WO2015098226A1 - 撮像装置および撮像レンズ - Google Patents

撮像装置および撮像レンズ Download PDF

Info

Publication number
WO2015098226A1
WO2015098226A1 PCT/JP2014/076523 JP2014076523W WO2015098226A1 WO 2015098226 A1 WO2015098226 A1 WO 2015098226A1 JP 2014076523 W JP2014076523 W JP 2014076523W WO 2015098226 A1 WO2015098226 A1 WO 2015098226A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
imaging
lenses
group lens
Prior art date
Application number
PCT/JP2014/076523
Other languages
English (en)
French (fr)
Inventor
泰英 二瓶
正樹 田村
賢志 鍋田
大午 桂木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/106,352 priority Critical patent/US10915997B2/en
Priority to EP14873292.8A priority patent/EP3088932A4/en
Priority to JP2015554616A priority patent/JP6558248B2/ja
Priority to CN201480068952.5A priority patent/CN105829941B/zh
Publication of WO2015098226A1 publication Critical patent/WO2015098226A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present disclosure relates to an imaging device using an imaging lens. More specifically, an imaging device suitable for a small-sized imaging device such as a camera-equipped mobile phone using a solid-state imaging device such as CMOS and having both high image quality and thinness, and an imaging used for such an imaging device About the lens.
  • CCDs charge coupled devices
  • CMOSs complementary metal-oxide semiconductors
  • the imaging device such as a camera-equipped mobile phone
  • the number of pixels of the imaging device has been increased, and a model equipped with a high pixel imaging device of 10,000,000 pixels or more is also spread. Therefore, high lens performance corresponding to such a high pixel solid-state imaging device is also required as an imaging lens to be mounted.
  • Patent Document 1 and Patent Document 2 described above have descriptions regarding an imaging device having an imaging lens having a five-lens configuration corresponding to the current high pixel imaging device.
  • a lens system having a positive refractive power in the front group and a lens system having a negative refractive power in the rear group are used to suppress the overall optical length, and By correcting various aberrations with a spherical lens group in a well-balanced manner, an imaging apparatus is realized that is small, thin, wide angle, and has high optical performance.
  • the imaging lens mounted on an electronic device equipped with an imaging device is required to be further miniaturized and thinned, and the overall length of the imaging lens is further shortened. Desired.
  • the total length of the imaging lens is further reduced in order to further reduce the total length in the imaging device described in the above-mentioned patent documents, distortion of off-axis aberration, coma aberration, and field curvature become insufficiently corrected. It becomes difficult to secure necessary optical performance.
  • the image pickup lens can correct the distortion caused by the image pickup lens whose overall length is shortened, and obtain the good optical performance corresponding to the high pixel image pickup element, and the image pickup which can achieve the downsizing and thinning of the whole apparatus. It is desirable to provide an apparatus.
  • An imaging apparatus includes an imaging lens, an imaging element that converts an optical image formed on an imaging surface by the imaging lens into an electrical signal, and distortion of an image captured by the imaging element. And an arithmetic unit for correcting an aberration.
  • the imaging lens has, in order from the object side, a front lens group system having positive refractive power and negative refractive power, and the lens surface closest to the image side is concave toward the image side near the optical axis, and the periphery And a rear lens group having a convex shape on the image side, and the following conditional expressions are satisfied. 5 (%) ⁇ OD Max ⁇ 20 (%) ... (1) However, OD Max : The maximum value of distortion in the imaging area of the imaging lens.
  • An imaging lens includes, in order from the object side, a front group lens system having positive refracting power and negative refracting power, and an image side lens surface is the image in the vicinity of the optical axis. It is composed of a rear lens group that is concave on the side and convex on the image side in the peripheral part, and satisfies the following conditional expression. 5 (%) ⁇ OD Max ⁇ 20 (%) ... (1) However, OD Max : The maximum value of distortion in the imaging area of the imaging lens.
  • the imaging lens according to an embodiment of the present disclosure is preferably used in combination with an imaging device including a computing unit that corrects distortion of an image captured by an imaging element.
  • the power arrangement of the lens system and the lens shape can be optimized, and distortion aberration in a predetermined range that can shorten the total length is intentionally generated. Aberration is corrected in a well-balanced manner. Further, in the imaging device according to the embodiment of the present disclosure, distortion caused by the imaging lens designed to reduce the total length is corrected by the computing unit.
  • the power arrangement of the lens system and the lens shape are optimized, and distortion in a predetermined range is intentionally generated, and other aberrations are corrected in a balanced manner. Therefore, the overall length can be shortened. Further, according to the imaging device according to the embodiment of the present disclosure, since the distortion aberration caused by the imaging lens in which the total length is shortened is corrected by the computing unit, it is preferable for the imaging element having high pixels. The size and thickness of the entire apparatus can be reduced while achieving good optical performance. In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
  • FIG. 1 is a block diagram illustrating an exemplary configuration of an imaging device according to an embodiment of the present disclosure. It is a lens sectional view showing the 1st example of composition of an imaging lens concerning one embodiment of this indication.
  • FIG. 5 is an aberration diagram showing various aberrations in a numerical value example 1 in which specific numerical values are applied to the imaging lens shown in FIG. 2. It is lens sectional drawing which shows the 2nd structural example of an imaging lens.
  • FIG. 5 is an aberration diagram showing various aberrations in a second numerical example in which specific numerical values are applied to the imaging lens shown in FIG. 4. It is lens sectional drawing which shows the 3rd structural example of an imaging lens.
  • FIG. 1 shows a configuration example of an imaging device according to an embodiment of the present disclosure.
  • the imaging device according to the present embodiment includes an imaging lens 300, an imaging element 301, and a computing unit 302.
  • the imaging element 301 converts an optical image formed on the imaging plane IMG by the imaging lens 300 into an electrical signal, and is formed of, for example, a solid-state imaging element such as a CCD or a CMOS.
  • the imaging surface IMG of the imaging lens 300 is disposed to coincide with the imaging surface of the imaging element 301.
  • the computing unit 302 acquires an image captured by the imaging element 301 and performs various types of image processing.
  • the arithmetic unit 302 acquires an image acquired by the image pickup device 301, and a distortion image correction unit which outputs an image subjected to image processing to correct distortion with respect to the acquired image. And 304.
  • the imaging device can be widely applied as a camera unit of a digital mobile device such as a camera-equipped mobile phone, a PDA (Personal Digital Assistant) incorporating a camera, a tablet terminal, etc. is there.
  • a digital mobile device such as a camera-equipped mobile phone, a PDA (Personal Digital Assistant) incorporating a camera, a tablet terminal, etc. is there.
  • the present invention is also applicable to digital still cameras and digital video cameras.
  • FIG. 2 shows a first configuration example (imaging lens 1) of the imaging lens 300 according to the present embodiment.
  • FIG. 4 shows a second configuration example (imaging lens 2) of the imaging lens 300.
  • FIG. 6 shows a third configuration example (imaging lens 3) of the imaging lens 300.
  • FIG. 8 shows a fourth configuration example (imaging lens 4) of the imaging lens 300.
  • FIG. 10 shows a fifth configuration example (imaging lens 5) of the imaging lens 300.
  • a numerical example in which specific numerical values are applied to these configuration examples will be described later.
  • symbol IMG shows an imaging surface and Z1 shows an optical axis.
  • optical members such as a seal glass SG for protecting the imaging element and various optical filters may be disposed.
  • the configuration of the imaging lens 300 according to the present embodiment will be described as needed in association with the configuration example shown in FIG. 2 and the like, but the technology according to the present disclosure is not limited to the configuration example illustrated. .
  • the imaging lens 300 includes, in order from the object side along the optical axis Z1, a front lens group system Gp1 having positive refractive power and a rear lens group having negative refractive power. And a system Gp2.
  • the lens surface closest to the image is concave toward the image near the optical axis and convex toward the image at the periphery.
  • the imaging lens 300 satisfies the following conditional expression. 5 (%) ⁇ OD Max ⁇ 20 (%) ... (1) However, OD Max : The maximum value of distortion in the imaging area of the imaging lens 300.
  • the imaging lens 300 according to the present embodiment further satisfy predetermined conditional expressions and the like described later.
  • the power arrangement of the lens system and the lens shape are optimized, and distortion aberration in a predetermined range (conditional expression (1)) that can be corrected by the computing unit 302 is generated.
  • condition expression (1) conditional expression (1)
  • the total length can be shortened.
  • the distortion produced by the imaging lens 300 for shortening the total length is corrected by the computing unit 302, so that it is preferable for the imaging element 301 with high pixels.
  • Optical performance, and the overall size and thickness of the device as well as the wide angle can be achieved.
  • the imaging lens 300 positive and negative powers are disposed in order from the object side, and the shape of the lens surface closest to the image is concave toward the image near the optical axis and convex toward the image at the periphery. .
  • various aberrations including off-axis aberrations such as coma and field curvature are well-balancedly corrected, and a compact wide-angle imaging lens having good optical performance is achieved. There is.
  • conditional expression (1) defines the maximum value of distortion in the imaging area of the imaging lens 300, and limits the amount of positive distortion generated.
  • the image correction amount in the computing unit 302 in the latter stage becomes proportionally proportional to that, and it becomes difficult to obtain the resolution performance in the central portion of the image necessary for the imaging device. .
  • the imaging lens 300 satisfies the following conditional expression (2), it is possible to realize further shortening of the total optical length required in the imaging device according to the present embodiment.
  • L inf distance on the optical axis from the lens surface closest to the object side to the image forming surface IMG at the time of infinity focusing of the imaging lens 300 (however, the image forming surface from the lens surface closest to the image side of the rear group lens system Gp2 Air conversion length up to IMG)
  • D The diagonal length of the effective imaging area.
  • Conditional expression (2) defines the ratio of the distance on the optical axis from the lens surface on the most object side to the object at infinity of the imaging lens 300 to the imaging element 301 and the diagonal length of the effective imaging area of the imaging element 301 Thus, the range of the entire lens length with respect to the imaging element 301 is limited. Outside the upper limit value of the conditional expression (2), it becomes difficult to realize the shortening of the total length necessary for the imaging device in the present embodiment. On the other hand, if the lower limit value of conditional expression (2) is exceeded, it is advantageous for shortening the total length, but coma aberration of off-axis aberration and curvature of field become undercorrected, and high optical performance necessary for the imaging element 301 with high pixel It becomes difficult to secure.
  • each of the front group lens system Gp1 and the rear group lens system Gp2 preferably includes one or more lenses.
  • the entire lens system including the front lens group Gp1 and the rear lens group Gp2 includes, in order from the object side, a first lens L1 having positive refractive power and a second lens L2 having negative refractive power. It is preferable to include. With such a configuration, it is possible to realize both shortening of the optical total length and widening of the angle.
  • the wide-angle lens generally has a retrofocus type optical configuration in which a lens system having a negative refractive power in the front group and a lens system having a positive refractive power in the rear group are generally used.
  • the imaging lens 300 is configured to include the first lens L1 having positive refractive power and the second lens L2 having negative refractive power in order from at least the object side, and the most image side in the entire lens system By making the lens surface concave toward the image side near the optical axis and convex toward the image side at the peripheral portion, it is possible to achieve both shortening of the overall optical length and widening of the angle.
  • the optical total length required in the imaging device in the present embodiment can be obtained. Shortening and good optical performance can be realized.
  • f ra The combined focal length of all lenses in the second and subsequent lenses in the entire lens system including the front lens group Gp1 and the rear lens group Gp2 in combination.
  • f rb is a combined focal length of the two lenses from the image side in the entire lens system including the front lens group system Gp1 and the rear lens group system Gp2.
  • f rc is the focal length of the lens closest to the image side in the entire lens system combining the front group lens system Gp1 and the rear group lens system Gp2.
  • Conditional expression (3) defines the combined focal length of all the second and subsequent lenses from the object side of the imaging lens 300.
  • fra is a combined focal length of the second lens L2 to the fifth lens L5.
  • Conditional expression (4) defines the combined focal length of the two lenses from the image side of the imaging lens 300.
  • f rb is a combined focal length of the fourth lens L4 and the fifth lens L5.
  • Conditional expression (5) defines the focal length of the lens on the most image side that constitutes the imaging lens 300, and defines the configuration of the rear lens group system Gp2.
  • f rc is the focal length of the fifth lens L 5.
  • the entire lens system in which the front group lens system Gp1 and the rear group lens system Gp2 are combined be constituted by at least four lenses. It is more preferable if the lens configuration is five or more. By adopting a configuration of four or five or more, various aberrations other than distortion can be corrected in a well-balanced manner.
  • Si indicates the number of the i-th surface that is numbered so as to increase in order from the object side.
  • Ri indicates the value (mm) of the paraxial radius of curvature of the i-th surface.
  • Di indicates the value (mm) of the spacing on the optical axis between the i-th surface and the i + 1-th surface.
  • Ni indicates the value of the refractive index at the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • ⁇ i indicates the Abbe number at the d-line of the material of the optical element having the i-th surface.
  • the portion where the value of “Ri” is “ ⁇ ” indicates a plane or a stop surface (aperture stop).
  • the surface marked “STO” in “Si” indicates that it is an aperture stop.
  • “F” indicates the focal length of the entire lens system, “F” indicates the F number, and “2 ⁇ ” indicates the full angle of view before the distortion is corrected by the computing unit 302.
  • lenses in which the lens surface is formed to be aspheric there are lenses in which the lens surface is formed to be aspheric.
  • the surface described as "ASP" in “Si” indicates that it is an aspheric surface.
  • the aspheric shape is defined by the following equation, where Z is the depth of the aspheric surface and Y is the height from the optical axis Z1.
  • R is a radius of curvature
  • K is a conical constant
  • A3 to A20 are third to twentieth order aspheric coefficients.
  • E-i is an exponential expression having a base of 10, that is, “10 -i ", for example, "0.12345E-05" is " It represents 0.12345 ⁇ 10 -5 ".
  • the imaging lenses 1, 2, 3, 4 and 5 to which the following numerical examples are applied are all configured to satisfy the basic configuration of the lens described above.
  • a front group lens system Gp1 having positive refractive power and a rear group lens system Gp2 having negative refractive power are disposed. It consists essentially of two lens groups.
  • the lens surface closest to the image is concave toward the image near the optical axis and convex toward the image at the periphery.
  • the imaging lens 1 shown in FIG. 2 is a lens system substantially consisting of a first lens L1 to a fifth lens L5.
  • the front group lens system Gp1 substantially comprises a first lens L1 to a third lens L3.
  • the rear group lens system Gp2 is composed of a fourth lens L4 to a fifth lens L5.
  • the lens surface on the image side of the fifth lens L5 is concave toward the image near the optical axis, and convex toward the image at the periphery.
  • a seal glass SG is disposed between the fifth lens L5 and the imaging surface IMG.
  • the aperture stop is disposed near the front side of the first lens L1.
  • Lens data of Numerical Example 1 in which specific numerical values are applied to the imaging lens 1 is shown in [Table 1] together with values of focal length f, F number, and total angle of view 2 ⁇ of the entire lens system.
  • both surfaces of each of the first lens L1 to the fifth lens L5 are aspheric.
  • the values of the aspheric coefficients A3 to A20 at those aspheric surfaces are shown in Table 2 together with the value of the conical constant K.
  • FIG. 3 shows spherical aberration, astigmatism (field curvature), and distortion (distortion aberration) as various aberrations.
  • These aberration diagrams show aberrations with the d-line (587.6 nm) as the reference wavelength.
  • the spherical aberration diagrams also show aberrations for the F-line (486.1 nm) and the C-line (656.3 nm).
  • S indicates the value of aberration in the sagittal image plane
  • T indicates the value of aberration in the tangential image plane.
  • the imaging lens 2 shown in FIG. 4 is a lens system substantially including a first lens L1 to a fifth lens L5.
  • the front group lens system Gp1 substantially comprises a first lens L1 to a fourth lens L4.
  • the rear group lens system Gp2 is composed of a fifth lens L5.
  • the lens surface on the image side of the fifth lens L5 is concave toward the image near the optical axis, and convex toward the image at the periphery.
  • a seal glass SG is disposed between the fifth lens L5 and the imaging surface IMG.
  • the aperture stop is disposed near the front side of the first lens L1.
  • Lens data of Numerical Example 2 in which specific numerical values are applied to the imaging lens 2 is shown in [Table 3] together with values of focal length f, F number, and total angle of view 2 ⁇ of the entire lens system.
  • both surfaces of each of the first lens L1 to the fifth lens L5 are formed to be aspheric.
  • the values of the aspheric coefficients A3 to A20 at those aspheric surfaces are shown in Table 4 together with the value of the conical constant K.
  • the imaging lens 3 shown in FIG. 6 is a lens system substantially including a first lens L1 to a fifth lens L5.
  • the front group lens system Gp1 substantially comprises a first lens L1 to a third lens L3.
  • the rear group lens system Gp2 is composed of a fourth lens L4 to a fifth lens L5.
  • the lens surface on the image side of the fifth lens L5 is concave toward the image near the optical axis, and convex toward the image at the periphery.
  • a seal glass SG is disposed between the fifth lens L5 and the imaging surface IMG.
  • the aperture stop is disposed near the front side of the first lens L1.
  • Lens data of Numerical Example 3 in which specific numerical values are applied to the imaging lens 3 is shown in [Table 5] together with values of focal length f, F number, and total angle of view 2 ⁇ of the entire lens system.
  • both surfaces of each of the first lens L1 to the fifth lens L5 are aspheric.
  • the values of the aspheric coefficients A3 to A20 in those aspheric surfaces are shown in Table 6 together with the value of the conical constant K.
  • the imaging lens 4 shown in FIG. 8 is a lens system substantially including a first lens L1 to a fifth lens L5.
  • the front group lens system Gp1 substantially comprises the first lens L1.
  • the rear group lens system Gp2 is composed of a second lens L2 to a fifth lens L5.
  • the lens surface on the image side of the fifth lens L5 is concave toward the image near the optical axis, and convex toward the image at the periphery.
  • a seal glass SG is disposed between the fifth lens L5 and the imaging surface IMG.
  • the aperture stop is disposed near the front side of the first lens L1.
  • Lens data of Numerical Example 4 in which specific numerical values are applied to the imaging lens 4 is shown in [Table 7] together with values of focal length f, F number, and total angle of view 2 ⁇ of the entire lens system.
  • both surfaces of each of the first lens L1 to the fifth lens L5 are formed to be aspheric.
  • the values of the aspheric coefficients A3 to A20 at those aspheric surfaces are shown in Table 8 together with the value of the conical constant K.
  • the imaging lens 5 shown in FIG. 10 is a lens system substantially including the first lens L1 to the fourth lens L4.
  • the front group lens system Gp1 substantially comprises a first lens L1 to a third lens L3.
  • the rear group lens system Gp2 is composed of a fourth lens L4.
  • the lens surface on the image side of the fourth lens L4 is concave toward the image near the optical axis and convex toward the image at the periphery.
  • a seal glass SG is disposed between the fourth lens L4 and the imaging surface IMG.
  • the aperture stop is disposed near the front side of the first lens L1.
  • Lens data of Numerical Example 5 in which specific numerical values are applied to the imaging lens 5 is shown in [Table 9] together with values of focal length f, F number, and total angle of view 2 ⁇ of the entire lens system.
  • both surfaces of each of the first lens L1 to the fifth lens L5 are aspheric.
  • the values of the aspheric coefficients A3 to A20 in those aspheric surfaces are shown in Table 10 together with the value of the conical constant K.
  • [Other numerical data of each example] [Table 11] shows values of the above-mentioned conditional expressions summarized for each numerical example. As can be seen from [Table 11], numerical value examples 2, 3, and 5 fall within the numerical range of each conditional expression. In the numerical value example 1, except for the conditional expression (5), it is within the numerical range of each conditional expression. The numerical value example 4 is within the numerical range of each conditional expression except the conditional expressions (4) and (5).
  • the configuration in which two lens groups are substantially described has been described.
  • the configuration may further include a lens having substantially no refractive power.
  • the present technology can have the following configurations.
  • An imaging lens An imaging element that converts an optical image formed on an imaging surface by the imaging lens into an electrical signal; An arithmetic unit that corrects distortion of an image captured by the image sensor;
  • the imaging lens is arranged in order from the object side
  • the rear lens system has negative refractive power, and the lens surface closest to the image side is concave toward the image side near the optical axis and convex toward the image side at the periphery
  • An imaging device that satisfies the following conditional expressions. 5 (%) ⁇ OD Max ⁇ 20 (%) ... (1) However, OD Max : The maximum value of distortion in the imaging area of the imaging lens.
  • the front group lens system and the rear group lens system each have one or more lenses, The entire lens system including the front lens group and the rear lens group includes, in order from the object side, a first lens having positive refractive power and a second lens having negative refractive power.
  • the imaging device according to [1] or [2].
  • the front group lens system and the rear group lens system each have one or more lenses, The imaging device according to any one of the above [1] to [4], wherein the imaging lens satisfies the following conditional expression. f rb ⁇ 0 ......
  • f rb is a combined focal length of the two lenses from the image side in the entire lens system combining the front group lens system and the rear group lens system.
  • the front group lens system and the rear group lens system each have one or more lenses,
  • f rc ⁇ 0 (5)
  • f rc is the focal length of the lens closest to the image side in the entire lens system combining the front group lens system and the rear group lens system.
  • the imaging device according to any one of the above [1] to [6], wherein the entire lens system in which the front group lens system and the rear group lens system are combined is configured of at least four lenses.
  • the imaging apparatus according to any one of the above [1] to [7], wherein the imaging lens further includes a lens having substantially no refractive power.
  • a front group lens system having a positive refractive power, The rear lens system has negative refractive power, and the lens surface closest to the image side is concave toward the image side near the optical axis and convex toward the image side at the periphery, An imaging lens that satisfies the following conditional expressions. 5 (%) ⁇ OD Max ⁇ 20 (%) ...
  • OD Max The maximum value of distortion in the imaging area of the imaging lens.
  • the imaging lens according to the above [9], which satisfies the following conditions. 0.55 ⁇ L inf /D ⁇ 0.80 > (2) However, L inf : Distance on the optical axis from the lens surface closest to the object side to the image forming plane when focusing on infinity (however, the air conversion length from the lens surface closest to the image side to the image forming plane of the rear group lens system ) D: The diagonal length of the effective imaging area.
  • the front group lens system and the rear group lens system each have one or more lenses,
  • the entire lens system including the front lens group and the rear lens group includes, in order from the object side, a first lens having positive refractive power and a second lens having negative refractive power.
  • the imaging lens as described in [9] or [10].
  • the front group lens system and the rear group lens system each have one or more lenses,
  • f ra A combined focal length of all lenses in the second and subsequent lenses in the entire lens system combining the front group lens system and the rear group lens system.
  • the front group lens system and the rear group lens system each have one or more lenses, The imaging lens according to any one of the above [9] to [12], which satisfies the following conditional expression.
  • f rb is a combined focal length of the two lenses from the image side in the entire lens system combining the front group lens system and the rear group lens system.
  • the front group lens system and the rear group lens system each have one or more lenses, The imaging lens according to any one of the above [9] to [13], which satisfies the following conditional expression.
  • f rc is the focal length of the lens closest to the image side in the entire lens system combining the front group lens system and the rear group lens system.
  • f rc is the focal length of the lens closest to the image side in the entire lens system combining the front group lens system and the rear group lens system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)
  • Geometry (AREA)
  • Studio Devices (AREA)

Abstract

 本開示の撮像装置は、撮像レンズと、撮像レンズによって結像面に形成された光学像を電気的な信号に変換する撮像素子と、撮像素子によって撮像された画像の歪曲収差を補正する演算器とを備える。撮像レンズは、物体側より順に、正の屈折力を有する前群レンズ系と、負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、以下の条件式を満足する。 5(%)<ODMax<20(%) ……(1) ただし、ODMaxは撮像レンズの撮像エリア内における歪曲収差の最大値とする。

Description

撮像装置および撮像レンズ
 本開示は、撮像レンズを用いた撮像装置に関する。より詳しくは、CMOS等の固体撮像素子を用いたカメラ付き携帯電話等の小型の撮像装置に好適で、かつ高画質と薄型化とを兼ね備えた撮像装置、およびそのような撮像装置に用いられる撮像レンズに関する。
 CCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の固体撮像素子を用いたカメラ付携帯電話やデジタルスチルカメラが知られている。このような撮像装置においては、より一層の小型化および薄型化が要求されており、搭載される撮影用のレンズにおいても小型で全長の短いものが要求されている。
 また、近年ではカメラ付携帯電話のような撮像機器においても撮像素子の高画素化が進んでおり、1000万画素以上の高画素撮像素子を搭載したモデルも普及している。そのため、搭載される撮像レンズとしてもこうした高画素の固体撮像素子に対応する高いレンズ性能が要求されている。
 一方、こうした撮像装置では大きさの制約から単焦点レンズが搭載されることが一般的であり、比較的広い画角を持った撮像レンズが要求されている。こうした小型、薄型、高性能かつ広角の撮像レンズを有する撮像装置としては、たとえば特許文献1や特許文献2に記載されたものが知られている。
特開2010-237407号公報 特開2010-262270号公報
 上記した特許文献1および特許文献2には、現在の高画素撮像素子に対応した5枚構成の撮像レンズを有する撮像装置に関する記載がある。特許文献1および特許文献2では、前群に正の屈折力を有するレンズ系、後群に負の屈折力を有するレンズ系を配置することで光学全長を抑制し、また後群に配置した非球面レンズ群により諸収差をバランス良く補正することで、小型、薄型、かつ広角で高い光学性能を確保した撮像装置を実現している。
 近年、スマートフォンやタブレット端末に代表される、撮像装置を備えた電子機器に搭載される撮像レンズには、さらなる小型化および薄型化が求められており、上記した撮像レンズからさらなる全長の短縮化が求められる。しかしながら、上記した特許文献に記載の撮像装置においてさらなる全長短縮を実施するために撮像レンズの全長をさらに抑制しようとすると、軸外収差の歪曲収差、コマ収差、および像面湾曲が補正不足となり、必要な光学性能を確保することが困難となる。また、こうした撮像装置用の撮像レンズでは、レンズ系を構成する各レンズ厚を薄肉化することも、現時点では加工限界に近い中心厚ならびにコバ厚のレンズが採用されていることが多く、量産性を確保しつつ撮像装置のさらなる全長短縮を実現することは非常に困難である。
 従って、全長の短縮化を図ることができる撮像レンズを提供することが望ましい。また、全長短縮化の図られた撮像レンズによって生ずる歪曲収差を補正し、高画素の撮像素子に対応した良好な光学性能を得つつ、装置全体としての小型化および薄型化を図ることができる撮像装置を提供することが望ましい。
 本開示の一実施の形態に係る撮像装置は、撮像レンズと、撮像レンズによって結像面に形成された光学像を電気的な信号に変換する撮像素子と、撮像素子によって撮像された画像の歪曲収差を補正する演算器とを備えたものである。撮像レンズは、物体側より順に、正の屈折力を有する前群レンズ系と、負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、以下の条件式を満足する。
 5(%)<ODMax<20(%) ……(1)
ただし、
 ODMax:撮像レンズの撮像エリア内における歪曲収差の最大値
とする。
 本開示の一実施の形態に係る撮像レンズは、物体側より順に、正の屈折力を有する前群レンズ系と、負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、以下の条件式を満足する。
 5(%)<ODMax<20(%) ……(1)
ただし、
 ODMax:撮像レンズの撮像エリア内における歪曲収差の最大値
とする。
 本開示の一実施の形態に係る撮像レンズは、撮像素子によって撮像された画像の歪曲収差を補正する演算器を備えた撮像装置と組み合わせて使用されることが好ましい。
 本開示の一実施の形態に係る撮像レンズでは、レンズ系のパワー配置やレンズ形状の最適化が図られ、全長の短縮化が可能となるような所定範囲の歪曲収差を敢えて発生させつつ、他の収差がバランス良く補正される。
 また、本開示の一実施の形態に係る撮像装置では、全長短縮化の図られた撮像レンズによって生ずる歪曲収差が演算器によって補正される。
 本開示の一実施の形態に係る撮像レンズによれば、レンズ系のパワー配置やレンズ形状の最適化を図り、所定範囲の歪曲収差を敢えて発生させつつ、他の収差をバランス良く補正するようにしたので、全長の短縮化を図ることができる。
 また、本開示の一実施の形態に係る撮像装置によれば、全長短縮化の図られた撮像レンズによって生ずる歪曲収差を演算器によって補正するようにしたので、高画素の撮像素子に対応した良好な光学性能を得つつ、装置全体としての小型化および薄型化を図ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示の一実施の形態に係る撮像装置の一構成例を示すブロック図である。 本開示の一実施の形態に係る撮像レンズの第1の構成例を示すレンズ断面図である。 図2に示した撮像レンズに具体的な数値を適用した数値実施例1における諸収差を示す収差図である。 撮像レンズの第2の構成例を示すレンズ断面図である。 図4に示した撮像レンズに具体的な数値を適用した数値実施例2における諸収差を示す収差図である。 撮像レンズの第3の構成例を示すレンズ断面図である。 図6に示した撮像レンズに具体的な数値を適用した数値実施例3における諸収差を示す収差図である。 撮像レンズの第4の構成例を示すレンズ断面図である。 図8に示した撮像レンズに具体的な数値を適用した数値実施例4における諸収差を示す収差図である。 撮像レンズの第5の構成例を示すレンズ断面図である。 図10に示した撮像レンズに具体的な数値を適用した数値実施例5における諸収差を示す収差図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.撮像装置および撮像レンズの基本構成
 2.作用・効果
 3.レンズの数値実施例
 4.その他の実施の形態
<1.撮像装置および撮像レンズの基本構成>
 図1は、本開示の一実施の形態に係る撮像装置の一構成例を示している。本実施の形態に係る撮像装置は、図1に示したように、撮像レンズ300と、撮像素子301と、演算器302とを備えている。撮像素子301は、撮像レンズ300によって結像面IMGに形成された光学像を電気的な信号に変換するものであり、例えばCCDやCMOS等の固体撮像素子で構成されている。撮像レンズ300の結像面IMGは、撮像素子301の撮像面に一致するように配置される。
 演算器302は、撮像素子301によって撮像された画像を取得して各種の画像処理を施すものである。演算器302は、撮像素子301によって撮像された画像を取得する画像取得部303と、その取得された画像に対して歪曲収差を補正するような画像処理を施した画像を出力する歪画像補正部304とを有している。
 なお、本実施の形態に係る撮像装置は、カメラ付き携帯電話や、カメラが組み込まれたPDA(Personal Digital Assistant)、タブレット端末等のデジタル入出力機器のカメラ部等として広く適用することが可能である。その他、デジタルスチルカメラやデジタルビデオカメラ等にも適用可能である。
 図2は、本実施の形態に係る撮像レンズ300の第1の構成例(撮像レンズ1)を示している。図4は、撮像レンズ300の第2の構成例(撮像レンズ2)を示している。図6は、撮像レンズ300の第3の構成例(撮像レンズ3)を示している。図8は、撮像レンズ300の第4の構成例(撮像レンズ4)を示している。図10は、撮像レンズ300の第5の構成例(撮像レンズ5)を示している。なお、これらの構成例に具体的な数値を適用した数値実施例は後述する。
 図2等において、符号IMGは結像面、Z1は光軸を示す。撮像レンズ300(撮像レンズ1~5)と結像面IMGとの間には、撮像素子保護用のシールガラスSGや各種の光学フィルタ等の光学部材が配置されていてもよい。
 以下では、本実施の形態に係る撮像レンズ300の構成を、適宜図2等に示した構成例に対応付けて説明するが、本開示による技術は、図示した構成例に限定されるものではない。
 撮像レンズ300は、図2等の構成例に示したように、光軸Z1に沿って物体側より順に、正の屈折力を有する前群レンズ系Gp1と、負の屈折力を有する後群レンズ系Gp2とを備えている。後群レンズ系Gp2は、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。
 撮像レンズ300は、以下の条件式を満足している。
 5(%)<ODMax<20(%) ……(1)
ただし、
 ODMax:撮像レンズ300の撮像エリア内における歪曲収差の最大値
とする。
 その他、本実施の形態に係る撮像レンズ300は、後述する所定の条件式等をさらに満足することが望ましい。
<2.作用・効果>
 次に、本実施の形態に係る撮像装置および撮像レンズ300の作用および効果を説明する。併せて、本実施の形態に係る撮像レンズ300における望ましい構成を説明する。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
 本実施の形態に係る撮像レンズ300によれば、レンズ系のパワー配置やレンズ形状の最適化を図り、演算器302によって補正可能な所定範囲(条件式(1))の歪曲収差を敢えて発生させつつ、他の収差をバランス良く補正するようにしたので、全長の短縮化を図ることができる。
 また、本実施の形態に係る撮像装置によれば、全長短縮化の図られた撮像レンズ300によって生ずる歪曲収差を演算器302によって補正するようにしたので、高画素の撮像素子301に対応した良好な光学性能を有し、装置全体としての小型化および薄型化と広角化とを図ることができる。
 撮像レンズ300は、物体側より順に、正、負のパワー配置とし、最も像側のレンズ面の形状を光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状にしている。これにより、光学全長を抑制しつつ、軸外収差のコマ収差や像面湾曲をはじめとする諸収差をバランス良く補正し、良好な光学性能を有し、かつ小型の広角撮像レンズを達成している。
 そして、上記条件式(1)を満足することで、さらなる撮像レンズ300の全長短縮を達成している。上記条件式(1)は撮像レンズ300の撮像エリア内における歪曲収差の最大値を規定するものであり、正の歪曲収差の発生量を制限している。
 前群に正の屈折力を有するレンズ系と後群に負の屈折力を有するレンズ系とを配置するテレフォトタイプの光学構成では、後群の負レンズ系で発生する正の歪曲収差が支配的であり、これを補正するため撮像レンズ300の全長短縮が困難であるという制約があった。そのため、この制約量を適切に許容し、後段の演算器302による画像補正を適正に実施することで撮像レンズ300のさらなる全長短縮を実現することが可能となる。
 条件式(1)の下限値を外れると撮像レンズ300での歪曲収差補正が必要となるため、本実施の形態における撮像装置に必要な全長短縮を実現することが困難となる。一方、条件式(1)の上限値を外れると歪曲収差量が過大となる。この場合、全長短縮には有利になるが、後段の演算器302での画像補正量がそれに比例して過大となり、撮像装置に必要な画像中心部での解像性能を得ることが困難となる。また、他の軸外収差をバランス良く補正することも困難となる。
 さらに、撮像レンズ300が以下の条件式(2)を満足することで、本実施の形態における撮像装置において必要となる光学全長のさらなる短縮化を実現することができる。
 0.55<Linf/D<0.80 ……(2)
ただし、
 Linf:撮像レンズ300の無限遠合焦時における最も物体側のレンズ面から結像面IMGまでの光軸上の距離(ただし、後群レンズ系Gp2の最も像側のレンズ面から結像面IMGまでは空気換算長)
 D:有効撮像エリアの対角長
とする。
 条件式(2)は撮像レンズ300の無限遠被写体に対する最も物体側のレンズ面から撮像素子301までの光軸上の距離と撮像素子301の有効撮像エリアの対角長との比を規定するものであり、撮像素子301に対するレンズ全長の範囲を制限している。条件式(2)の上限値を外れると、本実施の形態における撮像装置に必要な全長短縮を実現することが困難となる。一方、条件式(2)の下限値を外れると全長短縮には有利になるが、軸外収差のコマ収差や像面湾曲が補正不足となり、高画素の撮像素子301に必要な高い光学性能を確保することが困難となる。
 本実施の形態において、前群レンズ系Gp1および後群レンズ系Gp2はそれぞれ、1または複数のレンズを有していることが好ましい。前群レンズ系Gp1と後群レンズGp2系とを合わせた全体のレンズ系は、物体側から順に、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2とを含むことが好ましい。このような構成にすることで光学全長の短縮化と広角化との両立を実現することができる。広角レンズでは、前群に負の屈折力を有するレンズ系と、後群に正の屈折力を有するレンズ系とを配置するレトロフォーカスタイプの光学構成が一般的であるが、レトロフォーカスタイプの構成では本実施の形態における撮像装置に必要な全長短縮を実現することが困難である。これに対して撮像レンズ300を、少なくとも物体側より順に正の屈折力を有する第1レンズL1と負の屈折力を有する第2レンズL2とを含む構成とし、全体のレンズ系における最も像側のレンズ面を光軸近傍で像側に凹形状、かつ周辺部で像側に凸形状とすることで、光学全長の短縮化と広角化とを両立することが可能となる。
 さらに、以下の条件式(3)~(5)の少なくともいずれか1つを満足するように撮像レンズ300のパワー配置を設定することで、本実施の形態における撮像装置において必要となる光学全長の短縮化と良好な光学性能の確保とを実現することができる。
 fra<0 ……(3)
ただし、
 fra:前群レンズ系Gp1と後群レンズ系Gp2とを合わせた全体のレンズ系における、2枚目以降の全てのレンズの合成焦点距離
とする。
 frb<0 ……(4)
ただし、
 frb:前群レンズ系Gp1と後群レンズ系Gp2とを合わせた全体のレンズ系における、像側から2枚のレンズの合成焦点距離
とする。
 frc<0 ……(5)
ただし、
 frc:前群レンズ系Gp1と後群レンズ系Gp2とを合わせた全体のレンズ系における、最も像側のレンズの焦点距離
とする。
 条件式(3)は撮像レンズ300を構成する物体側より2枚目以降の全てのレンズの合成焦点距離を規定するものである。例えば図2に示した第1の構成例に係る撮像レンズ1では、fraは第2レンズL2~第5レンズL5の合成焦点距離となる。
 条件式(4)は撮像レンズ300を構成する像側から2枚のレンズの合成焦点距離を規定するものである。例えば図2に示した第1の構成例に係る撮像レンズ1では、frbは第4レンズL4と第5レンズL5との合成焦点距離となる。
 条件式(5)は撮像レンズ300を構成する最も像側のレンズの焦点距離を規定するものであり、後群レンズ系Gp2の構成を規定している。例えば図2に示した第1の構成例に係る撮像レンズ1では、frcは第5レンズL5の焦点距離となる。
 条件式(3)~(5)の少なくともいずれか1つの条件を満足させるレンズ構成を採用し、正の歪曲収差を条件式(1)の指定範囲に設定することで、光学全長の短縮化と良好な光学性能の確保とが可能となる。
 なお、光学全長の短縮化とより良好な光学性能の確保のためには、後群レンズ系Gp2が条件式(3)と条件式(4)とを満足するような構成を採用することが望ましい。
 さらに、撮像レンズ300において、前群レンズ系Gp1と後群レンズ系Gp2とを合わせた全体のレンズ系が、少なくとも4枚のレンズで構成されることが好ましい。5枚以上のレンズ構成であればより好ましい。4または5枚以上の構成を採用することで、歪曲収差を除く他の諸収差をバランス良く補正することが可能となる。
<3.レンズの数値実施例>
 次に、本実施の形態に係る撮像レンズの具体的な数値実施例について説明する。ここでは、図2、図4、図6、図8および図10に示した各構成例の撮像レンズ1、2、3、4および5に、具体的な数値を適用した数値実施例を説明する。
 なお、以下の各表や説明において示した記号の意味等については、下記に示す通りである。「Si」は、最も物体側から順次増加するようにして符号を付したi番目の面の番号を示している。「Ri」は、i番目の面の近軸の曲率半径の値(mm)を示す。「di」はi番目の面とi+1番目の面との間の光軸上の間隔の値(mm)を示す。「ni」はi番目の面を有する光学要素の材質のd線(波長587.6nm)における屈折率の値を示す。「νi」はi番目の面を有する光学要素の材質のd線におけるアッベ数の値を示す。「Ri」の値が「∞」となっている部分は平面、または絞り面(開口絞り)を示す。「Si」において「STO」と記した面は開口絞りであることを示す。「f」はレンズ系全体の焦点距離、「F」はFナンバー、「2ω」は演算器302によって歪曲収差を補正する前の全画角を示す。
 各数値実施例において用いられたレンズには、レンズ面が非球面に形成されたものがある。「Si」において「ASP」と記した面は非球面であることを示す。非球面形状は、非球面の深さをZ、光軸Z1からの高さをYとすると、以下の式によって定義されるものとする。なお、Rは曲率半径、Kは円錐定数、A3~A20はそれぞれ3次~20次の非球面係数である。なお、後述する非球面係数を示す各表において、「E-i」は10を底とする指数表現、すなわち、「10-i」を表しており、例えば、「0.12345E-05」は「0.12345×10-5」を表している。
Figure JPOXMLDOC01-appb-M000001
 
(各数値実施例に共通の構成)
 以下の各数値実施例が適用される撮像レンズ1、2、3、4および5はいずれも、上記したレンズの基本構成を満足した構成となっている。撮像レンズ1、2、3、4および5はいずれも、物体側より順に、正の屈折力を有する前群レンズ系Gp1と、負の屈折力を有する後群レンズ系Gp2とが配置された、実質的に2つのレンズ群で構成されている。後群レンズ系Gp2は、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。
[数値実施例1]
 図2に示した撮像レンズ1は、実質的に第1レンズL1~第5レンズL5からなるレンズ系となっている。前群レンズ系Gp1は、実質的に第1レンズL1~第3レンズL3からなる。後群レンズ系Gp2は、第4レンズL4~第5レンズL5からなる。第5レンズL5の像側のレンズ面は光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。第5レンズL5と結像面IMGとの間にはシールガラスSGが配置されている。開口絞りは第1レンズL1の前側付近に配置されている。
 撮像レンズ1に具体的な数値を適用した数値実施例1のレンズデータを、レンズ系全体の焦点距離f、Fナンバーおよび全画角2ωの値と共に[表1]に示す。撮像レンズ1において、第1レンズL1~第5レンズL5の各レンズの両面は非球面に形成されている。それらの非球面における非球面係数A3~A20の値を円錐定数Kの値と共に[表2]に示す。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 以上の数値実施例1における諸収差を図3に示す。図3には諸収差として、球面収差、非点収差(像面湾曲)、およびディストーション(歪曲収差)を示す。これらの各収差図には、d線(587.6nm)を基準波長とした収差を示す。球面収差図には、F線(486.1nm)、C線(656.3nm)に対する収差も示す。像面湾曲の収差図において、「S」はサジタル像面における収差の値を示し、「T」はタンジェンシャル像面における収差の値を示す。以降の他の数値実施例における収差図についても同様である。
 以上の各収差図から分かるように、歪曲収差は上記条件式(1)の範囲にあり、その他は諸収差が良好に補正され、優れた光学性能を有していることは明らかである。
[数値実施例2]
 図4に示した撮像レンズ2は、実質的に第1レンズL1~第5レンズL5からなるレンズ系となっている。前群レンズ系Gp1は、実質的に第1レンズL1~第4レンズL4からなる。後群レンズ系Gp2は、第5レンズL5からなる。第5レンズL5の像側のレンズ面は光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。第5レンズL5と結像面IMGとの間にはシールガラスSGが配置されている。開口絞りは第1レンズL1の前側付近に配置されている。
 撮像レンズ2に具体的な数値を適用した数値実施例2のレンズデータを、レンズ系全体の焦点距離f、Fナンバーおよび全画角2ωの値と共に[表3]に示す。撮像レンズ2において、第1レンズL1~第5レンズL5の各レンズの両面は非球面に形成されている。それらの非球面における非球面係数A3~A20の値を円錐定数Kの値と共に[表4]に示す。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 以上の数値実施例2における諸収差を図5に示す。各収差図から分かるように、歪曲収差は上記条件式(1)の範囲にあり、その他は諸収差が良好に補正され、優れた光学性能を有していることは明らかである。
[数値実施例3]
 図6に示した撮像レンズ3は、実質的に第1レンズL1~第5レンズL5からなるレンズ系となっている。前群レンズ系Gp1は、実質的に第1レンズL1~第3レンズL3からなる。後群レンズ系Gp2は、第4レンズL4~第5レンズL5からなる。第5レンズL5の像側のレンズ面は光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。第5レンズL5と結像面IMGとの間にはシールガラスSGが配置されている。開口絞りは第1レンズL1の前側付近に配置されている。
 撮像レンズ3に具体的な数値を適用した数値実施例3のレンズデータを、レンズ系全体の焦点距離f、Fナンバーおよび全画角2ωの値と共に[表5]に示す。撮像レンズ3において、第1レンズL1~第5レンズL5の各レンズの両面は非球面に形成されている。それらの非球面における非球面係数A3~A20の値を円錐定数Kの値と共に[表6]に示す。
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
 以上の数値実施例3における諸収差を図7に示す。各収差図から分かるように、歪曲収差は上記条件式(1)の範囲にあり、その他は諸収差が良好に補正され、優れた光学性能を有していることは明らかである。
[数値実施例4]
 図8に示した撮像レンズ4は、実質的に第1レンズL1~第5レンズL5からなるレンズ系となっている。前群レンズ系Gp1は、実質的に第1レンズL1からなる。後群レンズ系Gp2は、第2レンズL2~第5レンズL5からなる。第5レンズL5の像側のレンズ面は光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。第5レンズL5と結像面IMGとの間にはシールガラスSGが配置されている。開口絞りは第1レンズL1の前側付近に配置されている。
 撮像レンズ4に具体的な数値を適用した数値実施例4のレンズデータを、レンズ系全体の焦点距離f、Fナンバーおよび全画角2ωの値と共に[表7]に示す。撮像レンズ4において、第1レンズL1~第5レンズL5の各レンズの両面は非球面に形成されている。それらの非球面における非球面係数A3~A20の値を円錐定数Kの値と共に[表8]に示す。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
 以上の数値実施例4における諸収差を図9に示す。各収差図から分かるように、歪曲収差は上記条件式(1)の範囲にあり、その他は諸収差が良好に補正され、優れた光学性能を有していることは明らかである。
[数値実施例5]
 図10に示した撮像レンズ5は、実質的に第1レンズL1~第4レンズL4からなるレンズ系となっている。前群レンズ系Gp1は、実質的に第1レンズL1~第3レンズL3からなる。後群レンズ系Gp2は、第4レンズL4からなる。第4レンズL4の像側のレンズ面は光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となっている。第4レンズL4と結像面IMGとの間にはシールガラスSGが配置されている。開口絞りは第1レンズL1の前側付近に配置されている。
 撮像レンズ5に具体的な数値を適用した数値実施例5のレンズデータを、レンズ系全体の焦点距離f、Fナンバーおよび全画角2ωの値と共に[表9]に示す。撮像レンズ5において、第1レンズL1~第5レンズL5の各レンズの両面は非球面に形成されている。それらの非球面における非球面係数A3~A20の値を円錐定数Kの値と共に[表10]に示す。
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
 以上の数値実施例5における諸収差を図11に示す。各収差図から分かるように、歪曲収差は上記条件式(1)の範囲にあり、その他は諸収差が良好に補正され、優れた光学性能を有していることは明らかである。
[各実施例のその他の数値データ]
 [表11]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表11]から分かるように、数値実施例2,3,5については、各条件式の数値範囲内となっている。数値実施例1については、条件式(5)以外は、各条件式の数値範囲内となっている。数値実施例4については、条件式(4),(5)以外は、各条件式の数値範囲内となっている。
Figure JPOXMLDOC01-appb-T000012
 
<4.その他の実施の形態>
 本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
 また、上記実施の形態および実施例では、実質的に2つのレンズ群からなる構成について説明したが、実質的に屈折力を有さないレンズをさらに備えた構成であっても良い。
 また例えば、本技術は以下のような構成を取ることができる。
[1]
 撮像レンズと、
 前記撮像レンズによって結像面に形成された光学像を電気的な信号に変換する撮像素子と、
 前記撮像素子によって撮像された画像の歪曲収差を補正する演算器と
 を備え、
 前記撮像レンズは、物体側より順に、
 正の屈折力を有する前群レンズ系と、
 負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、
 以下の条件式を満足する
 撮像装置。
 5(%)<ODMax<20(%) ……(1)
ただし、
 ODMax:前記撮像レンズの撮像エリア内における歪曲収差の最大値
とする。
[2]
 前記撮像レンズが以下の条件を満足する
 上記[1]に記載の撮像装置。
 0.55<Linf/D<0.80 ……(2)
ただし、
 Linf:前記撮像レンズの無限遠合焦時における最も物体側のレンズ面から結像面までの光軸上の距離(ただし、前記後群レンズ系の最も像側のレンズ面から結像面までは空気換算長)
 D:有効撮像エリアの対角長
とする。
[3]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系は、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズとを含む
 上記[1]または[2]に記載の撮像装置。
[4]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 前記撮像レンズが以下の条件式を満足する
 上記[1]ないし[3]のいずれか1つに記載の撮像装置。
 fra<0 ……(3)
ただし、
 fra:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、2枚目以降の全てのレンズの合成焦点距離
とする。
[5]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 前記撮像レンズが以下の条件式を満足する
 上記[1]ないし[4]のいずれか1つに記載の撮像装置。
 frb<0 ……(4)
ただし、
 frb:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、像側から2枚のレンズの合成焦点距離
とする。
[6]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 前記撮像レンズが以下の条件式を満足する
 上記[1]ないし[5]のいずれか1つに記載の撮像装置。
 frc<0 ……(5)
ただし、
 frc:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、最も像側のレンズの焦点距離
とする。
[7]
 前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系が、少なくとも4枚のレンズで構成される
 上記[1]ないし[6]のいずれか1つに記載の撮像装置。
[8]
 前記撮像レンズが、実質的に屈折力を有さないレンズをさらに備えた
 上記[1]ないし[7]のいずれか1つに記載の撮像装置。
[9]
 物体側より順に、
 正の屈折力を有する前群レンズ系と、
 負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、
 以下の条件式を満足する
 撮像レンズ。
 5(%)<ODMax<20(%) ……(1)
ただし、
 ODMax:前記撮像レンズの撮像エリア内における歪曲収差の最大値
とする。
[10]
 以下の条件を満足する
 上記[9]に記載の撮像レンズ。
 0.55<Linf/D<0.80 ……(2)
ただし、
 Linf:無限遠合焦時における最も物体側のレンズ面から結像面までの光軸上の距離(ただし、前記後群レンズ系の最も像側のレンズ面から結像面までは空気換算長)
 D:有効撮像エリアの対角長
とする。
[11]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系は、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズとを含む
 上記[9]または[10]に記載の撮像レンズ。
[12]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 以下の条件式を満足する
 上記[9]ないし[11]のいずれか1つに記載の撮像レンズ。
 fra<0 ……(3)
ただし、
 fra:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、2枚目以降の全てのレンズの合成焦点距離
とする。
[13]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 以下の条件式を満足する
 上記[9]ないし[12]のいずれか1つに記載の撮像レンズ。
 frb<0 ……(4)
ただし、
 frb:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、像側から2枚のレンズの合成焦点距離
とする。
[14]
 前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
 以下の条件式を満足する
 上記[9]ないし[13]のいずれか1つに記載の撮像レンズ。
 frc<0 ……(5)
ただし、
 frc:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、最も像側のレンズの焦点距離
とする。
[15]
 前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系が、少なくとも4枚のレンズで構成される
 上記[9]ないし[14]のいずれか1つに記載の撮像レンズ。
[16]
 撮像素子によって撮像された画像の歪曲収差を補正する演算器を備えた撮像装置に用いられる
 上記[9]ないし[15]のいずれか1つに記載の撮像レンズ。
[17]
 実質的に屈折力を有さないレンズをさらに備えた
 上記[9]ないし[16]のいずれか1つに記載の撮像レンズ。
 本出願は、日本国特許庁において2013年12月26日に出願された日本特許出願番号第2013-268398号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
 

Claims (15)

  1.  撮像レンズと、
     前記撮像レンズによって結像面に形成された光学像を電気的な信号に変換する撮像素子と、
     前記撮像素子によって撮像された画像の歪曲収差を補正する演算器と
     を備え、
     前記撮像レンズは、物体側より順に、
     正の屈折力を有する前群レンズ系と、
     負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、
     以下の条件式を満足する
     撮像装置。
     5(%)<ODMax<20(%) ……(1)
    ただし、
     ODMax:前記撮像レンズの撮像エリア内における歪曲収差の最大値
    とする。
  2.  前記撮像レンズが以下の条件を満足する
     請求項1に記載の撮像装置。
     0.55<Linf/D<0.80 ……(2)
    ただし、
     Linf:前記撮像レンズの無限遠合焦時における最も物体側のレンズ面から結像面までの光軸上の距離(ただし、前記後群レンズ系の最も像側のレンズ面から結像面までは空気換算長)
     D:有効撮像エリアの対角長
    とする。
  3.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系は、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズとを含む
     請求項1に記載の撮像装置。
  4.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     前記撮像レンズが以下の条件式を満足する
     請求項1に記載の撮像装置。
     fra<0 ……(3)
    ただし、
     fra:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、2枚目以降の全てのレンズの合成焦点距離
    とする。
  5.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     前記撮像レンズが以下の条件式を満足する
     請求項1に記載の撮像装置。
     frb<0 ……(4)
    ただし、
     frb:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、像側から2枚のレンズの合成焦点距離
    とする。
  6.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     前記撮像レンズが以下の条件式を満足する
     請求項1に記載の撮像装置。
     frc<0 ……(5)
    ただし、
     frc:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、最も像側のレンズの焦点距離
    とする。
  7.  前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系が、少なくとも4枚のレンズで構成される
     請求項1に記載の撮像装置。
  8.  物体側より順に、
     正の屈折力を有する前群レンズ系と、
     負の屈折力を有し、最も像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる後群レンズ系とから構成され、
     以下の条件式を満足する
     撮像レンズ。
     5(%)<ODMax<20(%) ……(1)
    ただし、
     ODMax:前記撮像レンズの撮像エリア内における歪曲収差の最大値
    とする。
  9.  以下の条件を満足する
     請求項8に記載の撮像レンズ。
     0.55<Linf/D<0.80 ……(2)
    ただし、
     Linf:無限遠合焦時における最も物体側のレンズ面から結像面までの光軸上の距離(ただし、前記後群レンズ系の最も像側のレンズ面から結像面までは空気換算長)
     D:有効撮像エリアの対角長
    とする。
  10.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系は、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズとを含む
     請求項8に記載の撮像レンズ。
  11.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     以下の条件式を満足する
     請求項8に記載の撮像レンズ。
     fra<0 ……(3)
    ただし、
     fra:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、2枚目以降の全てのレンズの合成焦点距離
    とする。
  12.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     以下の条件式を満足する
     請求項8に記載の撮像レンズ。
     frb<0 ……(4)
    ただし、
     frb:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、像側から2枚のレンズの合成焦点距離
    とする。
  13.  前記前群レンズ系および前記後群レンズ系はそれぞれ、1または複数のレンズを有し、
     以下の条件式を満足する
     請求項8に記載の撮像レンズ。
     frc<0 ……(5)
    ただし、
     frc:前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系における、最も像側のレンズの焦点距離
    とする。
  14.  前記前群レンズ系と前記後群レンズ系とを合わせた全体のレンズ系が、少なくとも4枚のレンズで構成される
     請求項8に記載の撮像レンズ。
  15.  撮像素子によって撮像された画像の歪曲収差を補正する演算器を備えた撮像装置に用いられる
     請求項8に記載の撮像レンズ。
PCT/JP2014/076523 2013-12-26 2014-10-03 撮像装置および撮像レンズ WO2015098226A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/106,352 US10915997B2 (en) 2013-12-26 2014-10-03 Imaging device and imaging lens
EP14873292.8A EP3088932A4 (en) 2013-12-26 2014-10-03 Imaging device and imaging lens
JP2015554616A JP6558248B2 (ja) 2013-12-26 2014-10-03 撮像装置および撮像レンズ
CN201480068952.5A CN105829941B (zh) 2013-12-26 2014-10-03 成像设备和成像透镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-268398 2013-12-26
JP2013268398 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098226A1 true WO2015098226A1 (ja) 2015-07-02

Family

ID=53478106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076523 WO2015098226A1 (ja) 2013-12-26 2014-10-03 撮像装置および撮像レンズ

Country Status (5)

Country Link
US (1) US10915997B2 (ja)
EP (1) EP3088932A4 (ja)
JP (1) JP6558248B2 (ja)
CN (1) CN105829941B (ja)
WO (1) WO2015098226A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154502B (zh) * 2016-09-29 2018-10-09 广东旭业光电科技股份有限公司 一种摄像镜头和电子设备
CN111489309B (zh) * 2020-04-07 2022-04-15 重庆工商大学 一种稀疏解混的预处理装置及方法
CN116249924A (zh) * 2020-11-24 2023-06-09 Oppo广东移动通信有限公司 考虑基于图像处理的畸变校正的成像镜头组件、相机模块和成像设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237407A (ja) 2009-03-31 2010-10-21 Kantatsu Co Ltd 固体撮像素子用撮像レンズ
JP2010262270A (ja) 2009-04-07 2010-11-18 Fujifilm Corp 撮像レンズおよび撮像装置、ならびに携帯端末機器
WO2013187405A1 (ja) * 2012-06-15 2013-12-19 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
WO2014034432A1 (ja) * 2012-08-31 2014-03-06 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP2014153574A (ja) * 2013-02-08 2014-08-25 Konica Minolta Inc 撮像レンズ、撮像装置及び携帯端末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391806B2 (ja) * 2009-04-24 2014-01-15 コニカミノルタ株式会社 撮像レンズ,撮像光学装置及びデジタル機器
US8654242B2 (en) * 2009-09-02 2014-02-18 Konica Minolta Opto, Inc. Single-focus optical system, image pickup device, and digital apparatus
TWI439720B (zh) * 2011-03-11 2014-06-01 Largan Precision Co Ltd 影像擷取鏡片組
WO2012132455A1 (ja) * 2011-03-30 2012-10-04 富士フイルム株式会社 撮像レンズおよび撮像装置
WO2013039035A1 (ja) * 2011-09-14 2013-03-21 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ、撮像装置及び携帯端末並びにデジタル機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237407A (ja) 2009-03-31 2010-10-21 Kantatsu Co Ltd 固体撮像素子用撮像レンズ
JP2010262270A (ja) 2009-04-07 2010-11-18 Fujifilm Corp 撮像レンズおよび撮像装置、ならびに携帯端末機器
WO2013187405A1 (ja) * 2012-06-15 2013-12-19 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
WO2014034432A1 (ja) * 2012-08-31 2014-03-06 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP2014153574A (ja) * 2013-02-08 2014-08-25 Konica Minolta Inc 撮像レンズ、撮像装置及び携帯端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3088932A4

Also Published As

Publication number Publication date
JPWO2015098226A1 (ja) 2017-03-23
EP3088932A4 (en) 2017-08-09
JP6558248B2 (ja) 2019-08-14
CN105829941A (zh) 2016-08-03
CN105829941B (zh) 2019-02-22
US10915997B2 (en) 2021-02-09
EP3088932A1 (en) 2016-11-02
US20170169549A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5752856B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5827688B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5735712B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5706584B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5602299B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5911819B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5785324B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013114812A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013175782A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6150317B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014197097A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014240918A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2017116875A (ja) 撮像レンズ
JP5917431B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5718532B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103198A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5727679B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103197A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155459A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2015176043A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5722507B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103199A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5946790B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2005316010A (ja) 撮像レンズ
JP2014197095A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873292

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014873292

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873292

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015554616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15106352

Country of ref document: US