mass ppm.
  • FIG. 12 shows a hydrogen thermal desorption spectrum of a test piece using SUS630 exposed in hydrogen gas at a pressure of 100 MPa and a temperature of 270 ° C. as a base material.
  • the hydrogen penetration amount of the test piece provided with the hydrogen-resistant permeation film is extremely small compared to the test piece without the surface film, and the hydrogen-resistant permeation film has a high hydrogen content. Has an intrusion suppression function.
  • the amount of hydrogen penetration of the test piece provided with the aluminum-based two-layer coating is larger than that of the test piece provided with the hydrogen-resistant permeation coating, and the hydrogen penetration suppression function of the aluminum-based two-layer coating is inferior to that of the hydrogen permeation-resistant coating Yes.
  • the peak of the hydrogen release rate of the test piece without the coating and the test piece provided with the aluminum-based bilayer coating is almost the same (near 270 ° C.) regardless of the exposure pressure. Yes.
  • the peak of the hydrogen release rate of the test piece provided with the hydrogen permeation resistant film is around 300 ° C.
  • the peak temperature of the test piece provided with the hydrogen-resistant permeation film is different from the other test pieces as in the case where SUS630 is used as the base material. This is because the amount of hydrogen entering the surface film is mainly measured.
  • the hydrogen penetration amount of the test piece with the hydrogen permeation film is small because the amount of hydrogen intrusion into the base material is small. Measured mainly.
  • the influence of hydrogen that has penetrated the surface film is large. Therefore, with SCM435 where the amount of saturated hydrogen in the base material is very small compared to SUS304 and SUS630, only hydrogen exposure at a pressure of 10MPa and a temperature of 270 ° C The hydrogen permeation resistance characteristics of the surface film were evaluated.
  • FIG. 13 shows the relationship between the hydrogen penetration amount and the exposure pressure of a test piece without a coating made of a low alloy steel SCM435 and a test piece provided with a hydrogen permeation resistant coating.
  • the amount of hydrogen in the unexposed specimen without a film is 0 mass ppm.
  • membrane is 0.01 mass ppm.
  • the amount of hydrogen intrusion of the test piece using SCM435 provided with a hydrogen permeation-resistant film as a base material is extremely small compared to the test piece without the surface film.
  • the hydrogen-resistant permeation film has an excellent hydrogen intrusion suppression function.
  • the amount of hydrogen intrusion of the test piece provided with the hydrogen-resistant permeation film is the same as that of the aluminum-based two-layer film even though an alumina layer having the same thickness is formed on the outermost surface. Less than the hydrogen penetration amount of the test piece provided with the layer coating. This result means that the hydrogen penetration inhibiting function of the surface film is not only due to the outermost alumina layer.
  • An alumina layer in a low-pressure hydrogen gas having a pressure of the order of kPa is expected to suppress hydrogen invasion by suppressing the dissociation reaction of hydrogen molecules. However, such an effect cannot be expected in an alumina layer with high-pressure hydrogen gas at a pressure of the order of MPa.
  • the difference between the hydrogen-resistant permeation film and the aluminum-based two-layer film is the presence or absence of an aluminum layer. From this, the aluminum layer which comprises a membrane
  • a round bar test piece provided with a hydrogen permeation film on the entire surface shown in FIG. Exposure to gas for 200 hours. After the exposure, a tensile test of the test piece was performed at room temperature and in the atmosphere. The tensile speed is 1 mm / min.
  • Fig. 14 (b) shows the nominal stress-stroke diagram for unexposed and hydrogen exposed materials.
  • the results for the unexposed and hydrogen-exposed materials for the specimens without the coating and the unexposed and hydrogen-exposed materials for the specimen with the coating are shown.
  • the elongation at break is significantly reduced by exposure to high-pressure hydrogen gas.
  • the film is applied, the elongation at break is almost the same as that of the unexposed material regardless of exposure to high-pressure hydrogen gas.
  • the restriction is 77.1% for the unexposed specimen without the coating, 76.5% for the unexposed specimen with the coating, 37.8% for the hydrogen exposed specimen without the coating, and the coating.
  • 15 to 18 show the appearance and fracture surface of the test piece after the tensile test observed using a scanning electron microscope (SEM).
  • 15 is an unexposed test piece without coating
  • FIG. 16 is an unexposed test piece with coating
  • FIG. 17 is a hydrogen exposed test piece without coating
  • FIG. 18 is a hydrogen exposure test with coating.
  • the appearance and fracture surface of the piece. 15 to 18, (a) is observed from 0 ° direction, (b) is observed from 45 ° direction, (c) is observation of visual field 1, (d) is observation of visual field 1-1, (e) Indicates a fracture surface.
  • the fracture proceeds from the surface, and a large number of cracks are observed on the surface of the test piece as shown in FIG.
  • a pseudo-cleavage surface was observed on the fracture surface in the vicinity of the starting point, and it is surmised that the generation and propagation of surface cracks were promoted by hydrogen that had penetrated into the specimen.
  • the hydrogen-exposed test piece (FIG. 18) provided with the film is similar to the unexposed test piece (FIG. 15) not provided with the film and the unexposed test piece (FIG. 16) provided with the film, It exhibits cup and cone destruction, and dimples are observed on the fracture surface. It can be said that the difference in the fracture behavior between the test piece not provided with the hydrogen-exposed film (Fig. 17) and the test piece provided with the film (Fig. 18) is due to the difference in the amount of hydrogen penetrating into the base material. It was confirmed from the strength test that hydrogen penetration into the base material was suppressed by the above.
  • a film was applied to cylindrical test pieces having different diameters, and the test pieces were exposed to hydrogen gas at a pressure of 100 MPa and a temperature of 270 ° C. for 200 hours.
  • the base material is SUS304. After the exposure, the amount of hydrogen penetrating the test piece was measured using TDA.
  • FIG. 19 shows the relationship between the hydrogen penetration amount and the specimen diameter.
  • the amount of hydrogen penetration of the cylindrical test piece provided with the coating depends on the size of the test piece. The smaller the diameter, the larger the amount of hydrogen penetration.
  • the substantial diffusion coefficient of SUS304 to which the film was applied was 1/10 to 1/10000 of the base material.
  • the relationship between the hydrogen penetration amount and the specimen diameter is shown by a curve.
  • the experimental data agrees well with the solution of the diffusion equation where the substantial diffusion coefficient is 1/1000 that of the base material, suggesting that hydrogen intrusion occurs at a diffusion-controlled rate.
  • FIG. 20 shows the hydrogen intensity distribution by SIMS.
  • FIG. 20 shows the hydrogen intensity distribution inside the coating of a cylindrical test piece provided with a surface coating using SUS304 as a base material analyzed using a secondary ion mass spectrometer (SIMS).
  • SIMS secondary ion mass spectrometer
  • FIG. 21B shows a nominal stress-nominal strain curve of the base material of SUS304.
  • FIG. 21 (b) shows the results for the unexposed material carried out in the atmosphere.
  • the test piece was exposed to hydrogen gas at a pressure of 100 MPa and a temperature of 270 ° C. for 200 hours. After exposure, the amount of hydrogen penetrating the test piece was measured by TDA, and the crack occurrence state of the film was observed with an optical microscope.
  • FIG. 22 shows the hydrogen penetration characteristics of a round bar specimen subjected to a single load and the occurrence of cracks in the film.
  • FIG. 23 shows an appearance photograph of the test piece after a single load.
  • (A) is a hydrogen permeation-resistant film
  • (b) is a normal film.
  • the single load stress is 500 MPa
  • no cracking or peeling of the film is observed on the appearance.
  • the normal film a plurality of cracks and peeling of the film are observed.
  • the hydrogen-resistant permeation film has a film strength superior to that of a normal film.
  • FIG. 24 shows the crack generation state after applying a single stress of 200 MPa, 300 MPa and 500 MPa to the hydrogen-resistant permeation film and the normal film.
  • a single stress of 200 MPa, 300 MPa and 500 MPa to the hydrogen-resistant permeation film and the normal film.
  • the single load stress when the single load stress is 300 MPa or less, no crack is observed in the film.
  • the single load stress is 500 MPa, both the hydrogen-resistant permeation film and the normal film are damaged.
  • the damage to the normal film is more severe than the hydrogen-resistant permeation film, and the normal film peels from the interface between the Fe—Al layer and the base material.
  • the hydrogen-resistant permeation film a crack parallel to the tensile direction involved in the peeling is generated from the region where the Si concentration in the Fe—Al layer changes rapidly.
  • FIG. 24 shows a schematic diagram of the hydrogen permeation-resistant film and the normal film destruction process.
  • FIG. 26 shows the stress generated in the Fe—Al layer and between the layers after crack generation.
  • FIG. 27 shows the FEM model used for the analysis. FEM analysis was performed in the plane strain state.
  • FIG. 28 shows the result of FEM analysis of the stress generated in and between the Fe—Al layers. This is an analysis result when the Al layer thickness is 10 ⁇ m and the Fe—Al layer thickness is 10 ⁇ m. The stress in the direction perpendicular to the tensile direction that affects the peeling is shown. High stress is generated at the interface between the Al layer and the Fe—Al layer and the interface between the Fe—Al layer and the base material, and particularly, the stress is high at the interface between the Fe—Al layer and the base material.
  • the stress in the Fe—Al layer is lower than that between the layers, and the generation of cracks parallel to the tensile direction observed in the Fe—Al layer of the hydrogen permeation film is not a problem of the generated stress.
  • This can be said to be a problem of the structure of the Fe—Al layer related to Si segregation.
  • FIG. 29 shows the result of FEM analysis of the stress generated at the interface between the Fe—Al layer and the base material. This is an analysis result when the vertical stress is perpendicular to the tensile direction affecting peeling and the Al layer thickness is 10 ⁇ m and the Fe—Al layer thickness is 10, 30, 50, 100 ⁇ m. The thicker the Fe—Al layer, the higher the stress at the interface. Thus, the difference in peel strength between the hydrogen permeation film and the normal film shown in FIG. 23 is related to the difference in the generated stress at the interface in addition to the structure of the Fe—Al layer.
  • FIG. 31 shows optical microscope photographs of the hydrogen permeation film after the pressure cycle test, where (a) is for SCM435 and (b) is for SUS630.
  • the application of the hydrogen-resistant permeation film of the present invention makes it possible to produce a wide range of high-pressure hydrogen pipes, high-pressure hydrogen containers, etc. that ensure safety and strength characteristics.
  • low-cost, high-strength materials such as carbon steel and low alloy steel can be used for main bodies such as pipes and containers.

Abstract

 水素機器に用いられる基材として、単体では水素の影響がある鋼材に対して添加Si量を1~5%としたAl-Si系アルミニウム合金を用いた溶融めっきを行うことにより、表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層し、アルミニウム系金属間化合物層の厚さが1~22μmであり皮膜の平均厚さが35μm未満となる三層構造の耐水素透過皮膜を形成したものである。母材の鋼材は、炭素綱、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼等の水素の影響がある鋼材を対象とする。高圧水素の環境下で使用される水素機器に用いられる基材として、水素脆化を防止し耐久性を高めるとともに,製作コストを低く抑えられる。

Description

水素機器用の基材及びその製造方法
 本発明は、水素機器用の基材及びその製造方法に関し、より詳細には、水素ガスバリア性と強度特性にともに優れた耐水素透過皮膜を、水素の影響を受ける鋼材に付与した水素機器用の基材及びその製造方法に関する。
 近年産業界において、環境保護の面から二酸化炭素等の地球温暖化ガスの発生を抑制することが強く求められている。この一環として、燃料電池を電力源とする自動車や輸送機器の開発が進められている。燃料電池は水素を燃料として電力を発生させるため、二酸化炭素が発生しないとともにエネルギー変換効率が高いので、有力な電力源として期待されている。
 水素を燃料とする燃料電池や、それに水素を供給するための水素ステーションを含む機器においては、構成部品が水素ガス環境に曝される。水素ガス環境に曝される金属材料では、材料内に侵入した水素によって引張強度、伸びあるいは絞りなどが低下する現象が知られている。この現象は水素脆化と呼ばれる。このような水素脆化の問題から、日本自動車研究所技術標準JARIS001(2004)では、圧力35MPaの自動車用高圧水素容器に対して、オーステナイト系ステンレス鋼SUS316Lとアルミ合金6061-T6のみの使用を規定している。また、一般高圧ガス保安規則関係例示基準では、圧力70MPaと圧力82MPaの水素インフラ機器に対して、オーステナイト系ステンレス鋼(SUS316とSUS316L)のNi当量を制限した材料(Ni当量材と呼ぶ)のみの使用を規定している。
 しかしながら、6061-T6並びにNi当量材は強度が低く,コストが高い。燃料電池自動車や水素インフラ機器では,最大で圧力100MPa(1000気圧)レベルの高圧水素ガスが使用される。水素機器としては、そのような使用条件において水素脆化を生ずることなく、高い耐久性を有することが必要であるとともに、機器製造コストを極力抑えることが求められる。このため、6061-T6並びにNi当量材に代わる、耐水素脆化特性と強度特性にともに優れた低コスト材料の開発が期待されている。
 水素脆化は材料中に侵入した水素によって引き起こされるため、高圧水素ガス環境下において材料内部に水素が侵入しないように制御する技術が開発できれば、水素脆化を抑えられる可能性がある。水素侵入を抑制することが可能な表面皮膜は、材料の水素脆化を抑える有力な技術の一つであると期待される。ここで、高圧水素ガスとは大気圧(0.1MPa)以上の水素ガス圧力とする。
 水素の影響を受けるが低コストで引張強度の高い炭素鋼や低合金鋼に、水素侵入を抑制することが可能な表面皮膜を付与して、材料の水素脆化を抑制することができれば、圧力容器や配管などの水素機器の大幅なコスト低減が可能である。
 表面皮膜を付与した炭素綱や低合金鋼については、高圧水素ガス用圧力容器や高圧水素ガス用配管への利用が期待される。水素侵入を抑制することが可能な表面皮膜を付与して水素脆化を抑制することができれば、6061-T6並びにNi当量材の代わりに、単体では水素の影響を受ける炭素綱や低合金鋼を圧力容器や配管に利用できる。
 引張強度が1000MPa以上のマルテンサイト系ステンレス鋼は弾性領域が大きいため、流量計や圧力計に利用される。マルテンサイト系ステンレス鋼では水素の影響が極めて大きいため、水素侵入を抑制することが可能な表面皮膜を付与して水素脆化を抑制することができれば、高圧水素ガス中においても流量計や圧力計にマルテンサイト系ステンレス鋼を利用することが可能になる。
 特許文献1には、水素の影響が極めて小さい母材をアルミニウムまたはアルミニウム合金で被覆する高圧水素ガス用圧力容器と高圧水素ガス用配管が開示されている。特許文献1では、対象とする水素機器を高圧水素ガス用圧力容器と高圧水素ガス用配管のみに限定している。さらに、水素の影響が極めて小さい母材への皮膜付与を対象としており、水素の影響を受ける母材(炭素綱、低合金鋼、マルテンサイト系ステンレス鋼)を対象としていない。表面皮膜の形成状態や水素侵入特性は母材の種類に強く依存すると考えられる。しかし、実施例はオーステナイト系ステンレス鋼とオーステナイト相を含む2相系ステンレス鋼のみであり、水素の影響を受ける鋼材(炭素鋼、低合金鋼、マルテンサイト系ステンレス鋼)での皮膜形成状態や水素侵入特性は明らかでない。さらに,特許文献1ではアルミ層のみの厚さを規定しており、皮膜強度の観点から極めて重要なアルミニウム系金属間化合物層(Fe-Al合金層)の形成状態や皮膜厚さは不明である。
 特許文献2には、固体酸化物形燃料電池の構成部品として、フェライト系ステンレス鋼上に形成されたアルミナ皮膜が開示されている。また、特許文献3には、燃料電池用水素製造装置として、1組の基板の接合面のトンネル状流路に形成されたアルミナ皮膜の触媒担持層が開示されている。特許文献2においては、高温環境での熱応力によるき裂発生を防止するためアルミナ皮膜が用いられており、高温高圧水素環境下で母材への水素侵入を防止するものではない。特許文献3のアルミナ皮膜は、触媒担持層の表面積を大きくすることによって、金属基板と触媒との熱膨張率の違いによる熱歪みを吸収するものであり、高温・高圧水素環境下で母材への水素侵入を防止する技術ではない。
 特許文献4では、水素供給装置の脱水素触媒体において、基材のステンレス板と陽極酸化によって形成された多孔質アルミナ層との間にニオブ、チタン、タンタル等の層を有する触媒担持体が開示されている。この触媒担持体では、陽極酸化膜を均一に作製することにより水素供給装置の高温耐熱性を高めることを意図しており、母材への水素侵入を防止するものではない。
特開2004-324800号公報 特開2006-236600号公報 特開2007-8731号公報 特開2010-82513号公報
 高圧水素ガスが使用される水素機器の使用条件において、水素脆化を生ずることなく、優れた強度特性を有する水素機器用の耐水素透過皮膜を低コストで得られるようにすることが求められている。しかし、これまで水素の影響を受ける鋼材で構成された水素機器の安全性と経済性を十分に両立させる耐水素透過皮膜は提供されていなかった。
 特許文献2~4によるものでは、高温高圧水素環境下で母材への水素侵入を有効に防止できないものであり、特許文献1によるものでは、皮膜の強度を高める上で重要なアルミニウム-金属間化合物層の厚さに何ら考慮していないことから、高温高圧水素環境下で母材への水素侵入を有効に防止できないものであるとともに、オーステナイト系ステンレス鋼以外の水素の影響を受け易い母材の場合への適用可能性も与えられていないものであった。
 このようなことから、高圧水素ガスが使用される水素機器を,耐水素透過特性と強度特性にともに優れた耐水素透過皮膜を用いて構成し、水素の影響を受け易い母材の場合にも有効に水素侵入を防止し、かつ耐久性のある皮膜構造を有する水素機器の基材とするとともに、その製造コストをできるだけ抑えることが望まれていた。本発明は、水素の影響を受ける鋼材に積極的に耐久性のある表面皮膜を付与して、鋼材の水素脆化を抑制し、また、製作コストを低減することを目的とするものである。
 本発明は、単体では水素の影響を受ける鋼材(炭素鋼、低合金鋼並びにマルテンサイト系ステンレス鋼など)に耐水素透過皮膜を付与することに関して、前述した課題を解決すべくなしたものであり、本発明の請求項1に係る水素機器用の基材は、炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材であって、前記耐水素透過皮膜が母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜であり、前記耐水素透過皮膜の平均厚さが3μm以上、35μm未満であるようにしたものである。
 請求項2による水素機器用の基材は、炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材であって、前記耐水素透過皮膜が母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜であり、前記アルミニウム系金属間化合物層の厚さが1~22μmであり、かつ、前記耐水素透過皮膜の平均厚さが35μm未満であるようにしたものである。
 請求項3による水素機器用の基材は、前記耐水素透過皮膜が添加Si量を1~5%としたAl-Si系アルミニウム合金を用い溶融温度以上で変態点以下の温度範囲での溶融めっきを前記母材に対して行うことにより形成されたものである。
 請求項4による水素機器用の基材は、前記母材の材料が低合金鋼またはマルテンサイト系ステンレス鋼であるようにしたものである。
 請求項5による水素機器用の基材の製造方法は、炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材を製造する方法であって、前記耐水素透過皮膜の形成の際に添加Si量を1~5%としたAl-Si系アルミニウム合金を用い溶融温度以上で変態点以下の温度範囲で溶融めっきを行って前記母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜を形成し、前記耐水素透過皮膜の平均厚さが3μm以上、35μm未満であるようにしたものである。
 請求項6による水素機器用の基材の製造方法は、炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材を製造する方法であって、前記耐水素透過皮膜の形成の際に添加Si量を1~5%としたAl-Si系アルミニウム合金を用い溶融温度以上で変態点以下の温度範囲で溶融めっきを行って前記母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜を形成し、前記アルミニウム系金属間化合物層の厚さが1~22μmであり、かつ、前記耐水素透過皮膜の平均厚さが35μm未満であるようにしたものである。
 請求項7による水素機器用の基材の製造方法は、前記母材の材料が低合金鋼またはマルテンサイト系ステンレス鋼であるようにしたものである。
 本発明による水素機器用の基材は、単体では水素の影響を受ける鋼材(炭素鋼、低合金鋼並びにマルテンサイト系ステンレス鋼など)に対して、溶融アルミニウム合金を用いて、母材にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した平均厚さ35μm未満の三層構造皮膜(耐水素透過皮膜と呼ぶ)を形成したものである。アルミナ層の表面に、材質・構成に関わらず、さらに層を積層した皮膜も本発明の水素機器用の基材として用いられる。耐水素透過皮膜の付与によって、高圧水素の環境下で使用される水素機器の母材への水素侵入を抑制し、水素脆化を実質的に生じないものとすることができる。これにより、水素機器を安全に使用することができるとともに、水素機器の製作コストを低く抑えることが可能になる。
オーステナイト系ステンレス鋼SUS304を母材とする場合の耐水素透過皮膜と通常皮膜の光学顕微鏡写真であり、(a)は耐水素透過皮膜、(b)は通常皮膜であり、(c)は試験片の観察方法を示す図である。 耐水素透過皮膜の特にアルミニウム層-金属間化合物層部分の断面を観察した反射電子像である。 耐水素透過皮膜と通常皮膜のアルミニウム系金属間化合物層のビッカース圧痕の光学顕微鏡写真であり、(a)は耐水素透過皮膜、(b)は通常皮膜である。 耐水素透過皮膜の光学顕微鏡写真であり、(a)は母材が低合金鋼SCM435の場合、(b)は母材がマルテンサイト系ステンレス鋼SUS630の場合のものである。 Si量を変化させた溶融Al合金を用いて低合金鋼SCM435表面に形成した皮膜の光学顕微鏡写真であり、(a)はSi量が0%、(b)はSi量が3%、(c)はSi量が6%のときの皮膜形成状況である。 Si量を6%添加した溶融Al合金を用いて低合金鋼SCM435表面に形成した皮膜の(a)二次電子像と(b)エネルギー分散型X線分析によるSiマッピングである。 SUS304、SUS630並びにSCM435に形成された耐水素透過皮膜と、SUS304に形成された通常皮膜のFe-Al層の厚さとFe-Al層の荷重100mNで30秒保持によるビッカース硬さとの関係を示す図である。 オーステナイト系ステンレス鋼SUS304、マルテンサイト系ステンレスSUS630並びに低合金鋼SCM435の母材の水素侵入量と曝露圧力の関係を示すグラフである。 オーステナイト系ステンレス鋼SUS304を母材とする表面皮膜なし試験片と耐水素透過皮膜、アルミ系二層皮膜の表面皮膜を付与した試験片の水素侵入量と曝露圧力の関係を示すグラフである。 圧力100MPa、温度270℃の水素ガス中に200時間曝露したオーステナイト系ステンレス鋼SUS304を母材とする表面皮膜なし試験片と耐水素透過皮膜,アルミ系二層皮膜の表面皮膜を付与した試験片のTDAスペクトルである。 マルテンサイト系ステンレス鋼SUS630を母材とする表面皮膜なし試験片と耐水素透過皮膜、アルミ系二層皮膜の表面皮膜を付与した試験片の水素侵入量と曝露圧力の関係を示すグラフである。 圧力100MPa、温度270℃の水素ガス中に200時間曝露したマルテンサイト系ステンレス鋼SUS630を母材とする表面皮膜なし試験片と耐水素透過皮膜、アルミ系二層皮膜の表面皮膜を付与した試験片のTDAスペクトルである。 低合金鋼SCM435を母材とする表面皮膜なし試験片と耐水素透過皮膜を付与した試験片の水素侵入量と曝露圧力の関係を示すグラフである。 (a)は水素侵入量を評価するためのSUS304を母材とする丸棒試験片の形状、寸法を示す図であり、(b)は(a)の丸棒試験片の未曝露材と水素曝露材に対して室温・大気で実施した結果による公称応力-ストローク曲線である。 走査型電子顕微鏡(SEM)により観察した皮膜を付与していない未曝露試験片の引張試験後の外観と破面である。 SEMにより観察した皮膜を付与した未曝露試験片の引張試験後の外観と破面である。 SEMにより観察した皮膜を付与していない水素曝露試験片の引張試験後の外観と破面である。 SEMにより観察した皮膜を付与した水素曝露試験片の引張試験後の外観と破面である。 TDAを用いて測定した圧力100MPa、温度270℃の水素ガス中に200時間曝露したSUS304を母材とする表面皮膜を付与した円柱試験片の水素量と試験片直径の関係である。 二次イオン質量分析装置(SIMS)を用いて分析したSUS304を母材とする表面皮膜を付与した円柱試験片の皮膜内部の水素強度分布であり、(a)と(b)は水素曝露材、(c)は未曝露材の分布である。 (a)は皮膜強度を評価するためのSUS304の母材の丸棒試験片の形状、寸法を示す図であり、(b)は(a)の丸棒試験片の未曝露材に対して大気で実施した結果による公称応力-公称ひずみ曲線である。 全面に皮膜を付与したSUS304の母材の丸棒試験片に、それぞれ(a)σ=332MPa、(b)σ=376MPa、(c)σ=442MPa、(d)σ=588MPaの単一負荷後の皮膜断面の光学顕微鏡写真と、それぞれの場合の水素侵入量を棒グラフで示す図である。 全面にそれぞれ耐水素透過皮膜、通常皮膜を付与したSUS304の母材の丸棒試験片の単一負荷後の試験片の外観写真であり、(a)は耐水素透過皮膜、(b)は通常皮膜の場合である。 全面にそれぞれ耐水素透過皮膜、通常皮膜を付与したSUS304を母材とする丸棒試験片の単一負荷後の皮膜のき裂発生状況であり、(a)は耐水素透過皮膜、(b)は通常皮膜の場合である。 単一負荷下における耐水素透過皮膜と通常皮膜を付与した試験片のき裂発生~はく離プロセスの模式図である。 応力解析に用いるFEMモデルを示す図であり、き裂発生後に層内と層間に発生する引張方向に垂直な方向の応力に着目したものである。 FEMモデルの境界条件と材料物性値を示す図である。 FEMにより計算した層内と層間における応力分布を示す図であり、き裂発生後に層内と層間に発生する引張方向に垂直な方向の応力を示すものである。 FEMにより計算したFe-Al層と母材界面における応力集中の程度とFe-Al層の厚さの関係を示す図であり、き裂発生後に層内と層間に発生する引張方向に垂直な方向の応力を示すものである。 高圧水素ガス中での圧力サイクル試験に用いたSCM435とSUS630の配管試験片形状を示す斜視図である。 (a)SCM435の母材、(b)SUS630の母材の場合についての圧力サイクル試験後の耐水素透過皮膜の光学顕微鏡写真である。
 高圧水素ガス環境下に曝された材料について、材料表面に皮膜を形成し、材料内部に水素が侵入するのを防止することにより、母材自体が水素の影響を受ける材料であっても水素脆化を抑制できると考えられる。その場合、表面皮膜としては、使用条件下で水素ガスバリア性と強度特性にともに優れていることが重要である。
 本発明の水素機器用の基材における耐水素透過皮膜とは、アルミニウム系金属間化合物層、アルミニウム層、アルミナ層(Al23)の三層構造を有し、かつ平均の皮膜厚さが35μm未満の表面皮膜である。平均の皮膜厚さが100μmオーダの通常皮膜に対して、1/5~1/10程度の皮膜厚さであることを特徴とする。ここで、通常皮膜とは、JISH8642溶融アルミニウムめっきの規格を満たす皮膜厚さ(HAD1:皮膜厚さ60μm以上、HAD2:皮膜厚さ70μm以上、HAD3:アルミニウム系金属間化合物層の厚さ50μm以上)を有するものである。本発明の耐水素透過皮膜では、母材となる材料は限定されず、特に、水素の影響を受ける鋼材(炭素鋼,低合金鋼,マルテンサイト系ステンレス鋼など)に適用される。
〔使用材料〕
 表面皮膜の形成状態に及ぼす母材の影響を明らかにするため、母材として、オーステナイト系ステンレス鋼SUS304、マルテンサイト系ステンレス鋼SUS630並びに低合金鋼SCM435を用いた。SUS304、SUS630並びにSCM435の化学成分は、表1のようになっている。単位は、mass%である。また、低合金鋼は鉄、炭素以外の合金元素量が5%以下の合金鋼である。
Figure JPOXMLDOC01-appb-T000001
 SUS304では溶体化処理、SUS630では溶体化処理後に時効処理、SCM435では焼入れ・焼戻し処理が施されている。
〔試験片形状〕
 SUS304とSUS630では、直径10mm、長さ50mmの円柱試験片を用いた。SCM435では、直径20mm、長さ25mmの円柱試験片を用いた。
〔表面皮膜形成〕
 本発明による耐水素透過皮膜の形成方法について説明する。母材となる材料は、特に限定されない。母材を脱脂し、水洗,酸洗を行った後、水洗、乾燥させる。アルミニウム合金を溶融した槽中に、母材を浸漬する。所定時間浸漬後、後処理、仕上げを行う。以上の工程を経て、母材がオーステナイト系ステンレス鋼SUS304の場合、図1(a)に示される三層構造皮膜が形成される。
 本発明においては、耐水素透過皮膜の平均厚さ、特に皮膜の強度、耐久性に大きく関与するアルミニウム系金属間化合物層の厚さを1~22μmとし、耐水素皮膜の平均厚さを35μm未満とするように皮膜形成の制御を行うのであるが、そのために、母材を浸漬する溶融アルミニウム合金にはSiを1~5%添加したものを用い、槽内溶融アルミニウム合金温度を溶融温度以上で変態点以下の温度範囲として溶融めっきを行う。アルミニウム系金属間化合物層の厚さは、特に浸漬時間にはよらず、浸漬温度とSi添加量に大きく依存する。
 水素侵入特性に及ぼす表面皮膜の影響を明らかにするため、試験片の全表面に皮膜を形成したものと、皮膜を形成しないものを用意した。表面皮膜として、耐水素透過皮膜と、比較対象のため,アルミニウム系金属間化合物層とアルミナ層との二層構造から構成されるアルミ系二層皮膜を用意した。アルミ系二層皮膜は、耐水素透過皮膜を熱処理することによって得られる。
 本発明による耐水素透過皮膜を通常皮膜と比較した。図1(b)に通常皮膜の光学顕微鏡写真を示す。母材はオーステナイト系ステンレス鋼SUS304である。耐水素透過皮膜と通常皮膜はともにアルミニウム系金属間化合物層、アルミニウム層、アルミナ層(Al23)の三層構造であるが、皮膜の平均厚さとアルミニウム系金属間化合物層の硬さが異なる。通常皮膜の平均皮膜厚さは100μm以上である。これに対して,耐水素透過皮膜(アルミ系三層皮膜)の平均皮膜厚さは、母材の種類によらず、15μm未満程度であり、通常皮膜は、耐水素透過皮膜に対して、10倍程度の厚さである。図1中には、荷重100mN、30秒保持で測定したアルミニウム系金属間化合物層のビッカース硬さHVも示しており、耐水素透過皮膜のアルミニウム系金属間化合物層のビッカース硬さHVは通常皮膜に比して1/2程度である。図1(c)は、試験片の観察方法を示しており、第1層のアルミナ層は薄く、光学顕微鏡では観察が困難なため、試験片を樹脂に埋め込んで観察する状態を示している。
 図2は耐水素透過皮膜の断面を観察した反射電子像であり、耐水素透過皮膜の部分における断面方向の箇所B1(アルミニウム層)、B2(金属間化合物層)、B3(金属間化合物層)における局所的な化学成分をエネルギー分散型X線分析(EDX)により測定した結果は表2に示すようになっている。
Figure JPOXMLDOC01-appb-T000002
 表2に示す耐水素透過皮膜における、特にアルミニウム層の構成成分比でみると、アルミニウム層内でのB1の箇所におけるSiの成分比は溶融アルミ合金の際の成分比より著しく減少しており、一方、アルミニウム層側の金属間化合物層の箇所B2、B3において高まっている。このことは耐水素透過皮膜の形成時に溶融アルミニウム合金中のSiは金属間化合物層側にシフトしており、その分アルミニウム層中のSi成分が少なくなっていることを示すものである。図2で示すように、Siは金属間化合物層内に偏析し、金属間化合物層自体を脆化させるため、Siの多量添加を避ける必要がある。
 図3に、耐水素透過皮膜と通常皮膜のアルミニウム系金属間化合物層のビッカース圧痕の光学顕微鏡写真を示す。耐水素透過皮膜に対して、通常皮膜のアルミニウム系金属間化合物層では、圧痕周りにき裂が発生する。このように、耐水素透過皮膜に対して、JISH8642溶融アルミニウムめっきの皮膜厚さを満足する通常皮膜では、高硬さで脆いアルミニウム系金属間化合物層が形成される。
 後述する図22に示す結果にあるように、耐水素透過皮膜の破壊は、アルミニウム系金属間化合物層から生じる。このため、アルミニウム系金属間化合物層の硬さが低く、金属間化合物が柔軟であるほど、耐水素透過皮膜は優れた耐久性を有すると考えられる。図1(a)、(b)に示す結果から、アルミニウム系金属間化合物層が薄いほど、金属間化合物層の硬さが低い。よって、アルミニウム系金属間化合物層の硬さを低く抑えるためには、溶融アルミニウム合金の成分や処理条件を調整し、皮膜の平均厚さを制御することが重要である。
 図4に耐水素透過皮膜を低合金鋼SCM435とマルテンサイト系ステンレス鋼SUS630の母材に付与した場合の光学顕微鏡写真を示す。母材の種類によらず,平均の皮膜厚さが35μm未満の三層構造皮膜が母材表面に形成されている。また、図中に荷重100mN、30秒保持で測定したアルミニウム系金属間化合物層のビッカース硬さHVも示してあり、SUS304、SUS630並びにSCM435の表面に形成された耐水素透過皮膜のアルミニウム系金属間化合物層のビッカース硬さはほぼ同じ値を示し、通常皮膜のアルミニウム系金属間化合物のビッカース硬さの1/2程度である。
 一連の実験結果から、母材の種類によらず、皮膜の平均厚さを35μm未満に制御することができれば、皮膜を構成するアルミニウム系金属間化合物層の硬さを通常皮膜の1/2程度に抑えることができる。Fe-Al合金には、FeとAlの成分比率によって、Fe3Al相、FeAl相、Fe2Al5相などがある。これらの相の中で、Fe2Al5相が高硬さで脆い組織である。実際のアルミニウム系金属間化合物層では、これらの相が混在していると考えられる。アルミニウム系金属間化合物層が薄いほど、金属間化合物層の硬さが低いという実験結果から、FeとAlの相互拡散を抑えることにより、高硬さで脆い合金相の形成が抑制されたと推察される。
 アルミニウム系金属間化合物層を薄くするためには、溶融アルミニウム合金の成分や処理条件を調整し、FeとAlの相互拡散を抑制する必要がある。具体的には、通常皮膜を形成する浸漬処理では、純アルミニウムを使用するのに対して、耐水素透過皮膜では、Al-Si系アルミニウム合金を使用する。図5(a)~(c)に、Si量を変化させた溶融Al合金を用いて低合金鋼SCM435表面に形成した皮膜の光学顕微鏡写真を示し、(a)はSiが0%、(b)はSiが3%、(c)Siが6%の場合のものである。純Alを用いた場合に対して、Siを添加することによって、Fe-Al層は薄くなる。しかし、Siを6%添加した場合には、図6に示すように、Al層内に共晶Si相が形成され、皮膜(Al層+Fe-Al層)が厚くなる。図6はSi量を6%添加した溶融Al合金を用いて低合金鋼SCM435表面に形成した皮膜を示し、(a)は二次電子像であり、(b)はエネルギー分散型X線分析によるSiマッピングである。
 Si添加はAlの融点を低下させるので、純Alに対してAl-Si合金を使用することにより、薄い皮膜を容易に形成することができる。また、[0072]で後述するSIMSを用いた皮膜内部での水素強度分析から、Al層とFe-Al層の界面およびFe-Al層内のSi濃度が変化する領域での水素トラップにより、母材への水素侵入が阻止される。これより、Si添加は水素侵入を抑制するのに有効であると考えられる。ただし、Siを多量添加すると、Si偏析によりFe-Al層の脆化が助長されることに加えて、Al層内において共晶Si相が形成されることから、Si量を1~5%にすることが好ましい。また、耐水素透過皮膜を形成する浸漬処理は、溶融温度以上で変態点以下の温度で行うものである。
 図7に、SUS304、SUS630並びにSCM435に形成された耐水素透過皮膜とSUS304に形成された通常皮膜のFe-Al層の厚さとFe-Al層のビッカース硬さ(荷重100mNで30秒保持)との関係を示す。Fe-Al層の厚さに比例してFe-Al層のビッカース硬さは高くなる。図中のSUS304、SUS630並びにSCM435に形成された耐水素透過皮膜におけるFe-Al層のビッカース硬さの平均値はHV=645であり、標準偏差ΣはHV=22である。ビッカース硬さの99.7%の確率である±3Σのばらつきを考えると、耐水素透過皮膜のFe-Al層のビッカース硬さの範囲は、HV=579~711となる。この範囲に対応する耐水素透過皮膜のFe-Al層の厚さは1~22μmである。
 SUS304、SUS630並びにSCM435に形成された耐水素透過皮膜のAl層の厚さは6μmである。Al層の厚さの99.7%の確率である±3Σのばらつきを考えると、耐水素透過皮膜のAl層の厚さの範囲は2~10μmとなる。
 後述する図29に示すFEMによる応力解析から、皮膜が厚くなると、引張方向に垂直なき裂がFe-Al層内に発生後、Fe-Al層と母材界面に高い応力が発生し、皮膜のはく離が助長される。平均の皮膜厚さが100μmオーダの通常皮膜に対して、皮膜を薄くすることによって、き裂発生後に生じる引張方向に垂直な方向の応力を低下させることができる。すなわち、後述する図23の耐水素透過皮膜と通常皮膜のはく離挙動の違いは、Fe-Al層の構造と発生応力の違いによるものである。このように、皮膜強度の観点からは皮膜が薄い方が望ましい。しかし、水素侵入抑制の観点からは、ある程度の皮膜厚さが必要である。実績的に、耐水素透過皮膜を様々な母材に付与した場合、皮膜厚さやFe-Al層のビッカース硬さは同一でないものの、優れた水素遮断機能を有するとともに、通常皮膜に対して優れた皮膜強度が確保される。そこで、様々な母材に付与した耐水素透過皮膜を構成するFe-Al層のビッカース硬さのばらつきから、耐水素透過皮膜の皮膜厚さの範囲を決定する。
 ばらつきを考慮した皮膜厚さの検討から、SUS304、SUS630並びにSCM435に形成された耐水素透過皮膜のFe-Al層の厚さは1~22μm、皮膜の合計厚さは3~35μmとなる。図1、図3並びに後述する図23に示すように、本発明で実施した範囲内の皮膜厚さの場合には、耐水素透過皮膜は優れた水素遮断機能を有するとともに、本発明の範囲を超える皮膜厚さの通常皮膜に対して優れた皮膜強度を有する。耐水素透過特性と強度特性にともに優れた形成するためには、適切なSi量のAl-Si系アルミニウム合金を使用する必要がある。Siの多量添加は、Si偏析によりFe-Al層の脆化を助長することに加えて、Al層内における共晶Si相の形成を引き起こすことから、Si層を1~5%に制御し、Fe-Al層の厚さを1~22μm、皮膜の合計厚さを3~35μmに制御する必要がある。
 母材の種類によって、皮膜の形成状態は若干異なる。ステンレス鋼に比べて母材の合金成分量が少ない低合金鋼や炭素綱では、同じ条件で皮膜処理した場合、皮膜厚さが大きくなる。皮膜の平均厚さが35μm未満になるようにするためには、母材ごとに溶融アルミニウム合金の成分や処理条件を[0043]において前述したSi量や処理温度の範囲内で調整する必要がある。
〔水素曝露試験〕
 母材に耐水素透過皮膜を付与した試験片について、水素曝露試験を行った。水素曝露試験とは、高圧水素ガス中に試験片を曝露し、ガスクロマトグラフ質量分析装置(TDA)を用いて試験片内部に侵入した水素量を測定する試験である。
 水素曝露試験では、試験片を曝露圧力10~100MPa、曝露温度270℃の水素ガス環境中に200時間曝露した。この曝露条件において、材料によらず、表面皮膜を付与していない試験片の水素量は飽和し、母材の水素濃度分布は一様になる。
〔水素量測定〕
 TDAによる水素量測定では、昇温速度100℃/hの条件で、試験片を室温から温度600℃まで加熱し、試験片から放出される水素量を測定した。得られた水素放出速度と温度の関係(水素昇温脱離スペクトル)において、第1ピークの水素量を試験片内部に侵入した水素量(水素侵入量)とした。
〔水素侵入特性〕
 円柱試験片を水素ガス環境中に曝露後、SUS304とSUS630では、試験片をそれぞれ厚さ0.5mmと5mmに切断し、水素量測定を行った。SCM435では、試験片を切断せずに水素量測定を行った。図8に、表面皮膜を付与していない円柱試験片の水素侵入量と曝露圧力の関係を示す。
 鉄鋼材料に侵入する水素の飽和水素量Cは、一般に曝露圧力Pと曝露温度Tを用いて次式で計算される。飽和水素量とは、外部圧力と温度によって決まる材料の試験片内部の水素濃度が一様となる平衡状態での水素量である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、S:水素固溶度、f:フガシティ、R:気体定数(=8.314J/(mol・K)、b:定数(=15.84cm3/mol)である(bについては,C.S.Marchi et al., International Journal of Hydrogen Energy, Vol. 32(2007), pp. 100-116に記載)。S0と△HSは材料に依存して決まる係数である。
 図8において、各材料の母材の飽和水素量を式(1)で最小二乗近似している。温度270℃における母材の水素固溶度Sは、SUS304では8.53 mass ppm・MPa-1/2、SUS630では1.33 mass ppm・MPa-1/2、SCM435では0.098 mass ppm・MPa-1/2である。 SUS630の水素固溶度は、SUS304の1/6程度である。一方、SCM435の水素固溶度は、SUS304の1/100程度であり、飽和水素量は極めて少ない。
 図9に、オーステナイト系ステンレス鋼SUS304を母材とする皮膜なし試験片と表面皮膜(耐水素透過皮膜、アルミ系二層皮膜)を付与した試験片の水素侵入量と曝露圧力の関係を示す。未曝露の皮膜なし試験片の水素量は1 mass ppmである。図10には,圧力100MPa、温度270℃の水素ガス中に曝露したSUS304を母材とする試験片の水素昇温脱離スペクトルを示す。
 図9の結果において、耐水素透過皮膜を付与した試験片の水素侵入量は、皮膜なし試験片と比べて極めて少なく、耐水素透過皮膜は高い水素侵入抑制機能を有している。一方、アルミ系二層皮膜においては、耐水素透過皮膜と同様に、水素侵入を抑制する機能を有しているが、その機能は耐水素透過皮膜よりも劣っている。
 図10に示す水素昇温脱離スペクトルにおいて、皮膜なし試験片とアルミ系二層皮膜を付与した試験片の水素放出速度のピークはほぼ一致(330℃付近)している。これに対して、耐水素透過皮膜を付与した試験片の水素放出速度のピークは300℃付近である。この結果から、耐水素透過皮膜を付与した試験片の水素量では、母材に侵入した水素量が少ないため、表面皮膜に侵入した水素が主として測定されている。
 図11に、マルテンサイト系ステンレス鋼SUS630を母材する皮膜なし試験片と表面皮膜(耐水素透過皮膜、アルミ系二層皮膜)を付与した試験片の水素侵入量と曝露圧力の関係を示す。未曝露の皮膜なし試験片の水素量は、0.05 mass ppmである。図12に、圧力100MPa、温度270℃の水素ガス中に曝露したSUS630を母材とする試験片の水素昇温脱離スペクトルを示す。
 図12に示す結果において、SUS304を母材とした場合と同様に、耐水素透過皮膜を付与した試験片の水素侵入量は表面皮膜なし試験片と比べて極めて少なく、耐水素透過皮膜は高い水素侵入抑制機能を有している。一方、アルミ系二層皮膜を付与した試験片の水素侵入量は、耐水素透過皮膜を付与した試験片よりも多く、アルミ系二層皮膜の水素侵入抑制機能は耐水素透過皮膜よりも劣っている。
 図12に示す水素昇温脱離スペクトルにおいて、皮膜なし試験片とアルミ系二層皮膜を付与した試験片の水素放出速度のピークは、曝露圧力によらず、ほぼ一致(270℃付近)している。これに対して、耐水素透過皮膜を付与した試験片の水素放出速度のピークは、300℃付近である。耐水素透過皮膜を付与した試験片のピーク温度が他の試験片と異なるのは、SUS630を母材としたときと同様に、耐水素透過皮膜を付与した試験片では、母材に侵入した水素量が少なく、表面皮膜に侵入した水素が主として測定されるためである。
 耐水素透過皮膜を付与した試験片の水素昇温脱離スペクトルから、耐水素透過皮膜を付与した試験片の水素侵入量では、母材に侵入した水素量が少ないため、皮膜に侵入した水素が主として測定される。圧力100MP、温度270℃の水素曝露では表面皮膜に侵入した水素の影響が大きいため、母材の飽和水素量がSUS304やSUS630と比べて極めて少ないSCM435では、圧力10MPa、温度270℃の水素曝露のみで表面皮膜の耐水素透過特性を評価した。
 図13に、低合金鋼SCM435を母材する皮膜なし試験片と耐水素透過皮膜を付与した試験片の水素侵入量と曝露圧力の関係を示す。未曝露の皮膜なし試験片の水素量は0 mass ppmである。また、耐水素透過皮膜を付与した試験片の未曝露における水素量は0.01 mass ppmである。
 図13に示す結果から、耐水素透過皮膜を付与したSCM435を母材とする試験片の水素侵入量は表面皮膜なし試験片と比べて極めて少ない。このように、母材によらず、耐水素透過皮膜は優れた水素侵入抑制機能を有している。
 耐水素透過皮膜とアルミ系二層皮膜では、最表面に同程度の厚さのアルミナ層が形成されているにもかかわらず、耐水素透過皮膜を付与した試験片の水素侵入量はアルミ系二層皮膜を付与した試験片の水素侵入量よりも少ない。この結果は、表面皮膜の水素侵入抑制機能が最表面のアルミナ層のみによるものでないことを意味している。圧力kPaオーダの低圧水素ガス中でのアルミナ層では、水素分子の解離反応を抑制して水素侵入を遮断する効果が期待される。しかし、圧力MPaオーダの高圧水素ガスでのアルミナ層では、そのような効果は期待できない。耐水素透過皮膜とアルミ系二層皮膜の違いは、アルミニウム層の有無である。これより、高圧水素ガス中における耐水素透過皮膜の優れた水素侵入抑制機能は、皮膜を構成するアルミニウム層が大きな役割を果たしている。
 皮膜付与により母材中への水素侵入が抑制されていることを確認するため、図14(a)に示す全面に耐水素透過皮膜を付与した丸棒試験片を圧力100MPa、温度270℃の水素ガス中に200時間曝露した。曝露後、室温・大気中において試験片の引張試験を実施した。引張速度は、1mm/minである。
 図14(b)に、未曝露材と水素曝露材の公称応力-ストローク線図を示す。皮膜を付与していない試験片の未曝露材と水素曝露材並びに皮膜を付与した試験片の未曝露材と水素曝露材の結果を示している。皮膜を付与していない場合、高圧水素ガス曝露によって、破断伸びが顕著に低下する。一方、皮膜を付与した場合には、高圧水素ガス曝露を施したのに関わらず、破断伸びは未曝露材とほぼ同じである。絞りは、皮膜を付与していない未曝露試験片で77.1%、皮膜を付与した未曝露試験片で76.5%、皮膜を付与していない水素曝露試験片で37.8%、皮膜を付与した水素曝露試験片で74.4%である。皮膜を付与してしない試験片の相対絞りが0.49であるのに対して、皮膜を付与した試験片の相対絞りは0.97であり、皮膜を付与した試験片では絞り低下がほとんど認められない。図14(b)において皮膜ありの場合の水素暴露と未暴露とのグラフはほぼ重なっている。
 図15~図18に、走査型電子顕微鏡(SEM)を用いて観察した引張試験後の試験片外観と破面を示す。図15は皮膜を付与していない未曝露試験片、図16は皮膜を付与した未曝露試験片、図17は皮膜を付与していない水素曝露試験片、図18は皮膜を付与した水素曝露試験片の外観と破面である。図15~18において、それぞれ(a)は0°方向から観察、(b)は45°方向から観察、(c)は視野1の観察、(d)は視野1-1の観察、(e)は破面状況を示している。皮膜を付与していない水素曝露試験片では、表面から破壊が進行しており、図17(d)に示すように試験片表面に多数のき裂が観察される。起点部の付近の破面には擬へき開破面が観察され、試験片中に侵入した水素によって、表面き裂の発生・進展が助長されたと推察される。これに対して、皮膜を付与した水素曝露試験片(図18)は、皮膜を付与していない未曝露試験片(図15)や皮膜を付与した未曝露試験片(図16)と同様に、カップアンドコーン破壊を呈しており、破面にはディンプルが観察される。水素曝露した皮膜を付与していない試験片(図17)と皮膜を付与した試験片(図18)の破壊挙動の違いは、母材中へ侵入した水素量の違いによるものといえ、皮膜付与により母材中への水素侵入が抑制されたことが、強度試験からも確認される。
 水素侵入抑制のメカニズムを解明するため、直径が異なる円柱試験片に皮膜を付与して、試験片を圧力100MPa、温度270℃の水素ガス中に200時間曝露した。母材は、SUS304である。曝露後、TDAを用いて試験片に侵入した水素量を測定した。
 図19に、水素侵入量と試験片直径の関係を示す。皮膜を付与した円柱試験片の水素侵入量は試験片サイズに依存し、直径が小さいほど、水素侵入量は多い。図中には、円柱試験片の水素侵入に対する拡散方程式の解を用いて、皮膜を付与したSUS304の実質的な拡散係数が母材の1/10~1/10000になったと仮定して計算した水素侵入量と試験片直径の関係を曲線で示している。実験データは、実質的な拡散係数が母材の1/1000である拡散方程式の解とよく一致しており、水素侵入が拡散律速で生じていることが示唆される。
 実質的な拡散係数を小さくしているキーポイントは、[0064]で述べたようにAl層の存在である。しかし、Al自体の拡散係数は、SUS304と大差ないため、単純な多層膜の水素拡散モデルで皮膜の水素遮断機能を説明することはできない。例えば、水素ガス透過法を用いたSUS304と純Al(純度99.9%)の温度188℃における水素拡散係数の測定では、4.53×10-132/s(SUS304)、2.14×10-132/s(SUS304)という結果が得られている。
 水素侵入抑制の正確なメカニズムを明らかにするため、二次イオン質量分析装置(SIMS)を用いて皮膜を付与した未曝露材と水素曝露材の皮膜内部の水素強度を分析した。図20に、SIMSによる水素強度分布を示す。
 図20に、二次イオン質量分析装置(SIMS)を用いて分析したSUS304を母材とする表面皮膜を付与した円柱試験片の皮膜内部の水素強度分布を示す。(a)と(b)は水素曝露材、(c)は未曝露材の分布である。このSIMSによる水素強度分析から、Al層とFe-Al層の界面およびFe-Al層内のSi濃度が急激に変化する領域において、水素強度のピークが認められる。これらの領域での水素トラップにより水素侵入が阻止された結果、水素が侵入する表面積が減少し,実質的な拡散係数が低下したと考えられる。このようなメカニズムのため、Al層の存在が水素侵入抑制のキーポイントとなっていたと推察される。Al層とFe-Al層の界面と同様に、Fe-Al層内のSi濃度が急激に変化する領域も水素侵入を阻止していることから、適切な量のSi添加は水素侵入抑制に有効であると考えられる。
〔皮膜強度の評価〕
 皮膜強度を評価するため、図21(a)に示す全面に皮膜を付与した丸棒試験片に、単一負荷並びに繰り返し負荷を与えた。図21(b)には、SUS304の母材の公称応力-公称ひずみ曲線を示す。図21(b)は、大気中で実施した未曝露材についての結果である。全面に皮膜を付与した丸棒試験片に図21(b)の4水準の負荷を与えた後、試験片を圧力100MPa、温度270℃の水素ガス中に200時間曝露した。曝露後、試験片に侵入した水素量をTDAで測定するとともに、皮膜のき裂発生状況を光学顕微鏡で観察した。
 図22に、単一負荷を与えた丸棒試験片の水素侵入特性と皮膜のき裂発生状況を示す。母材はSUS304(降伏応力σ≒350MPa)である。単一負荷が母材の降伏応力以下(σ=332MPa)であれば、無負荷の試験片に対して水素侵入量は増加しない。しかし、単一負荷が母材の降伏応力を超えると、無負荷の試験片に対して水素侵入量が増加する。単一負荷の応力レベルが高くなるほど、無負荷の試験片に対する水素侵入量の増加が大きくなる。光学顕微鏡によるき裂発生状況の観察から、単一負荷が母材の降伏応力を超えると、アルミニウム系金属間化合物層にき裂が発生する。このことから、単一負荷による試験片の水素侵入量の増加は、Fe-Al層に発生したき裂によるものと言える。
 図23に、単一負荷後の試験片の外観写真を示す。(a)は耐水素透過皮膜、(b)は通常皮膜である。単一負荷応力が500MPaの場合、外観上では皮膜のき裂や剥離は観察されない。一方、通常皮膜では、複数のき裂や皮膜の剥離が観察される。単一負荷を与えた試験片の結果から明らかなように、耐水素透過皮膜は通常皮膜に比して優れた皮膜強度を有する。
 図24に、耐水素透過皮膜と通常皮膜に200MPa、300MPaおよび500MPaの単一応力を負荷した後の皮膜のき裂発生状況を示す。耐水素透過皮膜と通常皮膜ともに、単一負荷応力が300MPa以下では、皮膜にき裂は観察されない。しかし、単一負荷応力が500MPaの場合、耐水素透過皮膜と通常皮膜ともに、皮膜が損傷している。通常皮膜の損傷の方が耐水素透過皮膜よりも激しく、通常皮膜ではFe-Al層と母材の界面からはく離が生じている。これに対して、耐水素透過皮膜では、Fe-Al層内のSi濃度が急激に変化する領域から、はく離に関与する引張方向に対して平行なき裂が発生している。
 図24に示す結果から、耐水素透過皮膜と通常皮膜では、引張応力に対して垂直方向のき裂は同程度の応力で発生している.すなわち、耐水素透過皮膜と通常皮膜では、き裂発生の限界応力は大差ない.一方、はく離強度については、耐水素透過皮膜の方が通常皮膜よりも高いため、図24のような破壊プロセスの違いが生じたと推察される。図25に、耐水素透過皮膜と通常皮膜の破壊プロセスの模式図を示す。
 図26に示すように、FEMを用いてき裂発生後にFe-Al層内と層間で生じる応力を計算し、はく離強度と皮膜厚さの関係について検討した。図27に、解析に用いたFEMモデルを示す。平面ひずみ状態において、FEM解析を実施した。
 図28に、Fe-Al層内と層間で生じる応力をFEMで解析した結果を示す。Al層厚さが10μm、Fe-Al層厚さが10μmのときの解析結果である。はく離に影響を及ぼす引張方向に対して垂直方向の応力を示している。Al層とFe-Al層の界面およびFe-Al層と母材の界面で高い応力が発生しており、特に、Fe-Al層と母材の界面での応力が高い。一方、Fe-Al層内での応力は層間と比べて低く、耐水素透過皮膜のFe-Al層内で観察される引張方向に対して平行なき裂の発生は、発生応力の問題ではなく、Si偏析に関係するFe-Al層の構造の問題といえる。
 図29に、Fe-Al層と母材の界面で発生した応力をFEMで解析した結果を示す。はく離に影響を及ぼす引張方向に対して垂直方向の垂直応力であり、Al層厚さが10μm、Fe-Al層厚さが10、30、50、100μmのときの解析結果である。Fe-Al層が厚くなるほど、界面において高い応力が発生する。これより、図23に示した耐水素透過皮膜と通常皮膜のはく離強度の違いには、Fe-Al層の構造に加えて、界面における発生応力の違いが関係している。
〔皮膜の耐久性評価〕
 単一負荷による皮膜強度の評価に加えて、母材(SUS304)の降伏応力以下の0MPa⇔332MPaの繰り返し負荷を200サイクル与えた時の水素侵入量の測定とき裂の観察を実施しており、無負荷の試験片に対して水素侵入量が増加しないことを確認している。また、母材の降伏応力がSUS304よりも高いSCM435(σ≒700MPa)
では、単一負荷が600MPa程度まで、Fe-Al層にき裂は発生しない。
 高圧水素ガスの圧力サイクル下での皮膜の耐久性を評価するため、図30に示す形状の配管試験片の内面に耐水素透過皮膜を付与した。耐水素透過皮膜を付与した配管試験片に圧力0.6MPa⇔95MPaの高圧水素ガスの圧力サイクルを、室温で16,500回与えた。母材はSCM435とSUS630であり、皮膜を付与していない状態で配管内面に発生する周方向の最大応力σmaxがSCM435の引張強度σの1/4(σmax=σ/4 ≒238MPa)になるように配管試験片を設計した。図31に、圧力サイクル試験後の耐水素透過皮膜の光学顕微鏡写真を示し、(a)はSCM435、(b)はSUS630についてのものである。
 図31に示すSCM435とSUS630を母材とした場合の結果から、表面皮膜にき裂は観察されず、高圧水素ガスの圧力サイクル下において、耐水素透過皮膜は優れた強度特性を有している。このように、母材の種類によらず、耐水素透過皮膜は耐水素透過特性と強度特性にともに優れている。
 材料単体では耐水素脆化特性に劣る材料についても、本発明の耐水素透過皮膜の付与により、安全性と強度特性を確保した幅広い高圧水素配管、高圧水素容器等の製作が可能となる。これにより、配管,容器等の本体には、炭素綱や低合金鋼などの低コストで高強度の材料を使用できる。

Claims (7)

  1.  炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材であって、前記耐水素透過皮膜が母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜であり、前記耐水素透過皮膜の平均厚さが3μm以上、35μm未満であるようにしたことを特徴とする水素機器用の基材。
  2.  炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材であって、前記耐水素透過皮膜が母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜であり、前記アルミニウム系金属間化合物層の厚さが1~22μmであり、かつ、前記耐水素透過皮膜の平均厚さが35μm未満であるようにしたことを特徴とする水素機器用の基材。
  3.  前記耐水素透過皮膜が添加Si量を1~5%としたAl-Si系アルミニウム合金を用い溶融温度以上で変態点以下の温度範囲での溶融めっきを前記母材に対して行うことにより形成されたものであることを特徴とする請求項1または2のいずれかに記載の水素機器用の基材。
  4.  前記母材の材料が低合金鋼またはマルテンサイト系ステンレス鋼であることを特徴とする請求項1ないし3のいずれかに記載の水素機器用の基材。
  5.  炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材を製造する方法であって、前記耐水素透過皮膜の形成の際に添加Si量を1~5%としたAl-Si系アルミニウム合金を用い溶融温度以上で変態点以下の温度範囲で溶融めっきを行って前記母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜を形成し、前記耐水素透過皮膜の平均厚さが3μm以上、35μm未満であるようにしたことを特徴とする水素機器用の基材の製造方法。
  6.  炭素鋼、低合金鋼、フェライト系ステンレス鋼並びにマルテンサイト系ステンレス鋼から選択された1つを母材とし該母材の表面に耐水素透過皮膜を形成した水素機器用の基材を製造する方法であって、前記耐水素透過皮膜の形成の際に添加Si量を1~5%としたAl-Si系アルミニウム合金を用い溶融温度以上で変態点以下の温度範囲で溶融めっきを行って前記母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した三層構造皮膜を形成し、前記アルミニウム系金属間化合物層の厚さが1~22μmであり、かつ、前記耐水素透過皮膜の平均厚さが35μm未満であるようにしたことを特徴とする水素機器用の基材の製造方法。
  7.  前記母材の材料が低合金鋼またはマルテンサイト系ステンレス鋼であることを特徴とする請求項5または6のいずれかに記載の水素機器用の基材の製造方法。
PCT/JP2014/084181 2013-12-27 2014-12-24 水素機器用の基材及びその製造方法 WO2015098981A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554967A JPWO2015098981A1 (ja) 2013-12-27 2014-12-24 水素機器用の基材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273589 2013-12-27
JP2013-273589 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098981A1 true WO2015098981A1 (ja) 2015-07-02

Family

ID=53478829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084181 WO2015098981A1 (ja) 2013-12-27 2014-12-24 水素機器用の基材及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2015098981A1 (ja)
WO (1) WO2015098981A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130060A1 (ja) 2018-12-21 2020-06-25 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
JP2022029825A (ja) * 2020-08-05 2022-02-18 株式会社アサヒメッキ 耐水素脆性及び耐食性に優れるステンレス鋼構造物並びにその製造方法
US20220396859A1 (en) * 2021-06-09 2022-12-15 Halliburton Energy Services, Inc. Functionally graded variable entropy alloys with resistance to hydrogen induced cracking
KR102520490B1 (ko) * 2023-01-12 2023-04-13 주식회사 트리스 수소 배관 연결부의 기밀성 향상을 위한 메탈 실링 시스템
WO2023167690A1 (en) * 2022-03-02 2023-09-07 Halliburton Energy Services, Inc. High-pressure, low-temperature coating for hydrogen service environments
EP4282989A2 (en) 2022-05-24 2023-11-29 Tris Tube Co., Ltd. High strength fuel piping material for hydrogen mobility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072641A (ja) * 1996-07-01 1998-03-17 Nippon Steel Corp 溶接気密性、プレス加工性に優れた自動車燃料タンク用防錆鋼板
JP2004324800A (ja) * 2003-04-25 2004-11-18 Nippon Steel Corp 高圧水素ガス用タンク及び配管
JP2009544847A (ja) * 2006-07-25 2009-12-17 ビーエーエスエフ ソシエタス・ヨーロピア リン酸基及び/又はホスホン酸基を含有するコポリマーを用いて金属表面を不動態化する方法及びそれに用いる製剤
WO2014013788A1 (ja) * 2012-07-18 2014-01-23 独立行政法人産業技術総合研究所 水素機器用の基材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221660A (ja) * 2002-01-31 2003-08-08 Nisshin Steel Co Ltd 溶融Alめっきステンレス鋼板製の車両用燃料タンク
JP4653389B2 (ja) * 2003-06-05 2011-03-16 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度Alめっき線材及びボルト並びにその製造方法
JP4527426B2 (ja) * 2004-03-25 2010-08-18 アイシン精機株式会社 燃料改質器
EP2312005B1 (en) * 2008-07-11 2020-01-15 Nippon Steel Corporation Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet
KR101253893B1 (ko) * 2010-12-27 2013-04-16 포스코강판 주식회사 내산화성 및 내열성이 우수한 알루미늄 도금강판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072641A (ja) * 1996-07-01 1998-03-17 Nippon Steel Corp 溶接気密性、プレス加工性に優れた自動車燃料タンク用防錆鋼板
JP2004324800A (ja) * 2003-04-25 2004-11-18 Nippon Steel Corp 高圧水素ガス用タンク及び配管
JP2009544847A (ja) * 2006-07-25 2009-12-17 ビーエーエスエフ ソシエタス・ヨーロピア リン酸基及び/又はホスホン酸基を含有するコポリマーを用いて金属表面を不動態化する方法及びそれに用いる製剤
WO2014013788A1 (ja) * 2012-07-18 2014-01-23 独立行政法人産業技術総合研究所 水素機器用の基材

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130060A1 (ja) 2018-12-21 2020-06-25 日鉄ステンレス株式会社 耐水素脆性に優れたCr系ステンレス鋼板
KR20210092292A (ko) 2018-12-21 2021-07-23 닛테츠 스테인레스 가부시키가이샤 내수소 취성이 우수한 Cr계 스테인리스 강판
JP2022029825A (ja) * 2020-08-05 2022-02-18 株式会社アサヒメッキ 耐水素脆性及び耐食性に優れるステンレス鋼構造物並びにその製造方法
US20220396859A1 (en) * 2021-06-09 2022-12-15 Halliburton Energy Services, Inc. Functionally graded variable entropy alloys with resistance to hydrogen induced cracking
US11549165B2 (en) * 2021-06-09 2023-01-10 Halliburton Energy Services, Inc. Functionally graded variable entropy alloys with resistance to hydrogen induced cracking
US11859273B2 (en) 2021-06-09 2024-01-02 Halliburton Energy Services, Inc. Functionally graded variable entropy alloys with resistance to hydrogen induced cracking
WO2023167690A1 (en) * 2022-03-02 2023-09-07 Halliburton Energy Services, Inc. High-pressure, low-temperature coating for hydrogen service environments
EP4282989A2 (en) 2022-05-24 2023-11-29 Tris Tube Co., Ltd. High strength fuel piping material for hydrogen mobility
KR102520490B1 (ko) * 2023-01-12 2023-04-13 주식회사 트리스 수소 배관 연결부의 기밀성 향상을 위한 메탈 실링 시스템

Also Published As

Publication number Publication date
JPWO2015098981A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2015098981A1 (ja) 水素機器用の基材及びその製造方法
Popov et al. Hydrogen permeation and hydrogen-induced cracking
Bal et al. Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas
KR101661019B1 (ko) 태양전지 기판용 강박, 태양전지 기판, 태양전지 및 그들의 제조 방법
ES2790077T3 (es) Un procedimiento de endurecimiento por presión
KR101568543B1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
Lee et al. Influence of secondary warm rolling on the interface microstructure and mechanical properties of a roll-bonded three-ply Al/Mg/Al sheet
JP2012126993A (ja) 溶融Al−Zn系めっき鋼板およびその製造方法
RU2013119923A (ru) Способ получения слоя сплава железо-олово на тароупаковочной стальной подложке
Yoon et al. Comparative study of stress corrosion cracking susceptibility of Fe18Cr10Mn-and Fe18Cr10Mn1Ni-based high nitrogen stainless steels
Bu et al. Post-heat treatment effects on cold-sprayed aluminum coatings on AZ91D magnesium substrates
Grajcar Corrosion resistance of high-Mn austenitic steels for the automotive industry
JP2016166385A (ja) 表面改質ばね用ステンレス鋼板及びその製造方法
JP4057636B1 (ja) 塗装鋼材の塗装前処理方法
WO2014013788A1 (ja) 水素機器用の基材
Li et al. Interfacial Mechanical Behavior and Electrochemical Corrosion Characteristics of Cold‐Sprayed and Hot‐Rolled Titanium/Stainless‐Steel Couples
JP2018188728A (ja) 水素バリア機能を有するステンレス鋼及びその製造方法
Dryepondt et al. Creep and corrosion testing of aluminide coatings on ferritic–martensitic substrates
JP6516238B2 (ja) オーステナイト系ステンレス鋼及びその製造法
JP6869495B1 (ja) 耐水素脆性及び耐食性に優れるステンレス鋼構造物並びにその製造方法
Zhang et al. Stress corrosion behavior of low-temperature liquid-nitrided 316 austenitic stainless steel in a sour environment
RU2450088C2 (ru) Многослойное покрытие для защиты гидридообразующего металла от водородной коррозии
Yuan et al. The pack-cementation process of iron-aluminide coating on China low activation martensitic and 316L austenitic stainless steel
WO2020176928A1 (en) Graphene coating
Badaruddin et al. The effect of diffusion treatment on the mechanical properties of hot-dip aluminum coating on AISI P20 steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875712

Country of ref document: EP

Kind code of ref document: A1