WO2015098181A1 - 燃料電池用電極触媒の製造方法 - Google Patents

燃料電池用電極触媒の製造方法 Download PDF

Info

Publication number
WO2015098181A1
WO2015098181A1 PCT/JP2014/072310 JP2014072310W WO2015098181A1 WO 2015098181 A1 WO2015098181 A1 WO 2015098181A1 JP 2014072310 W JP2014072310 W JP 2014072310W WO 2015098181 A1 WO2015098181 A1 WO 2015098181A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
bubbling
catalyst
electrode catalyst
fuel cell
Prior art date
Application number
PCT/JP2014/072310
Other languages
English (en)
French (fr)
Inventor
昆寧 朱
建燦 李
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2014555880A priority Critical patent/JP5701466B1/ja
Priority to US15/103,383 priority patent/US9947940B2/en
Priority to CN201480065740.1A priority patent/CN105794030B/zh
Priority to EP14874337.0A priority patent/EP3089249B1/en
Publication of WO2015098181A1 publication Critical patent/WO2015098181A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/928Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a fuel cell electrode catalyst, and more particularly to a method for producing a fuel cell electrode catalyst containing a platinum alloy.
  • a polymer electrolyte fuel cell is a fuel in which a solid polymer electrolyte is sandwiched between an anode and a cathode, fuel is supplied to the anode, oxygen or air is supplied to the cathode, and oxygen is reduced at the cathode to extract electricity. It is a battery.
  • platinum has been adopted as an electrode catalyst for fuel cells.
  • alloys of platinum and other metal elements are also attracting attention as an alternative.
  • other metal elements have problems that their catalytic activity is lower than platinum and their durability is low (elution occurs during the operation of the fuel cell).
  • Non-Patent Document 1 discloses a method of potential-cycling a platinum / palladium alloy catalyst, and this method enables the activity and durability of the platinum / palladium alloy catalyst. It is described that there is a possibility of improving the performance.
  • Patent Document 1 discloses that by dissolving catalyst particles containing platinum and palladium in an acid solution, dissolving easily soluble palladium, and depositing platinum on the (111) surface of palladium appearing on the outermost surface, It is described that catalyst particles having high durability (low platinum elution amount) can be obtained.
  • Non-Patent Document 1 is not suitable industrially because it is difficult to treat a large amount of platinum / palladium alloy catalyst. Further, the method described in Patent Document 1 has room for improvement in terms of improving the catalytic activity.
  • the present invention has been made in view of such problems in the prior art, and provides a method for producing a highly active fuel cell electrode catalyst containing a platinum alloy, which is industrially suitable for mass production.
  • the purpose is that.
  • the present invention relates to the following [1] to [5], for example.
  • [1] A step of preparing a dispersion obtained by dispersing an electrode catalyst precursor for a fuel cell containing a platinum alloy (that is, an alloy containing platinum and other metal elements) in an electrolyte solution; and an oxidizing gas for the dispersion And bubbling of an inert gas or a reducing gas, and a method for producing a fuel cell electrode catalyst.
  • a highly active electrode catalyst for a fuel cell containing a platinum alloy can be produced, and mass production can be performed industrially.
  • the method for producing a fuel cell electrode catalyst according to the present invention comprises: A step of preparing a dispersion obtained by dispersing an electrode catalyst precursor for a fuel cell containing a platinum alloy in an electrolyte solution (hereinafter also referred to as a “dispersion preparation step”), and an oxidizing gas It includes a step of alternately performing bubbling and bubbling of an inert gas or a reducing gas (hereinafter also referred to as “bubbling step”).
  • Dispersion preparation process In the dispersion preparation step, a dispersion is prepared by dispersing the electrode catalyst precursor in the electrolyte solution.
  • a conventional fuel cell electrode catalyst containing a platinum alloy may be used as the electrode catalyst precursor. These may be a fuel cell electrode catalyst made of a platinum alloy, and the catalyst made of a platinum alloy is a carrier. It may be a supported fuel cell electrode catalyst supported on the catalyst.
  • the supported platinum alloy particles preferably have an average particle diameter of 2 to 10 nm.
  • the proportion of platinum alloy occupied is preferably 20 to 80% by mass.
  • an average particle diameter shows the value measured, for example by analysis of the TEM image.
  • the platinum alloy contains platinum element and other metal elements.
  • the other metal element may be a noble metal element or a non-noble metal element.
  • the noble metal include gold, silver, ruthenium, rhodium, palladium, osmium, and iridium, and ruthenium and palladium are preferable because a highly active catalyst is obtained.
  • Non-noble metals include titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc., and since a highly active catalyst is obtained, iron, cobalt and nickel That is, an iron group element is preferable.
  • the platinum alloy may contain three or more metal elements including platinum element.
  • the component ratio (molar ratio) is preferably adjusted so that a highly active catalyst is obtained.
  • Pt: Pd 1: 0.5 to 0.8
  • the carrier examples include carbon particles, a heat-treated product described in JP2013-116458A, containing a group 4 or group 5 transition metal element, carbon, nitrogen, and oxygen as constituent elements (the molar ratio of the constituent elements is the transition metal).
  • element: carbon: nitrogen: oxygen 1: x: y: z, 0 ⁇ x ⁇ 7, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 3
  • the heat-treated product is iron, nickel, chromium. , Cobalt, vanadium, and manganese
  • the heat-treated product may be, for example, a transition metal compound (1) (a part or all of the group 4 or group 5 of the periodic table).
  • the resulting solid Such particles consisting of minute residues of can be produced by a method comprising heat treatment at 500 ⁇ 1100 ° C..) It can be mentioned.
  • the electrolyte solution is not limited as long as the electrolyte is dissolved therein.
  • the liquid property may be acidic, neutral or alkaline, but is preferably an acidic solution, and examples thereof include sulfuric acid aqueous solution, nitric acid aqueous solution, hydrochloric acid, and perchloric acid aqueous solution. From the viewpoint that electrolyte ions are difficult to adsorb on the catalyst particle surface, a sulfuric acid aqueous solution, a nitric acid aqueous solution, and a perchloric acid aqueous solution are preferable, and a sulfuric acid aqueous solution and a perchloric acid aqueous solution are more preferable.
  • the electrolyte solution may be an aqueous solution or a non-aqueous solution as long as the electrolyte is dissolved and the electrode catalyst precursor for a fuel cell can be dispersed. Since it is easy to handle and there are few side reactions to the solvent by the electrode catalyst precursor for fuel cells, an aqueous solution is preferred.
  • the concentration of the electrocatalyst precursor in the dispersion is, for example, 1 to 80% by mass.
  • an electrode catalyst for a fuel cell is used so that the electrode catalyst precursor for the fuel cell does not settle or form large aggregated particles in the bubbling step.
  • the method is not particularly limited as long as it can sufficiently disperse the precursor, and examples thereof include stirring using a stirrer and dispersing using a ball mill or a homogenizer.
  • oxidizing gas bubbling and inert gas or reducing gas bubbling are alternately performed on the dispersion. Either bubbling of oxidizing gas or bubbling of inert gas or reducing gas may be performed first.
  • This step is performed to place the surface of the platinum alloy alternately in an atmosphere that can be in an oxidized state or a reduced state (non-oxidized state). At this time, not all of the surface of the platinum alloy may be in an oxidized state or a reduced state, and a part of the surface of the platinum alloy may be in an oxidized state or a reduced state.
  • the electrode catalyst precursor for a fuel cell in which the platinum alloy is in an oxidized state is used and the oxidizing gas is bubbled first, in the subsequent bubbling, the bubbling of the inert gas or the reducing gas and the oxidizing gas are performed. It is preferable to perform at least one cycle with gas bubbling. When the bubbling of the inert gas or the reducing gas is performed first, it is necessary to perform the bubbling of the oxidizing gas at least once in the subsequent bubbling.
  • the electrode catalyst precursor for a fuel cell in which the platinum alloy is in a reduced state is used and bubbling of the oxidizing gas is performed first, in the subsequent bubbling, at least bubbling of the inert gas or the reducing gas is performed. Must be done once.
  • the inert gas or the reducing gas is bubbled first, it is preferable to perform at least one cycle of the oxidizing gas bubbling and the inert gas or reducing gas bubbling in the subsequent bubbling. .
  • the action of the bubbling gas on the platinum alloy metal is shown below.
  • the oxidizing gas When an oxidizing gas is used, the oxidizing gas is adsorbed on the surface of the platinum alloy, the surface potential of the platinum alloy contained in the electrode catalyst precursor is increased, and the surface of the platinum alloy is oxidized. At this time, if the platinum alloy is in an oxidized state, the oxidation proceeds further.
  • the surface potential of the platinum alloy is lowered and the surface of the oxidized platinum alloy is reduced. At this time, if the platinum alloy is in a reduced state, it does not affect the reduced state of the surface of the platinum alloy, but it may be carried out because it has an effect of adjusting the surface such as removal of a slight remaining oxide.
  • the bubbling with the acid active gas is preferably 0 in the potential difference of the electrocatalyst precursor (potential of the electrocatalyst precursor after bubbling-potential of the electrocatalyst precursor before starting bubbling) measured by the following method. It is performed until it becomes 0.03V or more.
  • bubbling with an inert gas or a reducing gas is performed by measuring the potential difference of the electrocatalyst precursor (the potential of the electrocatalyst precursor after bubbling-the potential of the electrocatalyst precursor before starting bubbling) measured by the following method.
  • the potential is preferably kept at ⁇ 0.03 V or less.
  • the catalyst precursor particles are mixed with a 5% by mass Nafion (registered trademark) solution (DE521, DuPont) and water, and irradiated with ultrasonic waves to prepare a catalyst precursor ink. 20 ⁇ l of the catalyst precursor ink is dropped on a disk-type glassy carbon electrode (area: 0.196 cm 2 ) and air-dried to obtain an electrode.
  • the electrode and a standard hydrogen electrode as a reference electrode are placed in the dispersion, and the potential of the electrode is measured.
  • the oxidizing gas include oxygen gas and ozone gas. Oxygen gas is preferable because it can be easily produced industrially and has a small environmental load even when used in large quantities.
  • the oxidizing gas may be supplied as a mixed gas (for example, air) diluted with an inert gas.
  • the inert gas examples include nitrogen gas and rare gases (argon gas, etc.), and nitrogen gas is preferable from the viewpoint of availability.
  • the reducing gas examples include hydrogen gas and carbon monoxide gas.
  • the reducing gas may be supplied as a mixed gas with an inert gas.
  • the amount of gas supplied for bubbling (hereinafter also referred to as “bubbling gas”) may be any condition as long as the above-described potential difference can be obtained. For example, it may be 20 to 200 mL / min per 100 mL of the dispersion. .
  • the temperature of the dispersion during the bubbling step is, for example, 20 to 90 ° C., gas diffusion becomes faster, the potential of the catalyst precursor particles changes more quickly, and a highly active catalyst is produced in a shorter time. In terms of being able to be performed, the temperature is preferably 40 to 80 ° C.
  • Time to perform bubbling of each gas that is, the time from the start of bubbling of oxidizing gas to the start of bubbling of inert gas or reducing gas, or the beginning of bubbling of inert gas or reducing gas to oxidizing gas
  • the time until the start of bubbling is, for example, 5 to 30 minutes. If the bubbling time is relatively short, the longer the time, the higher the activity of the resulting catalyst.
  • an effect can be obtained by performing a cycle comprising one bubbling of an oxidizing gas and one inert or reducing gas bubbling once, but this cycle may be performed a plurality of times.
  • the number of cycles is, for example, 1 to 50 times, preferably 3 to 30 times. When the number of cycles is relatively small, the activity of the resulting catalyst increases as the number of cycles increases.
  • Heat treatment may be performed after the bubbling, filtration, and drying. Examples of the atmosphere during the heat treatment include an inert gas or a mixed gas of 4% hydrogen and an inert gas.
  • the temperature and time of the heat treatment are not particularly limited, but from the viewpoint of suppressing the aggregation of catalyst particles, the treatment temperature is preferably 150 ° C. to 800 ° C. and the treatment time is 20 minutes to 5 hours.
  • the fuel cell electrode catalyst produced by the production method according to the present invention can be used in any of the anode catalyst layer and the cathode catalyst layer.
  • the fuel cell catalyst layer preferably further includes an electron conductive powder and a polymer electrolyte. Any of those conventionally used in fuel cell catalyst layers can be used without particular limitation.
  • the catalyst layer for a fuel cell can be used as a cathode and / or anode catalyst layer provided on an electrode of a membrane electrode assembly provided in a polymer electrolyte fuel cell.
  • the electrode includes the fuel cell catalyst layer and a porous support layer (gas diffusion layer).
  • the porous support layer gas diffusion layer
  • those conventionally used in fuel cell catalyst layers can be used without particular limitation.
  • the membrane electrode assembly is used in a fuel cell, preferably a polymer electrolyte fuel cell.
  • Catalyst precursor particles prepared in Production Example, 5% by mass Nafion solution (DE521, DuPont) and water were mixed, and these were irradiated with ultrasonic waves to prepare a catalyst precursor ink of 20 ⁇ l of catalyst precursor.
  • the body ink was dropped onto a disk-type glassy carbon electrode (area: 0.196 cm 2 ) and dried naturally to obtain an electrode.
  • the amount of catalyst precursor particles was adjusted so that the total amount of Pd and Pt on the electrode was 33 ⁇ g / cm 2 .
  • the above electrode and a standard hydrogen electrode as a reference electrode were placed in a dispersion, and changes in the potential of the electrode accompanying bubbling of various gases were measured.
  • Catalyst activity evaluation The catalyst particles prepared in Examples or Comparative Examples were mixed with a Nafion solution having a concentration of 5% by mass (DE521, DuPont) and water, and these were irradiated with ultrasonic waves to prepare catalyst ink. 20 ⁇ l of catalyst ink was dropped onto a disk-type glassy carbon electrode (area: 0.196 cm 2 ) and air-dried to obtain an electrode. The amount of catalyst particles was adjusted so that the total amount of Pd and Pt on the electrode was 33 ⁇ g / cm 2 .
  • Reference electrode Reversible hydrogen electrode (RHE)
  • Counter electrode Pt wire
  • Electrolytic solution 0.5 MH 2 SO 4 aqueous solution (Before starting the measurement, the electrolytic solution was saturated with oxygen for 1 hour.)
  • i k (i d -i) / (i ⁇ i d) (Where i k is the standardized current density ( ⁇ A / cm 2 ), i is the current density at 0.9 V ( ⁇ A / cm 2 ), and i d is the diffusion current density ( ⁇ A / cm 2 ).) As the value of i k, the greater the oxygen reduction activity.
  • the obtained dispersion was allowed to cool to room temperature (25 ° C.) and then filtered, and then the obtained solid was dried in an oven at 80 ° C. for 12 hours.
  • the obtained dried product is pulverized in a mortar and baked in a quartz furnace in an atmosphere of a mixed gas of nitrogen gas and hydrogen gas (hydrogen gas concentration: 4% by volume) at 300 ° C. for 2 hours.
  • Supported particles (hereinafter, also referred to as “catalyst precursor particles”) obtained by supporting the contained particles were obtained.
  • Example 1-1 A dispersion is prepared by dispersing 0.5 g of the catalyst precursor particles in 100 mL of 0.5 M sulfuric acid aqueous solution, and nitrogen gas is bubbled through the dispersion for 10 minutes, followed by oxygen gas for 10 minutes. The bubbling of nitrogen gas for 10 minutes and the bubbling of oxygen gas for 10 minutes were repeated alternately under the following conditions for a total of 1 hour. . In the bubbling, gas was ejected using a straight pipe having an inner diameter of about 1 mm.
  • the dispersion was filtered with suction using a filter having a pore size of 1 ⁇ m, washed thoroughly with pure water, and then dried in an oven at 80 ° C. for 10 hours to produce a powdered fuel cell electrode catalyst.
  • Nitrogen gas supply rate 50 mL / min
  • Oxygen gas supply rate 50 mL / min
  • Temperature of dispersion maintained at 60 ° C. using a water bath.
  • Table 1 shows changes in the potential of the catalyst precursor in the bubbling step.
  • Table 2 shows various conditions and evaluation results of the obtained catalyst.
  • Example 1-2 A fuel cell catalyst was produced in the same manner as in Example 1-1 except that the total time for bubbling oxygen gas and nitrogen gas was changed from 1 hour to 2 hours.
  • Table 1 shows changes in the potential of the catalyst precursor in the bubbling step.
  • Table 2 shows various conditions and evaluation results of the obtained catalyst.
  • Examples 2-1 and 2-2 Examples 1-1 and 1 except that a commercially available platinum / cobalt alloy / carbon carrier catalyst (TEC36EA52, manufactured by Tanaka Kikinzoku Co., Ltd.) was used in place of the catalyst precursor particles obtained in Production Example 1 as catalyst precursor particles.
  • TEC36EA52 platinum / cobalt alloy / carbon carrier catalyst
  • Table 1 shows changes in the potential of the catalyst precursor in the bubbling step.
  • Table 2 shows various conditions and evaluation results of the obtained catalyst.
  • Example 1-1 In place of alternately performing bubbling of oxygen gas and bubbling of nitrogen gas, the same operation as in Example 1-1 was performed except that only bubbling of oxygen gas was performed for 1 hour, 2 hours, or 5 hours. A battery catalyst was produced. Table 1 shows changes in the potential of the catalyst precursor in the bubbling step. In addition, Table 2 shows various conditions and evaluation results of the obtained catalyst.
  • Example 2-1 to 2-3 In place of alternately performing bubbling of oxygen gas and bubbling of nitrogen gas, the same operation as in Example 1-1 was performed except that only bubbling of nitrogen gas was performed for 2 hours or 5 hours.
  • a catalyst was prepared. Table 1 shows changes in the potential of the catalyst precursor in the bubbling step. In addition, Table 2 shows various conditions and evaluation results of the obtained catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

[課題]工業的に大量生産にも適した、白金合金を含む高活性の燃料電池用電極触媒の製造方法を提供すること。 [解決手段]白金合金を含む燃料電池用電極触媒前駆体の粒子を電解質溶液に分散させてなる分散液を準備する工程、および該分散液に対して酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとを交互に実施する工程を含む燃料電池用電極触媒の製造方法。

Description

燃料電池用電極触媒の製造方法
 本発明は、燃料電池用電極触媒の製造方法に関し、より詳細には白金合金を含む燃料電池用電極触媒の製造方法に関する。
 固体高分子形燃料電池は、固体高分子電解質をアノードとカソードとで挟み、アノードに燃料を供給し、カソードに酸素または空気を供給して、カソードで酸素が還元されて電気を取り出す形式の燃料電池である。
 従来、燃料電池の電極触媒としては白金が採用されていたが、高価な白金の使用量を低減させるために、白金と他の金属元素との合金も、その代替として注目されている。しかしながら、他の金属元素は、白金よりも触媒活性が低く、耐久性も低い(燃料電池の運転中に溶出する)という問題を有している。
 このような問題を解決するための方法として、非特許文献1には、白金/パラジウム合金触媒を電位走査(potential cycling)するという方法が開示され、この方法により白金/パラジウム合金触媒の活性および耐久性が改善される可能性がある旨が記載されている。
 また、特許文献1には、白金およびパラジウムを含む触媒粒子を酸溶液に接触させることによって、溶けやすいパラジウムを溶解させ、最表面に現れたパラジウムの(111)面に白金を析出させることによって、耐久性が高い(白金溶出量が少ない)触媒粒子が得られると記載されている。
特開2013-13878号公報
Electrochimica Acta 103 (2013) 66-76
 しかしながら、非特許文献1に記載された方法は、大量の白金/パラジウム合金触媒を処理することは困難であるため、工業的には不向きである。また、特許文献1に記載された方法には、触媒活性を向上させる点において改善の余地があった。
 本発明は、このような従来技術における問題点に鑑みてなされたものであって、工業的に大量生産にも適した、白金合金を含む高活性の燃料電池用電極触媒の製造方法を提供することを目的としている。
 本発明は、たとえば以下の[1]~[5]に関する。
 [1]
 白金合金(すなわち、白金および他の金属元素を含む合金)を含む燃料電池用電極触媒前駆体を電解質溶液に分散させてなる分散液を準備する工程、および
 該分散液に対して、酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとを交互に実施する工程を含む
燃料電池用電極触媒の製造方法。
 [2]
 前記電解質溶液が、硫酸水溶液、過塩素酸水溶液、塩酸または硝酸水溶液である上記[1]に記載の燃料電池用電極触媒の製造方法。
 [3]
 前記酸化性ガスが酸素ガスまたは空気である上記[1]または[2]に記載の燃料電池用電極触媒の製造方法。
 [4]
 前記不活性ガスまたは還元性ガスが不活性ガスである上記[1]~[3]のいずれかに記載の燃料電池用電極触媒の製造方法。
 [5]
 前記不活性ガスが窒素ガスである上記[4]に記載の燃料電池用電極触媒の製造方法。
 本発明によれば、白金合金を含む高活性の燃料電池用電極触媒を製造することができ、工業的に大量生産を行うことも可能である。
 以下、本発明をさらに詳細に説明する。
 本発明に係る燃料電池用電極触媒の製造方法は、
 白金合金を含む燃料電池用電極触媒前駆体を電解質溶液に分散させてなる分散液を準備する工程(以下「分散液準備工程」ともいう。)、および
 該分散液に対して、酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとを交互に実施する工程(以下「バブリング工程」ともいう。)を含んでいる。
 (分散液準備工程)
 分散液準備工程では、電極触媒前駆体を電解質溶液に分散させてなる分散液を準備する。
 前記電極触媒前駆体としては、従来の、白金合金を含む燃料電池用電極触媒を用いることができ、これらは白金合金からなる燃料電池用電極触媒であってもよく、白金合金からなる触媒が担体に担持された担持型の燃料電池用電極触媒であってもよい。
 担持型の燃料電池用電極触媒の場合、高活性の触媒が得られるという観点から、担持された白金合金粒子の平均粒子径は好ましくは2nm~10nmであり、担持型の燃料電池用電極触媒に占める白金合金の割合は、好ましくは20~80質量%である。
 なお、平均粒子径は、例えばTEM画像の解析等により測定された値を示す。
 白金合金は、白金元素と他の金属元素を含む。他の金属元素は貴金属元素であってもよく、非貴金属元素であってもよい。貴金属としては金、銀、ルテニウム、ロジウム、パラジウム、オスミウムおよびイリジウムが挙げられ、高活性の触媒が得られることから、ルテニウムおよびパラジウムが好ましい。
 非貴金属としては、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などが挙げられ、高活性の触媒が得られることから、鉄、コバルトおよびニッケル、すなわち鉄族元素が好ましい。白金合金は白金元素を含めて3種以上の金属元素を含んでいてもよい。
 白金合金は、白金と他の金属元素とを、たとえば白金:他の金属元素=1:0.1~10のモル比で含んでいる。成分比率(モル比)は、好ましくは活性の高い触媒が得られるように調整され、たとえば白金・パラジウム合金の場合は、好ましくはPt:Pd=1:0.5~0.8であり、白金・コバルト合金の場合は、好ましくはPt:Co=1:0.2~0.4である。
 前記担体としては、カーボン粒子、特開2013-116458号公報に記載された、4族または5族遷移金属元素、炭素、窒素および酸素を構成元素として含む熱処理物(構成元素のモル比を遷移金属元素:炭素:窒素:酸素=1:x:y:zと表すと、好ましくは0<x≦7、0<y≦2、0<z≦3である。熱処理物は、鉄、ニッケル、クロム、コバルト、バナジウムおよびマンガンから選ばれる少なくとも1種を含んでいてもよい。この熱処理物は、たとえば、遷移金属化合物(1)(その一部または全部は、周期表第4族または第5族の遷移金属元素の化合物である。)と、窒素含有有機化合物(2)(化合物(1)、化合物(2)の少なくとも一方は酸素原子を有する。)と溶媒とを混合し、次いで溶媒を除去し、得られた固形分残渣を500~1100℃で熱処理することを含む方法により製造することができる。)からなる粒子などが挙げられる。
 前記電解質溶液としては、電解質が溶解している溶液であれば限定されない。また、液性は酸性であっても、中性であっても、アルカリ性であっても構わないが、好ましくは酸性溶液であり、硫酸水溶液、硝酸水溶液、塩酸、過塩素酸水溶液などが挙げられ、電解質のイオンが触媒粒子表面に吸着しにくいという観点から、硫酸水溶液、硝酸水溶液、過塩素酸水溶液が好ましく、硫酸水溶液、過塩素酸水溶液がさらに好ましい。
 電解質溶液は、電解質が溶解しており、かつ燃料電池用電極触媒前駆体を分散可能であれば、水溶液であっても非水溶液でもよい。取り扱いの容易さや燃料電池用電極触媒前駆体による溶媒に対する副反応が少ないことから、水溶液であることが好ましい。
 前記分散液中の前記電極触媒前駆体の濃度は、たとえば1~80質量%である。
 前記電極触媒前駆体を前記電解質溶液に分散させる方法としては、バブリング工程において燃料電池用電極触媒前駆体が沈降したり、大きな凝集粒を形成したりすることのないように、燃料電池用電極触媒前駆体を十分に分散させることのできる方法であれば特に制限はなく、たとえば、スターラーを用いた攪拌や、ボールミルやホモジナイザーを用いた分散方法が挙げられる。
 (バブリング工程)
 バブリング工程では、前記分散液に対して、酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとを交互に実施する。なお、酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとはどちらを先に行ってもよい。
 この工程は、白金合金の表面を酸化状態もしくは還元状態(非酸化状態)になりうる雰囲気に交互に置くために実施する。この時、白金合金の表面すべてが酸化状態もしくは還元状態でなくてもかまわなく、白金合金表面の一部が酸化状態もしくは還元状態であっても良い。
 白金合金が酸化状態である前記燃料電池用電極触媒前駆体を用い、酸化性ガスのバブリングを先に行う場合は、引き続くそのあとのバブリングでは、不活性ガスまたは還元性ガスのバブリングと、酸化性ガスのバブリングとのサイクルを少なくとも1回行うことが好ましい。不活性ガスまたは還元性ガスのバブリングを先に行う場合は、引き続くそのあとのバブリングでは、酸化性ガスのバブリングを少なくとも1回行う必要がある。
 また、白金合金が還元状態である前記燃料電池用電極触媒前駆体を用い、酸化性ガスのバブリングを先に行う場合は、引き続くそのあとのバブリングでは、不活性ガスまたは還元性ガスのバブリングを少なくとも1回行う必要がある。不活性ガスまたは還元性ガスのバブリングを先に行う場合は、引き続くそのあとのバブリングでは、酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとのサイクルを少なくとも1回行うことが好ましい。
 バブリングガスによる白金合金金属に対する作用を以下に示す。
 酸化性ガスを用いる場合は、白金合金の表面に酸化性ガスが吸着し、前記電極触媒前駆体に含まれる白金合金の表面電位が上がり、白金合金の表面は酸化される。このとき、白金合金が酸化状態であればより酸化が進む。
 一方、不活性ガスまたは還元性ガスを用いる場合は、白金合金の表面電位が下がり、酸化された白金合金の表面は還元される。このとき、白金合金が還元状態であれば、白金合金表面の還元状態には影響を与えないが、わずかに残る酸化物の除去など、表面を整える効果もあるので、実施してもかまわない。
 これらのバブリングを行うことによって、理由は定かではないが、前記電極触媒前駆体の触媒活性が高められる。
 酸活性ガスでのバブリングは、以下の方法で測定される前記電極触媒前駆体の電位差(バブリング後の電極触媒前駆体の電位-バブリングを開始する前の電極触媒前駆体の電位)が好ましくは0.03V以上となるまで行われる。
 また、不活性ガスまたは還元性ガスでのバブリングは、以下の方法で測定される前記電極触媒前駆体の電位差(バブリング後の電極触媒前駆体の電位-バブリングを開始する前の電極触媒前駆体の電位)が好ましくは-0.03V以下となるまで行われる。
 (電極触媒前駆体の電位の測定方法)
 前記触媒前駆体粒子、5質量%の濃度のナフィオン(NAFION(登録商標))溶液(DE521、デュポン社)および水を混合し、これらに超音波を照射して、触媒前駆体インクを調製する。20μlの触媒前駆体インクを円盤型グラッシーカーボン電極(面積:0.196cm2)上に滴下し、自然乾燥させて電極を得る。
 前記電極、および参照電極としての標準水素電極を前記分散液に入れて、前記電極の電位を測定する。
 前記酸化性ガスとしては、たとえば酸素ガス、オゾンガスが挙げられ、工業的に容易に製造でき、大量に使用しても環境への負荷が小さいことから酸素ガスが好ましい。酸化性ガスは不活性ガスで希釈された混合ガス(例えば空気)として供給してもよい。
 前記不活性ガスとしては、たとえば窒素ガス、希ガス(アルゴンガス等)が挙げられ、入手容易性等の観点から窒素ガスが好ましい。
 前記還元性ガスとしては、水素ガス、一酸化炭素ガスが挙げられる。還元性ガスは不活性ガスとの混合ガスとして供給してもよい。
 バブリングのために供給されるガス(以下「バブリングガス」ともいう。)の供給量は前述した電位差が得られる条件であれば良い、たとえば前記分散液100mL当たり20~200mL/分であってもよい。
 バブリング工程を実施する際の前記分散液の温度は、たとえば20~90℃であり、ガス拡散が速くなり、触媒前駆体粒子の電位の変化が速くなり、より短い時間で高活性の触媒を製造できる点では、好ましくは40~80℃である。
 各ガスのバブリングを実施する時間(すなわち、酸化性ガスのバブリングの開始から不活性ガスまたは還元性ガスのバブリングの開始までの時間、または不活性ガスまたは還元性ガスのバブリングの開始から酸化性ガスのバブリングの開始までの時間)は、たとえば5~30分である。バブリングを実施する時間が比較的短い場合には、該時間を長くするほど得られる触媒の活性が高くなる。
 前記バブリング工程では、酸化性ガスのバブリング1回、不活性または還元性のガスバブリング1回からなるサイクルを1回行えば効果が得られるが、このサイクルは複数回行ってもよい。
 サイクルの回数は、たとえば1~50回、好ましくは3~30回である。サイクルの回数が比較的少ない場合には、回数を増やすほど得られる触媒の活性が高くなる。
 上記バブリングを行い、濾過、乾燥後に、熱処理を行ってもよい。熱処理の際の雰囲気としては不活性ガスまたは4%水素と不活性ガスの混合ガスなどが挙げられる。熱処理の温度、時間は特に限定しないが、触媒粒子の凝集体を抑制の観点から、処理温度150℃~800℃、処理時間20分~5時間の範囲であることが好ましい。
 本発明に係る製造方法によって製造された燃料電池用電極触媒は、アノード触媒層、カソード触媒層のいずれの燃料電池用触媒層にも用いることができる。
 前記燃料電池用触媒層は、好ましくは、電子伝導性粉末および高分子電解質をさらに含む。これらは、燃料電池用触媒層において従来使用されているものを特に制限なく使用できる。
 さらに、前記燃料電池用触媒層は、固体高分子型燃料電池が備える膜電極接合体の電極に設けられるカソードおよび/またはアノードの触媒層として用いることができる。
 前記膜電極接合体において、電極は前記燃料電池用触媒層と多孔質支持層(ガス拡散層)とを有する。多孔質支持層(ガス拡散層)としては、燃料電池用触媒層において従来使用されているものを特に制限なく使用できる。
 また、前記膜電極接合体が備える電解質膜としては、燃料電池用触媒層において従来使用されているものを特に制限なく使用できる。
 前記膜電極接合体は、燃料電池、好ましくは固体高分子型燃料電池に使用される。
 以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
 [評価方法]
 触媒前駆体の電位評価:
 製造例で作製した触媒前駆体粒子、5質量%の濃度のナフィオン溶液(DE521、デュポン社)および水を混合し、これらに超音波を照射して、触媒前駆体インクを調製した20μlの触媒前駆体インクを円盤型グラッシーカーボン電極(面積:0.196cm2)上に滴下し、自然乾燥させて電極を得た。なお、触媒前駆体粒子の量は、電極上のPdおよびPtの合計量が33μg/cm2となるように調整した。
 各実施例または比較例において、上記の電極、および参照電極としての標準水素電極を分散液に入れて、各種ガスのバブリングに伴う上記電極の電位の変化を測定した。
 触媒活性評価:
 実施例または比較例で作製した触媒粒子、5質量%の濃度のナフィオン溶液(DE521、デュポン社)および水を混合し、これらに超音波を照射して、触媒インクを調製した。20μlの触媒インクを円盤型グラッシーカーボン電極(面積:0.196cm2)上に滴下し、自然乾燥させて電極を得た。なお、触媒粒子の量は、電極上のPdおよびPtの合計量が33μg/cm2となるように調整した。
   参照電極:可逆水素電極 (RHE)
   対電極:Ptワイヤー
   電解液:0.5M H2SO4水溶液(測定開始前に、電解液を1時間かけて酸素で飽和させた。)
   回転速度:600rpm
   測定電圧範囲:1.1V~0.3V
   走査速度:5mV/s
 得られたデータは、下式により標準化した。
   ik=(id-i)/(i・id)
 (式中、ikは標準化された電流密度(μA/cm2)、iは0.9Vにおける電流密度(μA/cm2)、idは拡散電流密度(μA/cm2)である。)
 ikの値が大きいほど、酸素還元活性が高い。
 [製造例1]
 燃料電池用触媒前駆体の製造:
 500mLの水に担体粉末として0.4gのカーボンブラック担体(ケッチェンブラック EC600JD、ケッチェンブラックインターナショナル(株)製)を加え、40℃のウォーターバスで30分間撹拌した。得られた分散液に、56.6mlの(NH42PdCl4の水溶液(Pd濃度:0.19質量%)と103.1mlのH2PtCl6の水溶液(Pt濃度:0.19質量%)を添加し、40℃のウォーターバスで6時間撹拌した。なお、これらの添加操作および撹拌操作の間、Na2CO3の水溶液(濃度:4.2質量%)を加えることにより分散液のpHを9に維持した。
 得られた分散液を、室温(25℃)まで放冷した後に濾過し、次いで、得られた固形物を80℃のオーブンで12時間かけて乾燥させた。得られた乾燥物を乳鉢で粉砕し、石英炉で窒素ガスと水素ガスとの混合ガス(水素ガス濃度:4体積%)の雰囲気で300℃で2時間かけて焼成して、PdおよびPtを含む粒子を担持してなる担持型粒子(以下「触媒前駆体粒子」ともいう。)を得た。
 [実施例1-1]
 100mLの0.5M硫酸水溶液に、0.5gの前記触媒前駆体粒子を分散させて分散液を調製し、この分散液に対して10分間の窒素ガスのバブリングを行い、次いで10分間の酸素ガスのバブリングを行い、再び10分間の窒素ガスのバブリングを行う、というように10分間の窒素ガスのバブリングおよび10分間の酸素ガスのバブリングを、合計1時間、以下の条件下で交互に繰り返し行った。なお、バブリングの際は内径約1mmの直管を用いてガスを噴出させた。
 バブリング後、孔径1μmのフィルターを用いて分散液を吸引濾過、純水で十分に洗浄した後に、80℃のオーブンで、10時間で乾燥して粉体の燃料電池用電極触媒を製造した。
  窒素ガス供給量:50mL/分
  酸素ガス供給量:50mL/分
  分散液の温度:ウォーターバスを用いて60℃に維持した。
 バブリング工程における触媒前駆体の電位の変化を表1に示す。また、各種条件および得られた触媒の評価結果を表2に示す。
 [実施例1-2]
 酸素ガスのバブリングおよび窒素ガスのバブリングの合計の時間を1時間から2時間に変更したこと以外は実施例1-1と同様の操作を行い、燃料電池用触媒を製造した。
 バブリング工程における触媒前駆体の電位の変化を表1に示す。また、各種条件および得られた触媒の評価結果を表2に示す。
 [実施例2-1、2-2]
 触媒前駆体粒子として製造例1で得られた触媒前駆体粒子に替えて市販の白金・コバルト合金/カーボン担体触媒(TEC36EA52、田中貴金属社製)を用いたこと以外は実施例1-1、1-2と同様の操作を行い、燃料電池用触媒を製造した。
 バブリング工程における触媒前駆体の電位の変化を表1に示す。また、各種条件および得られた触媒の評価結果を表2に示す。
 [比較例1-1~1-3]
 酸素ガスのバブリングおよび窒素ガスのバブリングを交互に行うことに替えて、酸素ガスのバブリングのみを1時間、2時間または5時間行ったこと以外は実施例1-1と同様の操作を行い、燃料電池用触媒を製造した。
 バブリング工程における触媒前駆体の電位の変化を表1に示す。また、各種条件および得られた触媒の評価結果を表2に示す。
 [比較例2-1~2-3]
 酸素ガスのバブリングおよび窒素ガスのバブリングを交互に行うことに替えて、窒素ガスのバブリングのみを時間、2時間または5時間行ったこと以外は実施例1-1と同様の操作を行い、燃料電池用触媒を製造した。
 バブリング工程における触媒前駆体の電位の変化を表1に示す。また、各種条件および得られた触媒の評価結果を表2に示す。
 [参考例1、2]
 バブリング工程を行っていない製造例1の触媒前駆体粒子、白金・コバルト合金/カーボン担体触媒(TEC36EA52、田中貴金属社製)の触媒の評価結果を、それぞれ参考例1、参考例2として表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例では、バブリング工程を行ったことにより、活性の高い触媒を得ることができた。
 一方、酸素ガスのみ、または窒素ガスのみのバブリングを行った比較例では、実施例と同程度の時間のバブリングを行っても、実施例ほど活性の高い触媒を得ることはできなかった。

Claims (5)

  1.  白金合金を含む燃料電池用電極触媒前駆体を電解質溶液に分散させてなる分散液を準備する工程、および
     該分散液に対して酸化性ガスのバブリングと、不活性ガスまたは還元性ガスのバブリングとを交互に実施する工程
    を含む燃料電池用電極触媒の製造方法。
  2.  前記電解質溶液が、硫酸水溶液、過塩素酸水溶液、塩酸または硝酸水溶液である請求項1に記載の燃料電池用電極触媒の製造方法。
  3.  前記酸化性ガスが酸素ガスである請求項1または2に記載の燃料電池用電極触媒の製造方法。
  4.  前記不活性ガスまたは還元性ガスが不活性ガスである請求項1~3のいずれかに記載の燃料電池用電極触媒の製造方法。
  5.  前記不活性ガスが窒素ガスである請求項4に記載の燃料電池用電極触媒の製造方法。
PCT/JP2014/072310 2013-12-27 2014-08-26 燃料電池用電極触媒の製造方法 WO2015098181A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014555880A JP5701466B1 (ja) 2013-12-27 2014-08-26 燃料電池用電極触媒の製造方法
US15/103,383 US9947940B2 (en) 2013-12-27 2014-08-26 Method for producing fuel cell electrode catalyst
CN201480065740.1A CN105794030B (zh) 2013-12-27 2014-08-26 燃料电池用电极催化剂的制造方法
EP14874337.0A EP3089249B1 (en) 2013-12-27 2014-08-26 Method for producing electrode catalyst for fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272262 2013-12-27
JP2013-272262 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098181A1 true WO2015098181A1 (ja) 2015-07-02

Family

ID=53478069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072310 WO2015098181A1 (ja) 2013-12-27 2014-08-26 燃料電池用電極触媒の製造方法

Country Status (4)

Country Link
US (1) US9947940B2 (ja)
EP (1) EP3089249B1 (ja)
CN (1) CN105794030B (ja)
WO (1) WO2015098181A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143784A1 (ja) * 2015-03-10 2016-09-15 学校法人同志社 白金触媒の製造方法及びそれを用いた燃料電池
JP2017029967A (ja) * 2015-03-10 2017-02-09 学校法人同志社 白金触媒の製造方法及びそれを用いた燃料電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019217759A1 (en) * 2018-05-09 2019-11-14 Amtek Research International Llc Acid stratification mitigation, electrolytes, devices, and methods related thereto
WO2020173909A1 (en) * 2019-02-26 2020-09-03 Umicore Ag & Co. Kg Catalyst materials comprising nanoparticles on a carrier and methods for their production

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178814A (ja) * 2002-10-04 2004-06-24 Asahi Glass Co Ltd 固体高分子型燃料電池用膜・電極接合体の製造方法
WO2006088194A1 (ja) * 2005-02-21 2006-08-24 Nissan Motor Co., Ltd. 電極触媒およびその製造方法
JP2007027096A (ja) * 2005-06-16 2007-02-01 Keio Gijuku 燃料電池用白金又は白金ルテニウム合金触媒の製造方法
JP2010027506A (ja) * 2008-07-23 2010-02-04 Toyota Motor Corp 燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池
JP2010162443A (ja) * 2009-01-13 2010-07-29 Furuya Kinzoku:Kk 白金ブラック粉末及び白金ブラックのコロイド並びにそれらの製造方法
JP2011089143A (ja) * 2009-10-20 2011-05-06 Japan Advanced Institute Of Science & Technology Hokuriku 一元系及び二元系の立方体型金属ナノ粒子の製造方法
JP2012005969A (ja) * 2010-06-25 2012-01-12 Toyota Motor Corp 触媒担持担体の製造方法および電極触媒の製造方法
JP2012035178A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 触媒の製造方法及び触媒
JP2013013878A (ja) 2011-07-06 2013-01-24 Toyota Motor Corp 触媒微粒子、及び当該触媒微粒子の製造方法
JP2013116458A (ja) 2011-12-05 2013-06-13 Showa Denko Kk 触媒担体の製造方法、複合触媒の製造方法、複合触媒、およびこれを用いた直接酸化型燃料電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389434B2 (en) * 2002-04-11 2013-03-05 Second Sight Medical Products, Inc. Catalyst and a method for manufacturing the same
CN102264471A (zh) * 2008-12-22 2011-11-30 旭化成化学株式会社 环烯烃制造用钌催化剂的制备方法、环烯烃的制造方法以及制造装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178814A (ja) * 2002-10-04 2004-06-24 Asahi Glass Co Ltd 固体高分子型燃料電池用膜・電極接合体の製造方法
WO2006088194A1 (ja) * 2005-02-21 2006-08-24 Nissan Motor Co., Ltd. 電極触媒およびその製造方法
JP2007027096A (ja) * 2005-06-16 2007-02-01 Keio Gijuku 燃料電池用白金又は白金ルテニウム合金触媒の製造方法
JP2010027506A (ja) * 2008-07-23 2010-02-04 Toyota Motor Corp 燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池
JP2010162443A (ja) * 2009-01-13 2010-07-29 Furuya Kinzoku:Kk 白金ブラック粉末及び白金ブラックのコロイド並びにそれらの製造方法
JP2011089143A (ja) * 2009-10-20 2011-05-06 Japan Advanced Institute Of Science & Technology Hokuriku 一元系及び二元系の立方体型金属ナノ粒子の製造方法
JP2012005969A (ja) * 2010-06-25 2012-01-12 Toyota Motor Corp 触媒担持担体の製造方法および電極触媒の製造方法
JP2012035178A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 触媒の製造方法及び触媒
JP2013013878A (ja) 2011-07-06 2013-01-24 Toyota Motor Corp 触媒微粒子、及び当該触媒微粒子の製造方法
JP2013116458A (ja) 2011-12-05 2013-06-13 Showa Denko Kk 触媒担体の製造方法、複合触媒の製造方法、複合触媒、およびこれを用いた直接酸化型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTROCHIMICA ACTA, vol. 103, 2013, pages 66 - 76

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143784A1 (ja) * 2015-03-10 2016-09-15 学校法人同志社 白金触媒の製造方法及びそれを用いた燃料電池
JP2017029967A (ja) * 2015-03-10 2017-02-09 学校法人同志社 白金触媒の製造方法及びそれを用いた燃料電池
US10749186B2 (en) 2015-03-10 2020-08-18 The Doshisha Method for manufacturing platinum catalyst, and fuel cell including the same

Also Published As

Publication number Publication date
US20160359172A1 (en) 2016-12-08
EP3089249A1 (en) 2016-11-02
EP3089249B1 (en) 2018-10-10
EP3089249A4 (en) 2017-06-21
CN105794030A (zh) 2016-07-20
US9947940B2 (en) 2018-04-17
CN105794030B (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
EP2917952B1 (en) Method for producing a catalyst for fuel cells
JP5456797B2 (ja) 燃料電池用電極触媒
JP2005034836A (ja) 電極触媒およびその製造方法
Fox et al. Effect of pretreatment on Pt–Co/C cathode catalysts for the oxygen reduction reaction
US9755246B2 (en) Hollow platinum nanoparticles for fuel cells
WO2015098181A1 (ja) 燃料電池用電極触媒の製造方法
JP2015032468A (ja) 燃料電池用電極触媒、及びその製造方法、燃料電池用触媒担持電極、並びに燃料電池
CN111725524A (zh) 燃料电池阴极催化剂及其制备方法、膜电极及燃料电池
KR101500069B1 (ko) 연료전지용 촉매전극을 위한 티타늄 서브옥사이드 지지체와 이의 저온 합성방법
JP4785757B2 (ja) 貴金属担持電極触媒の製造方法および該製造方法により得られる貴金属担持電極触媒
EP3525272A1 (en) Catalyst for solid polymer fuel cell and method for producing same
JP2020161272A (ja) 電極材料、並びに電極、膜電極接合体及び固体高分子形燃料電池
US9502716B2 (en) Robust platinum-copper catalysts
JP2014002981A (ja) 電極触媒の製造方法
WO2015156027A1 (ja) 触媒微粒子及びカーボン担持触媒の各製造方法
JP5701466B1 (ja) 燃料電池用電極触媒の製造方法
JP2010027506A (ja) 燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池
JP2007324092A (ja) 白金又は白金合金担持触媒の製造方法
US9941521B2 (en) Method for producing core-shell catalyst
JP2006092957A (ja) 固体高分子形燃料電池用カソード触媒、該触媒を備えてなるカソード電極、該電極を有する固体高分子形燃料電池、ならびに該触媒の製造方法
JP6988298B2 (ja) 電極触媒の製造方法
CN115966719B (zh) 一种阳极催化剂及其制备方法和质子交换膜燃料电池
KR20230155358A (ko) 연료전지용 촉매의 제조 방법 및 이에 의해 제조된 연료전지용 촉매
JP2021026961A (ja) 燃料電池用触媒及びその製造方法
JP2016146312A (ja) 酸素還元触媒

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555880

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874337

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014874337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15103383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE