WO2015098697A1 - 流量検出装置及び可変容量圧縮機 - Google Patents
流量検出装置及び可変容量圧縮機 Download PDFInfo
- Publication number
- WO2015098697A1 WO2015098697A1 PCT/JP2014/083563 JP2014083563W WO2015098697A1 WO 2015098697 A1 WO2015098697 A1 WO 2015098697A1 JP 2014083563 W JP2014083563 W JP 2014083563W WO 2015098697 A1 WO2015098697 A1 WO 2015098697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spool
- flow rate
- pressure
- check valve
- detection device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/38—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/40—Details of construction of the flow constriction devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/005—Valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/09—Flow through the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/13—Mass flow of refrigerants
Definitions
- the present invention relates to a flow rate detection device for detecting a flow rate of a fluid such as a refrigerant flowing in a refrigerant passage, and a variable capacity compressor including the flow rate detection device.
- variable capacity compressors used in vehicle air conditioners include a device that detects a refrigerant discharge flow rate in order to detect a driving load of the compressor.
- some of the variable capacity compressors are provided with a check valve in order to suppress the backflow of the refrigerant from the external refrigerant circuit to the compressor when the driving is stopped.
- a throttle that elastically deforms is provided in the refrigerant discharge passage, and the flow rate of the throttle is controlled by changing the fluid passage cross-sectional area according to the elastic deformation amount of the throttle, while controlling the flow rate of the refrigerant. It is disclosed that the structure can be simplified by combining the function of detecting the refrigerant flow rate based on the differential pressure between the upstream side and the downstream side, and further providing the throttle with the function of the check valve.
- Patent Document 2 a spool that slides in the cylinder according to a differential pressure between the upstream and downstream of the throttle is inserted into a cylinder provided by bypassing the throttle, and the position of the spool is detected.
- a method for detecting the refrigerant flow rate is disclosed.
- variable capacity compressor For example, if the variable capacity compressor has been stopped for a long time, a temperature difference will occur between the compressor and the heat exchanger of the air conditioner system as the ambient temperature changes, causing a pressure difference within the air conditioner system. May occur.
- the refrigerant in the heat exchanger passes through the gap between the outer peripheral surface of the spool and the inner peripheral surface of the sealed chamber even if the check valve is closed,
- the liquid refrigerant may be stored inside the variable capacity compressor.
- the discharge capacity does not increase until the liquid refrigerant is discharged, and the air conditioning system does not function immediately. It was.
- An object of the present invention is to provide a flow rate detection device that can ensure the function of preventing a check valve's backflow while simplifying the configuration by using the check valve also as a throttle for detecting the flow rate.
- a flow rate detection device detects a flow rate of a fluid flowing through a fluid passage having a check valve that opens and closes according to a differential pressure between an upstream pressure and a downstream pressure.
- a detection device that receives an upstream pressure of the check valve on one pressure receiving surface and a downstream pressure on the check valve on the other pressure receiving surface, and balances the force generated by the differential pressure and the biasing force of the spring.
- variable capacity compressor according to the present invention is characterized in that the flow rate detection device according to the present invention is provided in a discharge passage communicating the discharge chamber and the external refrigerant circuit.
- the configuration can be simplified because the check valve is also used as a flow rate detection throttle, and the differential pressure between the upstream pressure and the downstream pressure of the check valve is equal to or less than a predetermined value.
- the position of the spool is restricted at this time, and the gap between the cylinder and the spool is closed, so that leakage of fluid from the gap is suppressed when the check valve is closed, ensuring the check valve's backflow prevention function can do.
- the compressor body structure can be simplified and the compressor can be stopped by providing the simplified flow rate detecting device in the compressor as described above.
- the stop valve When the stop valve is closed, liquid refrigerant can be prevented from being stored inside the compressor due to the reverse flow of the refrigerant from the external refrigerant circuit, and the air conditioner system can be quickly started up immediately after the compressor is restarted.
- the variable capacity compressor can be stably detected because the compressor hardly stops intermittently, and is suitable as a compressor including a flow rate detection device.
- FIG. 1 It is sectional drawing which shows the internal structure of the variable capacity compressor which concerns on embodiment of this invention. It is a principal part expanded sectional view of FIG. It is a partial cross section figure which shows the internal structure of the non-return valve used for a compressor same as the above. It is sectional drawing which shows the internal structure of the control valve used for a compressor same as the above. It is sectional drawing which shows the internal structure of the flow volume detection apparatus used for a compressor same as the above, (A) is the state in which the spool is contact
- FIG. 1 shows the internal structure of a variable capacity compressor according to the present invention.
- the variable capacity compressor 100 is a clutchless compressor, and includes a cylinder block 101 having a plurality of cylinder bores 101a in the periphery, a front housing 102 connected to one end of the cylinder block 101, and other cylinder blocks 101.
- a cylinder head 104 connected to the end side via a valve plate 103 is provided.
- a drive shaft 110 is provided across the crank chamber 140 defined by the cylinder block 101 and the front housing 102, and a swash plate 111 is disposed around the axial center of the drive shaft 110. Yes.
- the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and an inclination angle (inclination angle) with respect to the axis of the drive shaft 110 is configured to be variable.
- the link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end side rotating with respect to the first arm 112 a via the first connecting pin 122.
- the link arm 121 is movably connected and the other end is rotatably connected to the second arm 111 a via a second connection pin 123.
- the through hole 111b of the swash plate 111 is shaped so that the swash plate 111 can tilt within the range of the maximum tilt angle and the minimum tilt angle, and the through hole 111b has a minimum tilt angle restricting portion that contacts the drive shaft 110.
- the minimum inclination restriction portion of the through hole 111b is formed so that the inclination of the swash plate 111 can be displaced to almost 0 °. ing.
- the maximum inclination angle of the swash plate 111 is regulated by a part of the swash plate 111 coming into contact with the rotor 112.
- an inclination reduction spring 114 is mounted to urge the swash plate 111 toward the minimum inclination angle until reaching the minimum inclination angle, and between the swash plate 111 and the spring support member 116, there is an inclination.
- An inclination increasing spring 115 that biases the inclination of the plate 111 in the direction of increasing is attached. Since the urging force of the inclination increasing spring 115 is set to be larger than the urging force of the inclination decreasing spring 114 at the minimum inclination angle, the swash plate 111 has the inclination decreasing spring 114 and the inclination increasing spring 115 when the drive shaft 110 is not rotating. It is located at an inclination angle that balances the urging force.
- One end of the drive shaft 110 extends to the outside through the boss portion 102a protruding to the outside of the front housing 102, and is connected to a power transmission device (not shown).
- a shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the inside and the outside.
- a coupling body of the drive shaft 110 and the rotor 112 is supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction.
- the clearance between the contact portion of the thrust plate 134 of the drive shaft 110 and the thrust plate 134 is adjusted to a predetermined clearance by an adjustment screw 135. Therefore, the power from the external drive source is transmitted to the power transmission device, and the drive shaft 110 can rotate in synchronization with the power transmission device.
- a piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140.
- the swash plate 111 includes a pair of shoes 137.
- the piston 136 is linked. Therefore, the piston 136 can reciprocate in the cylinder bore 101a by the rotation of the swash plate 111.
- the cylinder head 104 is formed with a discharge chamber 142 in the center and a suction chamber 141 surrounding the discharge chamber 142 in an annular shape.
- the suction chamber 141 is a cylinder bore 101a, a suction hole 103a provided in the valve plate 103, and a suction hole.
- the discharge chamber 142 communicates with the cylinder bore 101 a via a discharge valve (not shown) and a discharge hole 103 b provided in the valve plate 103.
- the maximum opening of the discharge valve (not shown) is regulated by the retainer 150, and the maximum opening of the suction valve (not shown) is regulated by a recess (not shown) formed in the end face of the cylinder bore 101a. Yes.
- the suction valve (not shown), the valve plate 103, the discharge valve (not shown), and the retainer 150 are fastened and integrated by a fastening member 151.
- the fastening member 151 is comprised with the volt
- a front housing 102, a center gasket (not shown), a cylinder block 101, a cylinder gasket (not shown), a valve plate 103, a head gasket (not shown), and a cylinder head 104 are fastened and compressed by a plurality of through bolts 105.
- a machine housing is formed.
- the cylinder head 104 is formed with a suction passage (not shown) that communicates the low-pressure side refrigerant circuit of the air-conditioning system and the suction chamber 141, whereby the suction chamber 141 is connected to the low-pressure side refrigerant circuit of the air-conditioning system. .
- the discharge chamber 142 is connected to the high-pressure side external refrigerant circuit of the air conditioner system via the storage chamber 104b and the discharge passage 104a.
- the discharge passage 104a extends from the outside in the radial direction of the cylinder head 104 across the suction chamber 141 toward the discharge chamber 142.
- the storage chamber 104b has a discharge chamber 142 on the upstream side and a discharge passage 104a on the downstream side. It is arranged to communicate with.
- the cylinder head 104 is provided with a check valve 200 for opening and closing the discharge passage 104a.
- FIG. 2 shows an enlarged view of the periphery of the check valve 200
- FIG. 3 shows the internal structure of the check valve 200.
- the check valve 200 includes a valve seat forming member 201 in which an inlet hole 201a and a valve seat 201b are formed, a valve body 202 whose one end face is in contact with and separated from the valve seat 201b, and the valve body 202 to the valve seat 201b.
- a bottomed bottom that accommodates the compression coil spring 203, the valve body 202, and the compression coil spring 203 that are biased toward each other, has a plurality of outlet holes 204a formed in the peripheral wall, and has an open end fitted and fixed to the valve seat forming member 201.
- An inlet hole 201a communicates with the upstream discharge hole 142, and an outlet hole 204a is formed on the downstream discharge passage 104a.
- the storage chamber 104b is formed in the cylinder head 104 and includes a cylindrical housing 204 and an O-ring 205. It is arranged so as to communicate with and is prevented from coming off by a retaining ring 152.
- a through hole 204 b is formed in the bottom wall of the housing 204, and the pressure in the discharge chamber 104 a downstream of the accommodation chamber 104 b, that is, the check valve 200, acts on the other end surface of the valve body 202.
- the pressure in the discharge chamber 142 that is upstream of the check valve 200 from the inlet hole 201a acts on the one end surface. Therefore, the check valve 200 opens and closes the discharge passage 104a according to the pressure difference between the discharge chamber 142 acting on the valve body 202 and the discharge passage 104a downstream of the check valve 200, and the valve is opened with the pressure difference set in advance.
- valve body 202 moves to the bottom wall side of the housing 204, whereby the inlet hole 201a and the outlet hole 204a communicate with each other to open the discharge passage 104a, and when the differential pressure becomes smaller than the valve opening differential pressure.
- the valve body 202 is seated on the valve seat 201b, the inlet hole 201a and the outlet hole 204a are not communicated, and the discharge passage 104a is closed.
- the valve opening differential pressure is preset by the urging force of the compression coil spring 203. Accordingly, when the differential pressure becomes smaller than the preset valve opening differential pressure, the discharge passage 104a is closed to prevent the refrigerant from flowing into the discharge chamber 142 from the high-pressure side external refrigerant circuit.
- the cylinder head 104 is provided with a differential pressure detecting means 250 for detecting the pressure difference between the upstream and downstream of the check valve 200 and detecting the flow rate of the refrigerant flowing through the discharge passage 104a.
- the check valve 200 also functions as a throttle for detecting the flow rate, and the check valve 200 and the differential pressure detecting means 250 constitute a flow rate detecting device.
- the variable capacity compressor 100 is suitable as a compressor having a flow rate detection device because the discharge capacity changes and the compressor is continuously operated and is hardly interrupted.
- the differential pressure detection means 250 will be described in detail later.
- the cylinder valve 104 is further provided with a control valve 300.
- the control valve 300 adjusts the opening of the pressure supply passage 145 that connects the discharge chamber 142 and the crank chamber 140 to control the amount of discharge gas introduced into the crank chamber 140.
- FIG. 4 shows the internal structure of the control valve 300.
- the control valve 300 is formed in the valve housing 301 and has a first pressure sensing chamber 302 communicating with the crank chamber 140 via the communication hole 301a, and one end opened to the first pressure sensing chamber 302, and via the communication hole 301b.
- a valve hole 301c whose other end opens in the valve chamber 303 communicating with the discharge chamber 142, and one end disposed in the valve chamber 303 open and close the valve hole 301c, and the other end is slidably supported by the support hole 301d.
- the cylindrical valve body 304 and the first pressure sensing chamber 302 function as pressure sensing means that receives the pressure of the crank chamber 140 through the communication hole 301a and evacuates the inside to provide a spring.
- a bellows assembly 305 that is connected to one end of the valve body 304 so that the bellows assembly 305 can be contacted / separated, and the other end is fixed to one end of the valve body 304; To the suction chamber 141 via And a second pressure sensing chamber 307 passing.
- the valve housing 301 is formed with a support hole 301d that slidably supports the other end portion of the valve body 304, and the valve body 304 is supported by the support hole 301d so as to be slidable with a minute gap. The other end is blocked from the valve chamber 303.
- the control valve 300 further includes a solenoid rod 304a formed integrally with the valve body 304 and having a movable core 308 press-fitted and fixed to an end portion separated from the valve body 304, and the solenoid rod 304a inserted therein, and the movable core 308 is separated by a predetermined gap.
- a fixed core 309 disposed between the fixed core 309 and the movable core 308.
- the spring 310 is disposed between the fixed core 309 and the movable core 308 to urge the movable core 308 in the valve opening direction, and the fixed core 309 and the movable core 308 are inserted.
- a cylindrical member 312 made of a non-magnetic material fixed to the solenoid housing 311, and an electromagnetic coil 313 surrounding the cylindrical member 312 and accommodated in the solenoid housing 311.
- control valve 300 is connected to the discharge chamber 142 so that the pressure Ps of the suction chamber 141 introduced through the communication hole 301e is maintained at a predetermined value determined by the current flowing through the electromagnetic coil 313 based on the external signal.
- the opening degree of the pressure supply passage 145 that communicates with the crank chamber 140 is adjusted to control the amount of discharge gas introduced into the crank chamber 140.
- the predetermined value can be varied from the outside by adjusting the current flowing through the electromagnetic coil 313.
- the refrigerant in the crank chamber 140 flows to the suction chamber 141 via the orifice 103 c provided in the pressure release passage 146 that connects the crank chamber 140 and the suction chamber 141. Therefore, the discharge capacity of the variable capacity compressor 100 can be variably controlled by changing the pressure of the crank chamber 140 by the control valve 300 and changing the inclination angle of the swash plate 111, that is, the stroke of the piston 136.
- the control valve 300 can optimally control the pressure in the suction chamber 141 according to the external environment.
- the pressure supply passage 145 is forcibly opened by turning off the energization of the electromagnetic coil 313 to control the discharge capacity of the variable capacity compressor 100 to the minimum. .
- the differential pressure detecting means 250 has a peripheral wall 251a and a bottom wall 251b, and a housing 251 having a cylinder portion in which a cylindrical space is formed, and an outer peripheral surface slidable on an inner peripheral surface of the peripheral wall 251a.
- a spool 252 supported at one end side to the bottom wall 251b, a compression coil spring 253 as an urging means for urging the spool 252 toward the bottom wall 251b at one end, and the housing 251 are fitted and fixed.
- a magnetic detection unit 256 for detecting the movement and is housed in a housing hole 104c formed in the cylinder head 104 and is retained by a retaining ring 153. It has been.
- a space in the housing 251 defined by one end side of the spool 252 and the bottom wall 251b is a first space 250a
- a space in the housing 251 defined by the other end side of the spool 252 and the support member 254 is a second space 250b.
- a plurality of communication holes 251c communicating with the first space 250a and a plurality of communication holes 251d communicating with the second space 250b are formed at intervals in the circumferential direction.
- Two O-rings 257a and 257b are disposed around the housing 251, and the space 104c1 in which the interior of the accommodation hole 104c communicates with the first space 250a is accommodated by accommodating the differential pressure detecting means 250 in the accommodation hole 104c. And a space 104c2 communicating with the second space 250b.
- the space 104c1 communicating with the first space 250a communicates with the upstream of the check valve 200, that is, with the discharge chamber 142 through the communication passage 104d.
- the communication path 104 d opens in the vicinity of the inlet hole 201 a of the check valve 200.
- the space 104c2 communicating with the second space 250b communicates with the discharge passage 104a downstream of the check valve 200 through the communication passage 104e.
- the pressure in the discharge chamber 142 upstream of the check valve 200 is introduced into the first space 250a by the first communication path constituted by the communication path 104d, the space 104c1, and the communication hole 251c, and the communication path 104e, the space 104c2, and the communication are communicated.
- the pressure in the discharge passage 104a downstream from the check valve 200 is introduced into the second space 250b by the second communication passage formed by the hole 251d.
- the pressure of the discharge chamber 142 upstream of the check valve 200 acts on one end surface of the spool 252, and the pressure of the discharge passage 104 a downstream of the check valve 200 acts on the other end surface of the spool 252. It moves in the housing 251 according to the differential pressure between the upstream and downstream of the check valve 200. Specifically, when the differential pressure decreases, the spool 252 moves toward the bottom wall 251b, and when the differential pressure increases, the spool 252 moves toward the support member 254.
- the magnetic detection unit 256 includes a Hall IC 256a serving as magnetic detection means, an electronic circuit 256b provided on a substrate, and an input / output terminal 256c embedded in a resin-molded housing. It is fixed to the housing 251.
- the spool 252 connects the large-diameter portion 252a having an outer peripheral surface that is slidably supported on the inner peripheral surface of the housing 251, the small-diameter portion 252b that accommodates the magnet 255, and the large-diameter portion 252a and the small-diameter portion 252b. And an annular connecting portion 252c.
- the housing 251 accommodates a first accommodation hole 251a1 having an inner peripheral surface on which the large diameter portion 252a of the spool is slidably supported and a small diameter portion 252b of the spool, and has a smaller diameter than the first accommodation hole 251a1.
- the second accommodation hole 251a2 that communicates with the communication hole 251c, and the annular regulation surface 251a3 that connects the first accommodation hole 251a1 and the second accommodation hole 251a2 from the inner peripheral surface of the first accommodation hole 251a1 toward the inside in the radial direction. And have.
- the connecting portion 252c of the spool is composed of an annular plane orthogonal to the axis of the peripheral wall 251a and an inclined surface outside thereof, and the regulating surface 251a3 is a plane orthogonal to the axis of the peripheral wall 251a, and the connecting portion 252c of the spool.
- the annular flat surface and the regulating surface 251a3 form a contact portion.
- the regulating surface 251a3 is a plane orthogonal to the axis of the peripheral wall 251a, the positioning accuracy of the spool 252 at the position where the connecting portion 252c contacts the regulating surface 251a3 is improved.
- the compression coil spring 253 biases the spool 252 with a predetermined biasing force when the spool connecting portion 252c abuts against the regulation surface 251a3 and the movement of the spool 252 is regulated.
- the minimum operating differential pressure of the spool 252 set by the urging force of the compression coil spring 253 is set substantially equal to the valve opening differential pressure of the check valve 200.
- the spool 252 operates in conjunction with the opening of the check valve 200, so that the flow rate can be detected even when the check valve 200 has a small opening.
- the minimum operating differential pressure of the spool 252 may be set smaller than the valve opening differential pressure of the check valve 200. With this setting, the flow rate can be reliably detected when the check valve 200 is open.
- the check valve 200 In the state where the variable capacity compressor 100 is operated, the check valve 200 is opened, and the refrigerant flows through the discharge passage 104a, the check valve 200 becomes a throttle and the difference between the upstream and downstream of the check valve 200 is different. Pressure is generated, and the spool connecting portion 252c moves away from the regulating surface 251a3, and the spool 252 moves to a position corresponding to the differential pressure.
- the refrigerant always leaks from the discharge chamber 142 to the discharge passage 104a downstream of the check valve 200 via the communication passage.
- the check valve 200 is stopped.
- the connecting portion 252c of the spool comes into contact with the regulating surface 251a3, and the first space passes through the gap between the inner peripheral surface of the housing 251 and the outer peripheral surface of the spool 252 by this contact portion.
- the communication between the 250a and the second space 250b is prevented. That is, the contact part substantially functions as a valve.
- variable displacement compressor 100 When the pressure downstream of the check valve 200 is higher than the upstream pressure, the variable displacement compressor 100 is stopped and left for a long period of time, and the control valve 300 is turned off to minimize the discharge capacity. It is conceivable that
- the regulation surface 251a3 formed in the housing 251 is a plane orthogonal to the axis of the peripheral wall 251a, but the regulation surface is not limited to this.
- an annular inclined surface may be used.
- the connecting portion 252c of the spool 252 and the regulating surface 251a3 of the housing 251 are in surface contact, but may be in line contact.
- the differential pressure detecting means is an integral unit of the magnetic detection unit 256, but the magnetic detection unit may be provided separately.
- the housing 251 that accommodates the spool 252 is a housing dedicated to the differential pressure detecting means, but the housing that accommodates the spool may be a housing member constituting a compressor.
- the housing that accommodates the spool may be a housing member constituting a compressor.
- an accommodation hole for accommodating a spool in the cylinder head may be formed directly.
- the check valve 200 is disposed in the cylinder head, but may be disposed in another housing member.
- the cylinder head 104 has the discharge chamber 142 at the center and the suction chamber 141 around the discharge chamber 142.
- the cylinder head has the suction chamber at the center and the discharge chamber around the suction chamber. It is also good.
- the compressor is a variable capacity compressor, but the flow rate detection device may be applied to any type of compressor.
- the flow rate detection device is provided in the compressor, but this may be provided in the refrigerant passage of the refrigeration device. In the embodiment, the flow rate detection device detects the flow rate of the refrigerant, but the target fluid is not limited.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Measuring Volume Flow (AREA)
Abstract
【課題】可変容量圧縮機の冷媒吐出流量等を検出する流量検出装置において、逆止弁を流量検出用の絞りと兼用して構成を簡素化しつつ、逆止弁の逆流防止機能を確保する。 【解決手段】 逆止弁の上流側圧力を一方の受圧面、下流側圧力を他方の受圧面に受け、これらの差圧と圧縮コイルばね253との釣り合いにより、ハウジング251内を摺動するスプール252と、スプール252の位置を検出して流量を検出するセンサ(磁気検出ユニット256)と、を備え、ハウジング251には、差圧が所定値以下のときに、スプール252を位置規制して、ハウジング251とスプール252との間の空隙を閉止する位置規制部(規制面251a3)を有する。
Description
本発明は、冷媒通路を流れる冷媒等の流体流量を検出する流量検出装置、及び該流量検出装置を備えた可変容量圧縮機に関する。
車両用空調装置に使用される可変容量圧縮機において、圧縮機の駆動負荷を検出するため、冷媒吐出流量を検出する装置を備えたものがある。
一方、上記可変容量圧縮機においては、駆動停止時等に外部冷媒回路から圧縮機への冷媒の逆流を抑制するため、逆止弁を備えたものがある。
一方、上記可変容量圧縮機においては、駆動停止時等に外部冷媒回路から圧縮機への冷媒の逆流を抑制するため、逆止弁を備えたものがある。
特許文献1には、冷媒吐出通路に弾性変形する絞りを設け、該絞りの弾性変形量に応じて流体の通過断面積を変更して冷媒流量を制御しつつ、弾性変形量に応じた絞りの上流側と下流側との前後差圧に基づいて冷媒流量を検出する機能を兼ね備え、さらに、絞りに上記逆止弁の機能を持たせることで、構成を簡素化できることが開示されている。
また、特許文献2には、絞りをバイパスして設けたシリンダ内に、絞りの上流と下流の差圧に応じてシリンダ内を摺動するスプールを嵌挿し、該スプールの位置を検出することにより、冷媒流量を検出する方式が開示されている。
しかし、特許文献1のように、絞りに逆止弁機能を持たせる場合、例えば特許文献2に示すようなスプールの位置を検出することにより冷媒流量を検出する方式では、スプール41の外周面(筒状部42)と密封室36の内周面との間の隙間を経由して逆止弁の上流側(流体供給孔47側)と下流側(流体供給孔50側)とが常時連通してしまうので、逆止弁が閉じても、逆止弁をバイパスして逆止弁の下流から上流へと冷媒が僅かながら流れる惧れがある。
例えば、可変容量圧縮機を長時間停止していた場合、周囲の環境温度の変化に伴って、圧縮機とエアコンシステムの熱交換器との間で温度差が生じ、エアコンシステム内部で圧力差が生じることがある。このような圧力差が生じると、逆止弁が閉じていてもスプールの外周面と密封室の内周面との間の隙間を経由して、熱交換器内の冷媒が可変容量圧縮機内部に移動し、可変容量圧縮機内部に液冷媒が貯留される惧れがある。特にクランク室に液冷媒が貯留されると、次に可変容量圧縮機を起動するときに、液冷媒が排出されるまでの間吐出容量が増大せず、エアコンシステムが直ちに機能しないという問題があった。
本発明は、逆止弁を流量検出用の絞りと兼用して構成を簡素化しつつ、逆止弁の逆流防止機能を確保できる流量検出装置を提供することを目的とする。
かかる目的を達成するため、本発明に係る流量検出装置は、上流側圧力と下流側圧力との差圧に応じて開閉する逆止弁を備えた流体通路を流通する流体の流量を検出する流量検出装置であって、一方の受圧面に前記逆止弁の上流側圧力、他方の受圧面に前記逆止弁の下流側圧力を受け、これらの差圧による力とスプリングの付勢力とが釣り合うように、シリンダ内を摺動するスプールと、前記スプールの位置を検出して前記流量を検出するセンサと、を備え、前記シリンダに、前記差圧が所定値以下のときに、前記スプールを該スプールの軸心方向において位置規制して、シリンダとスプールとの間の空隙を閉止する位置規制部を設けたことを特徴とする。
また、本発明に係る可変容量圧縮機は、吐出室と外部冷媒回路とを連通する吐出通路に、上記本発明に係る流量検出装置を備えたことを特徴とする。
本発明に係る流量検出装置によれば、逆止弁を流量検出用の絞りと兼用するため構成を簡素化できると共に、逆止弁の上流側圧力と下流側圧力との差圧が所定値以下のときに、スプールが位置規制されて、シリンダとスプールとの間の空隙が閉止されるため、逆止弁閉時に前記空隙からの流体の漏出が抑制され、逆止弁の逆流防止機能を確保することができる。
また、本発明に係る可変容量圧縮機によれば、上記のように簡素化された流量検出装置を圧縮機内に設けることにより、圧縮機本体構造を簡素化できると共に、圧縮機が停止される逆止弁の閉時に、外部冷媒回路からの冷媒の逆流による圧縮機内部への液冷媒の貯留を抑制でき、圧縮機の再起動直後からエアコンシステムを速やかに立ち上げることができる。一方、可変容量圧縮機は、圧縮機が間欠的に停止することが殆どないので、安定して流量検出が可能となり、流量検出装置を備える圧縮機として好適である。
以下に、本発明の実施形態を、図に基づいて説明する。図1は、本発明に係る可変容量圧縮機の内部構造を示す。可変容量圧縮機100は、クラッチレス圧縮機であって、周辺部に複数のシリンダボア101aを備えたシリンダブロック101と、シリンダブロック101の一端側に連結されたフロントハウジング102と、シリンダブロック101の他端側にバルブプレート103を介して連結されたシリンダヘッド104とを備えている。
シリンダブロック101と、フロントハウジング102とによって規定されるクランク室140内を横断して、駆動軸110が設けられ、該駆動軸110の軸線方向中心部の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112とリンク機構120を介して連結し、駆動軸110の軸線に対する傾角(傾斜角度)が可変に構成されている。
リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端側が第1連結ピン122を介して第1アーム112aに対して回動自在に連結され、他端側が第2連結ピン123を介して第2アーム111aに対して回動自在に連結されたリンクアーム121から構成されている。
斜板111の貫通孔111bは斜板111が最大傾角と最小傾角の範囲で傾動可能となるように形状が形成されており、貫通孔111bには駆動軸110と当接する最小傾角規制部が形成されている。斜板111が駆動軸110に対して直交するときの斜板の傾角を0°とした場合、貫通孔111bの最小傾角規制部は斜板111をほぼ0°まで傾角変位可能なように形成されている。また斜板111の最大傾角は斜板111の一部がロータ112に当接することで規制される。
ロータ112と斜板111の間には斜板111を最小傾角に向けて最小傾角に至るまで付勢する傾角減少バネ114が装着され、また斜板111とバネ支持部材116との間には斜板111の傾角を増大する方向に付勢する傾角増大バネ115が装着されている。最小傾角において傾角増大バネ115の付勢力は傾角減少バネ114の付勢力より大きく設定されているので、斜板111は駆動軸110が回転していないときは、傾角減少バネ114と傾角増大バネ115の付勢力がバランスする傾角に位置する。
駆動軸110の一端は、フロントハウジング102の外側に突出したボス部102a内を貫通して外側まで延在し、図示しない動力伝達装置に連結されている。尚、駆動軸110とボス部102aとの間には、軸封装置130が挿入され、内部と外部とを遮断している。駆動軸110とロータ112の連結体はラジアル方向に軸受131、132で支持され、スラスト方向に軸受133、スラストプレート134で支持されている。尚、駆動軸110のスラストプレート134の当接部とスラストプレート134との隙間は調整ネジ135により所定の隙間に調整されている。したがって外部駆動源からの動力が動力伝達装置に伝達され、駆動軸110は動力伝達装置と同期して回転可能となっている。
シリンダボア101a内には、ピストン136が配置され、ピストン136のクランク室140側に突出している端部の内側空間には、斜板111の外周部が収容され、斜板111は一対のシュー137を介して、ピストン136と連動する構成となっている。したがって斜板111の回転によりピストン136がシリンダボア101a内を往復動することが可能となる。
シリンダヘッド104には、中央部に吐出室142と、吐出室142を環状に取り囲む吸入室141が形成され、吸入室141は、シリンダボア101aとは、バルブプレート103に設けられた吸入孔103a、吸入弁(図示せず)を介して連通し、吐出室142は、シリンダボア101aとは、吐出弁(図示せず)、バルブプレート103に設けられた吐出孔103bを介して連通している。
吐出弁(図示せず)はリテーナ150によりその最大開度が規制され、吸入弁(図示せず)はシリンダボア101aの端面に形成された凹部(図示せず)によりその最大開度が規制されている。吸入弁(図示せず)、バルブプレート103、吐出弁(図示せず)、リテーナ150は締結部材151により締結されて一体化されている。締結部材151は、例えば、ボルト、ナット、座金で構成されている。
フロントハウジング102、センターガスケット(図示せず)、シリンダブロック101、シリンダガスケット(図示せず)、バルブプレート103、ヘッドガスケット(図示せず)、シリンダヘッド104が複数の通しボルト105によって締結されて圧縮機ハウジングが形成される。
シリンダヘッド104には、エアコンシステムの低圧側冷媒回路と吸入室141とを連通する吸入通路(図示せず)が形成され、これによって吸入室141はエアコンシステムの低圧側冷媒回路と接続されている。
また吐出室142は収容室104b及び吐出通路104aを介してエアコンシステムの高圧側外部冷媒回路と接続されている。吐出通路104aはシリンダヘッド104の径方向外側から吸入室141を横断して吐出室142に向かって延設されており、収容室104bは、上流側は吐出室142と、下流側は吐出通路104aと連通するよう配置されている。
シリンダヘッド104には、吐出通路104aを開閉する逆止弁200が配設されている。図2は、逆止弁200周辺部を拡大して示し、図3は、逆止弁200の内部構造を示す。
逆止弁200は、入口孔201aと、弁座201bと、が形成された弁座形成部材201と、一端面が弁座201bに接離する弁体202と、弁体202を弁座201bに向けて付勢する圧縮コイルバネ203と、弁体202と、圧縮コイルバネ203とを収容し、周壁に複数の出口孔204aが形成され、開放端が弁座形成部材201に嵌合固定される有底筒状のハウジング204と、Oリング205から構成され、シリンダヘッド104に形成された収容室104bに、入口孔201aが上流側の吐出孔142と連通し、出口孔204aが下流側の吐出通路104aと連通するよう配設されて止め輪152で抜け止めされている。
ハウジング204の底壁には貫通孔204bが形成され、弁体202の他端面には収容室104b、つまり逆止弁200より下流の吐出通路104aの圧力が作用しており、また弁体202の一端面には入口孔201aから逆止弁200より上流の圧力となる吐出室142の圧力が作用している。したがって逆止弁200は、吐出通路104aを弁体202に作用する吐出室142と逆止弁200より下流の吐出通路104aとの差圧に応じて開閉し、差圧が予め設定された開弁差圧より大きくなると弁体202がハウジング204の底壁側に移動することにより、入口孔201aと出口孔204aとが連通して吐出通路104aを開放し、差圧が開弁差圧より小さくなると弁体202が弁座201bに着座することにより入口孔201aと出口孔204aとが連通されなくなり、吐出通路104aを閉塞する。開弁差圧は圧縮コイルバネ203の付勢力によって予め設定されている。従って、差圧が予め設定された開弁差圧より小さくなると吐出通路104aが閉塞されて高圧側外部冷媒回路から吐出室142への冷媒の流入を防止している。
またシリンダヘッド104には、逆止弁200の上流と下流の圧力差を検出して、吐出通路104aを流れる冷媒の流量を検出するための差圧検出手段250が配設されている。
逆止弁200は流量検出のための絞りとしての機能を兼ねており、逆止弁200と差圧検出手段250とで流量検出装置を構成している。可変容量圧縮機100は、吐出容量が変化して圧縮機が連続的に運転され、断続することがほとんど無いので、流量検出装置を備える圧縮機として好適である。尚、差圧検出手段250については後で詳述する。
シリンダヘッド104にはさらに制御弁300が配設されている。制御弁300は吐出室142とクランク室140とを連通する圧力供給通路145の開度を調整し、クランク室140への吐出ガス導入量を制御する。
図4は、制御弁300の内部構造を示す。制御弁300は、バルブハウジング301に形成され、連通孔301aを介してクランク室140と連通する第1感圧室302と、第1感圧室302に一端が開口し、連通孔301bを介して吐出室142と連通する弁室303に他端が開口する弁孔301cと、弁室303に配設された一端が弁孔301cを開閉し他端部が支持孔301dに摺動可能に支持された円筒形状の弁体304と、第1感圧室302に配設され、連通孔301aを介してクランク室140の圧力を受圧し、内部を真空にしてバネを配設した感圧手段として機能するベローズ組立体305と、一端にベローズ組立体305が接離可能に連結し他端が弁体304の一端に固定された連結部306と、弁体304の他端が配設され連通孔301eを介して吸入室141に連通する第2感圧室307とを備えている。
バルブハウジング301には弁体304の他端部を摺動可能に支持する支持孔301dが形成され、弁体304が支持孔301dに微小隙間で摺動可能に支持されることにより弁体304の他端は弁室303から遮断されている。
制御弁300は更に、弁体304と一体形成され弁体304から離隔する端部に可動コア308が圧入固定されたソレノイドロッド304aと、ソレノイドロッド304aを内挿し、所定隙間を隔てて可動コア308に対向配置された固定コア309と、固定コア309と可動コア308の間に配設され、可動コア308を開弁方向に付勢するばね310と、固定コア309と可動コア308とを内挿してソレノイドハウジング311に固定された非磁性体からなる筒状部材312と、筒状部材312を取り囲み、ソレノイドハウジング311に収容された電磁コイル313とから構成されている。
制御弁300の外周部には、クランク室140の圧力が作用する領域、吐出室142の圧力が作用する領域及び吸入室141の圧力が作用する領域を区画する3つのOリング320a、320b、320cが配設されている。
ベローズ組立体305のベローズ伸縮方向の有効圧力受圧面積Sbと、弁体304に作用する弁孔301c側より受けるクランク室140の圧力受圧面積Svと、第2感圧室307において弁体304に作用する吸入室141の圧力受圧面積Srとをほぼ同一値に設定しているので、弁体304に作用する力は次式(1)で表される。
Ps=[F+f-F(i)]/Sb・・・(1)
Ps:吸入室(第2空間)の圧力
F:ベローズ付勢力
f:圧縮コイルばね310の付勢力
F(i):電磁力
Sb:ベローズ有効圧力受圧面積=クランク室の圧力受圧面積Sv=吸入室の圧力受圧面積Sr
Ps:吸入室(第2空間)の圧力
F:ベローズ付勢力
f:圧縮コイルばね310の付勢力
F(i):電磁力
Sb:ベローズ有効圧力受圧面積=クランク室の圧力受圧面積Sv=吸入室の圧力受圧面積Sr
したがって制御弁300は、連通孔301eを介して導入された吸入室141の圧力Psが外部信号に基づいて電磁コイル313に流れる電流で決定される所定の値に維持されるように吐出室142とクランク室140とを連通する圧力供給通路145の開度を調整し、クランク室140への吐出ガス導入量を制御する。所定の値は電磁コイル313に流れる電流を調整することにより外部から可変可能である。
またクランク室140内の冷媒は、クランク室140と吸入室141とを連通する放圧通路146に配設されたオリフィス103cを経由して吸入室141へ流れる。
したがって制御弁300によりクランク室140の圧力を変化させ、斜板111の傾角、つまりピストン136のストロークを変化させることにより可変容量圧縮機100の吐出容量を可変制御することができる。
したがって制御弁300によりクランク室140の圧力を変化させ、斜板111の傾角、つまりピストン136のストロークを変化させることにより可変容量圧縮機100の吐出容量を可変制御することができる。
エアコン作動時、つまり可変容量圧縮機100の作動状態では、外部信号に基づいて電磁コイル313の通電量が調整され、吸入室141の圧力が所定の値になるように吐出容量が可変制御される。制御弁300は、外部環境に応じて、吸入室141の圧力を最適制御することができる。
またエアコン非作動時、つまり可変容量圧縮機100の非作動状態では、電磁コイル313の通電をOFFすることにより圧力供給通路145を強制開放し、可変容量圧縮機100の吐出容量を最小に制御する。
次に、差圧検出手段を、主に図2及び図5に基づいて説明する。差圧検出手段250は、周壁251aと底壁251bとを有し、内部に円筒状の空間が形成されたシリンダ部を有するハウジング251と、周壁251aの内周面に外周面が摺動可能に支持され、一端側が底壁251bに差し向けられたスプール252と、一端がスプール252を底壁251bに向けて付勢する付勢手段としての圧縮コイルバネ253と、ハウジング251に内嵌合して固定され、圧縮コイルバネ253の他端を受ける支持部材254と、スプール252の一端側に固定された磁石255と、底壁251bを挟んで磁石255に対向して配置され、磁石255の磁束密度の変化を検出する磁気検出ユニット256と、を一体的に備え、シリンダヘッド104に形成された収容孔104cに収容されて止め輪153で抜け止めされている。
スプール252の一端側と底壁251bとで区画されるハウジング251内の空間を第1空間250a、スプール252の他端側と支持部材254とで区画されるハウジング251内の空間を第2空間250bとしたときに、ハウジング251の径方向には第1空間250aと連通する連通孔251c及び第2空間250bと連通する連通孔251dがそれぞれ周方向に間隔を置いて複数形成されている。
ハウジング251の周囲には2つのOリング257a、257bが配設されており、差圧検出手段250が収容孔104cに収容されることによって収容孔104cの内部が第1空間250aと連通する空間104c1と、第2空間250bと連通する空間104c2に区画される。第1空間250aと連通する空間104c1は、連通路104dによって逆止弁200の上流、つまり吐出室142と連通している。具体的には連通路104dは逆止弁200の入口孔201aの近傍に開口している。また第2空間250bと連通する空間104c2は、連通路104eによって逆止弁200の下流の吐出通路104aと連通している。
したがって連通路104d、空間104c1及び連通孔251cによって構成される第1連通路によって、逆止弁200より上流の吐出室142の圧力が第1空間250aに導入され、連通路104e、空間104c2及び連通孔251dによって構成される第2連通路によって、逆止弁200より下流の吐出通路104aの圧力が第2空間250bに導入されている。
したがってスプール252の一端面には逆止弁200より上流の吐出室142の圧力が作用し、スプール252の他端面には逆止弁200より下流の吐出通路104aの圧力が作用し、スプール252は逆止弁200の上流と下流との差圧に応じてハウジング251内を移動する。具体的には、差圧が小さくなるとスプール252は底壁251b側へ移動し、差圧が大きくなるとスプール252は、支持部材254側へ移動する。
スプール252の移動に伴って磁石255の位置が変化し、これによって磁気検出ユニット256で検出される磁石255の磁束密度が変化するので、逆止弁200の上流と下流との差圧が検出できる。磁気検出ユニット256は、磁気検出手段としてのホールIC256aと、基板上に設けられた電子回路256bと、入出力端子256cと、を樹脂成型されたハウジングに埋設したものであり、磁気検出ユニット256はハウジング251に固定されている。
スプール252は、ハウジング251の内周面に摺動可能に支持される外周面を有する大径部252aと、磁石255を収容する小径部252bと、大径部252aと小径部252bとを接続する環状の接続部252cとを有している。またハウジング251内は、スプールの大径部252aが摺動可能に支持される内周面を有する第1収容孔251a1と、スプールの小径部252bを収容し、第1収容孔251a1より小径であって連通孔251cが連通する第2収容孔251a2と、第1収容孔251a1の内周面から径方向内側に向かい、第1収容孔251a1と第2収容孔251a2とを接続する環状の規制面251a3とを有している。
スプール252が底壁251bに向かって移動すると、スプールの接続部252cが規制面251a3に当接して、周壁251aの軸線方向と同じであるスプール252の軸心方向の底壁251b側へのスプール252の移動が規制される。スプールの接続部252cは周壁251aの軸線と直交する環状の平面とその外側の傾斜面とで構成され、また規制面251a3は周壁251aの軸線と直交する平面となっており、スプールの接続部252cの環状の平面と規制面251a3とが当接部を成している。
規制面251a3は周壁251aの軸線と直交する平面となっているので、スプール252の、接続部252cが規制面251a3に当接する位置の位置決め精度が向上する。
スプールの接続部252cが規制面251a3に当接してスプール252の移動が規制されているときに、圧縮コイルバネ253はスプール252を所定の付勢力で付勢している。圧縮コイルバネ253の付勢力によって設定されるスプール252の最小作動差圧は、逆止弁200の開弁差圧とほぼ同等に設定されている。これによって逆止弁200の開弁に連動してスプール252が動作するので、逆止弁200の開度が小さい状態でも流量検出が可能となる。
尚、スプール252の最小作動差圧は、逆止弁200の開弁差圧より小さく設定しても良い。このように設定すれば逆止弁200が開弁している状態では確実に流量検出が可能となる。
可変容量圧縮機100が作動し、逆止弁200が開弁して吐出通路104aを冷媒が流れている状態では、逆止弁200が絞りとなって逆止弁200の上流と下流とで差圧が発生しており、スプールの接続部252cが規制面251a3から離間してスプール252が差圧に応じた位置に移動する。このとき第1連通路、第1空間250a、ハウジング251の内周面(第1収容孔251a1)とスプール252の外周面(大径部252a)との間の隙間、第2空間250b、第2連通路を経由して、吐出室142から逆止弁200より下流の吐出通路104aに冷媒が常時漏出している。
また可変容量圧縮機100が停止し、逆止弁200の上流と下流とで差圧が発生していない場合、あるいは逆止弁200の下流の圧力が上流の圧力より高い場合は逆止弁200が閉弁し、このときスプールの接続部252cは規制面251a3に当接して、この当接部によってハウジング251の内周面とスプール252の外周面との間の隙間を経由して第1空間250aと第2空間250bとが連通することが阻止されている。つまり当接部は、実質的に弁として機能している。
したがって逆止弁200の下流の圧力が上流の圧力より高くなっても、ハウジング251の内周面とスプール252の外周面との間の隙間を経由して逆止弁200より下流の吐出通路104aから吐出室142に向けて冷媒が逆流することが無く、逆止弁200をバイパスする流路が差圧検出手段250内部に形成されない。つまり逆止弁200の機能を損なうことが回避されている。
尚、逆止弁200の下流の圧力が上流の圧力より高くなる場合は、可変容量圧縮機100を停止し長期間放置した場合の他に、制御弁300の通電をOFFして吐出容量を最小とするとき等が考えられる。
また、以上示した実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。
以下、上記実施形態の様々な変形態様について説明する。実施形態ではハウジング251内に形成した規制面251a3は周壁251aの軸線と直交する平面としたが、規制面はこれに限定されない。例えば環状の傾斜面としても良い。また規制面をハウジングとは別部材で形成しても良い。
実施形態ではスプール252の接続部252cとハウジング251の規制面251a3は面接触としたが、線接触としても差し支えない。
これにより、スプール252が規制面に当接しているときにスプール252の受圧面が明確に規定でき、スプールが規制面から離間する最小作動差圧の設定精度向上に寄与する。
これにより、スプール252が規制面に当接しているときにスプール252の受圧面が明確に規定でき、スプールが規制面から離間する最小作動差圧の設定精度向上に寄与する。
実施形態では差圧検出手段は磁気検出ユニット256を一体化したものであるが、磁気検出ユニットを分離して配設するようにしても良い。
実施形態ではスプール252を収容するハウジング251は差圧検出手段専用のハウジングであるが、スプールを収容するハウジングは圧縮機を構成するハウジング部材としても良い。例えばシリンダヘッドにスプールを収容する収容孔を直接形成しても良い。
実施形態では、逆止弁200はシリンダヘッドに配設しているが、他のハウジング部材に配設するようにしても良い。
実施形態では、中央部に吐出室142、吐出室142の周囲に吸入室141が形成されたシリンダヘッド104としたが、中央部に吸入室、吸入室の周囲に吐出室が形成されたシリンダヘッドとしても良い。
実施形態では、中央部に吐出室142、吐出室142の周囲に吸入室141が形成されたシリンダヘッド104としたが、中央部に吸入室、吸入室の周囲に吐出室が形成されたシリンダヘッドとしても良い。
実施形態では、圧縮機は可変容量圧縮機であるが、流量検出装置はどのようなタイプの圧縮機に適用しても良い。
実施形態では、流量検出装置は圧縮機に備えられているが、これを冷凍装置の冷媒通路に備えるようにしても良い。
実施形態では、流量検出装置は冷媒の流量を検出するものであるが、対象とする流体は限定されない。
実施形態では、流量検出装置は冷媒の流量を検出するものであるが、対象とする流体は限定されない。
100 可変容量圧縮機
104a 吐出通路
104c1 空間
104c2 空間
104d 連通路
104e 連通路
142 吐出室
200 逆止弁
250 差圧検出手段
250a 第1空間
250b 第2空間
251 ハウジング
251a1 第1収容孔
251a2 第2収容孔
251a3 規制面
251c 連通孔
251d 連通孔
252 スプール
252b 小径部
252c 接続部
252d 環状溝
253 圧縮コイルバネ
255 磁石
256 磁気検出ユニット
300 制御弁
104a 吐出通路
104c1 空間
104c2 空間
104d 連通路
104e 連通路
142 吐出室
200 逆止弁
250 差圧検出手段
250a 第1空間
250b 第2空間
251 ハウジング
251a1 第1収容孔
251a2 第2収容孔
251a3 規制面
251c 連通孔
251d 連通孔
252 スプール
252b 小径部
252c 接続部
252d 環状溝
253 圧縮コイルバネ
255 磁石
256 磁気検出ユニット
300 制御弁
Claims (6)
- 上流側圧力と下流側圧力との差圧に応じて開閉する逆止弁を備えた流体通路を流通する流体の流量を検出する流量検出装置であって、一方の受圧面に前記逆止弁の上流側圧力、他方の受圧面に前記逆止弁の下流側圧力を受け、これらの差圧による力とスプリングの付勢力とが釣り合うように、シリンダ内を摺動するスプールと、前記スプールの位置を検出して前記流量を検出するセンサと、を備え、前記シリンダに、前記差圧が所定値以下のときに、前記スプールを該スプールの軸心方向において位置規制して、シリンダとスプールとの間の空隙を閉止する位置規制部を設けたことを特徴とする、流量検出装置。
- 前記位置規制部は、前記シリンダの周縁部に環状に設けられ、前記スプールの周縁部を当接させてシリンダとスプールとの間の空隙を閉止する規制面である、請求項1に記載の流量検出装置。
- 前記規制面は、前記シリンダの周壁の軸線と直交する平面である、請求項2に記載の流量検出装置。
- 前記規制面とスプールの周縁部とは、環状に線接触して当接するように形成されている、請求項2に記載の流量検出装置。
- 前記スプールの前記位置規制部から離間する最小作動圧は、前記逆止弁の開弁圧と同じかそれより小さく設定される、請求項1又は請求項2に記載の流量検出装置。
- 吐出室と外部冷媒回路とを連通する吐出通路に、請求項1~請求項5のいずれか1つに記載の流量検出装置を備えたことを特徴とする、可変容量圧縮機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/108,088 US20160320114A1 (en) | 2013-12-26 | 2014-12-18 | Flow rate measuring device and variable displacement compressor |
DE112014005988.9T DE112014005988T5 (de) | 2013-12-26 | 2014-12-18 | Durchflussmengenmesseinrichtung und Kompressor mit variabler Verdrängung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013268650A JP6228003B2 (ja) | 2013-12-26 | 2013-12-26 | 流量検出装置及び可変容量圧縮機 |
JP2013-268650 | 2013-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098697A1 true WO2015098697A1 (ja) | 2015-07-02 |
Family
ID=53478556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083563 WO2015098697A1 (ja) | 2013-12-26 | 2014-12-18 | 流量検出装置及び可変容量圧縮機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160320114A1 (ja) |
JP (1) | JP6228003B2 (ja) |
DE (1) | DE112014005988T5 (ja) |
WO (1) | WO2015098697A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108700051A (zh) * | 2016-01-18 | 2018-10-23 | 尼得科环球设备德国有限公司 | 检测冷却剂压缩机阀闭锁的方法及冷却剂压缩机的控制系统 |
WO2020107969A1 (zh) * | 2018-11-28 | 2020-06-04 | 利欧集团浙江泵业有限公司 | 一种泵 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096083A1 (en) * | 2011-12-19 | 2013-06-27 | Carrier Corporation | Hydraulic transport refrigeration system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4011650A (en) * | 1973-10-01 | 1977-03-15 | International Telephone And Telegraph Corporation | Cold working process |
JPS62259016A (ja) * | 1986-04-25 | 1987-11-11 | Tokyo Keiki Co Ltd | 流量測定装置 |
JP2008107282A (ja) * | 2006-10-27 | 2008-05-08 | Toyota Industries Corp | 圧縮機における冷媒流量検出構造 |
JP2008121636A (ja) * | 2006-11-15 | 2008-05-29 | Toyota Industries Corp | 圧縮機における冷媒流量検出構造 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205666A (ja) * | 1999-01-12 | 2000-07-28 | Toyota Autom Loom Works Ltd | 空調装置 |
JP4096491B2 (ja) * | 2000-03-15 | 2008-06-04 | 株式会社デンソー | 冷凍サイクル装置 |
JP2001349624A (ja) * | 2000-06-08 | 2001-12-21 | Toyota Industries Corp | 空調装置及び容量可変型圧縮機の容量制御弁 |
JP4081965B2 (ja) * | 2000-07-07 | 2008-04-30 | 株式会社豊田自動織機 | 容量可変型圧縮機の容量制御機構 |
DE10210158A1 (de) * | 2002-03-07 | 2003-09-18 | Bosch Gmbh Robert | Zylinder-Kolbentrieb |
US7364408B2 (en) * | 2003-05-20 | 2008-04-29 | Delphi Technologies, Inc. | Crank case shut off valve |
JP2006105007A (ja) * | 2004-10-04 | 2006-04-20 | Toyota Industries Corp | 可変容量型圧縮機における容量制御機構 |
JP2006177300A (ja) * | 2004-12-24 | 2006-07-06 | Toyota Industries Corp | 可変容量型圧縮機における容量制御機構 |
JP2008038833A (ja) * | 2006-08-09 | 2008-02-21 | Calsonic Kansei Corp | 可変容量圧縮機の制御装置及び可変容量圧縮機の制御方法 |
EP2112475B1 (en) * | 2008-04-21 | 2012-06-27 | Parker Hannifin AB | Sensor arrangement |
JP5182393B2 (ja) * | 2011-03-31 | 2013-04-17 | 株式会社豊田自動織機 | 可変容量型圧縮機 |
KR101120841B1 (ko) * | 2012-01-05 | 2012-03-16 | 김기연 | 차량용 가변용량 압축기의 체크밸브 |
JP6082548B2 (ja) * | 2012-09-07 | 2017-02-15 | 日立オートモティブシステムズ株式会社 | 可変容量形ポンプ |
JP6164135B2 (ja) * | 2014-03-27 | 2017-07-19 | 株式会社豊田自動織機 | 圧縮機 |
-
2013
- 2013-12-26 JP JP2013268650A patent/JP6228003B2/ja active Active
-
2014
- 2014-12-18 US US15/108,088 patent/US20160320114A1/en not_active Abandoned
- 2014-12-18 DE DE112014005988.9T patent/DE112014005988T5/de not_active Ceased
- 2014-12-18 WO PCT/JP2014/083563 patent/WO2015098697A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4011650A (en) * | 1973-10-01 | 1977-03-15 | International Telephone And Telegraph Corporation | Cold working process |
JPS62259016A (ja) * | 1986-04-25 | 1987-11-11 | Tokyo Keiki Co Ltd | 流量測定装置 |
JP2008107282A (ja) * | 2006-10-27 | 2008-05-08 | Toyota Industries Corp | 圧縮機における冷媒流量検出構造 |
JP2008121636A (ja) * | 2006-11-15 | 2008-05-29 | Toyota Industries Corp | 圧縮機における冷媒流量検出構造 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108700051A (zh) * | 2016-01-18 | 2018-10-23 | 尼得科环球设备德国有限公司 | 检测冷却剂压缩机阀闭锁的方法及冷却剂压缩机的控制系统 |
WO2020107969A1 (zh) * | 2018-11-28 | 2020-06-04 | 利欧集团浙江泵业有限公司 | 一种泵 |
Also Published As
Publication number | Publication date |
---|---|
DE112014005988T5 (de) | 2016-09-22 |
JP2015125041A (ja) | 2015-07-06 |
JP6228003B2 (ja) | 2017-11-08 |
US20160320114A1 (en) | 2016-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3432994B2 (ja) | 可変容量型圧縮機用制御弁 | |
JP4242624B2 (ja) | 容量制御弁及びその制御方法 | |
JP3728387B2 (ja) | 制御弁 | |
JP3432995B2 (ja) | 可変容量型圧縮機用制御弁 | |
WO2016088737A1 (ja) | 可変容量圧縮機 | |
US11536389B2 (en) | Electromagnetic valve | |
KR20130119354A (ko) | 가변 용량 압축기용 제어 밸브 | |
JP2000161234A (ja) | 容量可変型圧縮機及び容量可変型圧縮機の容量制御弁 | |
EP3239520B1 (en) | Control valve for variable displacement compressor | |
JP6228003B2 (ja) | 流量検出装置及び可変容量圧縮機 | |
JP2002285956A (ja) | 容量可変型圧縮機の制御弁 | |
JPH1162825A (ja) | 可変容量型圧縮機用制御弁 | |
JP3254872B2 (ja) | クラッチレス片側ピストン式可変容量圧縮機 | |
JP2000009045A (ja) | 容量可変型圧縮機の制御弁、容量可変型圧縮機及び設定吸入圧の可変設定方法 | |
JP2002054561A (ja) | 容量可変型圧縮機の制御弁及び容量可変型圧縮機 | |
JPWO2020110925A1 (ja) | 容量制御弁 | |
US20110076161A1 (en) | Displacement Control System for Variable Displacement Compressor | |
JP2004116349A (ja) | 可変容量圧縮機用容量制御弁 | |
EP1637736A2 (en) | Control valve for variable displacement compressor | |
WO2017208835A1 (ja) | 可変容量圧縮機 | |
JPWO2002101237A1 (ja) | 可変容量圧縮機 | |
US6638026B2 (en) | Control valve for variable displacement compressor | |
JP3987269B2 (ja) | 可変容量圧縮機用制御弁 | |
JP6085791B2 (ja) | 流量センサ | |
JP4082802B2 (ja) | 可変容量型圧縮機用制御弁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873388 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15108088 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014005988 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14873388 Country of ref document: EP Kind code of ref document: A1 |