WO2015098764A1 - 抗血栓性医療材料、および該医療材料を利用した医療用具 - Google Patents

抗血栓性医療材料、および該医療材料を利用した医療用具 Download PDF

Info

Publication number
WO2015098764A1
WO2015098764A1 PCT/JP2014/083756 JP2014083756W WO2015098764A1 WO 2015098764 A1 WO2015098764 A1 WO 2015098764A1 JP 2014083756 W JP2014083756 W JP 2014083756W WO 2015098764 A1 WO2015098764 A1 WO 2015098764A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
repeating unit
medical material
medical
polymerization
Prior art date
Application number
PCT/JP2014/083756
Other languages
English (en)
French (fr)
Inventor
崇王 安齊
香織 西田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2015554841A priority Critical patent/JP6426625B2/ja
Publication of WO2015098764A1 publication Critical patent/WO2015098764A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials

Definitions

  • the present invention relates to an antithrombotic medical device and a medical device using the medical material. More specifically, the present invention relates to a medical material including a copolymer having a specific repeating unit, and a medical device using the medical material.
  • imparting antithrombogenicity to a medical device is performed by a method of coating a base material constituting the medical device with an antithrombotic material or a method of fixing an antithrombotic material on the surface of the base material.
  • Japanese Patent Application Laid-Open No. 4-152955 discloses on the surface a synthetic polymer that simultaneously satisfies biocompatibility such as suppression of platelet adhesion / activation, inhibitory effect of complement system activation, and affinity with tissue in vivo. Artificial organ membranes or medical devices used in contact with in vivo tissues and blood are disclosed.
  • the invention disclosed in Japanese Patent Application Laid-Open No. Hei 4-152952 shows good results in terms of suppression of platelet adhesion / activation.
  • the anti-thrombogenicity may not be sufficient in the invention disclosed in Japanese Patent Laid-Open No. 4-152952.
  • an object of the present invention is to provide a medical material having improved antithrombogenicity under severe conditions in which thrombus is easily formed.
  • the present invention has the following contents. (1) The following formula (1):
  • R 11 is a hydrogen atom or a methyl group
  • R 21 is a hydrogen atom or a methyl group
  • R 22 is an alkylene group having 1 to 4 carbon atoms
  • R 23 is an alkyl group having 1 to 4 carbon atoms
  • a medical material comprising a copolymer having a repeating unit (B).
  • the copolymer comprises 2.5 to 17.0 mol% of the repeating unit (A), and 83.0 to 97.5 mol% of the repeating unit (B) (the repeating unit (A) And the total amount of the repeating unit (B) is 100 mol%).
  • the medical material according to any one of (1) to (3).
  • a medical device having a base material and a coating layer containing the medical material according to any one of (1) to (4) on the surface of the base material.
  • FIG. 1 shows a tube (stepped tube) used in the example and having both ends connected by connectors.
  • a portion surrounded by a circle indicates a joint portion between the tube 1 and the tube 2.
  • FIG. 2 is an enlarged view schematically showing a cross section in the major axis direction at the joint between the tube 1 and the tube 2 in FIG.
  • FIG. 3 is an enlarged photograph of the joint immediately after the antithrombogenicity test on the stepped tube to which the medical material containing the polymer (2) produced in Example 2 is applied.
  • FIG. 4 is an enlarged photograph of the joint immediately after the antithrombogenicity test on the stepped tube to which the medical material containing the comparative polymer (1) manufactured in Comparative Example 1 is applied.
  • FIG. 5 is a photograph immediately after the blood circulation test on the blood circulation module to which the antithrombotic material containing the polymer (3) produced in Example 3 was applied.
  • FIG. 6 is a photograph immediately after the blood circulation test of the blood circulation module to which the antithrombotic material containing the comparative polymer (1) produced in Comparative Example 1 is applied.
  • the present invention relates to a medical material containing a copolymer having a specific repeating unit, and a medical device using the medical material.
  • X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the medical material according to the present invention includes a copolymer having a repeating unit (A) represented by the following formula (1) and a repeating unit (B) represented by the following formula (2).
  • R 11 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 11 is a hydrogen atom, a medical material having particularly excellent antithrombogenicity is provided.
  • R 21 represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 22 is a cyclic, linear or branched alkylene group having 1 to 4 carbon atoms, and preferably a linear or branched alkylene group having 1 to 4 carbon atoms.
  • Specific examples include a methylene group, an ethylene group, a trimethylene group, a propylene group, and a tetramethylene group.
  • a straight-chain or branched alkylene group having 1 to 3 carbon atoms is preferred, and a methylene group or ethylene group is particularly preferred.
  • R 23 is a cyclic, linear or branched alkyl group having 1 to 4 carbon atoms, and preferably a linear or branched alkyl group having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and a cyclopropyl group.
  • it is preferably a linear or branched alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and more preferably a methyl group. It is particularly preferred.
  • the copolymer contained in the medical material according to the present invention includes a monomer that forms the repeating unit (A) (hereinafter also referred to as “monomer a”) and a monomer that forms the repeating unit (B) (hereinafter “monomer b”). It can also be obtained by a polymerization reaction.
  • Examples of monomer a include N-vinylacetamide (NVA) and / or N-isopropenylacetamide, and N-vinylacetamide (NVA) is preferred. These monomers can be used alone or in combination of two or more. By using N-vinylacetamide (NVA), high antithrombogenicity can be imparted to the medical material.
  • NVA N-vinylacetamide
  • Monomer b is preferably methoxymethyl acrylate, methoxyethyl acrylate (MEA), ethoxymethyl acrylate, ethoxyethyl acrylate, methoxymethyl methacrylate, methoxyethyl methacrylate, ethoxymethyl methacrylate, ethoxyethyl methacrylate. From the viewpoint of being easily available, methoxyethyl acrylate (MEA) is more preferable. These monomers can be used alone or in combination of two or more.
  • the ratio of the repeating unit (A) and the repeating unit (B) in all the structural units can be arbitrarily set, but the total structural unit (100 mol%) of the copolymer.
  • the repeating unit (A) is contained, for example, at 1.0 to 40.0 mol%, preferably the repeating unit (A) is 2.5 to 17.0 mol%, more preferably 3.0 to 15. 5 mol%.
  • the repeating unit (A) is 2.5 mol% or more in all the structural units of the copolymer, a medical material having high antithrombogenicity is provided even under severe conditions where thrombus is easily formed. .
  • the medical device can be appropriately coated with the medical material, and the medical material applied to the medical device is separated from the base material and mixed into the blood. Can be prevented.
  • the repeating unit (B) is contained, for example, 60.0 to 99.0 mol%, preferably 83.0 to 97.5 mol%, more preferably 84.5 to 97.0 mol% is contained.
  • the copolymer contained in the medical material according to the present invention is excellent in antithrombotic properties.
  • this mechanism is considered as follows. That is, the copolymer containing the structural unit (A) is higher in hydrophilicity than the polymer formed only by the structural unit (B), and the medical material includes a copolymer having such appropriate hydrophilicity.
  • a medical material exhibiting excellent antithrombogenicity is provided even when used under severe conditions in which thrombus is easily formed.
  • the medical material of the present invention may be a copolymer of monomer a, monomer b, and other monomers copolymerizable with these (hereinafter also simply referred to as “other monomers”). Included.
  • other monomers copolymerizable with monomer a and monomer b include acrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, aminomethyl acrylate, aminoethyl acrylate, aminoisopropyl acrylate, diaminomethyl acrylate, Diaminoethyl acrylate, diaminobutyl acrylate, methacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, aminomethyl methacrylate, aminoethyl methacrylate, diaminomethyl methacrylate, diaminoethyl methacrylate, methyl acrylate, ethyl acrylate, isopropyl Acry
  • the proportion of repeating units derived from other monomers in all the structural units of the copolymer is, for example, more than 0 mol% and 39.0 mol% or less, preferably more than 0 mol%, 14.5 It is less than mol%.
  • the ratio of the repeating unit (A), the repeating unit (B), or the repeating unit derived from another monomer in the copolymer can be arbitrarily adjusted by changing the ratio of the monomer used in the polymerization.
  • the copolymer is composed of a repeating unit (A) and a repeating unit (B). That is, in one embodiment of the present invention, the copolymer comprises 2.5 to 17.0 mol% of the repeating unit (A) and 83.0 to 97.5 mol% of the repeating unit (B) ( The total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%).
  • the copolymer comprises 3.0 to 15.5 mol% of the repeating unit (A) and 84.5 to 97.0 mol% of the repeating unit (B) (described above).
  • the total amount of the repeating unit (A) and the repeating unit (B) is 100 mol%).
  • the end of the copolymer is not particularly limited and is appropriately defined depending on the type of raw material used, but is usually a hydrogen atom.
  • the structure of the copolymer is not particularly limited, and may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
  • the weight average molecular weight of the copolymer is preferably 10,000 to 1,000,000. When included in the above range, it is preferable from the viewpoint of solubility.
  • the weight average molecular weight of the copolymer is more preferably 50,000 to 500,000 from the viewpoint of easy coating of the coat layer.
  • the value measured by gel permeation chromatography (Gel Permeation Chromatography, GPC) using polystyrene as a standard substance is adopted as the “weight average molecular weight”.
  • the method for producing the copolymer contained in the medical material according to the present invention is not particularly limited.
  • known polymerization methods such as radical polymerization, anionic polymerization, and cationic polymerization can be employed, and radical polymerization that is easy to produce is preferably used.
  • plasma polymerization using radiation or ultraviolet rays may be employed, and a coat layer containing the copolymer may be formed on the substrate surface.
  • the polymerization method of the monomer usually includes one or more monomers a (for example, N-vinylacetamide (NVA)) corresponding to the repeating unit (A) and the monomer b corresponding to the repeating unit (B).
  • a method is used in which one or more of (for example, methoxyethyl acrylate (MEA)) and, if necessary, other monomers are copolymerized by stirring and heating together with a polymerization initiator in a polymerization solvent. .
  • the polymerization temperature is preferably 30 ° C. to 100 ° C. from the viewpoint of controlling the molecular weight.
  • the polymerization reaction is usually performed for 30 minutes to 24 hours.
  • the polymerization solvent is preferably an aqueous solvent such as water; alcohols such as methanol, ethanol, propanol and n-butanol; polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol and dipropylene glycol; Methanol, ethanol or propanol is preferred. These may be used alone or in combination of two or more.
  • the monomer concentration (solid content concentration) in the polymerization solvent is usually 10 to 90% by weight, preferably 15 to 80% by weight, based on the entire reaction solution.
  • the monomer concentration with respect to the polymerization solvent is such that the monomer a and the monomer b and other monomers that can be optionally copolymerized therewith (hereinafter referred to as “monomer a and the monomer b and any copolymerized with these monomers”). “Other possible monomers” are also referred to as “polymerization monomers”)).
  • the polymerization solvent to which the polymerization monomer has been added may be subjected to a deaeration treatment before the addition of the polymerization initiator.
  • a polymerization solvent added with a polymerization monomer may be bubbled with an inert gas such as nitrogen gas or argon gas for about 0.5 to 5 hours.
  • the polymerization solvent to which the polymerization monomer is added may be heated to about 30 ° C. to 100 ° C.
  • polymerization initiators can be used, and are not particularly limited.
  • KPS potassium persulfate
  • sodium persulfate sodium persulfate
  • ammonium persulfate etc.
  • Redox-based polymerization initiators that combine oxidizing agents such as peroxides such as persulfate, hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide with reducing agents such as sodium sulfite, sodium hydrogen sulfite, and ascorbic acid Can be used.
  • oxidizing agents such as peroxides such as persulfate, hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide
  • reducing agents such as sodium sulfite, sodium hydrogen sulfite, and ascorbic acid
  • the blending amount of the polymerization initiator is, for example, 0.0001 to 1 mol with respect to all monomers (1 mol) used for the production of the copolymer.
  • a chain transfer agent e.g., a polymerization rate adjusting agent, a surfactant, and other additives may be appropriately used during the polymerization.
  • the atmosphere in which the polymerization reaction is performed is not particularly limited, and may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas. Further, during the polymerization reaction, the reaction solution may be stirred.
  • the copolymer after polymerization can be purified by a general purification method such as a reprecipitation method, a dialysis method, an ultrafiltration method, or an extraction method.
  • the purified copolymer can be dried by any method such as freeze-drying, reduced-pressure drying, spray drying, or heat drying. However, from the viewpoint of little influence on the physical properties of the polymer, freeze-drying or reduced pressure Drying is preferred.
  • the repeating unit (A) and the repeating unit (B) in the copolymer are determined by the integration ratio in 1 H-NMR measurement. Can be analyzed. Further, in the measurement of 1 H-NMR, when the peaks overlap, it can be calculated using 13 C-NMR.
  • the unreacted polymerization monomer contained in the obtained copolymer is 0.01% by weight or less based on the entire copolymer.
  • the content of the residual monomer can be measured by a method known to those skilled in the art, such as high performance liquid chromatography.
  • the medical material in the present invention may be used in the form of the obtained copolymer, or may be used after being processed into a gel or solution.
  • it can be used as a medical material in the form of a coating agent in which a copolymer is dissolved in a solvent.
  • the solvent to be used is not particularly limited as long as it can dissolve the copolymer.
  • water alcohol solvents such as methanol, ethanol, isopropanol, butanol; chloroform, tetrahydrofuran, acetone,
  • Non-proton donating organic solvents such as dioxane and benzene can be exemplified.
  • the above solvents may be used alone or in combination of two or more.
  • a water-alcohol solvent is preferable, and a water-methanol mixed solvent is particularly preferable.
  • the amount of the copolymer contained in the coating agent can be arbitrarily set, and can be used as a solution in which the copolymer is dissolved up to a saturated amount.
  • 0.01 to 60% by weight based on the entire coating agent It is preferably 0.1 to 50% by weight.
  • the coating agent may be composed of the copolymer and the solvent, but may optionally contain other components such as a crosslinking agent, a thickener, a preservative, and a pH adjuster. By including a cross-linking agent, the copolymer can be more firmly fixed to the substrate surface.
  • a medical device using the medical material is provided. That is, one embodiment of the present invention provides a medical device having a base material and a coating layer containing the medical material on the surface of the base material.
  • Examples of the medical device according to the present invention include, for example, an implantable artificial organ and a therapeutic instrument, an extracorporeal circulation artificial organ, a catheter, a guide wire, and the like.
  • implantable medical devices such as artificial blood vessels, artificial trachea, stent artificial skin, and artificial pericardium that are inserted or replaced into blood vessels and lumens; artificial heart systems, artificial lung systems, artificial cardiopulmonary systems, artificial Artificial organ systems such as kidney systems, artificial liver systems, immunoregulatory systems; indwelling needles, IVH catheters, medicinal solution administration catheters, thermodilution catheters, angiographic catheters, vasodilator catheters and dilators or introducers Catheters inserted or placed in blood vessels; or guide wires and stylets for these catheters; gastric catheters, nutrition catheters, tube feeding (ED) tubes, urethral catheters, urinary catheters, balloon catheters , Each intratracheal suction catheter Catheters are inserted or indwelled in the living body
  • the medical device of this invention has said medical material on a base-material surface.
  • the material of the base material is not particularly limited.
  • polyolefin such as polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, and modified polyolefin; polyamide; polyimide; polyurethane; polyethylene terephthalate (PET), polybutylene terephthalate (PBT) ), Polyesters such as polycyclohexane terephthalate and polyethylene-2,6-naphthalate; polyvinyl chloride; polyvinylidene chloride (PVDC); polycarbonate; polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), etc. Examples thereof include various polymer materials such as fluororesin, metals such as SUS, ceramics, carbon, and composite materials thereof.
  • the shape of the base material is appropriately selected depending on the use of the medical device, and can be, for example, a tube shape, a sheet shape, a rod shape, or the like.
  • the form of the substrate is not limited to a molded body using the above-mentioned material alone, and a blend molded product, an alloyed molded product, a multilayered molded product, and the like can also be used.
  • the substrate may be a single layer or may be laminated. At this time, when the base material is laminated, the base material of each layer may be the same or different. However, when it is desired to firmly fix the copolymer by swelling the substrate with a solvent, at least the material present on the surface of the substrate is preferable because the polymer material can be swollen well with the solvent.
  • the “base material surface” is a base material surface for a body fluid such as a biological tissue or blood.
  • a coat layer having the copolymer is formed on the surface of the base material, the antithrombogenicity of the base material surface is improved.
  • the substrate may be surface-treated before forming the coat layer on the substrate surface.
  • the surface treatment method of the substrate include a method of irradiating active energy rays (electron beam, ultraviolet ray, X-ray, etc.), a method using plasma discharge such as arc discharge, corona discharge, glow discharge, etc., and a high electric field. Examples thereof include a method of applying, a method of applying ultrasonic vibration via a polar liquid (water or the like), a method of treating with ozone gas, and the like.
  • a coat layer containing the medical material is formed on the surface of the base material.
  • the coating layer is formed on the surface of the base material by coating the surface of the base material by applying a coating solution containing the medical material (for example, the coating agent described above), or polymerization including a polymerization monomer as described above. Plasma polymerization may be performed by applying a solvent to the substrate surface. From the viewpoint of ease of production, it is preferable to form a coat layer by coating the substrate surface with a coating solution containing the medical material. “Coating” is not only a form in which the entire surface of the substrate is completely covered with the coat layer, but also a form in which a part of the surface of the substrate is covered with the coat layer, that is, the surface of the substrate. A form in which a coat layer is attached to a part of the film is also included.
  • the above-described method for preparing the coding agent is appropriately taken into consideration for the method for preparing the coating liquid containing the medical material.
  • a known method can be adopted as a method for applying a coating solution containing a medical material to the substrate surface, and is not particularly limited.
  • dip coating, spraying, spin coating, dripping, doctor blade, brush examples thereof include coating, roll coater, air knife coat, curtain coat, wire bar coat, and gravure coat.
  • the thickness of the coating solution may be appropriately adjusted depending on the use of the medical device, and is not particularly limited, but is, for example, 0.1 ⁇ m to 1 mm.
  • a coating layer is formed on the surface of the substrate by drying the surface of the substrate to which the coating liquid containing the copolymer is applied.
  • the drying process may be appropriately set in consideration of the glass transition temperature of the base material, etc., and is, for example, 15 to 50 ° C.
  • the atmosphere in the drying step is not particularly limited, and can be performed in the air or in an inert gas atmosphere such as nitrogen gas or argon gas.
  • Example 1 Copolymer of NVA and MEA (Repeating unit (A): 1.5 mol%)] 5 g (38.4 mmol) of methoxyethyl acrylate (MEA) and 0.055 g (0.6 mmol) of N-vinylacetamide (NVA) are dissolved in 25.5 g of methanol, placed in a four-necked flask, and N 2 at 50 ° C. Bubbling was performed for 1 hour.
  • Example 2 Copolymer of NVA and MEA (repeating unit (A): 3.3 mol%)]
  • MEA 5 g (38.4 mmol) and NVA 0.11 g (1.3 mmol) were dissolved in 25.5 g of methanol, placed in a four-necked flask, and N 2 bubbling was performed at 50 ° C. for 1 hour.
  • Example 3 Copolymer of NVA and MEA (Repeating unit (A): 6.3 mol%)]
  • MEA 5 g (38.4 mmol) and NVA 0.22 g (2.6 mmol) were dissolved in 25.5 g of methanol, placed in a four-necked flask, and N 2 bubbling was performed at 50 ° C. for 1 hour.
  • Example 4 Copolymer of NVA and MEA (repeating unit (A): 15.0 mol%)]
  • MEA 5 g (38.4 mmol) and NVA 0.58 g (6.8 mmol) were dissolved in 25.5 g of methanol, placed in a four-necked flask, and N 2 bubbling was performed at 50 ° C. for 1 hour.
  • Example 5 Copolymer of NVA and MEA (repeating unit (A): 19.7 mol%)]
  • MEA 5 g (38.4 mmol) and NVA 0.80 g (9.4 mmol) were dissolved in 25.5 g of methanol, placed in a four-necked flask, and N 2 bubbling was performed at 50 ° C. for 1 hour.
  • copolymer or the polymer obtained in Examples or Comparative Examples was purified by a reprecipitation method. Thereafter, these copolymers or polymers were dried by vacuum drying and subjected to the following tests.
  • the medical material when the repeating unit (A) is 17.0 mol% or less in all the structural units of the copolymer, the medical material can be appropriately coated with the medical material, and the medical material is peeled from the base material. As a result, it can be seen that contamination into blood can be more effectively prevented.
  • a stepped tube was prepared by inserting a 1 cm end of a soft vinyl chloride tube (tube 2) having a total length of 5 cm, an inner diameter of 6 mm and an outer diameter of 9 mm into both ends of a soft vinyl chloride tube (tube 1) having a total length of 30 cm and an inner diameter of 8 mm. .
  • FIG. 1 shows the manufactured step tube.
  • a circled portion indicates a joint portion between the tube 1 and the tube 2.
  • FIG. 2 is an enlarged view schematically showing a joint portion between the tube 1 and the tube 2 in FIG. Since the inner diameter of the tube 2 is thinner than the inner diameter of the tube 1, a step surface 3 is formed. When blood is passed through the step tube, a thrombus is very easily formed on the step surface 3.
  • the prepared step tube was used as a substrate, the above coating agent was passed through the step tube, and the coating agent was applied to the substrate surface. Thereafter, the step tube was dried at room temperature (25 ° C.), and a coat layer containing a medical material was formed on the substrate surface (step tube lumen surface).
  • Anti-thrombogenicity test In order to evaluate the antithrombogenicity of a medical material under severe conditions in which a thrombus is easily formed, the following test system was constructed using the above-described stepped tube on which a coating layer was formed.
  • the lumen of the stepped tube on which the coat layer was formed was filled with 6 ml of a solution (diluted blood) obtained by diluting human fresh blood twice with physiological saline. Both ends of the step tube were connected with connectors, fixed to a cylindrical rotating device, and rotated at 40 rpm for 2 hours. Thereafter, the circulating blood was removed from the step tube, and the state of thrombus adhesion to the joint (step surface) between the tube 1 and the tube 2 was visually observed.
  • the fresh blood refers to blood collected from a healthy donor by whole blood transfusion within 30 minutes. In addition, no anticoagulant is added to fresh blood.
  • FIG. 3 shows the joint produced immediately after the antithrombogenicity test for the step tube to which the medical material containing the copolymer produced in Example 2 and the polymer produced in Comparative Example 1 are applied, respectively. It is an enlarged photo. Thrombus formation was not observed in the stepped tube to which the copolymer according to the present invention was applied (FIG. 3). On the other hand, in the step tube to which the polymer of Comparative Example 1 was applied, the thrombus 4 was observed at the joint (FIG. 4).
  • the medical material according to the present invention exhibits high antithrombogenicity.
  • the polymer (3) and the comparative polymer (1) were each dissolved in a water-alcohol (methanol) mixed solution at a concentration of 0.2% by weight to obtain a coating agent.
  • FIG. 4 of Japanese Patent Application Laid-Open No. 2009-219936 An artificial lung having the structure disclosed in 1); as a base material constituting a blood circulation path, polypropylene, polyurethane, polycarbonate, and SUS are included) from the blood import side, and after leaving for 120 seconds, they are removed. The mixture was blown and dried at room temperature (25 ° C.) for 240 minutes.
  • the blood circulation module was incorporated into an extracorporeal circuit by connecting to a blood reservoir using a connection tube (made of soft vinyl chloride, total length: about 100 cm ⁇ inner diameter: 8 mm). Subsequently, 200 ml of lactated Ringer's solution was filled into the extracorporeal circuit, and then 200 ml of heparinized human fresh blood was added. The heparin concentration in the circulating blood was 0.5 unit / ml. Circulation was performed at room temperature (25 ° C.) and 500 ml / min for 6 hours.
  • TAT thrombin antithrombin complex
  • the TAT concentration was lower than that of the blood circulation module coated with the comparative polymer (1) of Comparative Example 1. That is, it was confirmed that the blood coagulation system was activated and had excellent antithrombotic properties.
  • the blood circulation route was washed with phosphate buffered saline (PBS), and the site where blood was likely to stagnate was observed.
  • PBS phosphate buffered saline
  • thrombus adhesion was hardly observed.
  • adhesion of thrombus indicated by reference numeral “4” in FIG. 6) was confirmed. It was confirmed that the polymer (3) of Example 3 had excellent antithrombotic properties even in the simulated product.
  • the medical material according to the present invention has high antithrombogenicity even when used under severe conditions where thrombi are easily formed.
  • the medical material according to the present invention is particularly useful in a use condition having a step on a surface that comes into contact with blood, such as a medical device having a throttle portion such as a joint portion of a tube.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 繰り返し単位(A)(例えば、N-ビニルアセトアミドに由来する)と、繰り返し単位(B)(例えば、アクリル酸メトキシエチルに由来する)とを有する共重合体を含む、医療材料に関する。本発明によると、血栓が形成されやすい過酷な使用条件においても、抗血栓性に優れた医療用具が提供されうる。

Description

抗血栓性医療材料、および該医療材料を利用した医療用具
 本発明は、抗血栓性医療用具、および該医療材料を利用した医療用具に関する。より具体的には、特定の繰り返し単位を有する共重合体を含む医療材料、および該医療材料を利用した医療用具に関する。
 近年、各種の高分子材料を利用した医療材料の検討が進められており、人工腎臓用膜、血漿分離用膜、カテーテル、ステント、人工肺用膜、人工血管、癒着防止膜、人工皮膚等への利用が期待されている。これらにおいては、生体にとって異物である合成高分子材料を生体組織や血液等の体液と接触させて使用することとなる。したがって、医療材料は、生体適合性を有することを要求される。医療材料に要求される生体適合性はその目的や使用方法によって異なるが、血液と接する材料として使用する医療材料には、血液凝固系の抑制、血小板の粘着・活性化の抑制、補体系の活性化の抑制という特性(抗血栓性)が求められる。
 通常、医療用具への抗血栓性の付与は、医療用具を構成する基材を抗血栓性材料で被覆する方法や、基材の表面に抗血栓性材料を固定する方法により行われる。
 例えば、特開平4-152952号公報には、血小板の粘着・活性化の抑制、補体系の活性化の抑制効果、生体内組織との親和性といった生体適合性を同時に満たす合成高分子を表面に有する生体内組織や血液と接して使用される人工臓器用膜または医療用具が開示されている。
 人工血管、人工臓器等の長期間に渡って血液と接触する医療用具では、血液の凝固を防ぐ抗血栓性が非常に重要である。しかしながら、血液と接触する面に段差(段差面)を有する医療用具では、段差面のある部分(段差部)で血流が滞るため、段差部周辺に血栓が形成されやすい傾向にある。例えば、医療用具の血液流路では、医療用具に用いるチューブの接合部などの絞り部周辺で血流が滞りやすく、血栓が比較的形成されやすい。
 特開平4-152952号公報に開示の発明では、血小板の粘着・活性化の抑制という点において良好な結果を示している。しかしながら、例えば、上記のように血栓が比較的形成されやすい過酷な条件では、特開平4-152952号公報に開示の発明では抗血栓性が十分ではない場合があった。
 したがって、本発明は、上記事情を鑑みてなされたものであり、特に、血栓が形成されやすい過酷な条件における抗血栓性が向上された、医療材料を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、特定の繰り返し単位を有する共重合体を含む医療材料によって上記課題が解決されることを見出し、本願発明の完成に至った。本発明は、以下の内容をその骨子とする。
(1)下記式(1):
Figure JPOXMLDOC01-appb-C000003
 ただし、式(1)中、R11は水素原子またはメチル基である;で示される繰り返し単位(A)と、下記式(2):
Figure JPOXMLDOC01-appb-C000004
 ただし、式(2)中、R21は水素原子またはメチル基であり、R22は炭素数1~4のアルキレン基であり、R23は炭素数1~4のアルキル基である;で示される繰り返し単位(B)とを有する共重合体を含む、医療材料。
(2) 前記共重合体の全構成単位中、前記繰り返し単位(A)が2.5~17.0モル%である、(1)に記載の医療材料。
(3) 前記式(1)中、R11が水素原子である、(1)または(2)に記載の医療材料。
(4) 前記共重合体が、2.5~17.0モル%の前記繰り返し単位(A)、および83.0~97.5モル%の前記繰り返し単位(B)(前記繰り返し単位(A)、および前記繰り返し単位(B)の合計量は100モル%である)で構成される、(1)~(3)のいずれか1つに記載の医療材料。
(5) 基材と、前記基材表面に、(1)~(4)のいずれか1つに記載の医療材料を含むコート層と、を有する医療用具。
図1は、実施例において使用された、両端をコネクターで接続したチューブ(段差チューブ)である。図1中、円で囲った部分は、チューブ1と、チューブ2との接合部を示す。 図2は、図1におけるチューブ1とチューブ2との接合部における長軸方向の断面を、模式的に表した拡大図である。 図3は、実施例2において製造された重合体(2)を含む医療材料を適用した段差チューブについての、抗血栓性試験直後の接合部の拡大写真である。 図4は、比較例1において製造された比較重合体(1)を含む医療材料を適用した段差チューブについての、抗血栓性試験直後の接合部の拡大写真である。 図5は、実施例3において製造された重合体(3)を含む抗血栓性材料を適用した血液循環モジュールについての、血液循環試験直後の写真である。 図6は、比較例1において製造された比較重合体(1)を含む抗血栓性材料を適用した血液循環モジュールについての、血液循環試験直後の写真である。
 本発明は、特定の繰り返し単位を有する共重合体を含む医療材料、および該医療材料を利用した医療用具に関する。
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 本発明に係る医療材料は、下記式(1)で示される繰り返し単位(A)と、下記式(2)で示される繰り返し単位(B)とを有する共重合体を含む。
 式(1):
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R11は水素原子またはメチル基であり、好ましくは水素原子である。R11が水素原子であることにより、抗血栓性が特に優れた医療材料が提供される。
 式(2):
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R21は水素原子またはメチル基であり、好ましくは水素原子である。
 式(2)中、R22は、炭素数1~4の環状、直鎖または分岐鎖のアルキレン基であり、炭素数1~4の直鎖または分岐鎖のアルキレン基であることが好ましい。具体的には、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基などが挙げられる。これらのうち、抗血栓性の向上効果を考慮すると、炭素数1~3の直鎖または分岐鎖のアルキレン基であることが好ましく、メチレン基またはエチレン基であることが特に好ましい。
 式(2)中、R23は、炭素数1~4の環状、直鎖または分岐鎖のアルキル基であり、炭素数1~4の直鎖または分岐鎖のアルキル基であることが好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロプロピル基などが挙げられる。これらのうち、抗血栓性の向上効果を考慮すると、炭素数1~3の直鎖または分岐鎖のアルキル基であることが好ましく、メチル基またはエチル基であることがより好ましく、メチル基であることが特に好ましい。
 [共重合体]
 本発明に係る医療材料が含む共重合体は、繰り返し単位(A)を形成するモノマー(以下、「モノマーa」とも称する。)と、繰り返し単位(B)を形成するモノマー(以下、「モノマーb」とも称する。)との重合反応によって得ることができる。
 モノマーaとしては、N-ビニルアセトアミド(NVA)、および/またはN-イソプロペニルアセトアミド等が挙げられるが、好ましくはN-ビニルアセトアミド(NVA)である。これらのモノマーを1種単独で、または2種以上を混合して用いることもできる。N-ビニルアセトアミド(NVA)を用いることで、医療材料に高い抗血栓性を与えることができる。
 モノマーbとしては、アクリル酸メトキシメチル、アクリル酸メトキシエチル(MEA)、アクリル酸メトキシプロピル、アクリル酸メトキシブチル、アクリル酸エトキシメチル、アクリル酸エトキシエチル、アクリル酸エトキシプロピル、アクリル酸エトキシブチル、アクリル酸プロポキシメチル、アクリル酸プロポキシエチル、アクリル酸プロポキシプロピル、アクリル酸プロポキシブチル、アクリル酸ブトキシメチル、アクリル酸ブトキシエチル、アクリル酸ブトキシプロピル、アクリル酸ブトキシブチル、メタクリル酸メトキシメチル、メタクリル酸メトキシエチル、メタクリル酸メトキシプロピル、メタクリル酸メトキシブチル、メタクリル酸エトキシメチル、メタクリル酸エトキシエチル、メタクリル酸エトキシプロピル、メタクリル酸エトキシブチル、メタクリル酸プロポキシメチル、メタクリル酸プロポキシエチル、メタクリル酸プロポキシプロピル、メタクリル酸プロポキシブチル、メタクリル酸ブトキシメチル、メタクリル酸ブトキシエチル、メタクリル酸ブトキシプロピル、メタクリル酸ブトキシブチル、が挙げられる。モノマーbとしては、好ましくはアクリル酸メトキシメチル、アクリル酸メトキシエチル(MEA)、アクリル酸エトキシメチル、アクリル酸エトキシエチル、メタクリル酸メトキシメチル、メタクリル酸メトキシエチル、メタクリル酸エトキシメチル、メタクリル酸エトキシエチルであり、入手が容易であるという観点から、より好ましくはアクリル酸メトキシエチル(MEA)である。これらのモノマーを1種単独で、または2種以上を混合して用いることもできる。
 本発明に係る医療材料が含む共重合体において、全構成単位中の繰り返し単位(A)や繰り返し単位(B)の割合は任意に設定できるが、共重合体の全構成単位(100モル%)中、繰り返し単位(A)が例えば1.0~40.0モル%含まれ、好ましくは繰り返し単位(A)が2.5~17.0モル%であり、より好ましくは3.0~15.5モル%である。共重合体の全構成単位中、繰り返し単位(A)が2.5モル%以上であることにより、血栓が形成されやすい過酷な条件下においても高い抗血栓性を備えた医療材料が提供される。繰り返し単位(A)が17.0モル%以下であることにより、医療用具に適切に医療材料をコーティングでき、かつ、医療用具へ適用した医療材料が基材から剥離して血液へ混入することを防止することができる。共重合体の全構成単位中、繰り返し単位(B)は、例えば60.0~99.0モル%含まれ、好ましくは83.0~97.5モル%含まれ、より好ましくは84.5~97.0モル%含まれる。
 本発明に係る医療材料が含む共重合体は、抗血栓性に優れる。本発明の技術的範囲を制限するものではないが、このメカニズムは以下のように考えている。すなわち、構成単位(B)のみで形成される重合体に比べ、構成単位(A)を含む共重合体は親水性が高く、このような適度な親水性を備えた共重合体を含む医療材料を医療用具に適用することにより、生体適合性が高まり、血栓が形成されやすい条件で使用される場合においても、血栓の形成が抑制されるのではないかと考えられる。
 したがって、本発明によれば、特に、血栓が形成されやすい過酷な条件にて使用される場合おいても、優れた抗血栓性を示す医療材料が提供される。
 別の実施形態では、本発明の医療材料は、モノマーa、モノマーb、および、これらと共重合可能な他のモノマー(以下、単に「他のモノマー」とも称する。)との共重合体を任意に含む。モノマーaおよびモノマーbと共重合可能な他のモノマーとしては、例えば、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、アミノメチルアクリレート、アミノエチルアクリレート、アミノイソプロピルアクリレート、ジアミノメチルアクリレート、ジアミノエチルアクリレート、ジアミノブチルアクリレート、メタアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、アミノメチルメタクリレート、アミノエチルメタクリレート、ジアミノメチルメタクリレート、ジアミノエチルメタクリレート、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、カルボキシベタインメタクリレート、エチレン、プロピレン等がある。
 共重合体の全構成単位中、他のモノマーに由来する繰り返し単位の割合は、例えば0モル%を超えて、39.0モル%以下であり、好ましくは0モル%を超えて、14.5モル%以下である。
 共重合体における繰り返し単位(A)、繰り返し単位(B)、または他のモノマーに由来する繰り返し単位の割合は、重合の際に用いるモノマーの割合を変更することで、任意に調整できる。
 本発明の一実施形態では、共重合体は繰り返し単位(A)および繰り返し単位(B)で構成される。すなわち、本発明の一実施形態では、共重合体は、2.5~17.0モル%の前記繰り返し単位(A)、および83.0~97.5モル%の前記繰り返し単位(B)(前記繰り返し単位(A)、および前記繰り返し単位(B)の合計量は100モル%である)で構成される。
 本発明の別の実施形態では、共重合体は、3.0~15.5モル%の前記繰り返し単位(A)、および84.5~97.0モル%の前記繰り返し単位(B)(前記繰り返し単位(A)、および前記繰り返し単位(B)の合計量は100モル%である)で構成される。
 共重合体の末端は特に制限されず、使用される原料の種類によって適宜規定されるが、通常、水素原子である。共重合体の構造も特に制限されず、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれであってもよい。
 共重合体の重量平均分子量は好ましくは10,000~1,000,000である。上記範囲に含まれる場合には溶解性の点から好ましい。共重合体の重量平均分子量は、コート層の被覆のしやすさの点から、より好ましくは50,000~500,000である。本発明において、「重量平均分子量」は、ポリスチレンを標準物質とするゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)により測定した値を採用するものとする。
 本発明に係る医療材料が含む共重合体の製造方法は特に制限されない。例えば、ラジカル重合、アニオン重合、カチオン重合などの公知の重合方法が採用でき、好ましくは製造が容易なラジカル重合を使用する。本発明に係る医療材料が含む共重合体の製造方法として、放射線や紫外線によるプラズマ重合などを採用し、共重合体を含むコート層を基材表面に形成しても良い。
 モノマーの重合方法は、通常、上記繰り返し単位(A)に対応するモノマーa(例えば、N-ビニルアセトアミド(NVA))の一種または二種以上と、上記繰り返し単位(B)に対応する上記モノマーb(例えば、アクリル酸メトキシエチル(MEA))の一種または二種以上と、必要であれば他のモノマーとを重合溶媒中で重合開始剤と共に撹拌・加熱することにより共重合させる方法が使用される。
 重合温度は、分子量の制御の点から、30℃~100℃とするのが好ましい。重合反応は通常30分~24時間行われる。
 重合溶媒としては、水;メタノール、エタノール、プロパノール、n-ブタノール等のアルコール類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等の多価アルコール類;などの水性溶媒であることが好ましく、特に好ましくはメタノール、エタノール、またはプロパノールである。これらを1種単独で用いても良く、2種以上を併用しても良い。
 重合溶媒中のモノマー濃度(固形分濃度)は、反応溶液全体に対して、通常10~90重量%であり、好ましくは15~80重量%である。なお、重合溶媒に対するモノマー濃度は、モノマーa、およびモノマーb、ならびに任意に含まれるこれらと共重合可能な他のモノマー(以下、「モノマーa、およびモノマーb、ならびに任意に含まれるこれらと共重合可能な他のモノマー」を、「重合モノマー」とも称する。)の総重量の濃度を指す。
 重合モノマーを添加した重合溶媒は、重合開始剤の添加前に、脱気処理を行ってもよい。脱気処理は、例えば、窒素ガスやアルゴンガス等の不活性ガスにて、重合モノマーを添加した重合溶媒を0.5~5時間程度バブリングすればよい。脱気処理の際は、重合モノマーを添加した重合溶媒を30℃~100℃程度に加温しても良い。
 共重合体の製造には、従来公知の重合開始剤を用いることができ、特に制限されるものではないが、例えば2、2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系重合開始剤;過硫酸カリウム(KPS)、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物等の酸化剤に、亜硫酸ナトリウム、亜硫酸水素ナトリウム、アスコルビン酸等の還元剤を組み合わせたレドックス系重合開始剤等が使用できる。
 重合開始剤の配合量は、共重合体の製造に用いる全モノマー(1モル)に対して、例えば0.0001~1モルとなる量である。
 さらに、必要に応じて、連鎖移動剤、重合速度調整剤、界面活性剤、およびその他の添加剤を、重合の際に適宜使用してもよい。
 重合反応を行う雰囲気は特に制限されるものではなく、大気雰囲気下、窒素ガスやアルゴンガス等の不活性ガス雰囲気等で行うこともできる。また、重合反応中は、反応液を攪拌しても良い。
 重合後の共重合体は、再沈澱法、透析法、限外濾過法、抽出法など一般的な精製法により精製することができる。
 精製後の共重合体は、凍結乾燥、減圧乾燥、噴霧乾燥、または加熱乾燥等、任意の方法によって乾燥することもできるが、重合体の物性に与える影響が小さいという観点から、凍結乾燥または減圧乾燥が好ましい。
 得られた共重合体における繰り返し単位(A)、繰り返し単位(B)、または他のモノマーに由来する繰り返し単位の割合は、NMR法や、赤外線スペクトル解析等により確認すればよい。例えば、繰り返し単位(A)、および繰り返し単位(B)で構成される共重合体の場合、H-NMR測定における積分比によって共重合体における、繰り返し単位(A)と繰り返し単位(B)との割合を解析できる。また、H-NMRの測定において、ピークが重なる場合は、13C-NMRを用いて算出することができる。
 得られた共重合体に含まれる、未反応の重合モノマーは、共重合体全体に対して0.01重量%以下であることが好ましい。未反応の重合モノマーは少ないほど好ましいので、下限は特段制限されないが、例えば0重量%である。残留モノマーの含量は、例えば高速液体クロマトグラフィーなど、当業者に知られた方法により測定できる。
 本発明における医療材料は、得られた共重合体からなる形態で用いても良く、ゲル状、溶液状等に加工して用いることもできる。例えば、共重合体を溶媒に溶解させたコーティング剤の形態で、医療材料として用いることもできる。
 コーティング剤の形態で用いる場合、用いる溶媒としては共重合体を溶解できるものであれば特に制限されず、例えば、水;メタノール、エタノール、イソプロパノール、ブタノール等のアルコール系溶媒;クロロホルム、テトラヒドロフラン、アセトン、ジオキサン、ベンゼン等の非プロトン供与性の有機溶媒が例示できる。上記溶媒は、1種単独で、または2種以上を混合して使用してもよい。混合溶媒としては、水-アルコール系溶媒が好ましく、特に、水-メタノール混合溶媒が好ましい。
 コーティング剤に含まれる共重合体の量は、任意に設定でき、共重合体を飽和量まで溶解させた溶液として用いることもできるが、例えば、コーティング剤全体に対して0.01~60重量%、好ましくは0.1~50重量%である。
 コーティング剤は、共重合体と上記溶媒とによって構成されても良いが、任意に、架橋剤、増粘剤、防腐剤、pH調整剤等、他の成分を含んでも良い。架橋剤を含むことにより、共重合体がより強固に基材表面へ固定化されうる。
 [医療用具]
 本発明の一実施形態では、上記医療材料を用いた医療用具が提供される。すなわち、本発明の一実施形態は、基材と、前記基材表面に、上記医療材料を含むコート層と、を有する医療用具が提供される。
 本発明に係る医療用具としては、例えば、体内埋入型の人工器官や治療器具、体外循環型の人工臓器類、カテーテル、ガイドワイヤー等を例示できる。具体的には、血管や管腔内へ挿入若しくは置換される人工血管、人工気管、ステント人工皮膚、人工心膜等の埋入型医療器具;人工心臓システム、人工肺システム、人工心肺システム、人工腎臓システム、人工肝臓システム、免疫調節システム等の人工臓器システム;留置針、IVHカテーテル、薬液投与用カテーテル、サーモダイリューションカテーテル、血管造影用カテーテル、血管拡張用カテーテルおよびダイレーター若しくはイントロデューサー等の血管内に挿入若しくは留置されるカテーテル;、または、これらのカテーテル用のガイドワイヤー、スタイレット等;胃管カテーテル、栄養カテーテル、経管栄養用(ED)チューブ、尿道カテーテル、導尿カテーテル、バルーンカテーテル、気管内吸引カテーテルをはじめとする各種の吸引カテーテルや排液カテーテル等の血管以外の生体組織に挿入若しくは留置されるカテーテル類;が例示できる。特に、大量の血液と接する人工肺システム、または人工心肺システムとして好適に使用される。
 (基材)
 本発明の医療用具は、上記の医療材料を基材表面に有する。基材の材質としては、特に制限されず、例えば、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体等のポリオレフィンや変性ポリオレフィン;ポリアミド;ポリイミド;ポリウレタン;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル;ポリ塩化ビニル;ポリ塩化ビニリデン(PVDC);ポリカーボネート;ポリテトラフルオロエチレン(PTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素樹脂等の各種高分子材料、SUS等の金属、セラミック、カーボン、およびこれらの複合材料等が例示できる。
 基材の形状は医療用具の用途等に応じて適宜選択され、例えば、チューブ状、シート状、ロッド状等の形状をとりうる。基材の形態は、上記のような材料を単独で用いた成型体に限定されず、ブレンド成型物、アロイ化成型物、多層化成形物などでも使用可能である。基材は単層であっても、積層されていてもよい。この際、基材が積層されている場合には、各層の基材は同じものであっても、異なるものであってもよい。ただし、溶媒で基材を膨潤させて共重合体を強固に固定化したい場合、少なくとも基材表面に存在させる材料としては、上記高分子材料が溶媒により良好に膨潤し得るため好ましい。
 本発明において、「基材表面」とは、生体組織や血液等の体液と対する基材面である。共重合体を有するコート層が基材表面に形成されることにより、基材表面の抗血栓性が向上する。本発明に係る医療用具においては、生体組織や血液等の体液と対する基材面に共重合体を有するコート層が形成されていればよいが、コート層がその他の面にも形成されることを妨げるものではない。
 コート層の基材表面への安定性を高めるため、基材表面にコート層を形成する前に、基材を表面処理しても良い。基材の表面処理の方法としては、例えば、活性エネルギー線(電子線、紫外線、X線等)を照射する方法、アーク放電やコロナ放電、グロー放電等のプラズマ放電を利用する方法、高電界を印加する方法、極性液体(水等)を介した超音波振動を作用させる方法、オゾンガスにより処理する方法等が挙げられる。
 (コート層)
 本発明に係る医療用具においては、上記医療材料を含むコート層が、基材表面に形成される。
 基材表面へのコート層の形成は、上記医療材料を含む塗布液(例えば、上記のコーティング剤)を塗布することによって基材表面を被覆する、または、上述のように、重合モノマーを含む重合溶媒を基材表面に適用してプラズマ重合を行っても良い。製造の容易さの観点から、上記医療材料を含む塗布液によって基材表面を被覆することにより、コート層を形成することが好ましい。なお、「被覆」とは、基材の表面全体がコート層により完全に覆われている形態のみならず、基材の表面の一部がコート層により覆われている形態、すなわち、基材表面の一部にコート層が付着した形態をも含むものとする。
 医療材料を含む塗布液によって基材表面を被覆することにより、コート層を形成する場合、医療材料を含む塗布液の調製方法については、上述のコーディング剤の調製方法が適宜参酌される。
 医療材料を含む塗布液を基材表面へ塗布する方法は公知の方法を採用することができ、特に限定されるものではないが、例えば、ディップコーティング、噴霧、スピンコーティング、滴下、ドクターブレード、刷毛塗り、ロールコーター、エアーナイフコート、カーテンコート、ワイヤーバーコート、グラビアコート等が挙げられる。
 塗布液の厚さは医療用具の用途によって適宜調整すればよく、特に制限されるものではないが、例えば0.1μm~1mmである。
 共重合体を含む塗布液を塗布した基材表面を乾燥させることにより、基材表面にコート層が形成される。乾燥工程は、基材のガラス転移温度等を考慮して適宜設定すればよいが、例えば15~50℃である。乾燥工程における雰囲気は特に制限されず、大気中、または窒素ガスやアルゴンガス等の不活性ガス雰囲気下で行うこともできる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 [実施例1:NVAとMEAとの共重合体(繰り返し単位(A):1.5モル%)]
 アクリル酸メトキシエチル(MEA)5g(38.4mmol)とN-ビニルアセトアミド(NVA)0.055g(0.6mmol)とをメタノール25.5gに溶解し、四口フラスコに入れ、50℃でNバブリングを1時間行った。
 その後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業製)0.006gをメタノール1mLに溶解した溶液を、重合モノマーを溶解したメタノール溶液に加え、50℃で5時間重合させた。重合液をジエチルエーテルに滴下し、析出した共重合体を回収した。なお、回収した共重合体の重量平均分子量は、195,000であった。
 [実施例2:NVAとMEAとの共重合体(繰り返し単位(A):3.3モル%)]
 MEA 5g(38.4mmol)とNVA 0.11g(1.3mmol)とをメタノール25.5gに溶解し、四口フラスコに入れ、50℃でNバブリングを1時間行った。
 その後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業製)0.006gをメタノール1mLに溶解した溶液を、重合モノマーを溶解したメタノール溶液に加え、50℃で5時間重合させた。重合液をジエチルエーテルに滴下し、析出した共重合体を回収した。なお、回収した共重合体の重量平均分子量は、192,000であった。
 [実施例3:NVAとMEAとの共重合体(繰り返し単位(A):6.3モル%)]
 MEA 5g(38.4mmol)とNVA 0.22g(2.6mmol)とをメタノール25.5gに溶解し、四口フラスコに入れ、50℃でNバブリングを1時間行った。
 その後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業製)0.006gをメタノール1mLに溶解した溶液を、重合モノマーを溶解したメタノール溶液に加え、50℃で5時間重合させた。重合液をジエチルエーテルに滴下し、析出した共重合体を回収した。なお、回収した共重合体の重量平均分子量は、188,000であった。
 [実施例4:NVAとMEAとの共重合体(繰り返し単位(A):15.0モル%)]
 MEA 5g(38.4mmol)とNVA 0.58g(6.8mmol)とをメタノール25.5gに溶解し、四口フラスコに入れ、50℃でNバブリングを1時間行った。
 その後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業製)0.006gをメタノール1mLに溶解した溶液を、重合モノマーを溶解したメタノール溶液に加え、50℃で5時間重合させた。重合液をジエチルエーテルに滴下し、析出した共重合体を回収した。なお、回収した共重合体の重量平均分子量は、167,000であった。
 [実施例5:NVAとMEAとの共重合体(繰り返し単位(A):19.7モル%)]
 MEA 5g(38.4mmol)とNVA 0.80g(9.4mmol)とをメタノール25.5gに溶解し、四口フラスコに入れ、50℃でNバブリングを1時間行った。
 その後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業製)0.006gをメタノール1mLに溶解した溶液を、重合モノマーを溶解したメタノール溶液に加え、50℃で5時間重合させた。重合液をジエチルエーテルに滴下し、析出した共重合体を回収した。なお、回収した共重合体の重量平均分子量は、148,000であった。
 [比較例1:MEAの(単独)重合体(繰り返し単位(A):0モル%)]
 MEA 5g(38.4mmol)をメタノール25.5gに溶解し、四口フラスコに入れ、50℃でNバブリングを1時間行った。
 その後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業製)0.006gをメタノール1mLに溶解した溶液を、重合モノマーを溶解したメタノール溶液に加え、50℃で5時間重合させた。重合液をジエチルエーテルに滴下し、析出した重合体を回収した。なお、回収した重合体の重量平均分子量は、130,000であった。
 実施例または比較例で得られた、上記共重合体または上記重合体を、再沈殿法によって精製した。その後、これらの共重合体または重合体を減圧乾燥によって乾燥し、以下の試験に供した。
 [試験例1.ポリマー(共重合体または重合体)の溶解性試験]
 実施例または比較例で得られた、上記共重合体または上記重合体をそれぞれ0.1gずつ量り採り、それぞれ別のガラス製試験管に入れた。
 上記試験管に生理食塩水を5g加えて撹拌し、ポリマーの溶解性を調べた。目視で観察したとき、ポリマーがガラス試験管に入れた時の形態を維持していた場合は、水に不溶であるとみなした。不溶成分がない、または若干濁っているが分散している場合は水に溶解しているとみなした。
Figure JPOXMLDOC01-appb-T000007
 表1の結果は、親水性の高い繰り返し単位(A)を含む共重合体であっても、共重合体の全構成単位中、前記繰り返し単位(A)が17.0モル%以下であれば生理食塩水へ溶解しないことを示している。
 この結果より、共重合体の全構成単位中、前記繰り返し単位(A)が17.0モル%以下であれば、医療用具に適切に医療材料をコーティングでき、かつ、医療材料が基材から剥離して血液へ混入することをより有効に防止できることが分かる。
 [試験例2.抗血栓性試験]
 (コーティング剤の調製)
 実施例または比較例で得られた、上記共重合体または上記重合体それぞれについて、0.5重量%のメタノール溶液を調製し、コーティング剤とした。
 (医療用具の作製)
 全長30cm×内径8mmの軟質塩化ビニルチューブ(チューブ1)の両端にそれぞれ、全長5cm×内径6mm×外径9mmの軟質塩化ビニルチューブ(チューブ2)の端部1cmを挿入し、段差チューブを作製した。
 図1は、作製した段差チューブである。図1中、円で囲った部分は、チューブ1とチューブ2との接合部を示す。
 図2は、図1におけるチューブ1とチューブ2との接合部を模式的に表した拡大図である。チューブ2の内径は、チューブ1の内径よりも細いため、段差面3が形成されている。段差チューブに血液を通液した場合、段差面3において非常に血栓が形成されやすい。
 作製した段差チューブを基材として用い、上記のコーティング剤を段差チューブに通液し、基材表面へコーティング剤を塗布した。その後、段差チューブを室温(25℃)で乾燥し、医療材料を含むコート層を基材表面(段差チューブ内腔面)に形成した。
 (抗血栓性試験)
 血栓が形成されやすい過酷な条件における医療材料の抗血栓性を評価するため、コート層を形成した上記段差チューブを用いて、以下のような試験系を構築した。
 すなわち、コート層を形成した上記段差チューブの内腔を、生理食塩水でヒト新鮮血を2倍に希釈した液(希釈血液)6mlで満たした。段差チューブの両端をコネクターで接続、円筒型回転装置に固定し、40rpmで2時間回転させた。その後、段差チューブから循環血液を除去し、チューブ1とチューブ2との接合部(段差面)への血栓付着状態を目視で観察した。ここで、新鮮血とは、全血輸血により健常人ドナーから採取した血液で、30分以内のものをいう。なお、新鮮血には抗凝固薬を添加していない。
 図3は実施例2において製造された共重合体を、図4は比較例1において製造された重合体を、それぞれ含む医療材料を適用した段差チューブについての、抗血栓性試験直後の接合部の拡大写真である。本発明に係る共重合体を適用した段差チューブでは血栓形成が認められなかった(図3)。一方、比較例1の重合体を適用した段差チューブでは、接合部において血栓4が観察された(図4)。
Figure JPOXMLDOC01-appb-T000008
 表2、図3、および図4に示す通り、本発明に係る医療材料は高い抗血栓性を示している。
 とりわけ、共重合体における繰り返し単位(A)が2.5モル%以上であることにより、特に高い抗血栓性が得られることが分かる。なお、実施例5については、医療材料の溶解性が高かったため、医療用具に適切にコーティングできなかった。そのため、抗血栓性を評価することができなかった。
 [試験3:模擬製品形態を用いた血液循環試験]
 上記実施例3で得られた重合体(3)、および比較例1で得られた比較重合体(1)をコートした基材について、下記方法に従って、抗血栓性を評価した。
 (コーティング剤の調製)
 重合体(3)、および比較重合体(1)をそれぞれ、0.2重量%の濃度で、水-アルコール(メタノール)混合溶液に溶解させ、コーティング剤とした。
 (医療用具の作製)
 上記コーティング剤を、模擬製品形態(血液循環モジュール:特開平11-114056号公報に開示された実施例1に係る血液外部灌流型中空糸膜人工肺を、特開2009-219936号公報の図4に開示された構造を有する人工肺としたもの;血液循環経路を構成する基材として、ポリプロピレン、ポリウレタン、ポリカーボネート、SUSを含む)に血液インポート側から充填し、120秒間静置した後に除去し、室温(25℃)で240分間、送風乾燥した。
 (評価)
 上記血液循環モジュールを接続チューブ(軟質塩化ビニル製、全長約100cm×内径8mm)を用いて貯血槽と接続することによって体外循環回路中に組み込んだ。続いて、乳酸リンゲル液200mlを上記体外循環回路に充填し、その後、ヘパリン添加ヒト新鮮血200mlを添加した。循環血液中のへパリン濃度は、0.5単位/mlとした。室温(25℃)、500ml/minで6時間循環させた。循環開始から120分後に、それぞれの血液循環回路から血液をサンプリングし、血液凝固系の活性化指標であるトロンビンアンチトロンビン複合体(TAT)の濃度を測定した。TAT濃度は、EIA法による測定キットを用いた。高いTAT濃度は、凝固活性化状態にあることを示し、血栓が生じやすいといえる。
Figure JPOXMLDOC01-appb-T000009
 実施例3の重合体(3)をコートした血液循環モジュールにおいては、TAT濃度が、比較例1の比較重合体(1)をコートした血液循環モジュールよりも低かった。すなわち、血液凝固系の活性化が低く優れた抗血栓性を有していることが確認できた。
 さらに6時間循環後、血液の循環経路をリン酸緩衝生理食塩水(PBS)で洗浄し、血液が停滞しやすい部位を観察した。実施例3の重合体(3)をコートした血液循環モジュールにおいては、血栓付着が殆どみられなかった。一方、比較例1の比較重合体(1)をコートした血液循環モジュールにおいては、血栓(図6中、符号「4」で示されるもの)の付着が確認された。実施例3の重合体(3)は模擬製品においても優れた抗血栓性を有することが確認できた。
 以上より、本発明に係る医療材料は、血栓が形成されやすい過酷な条件下において使用される場合でも、高い抗血栓性を備えていることが分かる。本発明に係る医療材料は、例えばチューブの接合部のような絞り部を備える医療用具など、血液と接触する面に段差を有するような使用条件において、特に有用である。
 さらに、本出願は、2013年12月27日に出願された日本特許出願番号2013-270970号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  1  チューブ1、
  2  チューブ2、
  3  段差面、
  4  血栓。

Claims (5)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    ただし、式(1)中、R11は水素原子またはメチル基である;
    で示される繰り返し単位(A)と、
     下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    ただし、式(2)中、R21は水素原子またはメチル基であり、R22は炭素数1~4のアルキレン基であり、R23は炭素数1~4のアルキル基である;
    で示される繰り返し単位(B)とを有する共重合体を含む、医療材料。
  2.  前記共重合体の全構成単位中、前記繰り返し単位(A)が2.5~17.0モル%である、請求項1に記載の医療材料。
  3.  前記式(1)中、R11が水素原子である、請求項1または2に記載の医療材料。
  4.  前記共重合体が、2.5~17.0モル%の前記繰り返し単位(A)、および83.0~97.5モル%の前記繰り返し単位(B)(前記繰り返し単位(A)、および前記繰り返し単位(B)の合計量は100モル%である)で構成される、請求項1~3のいずれか1項に記載の医療材料。
  5.  基材と、
     前記基材表面に、請求項1~4のいずれか1項に記載の医療材料を含むコート層と、を有する医療用具。
PCT/JP2014/083756 2013-12-27 2014-12-19 抗血栓性医療材料、および該医療材料を利用した医療用具 WO2015098764A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554841A JP6426625B2 (ja) 2013-12-27 2014-12-19 抗血栓性医療材料、および該医療材料を利用した医療用具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013270970 2013-12-27
JP2013-270970 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098764A1 true WO2015098764A1 (ja) 2015-07-02

Family

ID=53478621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083756 WO2015098764A1 (ja) 2013-12-27 2014-12-19 抗血栓性医療材料、および該医療材料を利用した医療用具

Country Status (2)

Country Link
JP (1) JP6426625B2 (ja)
WO (1) WO2015098764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185836A1 (ja) * 2021-03-02 2022-09-09 東レ株式会社 被覆医療デバイスおよびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152952A (ja) * 1990-10-18 1992-05-26 Terumo Corp 生体適合性医用材料
JP2003111836A (ja) * 2001-06-28 2003-04-15 Terumo Corp 人工心肺回路システム
JP2003126241A (ja) * 2001-10-23 2003-05-07 Mitsuru Akashi 感温性高分子被覆層を有する医療用具
JP2005514192A (ja) * 2001-12-21 2005-05-19 サーモディックス,インコーポレイティド 表面にコーティングを供給するための試薬および方法
WO2007027500A2 (en) * 2005-08-29 2007-03-08 Bausch & Lomb Incorporated Surface-modified medical devices and methods of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152952A (ja) * 1990-10-18 1992-05-26 Terumo Corp 生体適合性医用材料
JP2003111836A (ja) * 2001-06-28 2003-04-15 Terumo Corp 人工心肺回路システム
JP2003126241A (ja) * 2001-10-23 2003-05-07 Mitsuru Akashi 感温性高分子被覆層を有する医療用具
JP2005514192A (ja) * 2001-12-21 2005-05-19 サーモディックス,インコーポレイティド 表面にコーティングを供給するための試薬および方法
WO2007027500A2 (en) * 2005-08-29 2007-03-08 Bausch & Lomb Incorporated Surface-modified medical devices and methods of making

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO N ET AL.: "Synthesis and Anticoagulant Properties of a Novel Heparinoid N-Sulfate- Bearing Vinylpolymer.", J BIOACT COMPAT POLYM., vol. 14, no. 2, 1999, pages 150 - 161 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185836A1 (ja) * 2021-03-02 2022-09-09 東レ株式会社 被覆医療デバイスおよびその製造方法

Also Published As

Publication number Publication date
JP6426625B2 (ja) 2018-11-21
JPWO2015098764A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6373872B2 (ja) 医療用具
US20160375180A1 (en) Method for producing medical device and medical device
JP6600560B2 (ja) 抗血栓性コーティング材の製造方法
JP5969484B2 (ja) 抗血栓性材料および医療用具
JP7209643B2 (ja) 医療用コーティング材料および該医療用コーティング材料を利用した医療用具
JP6397889B2 (ja) 医療材料、および該医療材料を利用した医療用具
US11439733B2 (en) Method for producing antithrombotic coating material
JP6456196B2 (ja) 抗血栓性接着用組成物、ならびに該抗血栓性接着用組成物を利用した医療用具およびその製造方法
WO2020004385A1 (ja) 親水性共重合体および医療用具
WO2015098764A1 (ja) 抗血栓性医療材料、および該医療材料を利用した医療用具
CN111050817B (zh) 医疗用具的制造方法
JP6278731B2 (ja) 抗血栓性医療材料、および該医療材料を利用した医療用具
JP2014147638A (ja) 医療用具の製造方法
JP7389102B2 (ja) 医療用具の製造方法および医療用具
EP4006069A1 (en) Medical instrument and production method therefor
JP2014147639A (ja) 医療用具
JP2018149270A (ja) 抗血栓性コーティング材
WO2014123077A1 (ja) 医療用コーティング材料および医療用具
JP2015097550A (ja) 血液適合性材料および医療用具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874600

Country of ref document: EP

Kind code of ref document: A1