WO2015098005A1 - Pcvバルブ - Google Patents

Pcvバルブ Download PDF

Info

Publication number
WO2015098005A1
WO2015098005A1 PCT/JP2014/006109 JP2014006109W WO2015098005A1 WO 2015098005 A1 WO2015098005 A1 WO 2015098005A1 JP 2014006109 W JP2014006109 W JP 2014006109W WO 2015098005 A1 WO2015098005 A1 WO 2015098005A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
flow path
heat
valve
heat transfer
Prior art date
Application number
PCT/JP2014/006109
Other languages
English (en)
French (fr)
Inventor
剛 岡崎
高井 基治
Original Assignee
株式会社ニフコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニフコ filed Critical 株式会社ニフコ
Priority to EP14874494.9A priority Critical patent/EP3088693B1/en
Priority to CN201480070742.XA priority patent/CN105849373B/zh
Priority to US15/104,611 priority patent/US10006325B2/en
Publication of WO2015098005A1 publication Critical patent/WO2015098005A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/0011Breather valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K35/00Means to prevent accidental or unauthorised actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/0011Breather valves
    • F01M2013/0027Breather valves with a de-icing or defrosting system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a PCV valve that adjusts the flow rate of blow-by gas in a blow-by gas reduction device for an internal combustion engine.
  • Blow-by gas which is a gas leaked from a combustion chamber through a gap between a piston and a cylinder in an automobile engine or the like into a crankcase, includes unburned hydrocarbon (HC), carbon monoxide (CO), and the like. Since these are substances that cause air pollution, PCV (positive crankcase ventilation) systems are widely used in which blow-by gas is not released into the atmosphere, but is returned to the intake system and recombusted with the air-fuel mixture. . However, increasing the amount of blow-by gas returned to the intake system will decrease engine performance. Therefore, a PCV valve that adjusts the flow rate of blow-by gas is provided.
  • the PCV valve which is a differential pressure-driven flow rate adjustment valve in which the valve opening is adjusted by the pressure difference between the upstream side and the downstream side of the valve
  • the PCV valve is fully closed because there is no pressure difference when the engine is stopped. It becomes.
  • the temperature is low, the moisture contained in the intake air may freeze in the PCV valve.
  • the valve body does not move and the PCV valve remains in the fully closed state.
  • the pressure of the crankcase increases, and there is a possibility that oil leaks from the engine or the drive unit burns. Therefore, means for preventing the PCV valve from freezing has been proposed.
  • Patent Document 1 proposes the latter means, and has a structure in which the valve body is heated by an electric heater.
  • the electric heater includes a bobbin whose inner peripheral surface is a part of the inner surface of the valve box, and a coil disposed on the outer periphery of the bobbin.
  • the present invention has been made in view of the above-described problems of the prior art, and has as its main object to provide a PCV valve that is highly effective in preventing freezing and has a good sealing performance of a heating element against blow-by gas. To do.
  • a side surface of the PCV valve (2) according to the present invention includes a housing (6) forming a blow-by gas flow path (4), and a valve seat (18) disposed in the flow path and provided in the housing.
  • a heat transfer body (40) having a valve body (30) cooperating with the valve body, a spring (38) for urging the valve body toward the valve seat, and a heat radiating portion (42) surrounding the valve body.
  • a heating means (52) that is airtightly isolated from the flow path and has a heating element (66) for heating the heat transfer body.
  • the material of the housing and the valve body has good heat conductivity but is not heavy metal and heat conductivity.
  • the heating means is hermetically isolated from the flow path, there is no possibility of being corroded by blow-by gas, and it is not necessary to perform anticorrosion treatment, thereby reducing costs.
  • the housing has a receiving hole (50) opened toward the flow path so as to receive a heat receiving portion (44) forming one end side of the heat transfer body.
  • the heating means heats the heat receiving portion of the heat transfer body via a partition wall (58) that defines at least a part of the receiving hole, and the heat dissipation portion of the heat transfer body. A portion in the vicinity of the valve body is exposed to the flow path.
  • the heating means can be airtightly isolated from the flow path with a simple configuration.
  • the housing in addition to the above configuration, includes a first housing (8) that forms an upstream side of the flow path, and a second housing (10) that forms a downstream side of the flow path.
  • An annular member (72) that passes through the flow path and abuts both the first housing and the second housing over the entire circumference and seals the joint portion between the first housing and the second housing. ) Is further provided.
  • the joint between the first housing and the second housing is sealed by welding.
  • a certain aspect of the present invention is characterized in that, in addition to the above configuration, the front end side of the heat receiving portion of the heat transfer body, the partition wall, and the heating element each have a flat plate shape and are laminated.
  • An aspect of the present invention is characterized in that, in addition to the above configuration, the heating element includes a PTC heater.
  • the PCV valve provided with the heating element can be miniaturized.
  • the housing further includes a chamber (54) that accommodates the heating means, and the heating means is sandwiched between the partition wall and the heating element.
  • the conductivity and heat conductivity of the heating means can be enhanced, and the heating means can be easily attached to the PCV valve.
  • One aspect of the present invention is characterized in that, in addition to the above configuration, the heat transfer body is made of a plate-like metal, and a through hole (46) through which the valve body is inserted is formed in the heat radiating portion. To do.
  • the member configuration is simplified, the PCV valve can be downsized, and the cost can be reduced.
  • the PCV valve provided with the heating means can be reduced in weight, and the heating means can be prevented from being corroded by blow-by gas.
  • FIG. 1 is a perspective view of the PCV valve 2
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the PCV valve 2 has a blow-by gas flow path 4 formed therein, and a lower end side (upstream side) of the flow path 4 is attached to a head cover (not shown) of the crankcase.
  • the (downstream side) is connected to the intake system via a blow-by gas hose (not shown), and the crankcase and the intake system are connected via the flow path 4.
  • the housing 6 of the PCV valve 2 includes a first housing 8 that forms the upstream flow path 4a and a second housing 10 that forms the downstream flow path 4b.
  • the first housing 8 is made of resin and is molded by injection molding.
  • the 1st housing 8 has the 1st cylindrical part 12 formed so that the upstream flow path 4a might extend in the up-down direction.
  • An inflow hole 14 whose inner diameter is reduced is formed at the lower end of the first cylindrical portion 12, and an annular upper surface of the lower end wall 16 forming the inflow hole 14 is a valve seat 18.
  • the inner diameter of the first cylindrical portion 12 above the lower end wall 16 is substantially constant.
  • the first housing 8 extends outward from the outer peripheral surface on the upper end side of the first cylindrical portion 12 and is joined to the second housing 10 to form an annular shape in a plan view, and the first joint 20 And a lid portion 22 projecting to one side from the entire side surface having a semicircular shape in plan view.
  • the lower surface of the first joint portion 20 and the lower surface of the lid portion 22 constitute one plane.
  • the second housing 10 is made of resin and is formed by injection molding.
  • the 2nd housing 10 has the 2nd cylindrical part 24 formed so that the downstream flow path 4b might extend in the up-down direction.
  • the inner diameter of the second cylindrical portion 24 is substantially constant and is smaller than the inner diameter of the first cylindrical portion 12.
  • the outer diameter of the second cylindrical portion 24 is smaller than the outer shape of the first cylindrical portion 12.
  • the projecting portion 28 includes a base portion 28a extending from the side surface of the second joint portion 26 to one side, and an L-shaped portion 28b extending upward from the base portion 28a and then extending to one side to present an L shape. And have.
  • the outer peripheral surface in which the first joint portion 20 and the lid portion 22 are combined and the outer peripheral surface in which the second joint portion 26 and the base portion 28a are combined are aligned, and are attached to each other by welding. The detailed structure of the protrusion 28 will be described later together with a description of related members.
  • the valve body 30 is disposed in the flow path 4 of the housing 6 so as to be seated on the valve seat 18.
  • the valve body 30 is made of resin or metal.
  • the valve body 30 includes a main body portion 32 having a substantially cylindrical shape, and an annular flange 34 formed at the lower end of the main body portion 32.
  • a notch surface 36 is formed between the upper end surface of the main body portion 32 and the side peripheral surface.
  • the outer diameter of the main body 32 is slightly smaller on the upper side than on the lower side, and is smaller than the diameter of the upstream flow path 4a so that the valve element 30 can move up and down in the flow path 4. It is slightly smaller than the diameter of the side channel 4b.
  • the outer diameter of the flange 34 is larger than the inner diameter of the inflow hole 14 so that the lower surface of the flange 34 can be seated on the valve seat 18.
  • the first compression coil spring 38 is disposed so as to surround the main body 32 of the valve body 30.
  • the lower end of the first compression coil spring 38 is in contact with the upper surface of the flange 34.
  • the heat transfer body 40 that transfers heat to the valve body 30 is disposed in the housing 6 so that one end side is sandwiched between the first housing 8 and the second housing 10.
  • the heat transfer body 40 has a shape in which a flat plate is bent by about 90 °, and is disposed so that the heat radiation portion 42 on one end side sandwiched between the first housing 8 and the second housing 10 is orthogonal to the vertical direction.
  • the heat receiving portion 44 on the other end side is bent upward and arranged in parallel in the vertical direction.
  • the heat transfer body 40 is made of a material having a high thermal conductivity such as metal or ceramic and having a corrosion resistance or a corrosion-proof material so as not to be corroded by blow-by gas.
  • a circular through hole 46 penetrating vertically is formed in the heat radiating portion 42 coaxially with the flow path 4 so that the upstream flow path 4a and the downstream flow path 4b communicate with each other.
  • the inner diameter of the through hole 46 is smaller than the inner diameter of the first cylindrical portion 12 and is substantially equal to the inner diameter of the second cylindrical portion 24. Therefore, the inner peripheral surface of the through hole 46 and the peripheral portion 48 of the through hole 46 on the lower surface of the heat radiating portion 42 are exposed to the flow path 4. In the state where the valve body 30 is seated on the valve seat 18, the upper end of the first compression coil spring 38 is slightly separated from the peripheral edge portion 48.
  • the opening degree of the PCV valve 2 exceeds a predetermined opening degree
  • the upper end of the first compression coil spring 38 contacts the peripheral portion 48, and the first compression coil spring 38 urges the valve body 30 toward the valve seat 18.
  • the upper end of the first compression coil spring 38 is in contact with the peripheral portion 48, and the first compression coil spring 38 always urges the valve body 30 toward the valve seat 18. You may make it do.
  • the through hole 46 allows the valve body 30 to be inserted, and the upper surface of the heat radiating portion 42 and the upper end of the valve body 30 are located at substantially the same height in a state where the valve body 30 is seated on the valve seat 18.
  • the vertical length of the cut-out surface 36 of the valve body 30 is smaller than the vertical thickness of the heat radiating portion 42. Since the outer diameter of the main body portion 32 of the valve body 30 is slightly smaller than the inner diameter of the through hole 46, the gap between the valve body 30 through which blow-by gas flows and the inner peripheral surface of the through hole 46 is very narrow.
  • a receiving hole 50 for receiving the heat receiving portion 44 so as to be embedded is formed from the second joint portion 26 to the protruding portion 28 of the second housing 10.
  • the receiving hole 50 is a bottomed hole that opens toward the flow path 4.
  • the outer edge of the heat radiating portion 42 of the heat transfer body 40 is also attached to be embedded in the second housing 10 so that the inner peripheral surface of the through hole 46 and the inner peripheral surface of the second cylindrical portion 24 are smoothly continuous. Further, the entire upper surface side of the heat radiating portion 42 is in contact with the second housing 10, and the lower surface side of the heat radiating portion 42 around the through hole 46 is not in contact with the second housing 10.
  • the heating means 52 for heating the heat receiving part 44 is disposed outside the heat receiving part 44 with respect to the flow path 4.
  • a chamber 54 that opens downward is formed in the protrusion 28 of the second housing 10, and the heating means 52 is disposed in the chamber 54.
  • the opening below the chamber 54 is covered with the lid portion 22 of the first housing 8.
  • the contact area between the peripheral edge portion of the opening below the chamber 54 and the peripheral edge of the lid portion 22 is joined by ultrasonic welding.
  • the lid portion 22 is provided with a convex portion 56 that enters the chamber 54 and prevents the heating means 52 from falling.
  • the heating means 52 heats the heat receiving portion 44 via a partition wall 58 that separates the receiving hole 50 and the chamber 54.
  • the partition wall 58 is preferably thin in order to conduct heat. Even if the partition wall 58 is thin, it does not constitute the outer wall of the PCV valve 2 and thus does not significantly affect the strength of the PCV valve 2.
  • the 1st electrode 60 which comprises the heating means 52 is attached to the chamber 54 side of the partition 58.
  • FIG. The first electrode 60 has a shape corresponding to the shape of the heat receiving part 44 of the heat transfer body 40 by bending a thin plate made of metal at 90 ° in a sectional view, and is in close contact with the partition wall 58. Accordingly, the upper side of the first electrode 60 has a flat plate shape parallel to the vertical direction, and the lower side has a flat plate shape orthogonal to the vertical direction.
  • a second electrode 62 is attached to the surface facing the attachment surface of the upper portion of the first electrode 60 in the chamber 54.
  • the second electrode 62 is made of metal and has a substantially flat plate shape. In the center of the second electrode 62, a recessed portion 64 that is recessed away from the first electrode 60 is formed.
  • the first electrode 60 and the second electrode 62 are attached to the second housing 10 by insert molding.
  • a heating element 66 and a second compression coil spring 68 are disposed between the first electrode 60 and the second electrode 62.
  • the heating element 66 has a flat plate shape having a surface area substantially corresponding to the surface area of the upper portion of the first electrode 60 having a flat plate shape, and one surface is aligned with the upper portion of the first electrode 60. It is attached so as to be in close contact with and to be electrically connected.
  • the second compression coil spring 68 has conductivity, one end is attached to the recess 64 of the second electrode 62, and the other end is attached to the other surface of the heating element 66.
  • the second compression coil spring 68 electrically connects the second electrode 62 and the heating element 66 and urges the heating element 66 toward the first electrode 60 to prevent the heating element 66 from falling. .
  • the heating element 66 generates heat when a current flows.
  • the heating element 66 is preferably a PTC heater.
  • the PTC heater is a heater having PTC (Positive Temperature Coefficient) characteristics.
  • the PTC characteristic is a characteristic that the electrical resistance increases as the temperature increases. Therefore, when the voltage is constant, the PTC heater has a property that the current flowing through the heater is lowered as the temperature is increased, so that the amount of generated heat is also reduced and stabilized at a predetermined temperature.
  • the heating means 52 Since the heating means 52 has a structure in which the heating element 66 is pressed against the first electrode 60 by the second compression coil spring 68, it is possible to maintain good electrical conductivity and heat transfer between the heating element 66 and the first electrode 60. it can. By providing the chamber 54, the structure of the heating means 52 is compact and the heating element 66 and the second compression coil spring 68 can be easily attached. Further, since the first electrode 60 is made of a metal plate that has good thermal conductivity and is easier to process than the heating element 66 made of a PTC heater, the first electrode 60 is processed and arranged so as to cover the surface of the partition wall 58 on the chamber side. Heat generated by the body 66 is easily transferred to the heat transfer body 40.
  • the first joint portion 20 of the first housing 8 and the second joint portion 26 of the second housing 10 are combined to form an annular circumferential groove 70 whose upper surface is open so as to surround the flow path 4.
  • the free end of the partition wall 58 defines a part of the circumferential groove 70 on the second housing side.
  • An O-ring 72 is fitted in the circumferential groove 70 as a seal member, and the opening on the upper surface of the circumferential groove 70 is covered with the heat transfer body 40. That is, as shown in FIG. 2, the heat transfer body 40 has the first joint portion 20 of the first housing 8 and the receiving hole 50 and the second joint portion of the second housing 10 except for the portion exposed to the flow path 4.
  • the boundary between the first joint portion 20 and the second joint portion 26 is sealed by an O-ring 72, so that blow-by gas passing through the flow path 4 leaks to the outside of the PCV valve 2 and the chamber 54. do not do.
  • the flow path 4 and the chamber 54 are hermetically isolated, even if a part of the heat transfer body 40 is exposed to the flow path 4, the heating means 52 accommodated in the chamber 54 is replaced with blow-by gas. Do not touch.
  • the first joint portion 20 and the second joint portion 26 may be welded so as to surround the flow path 4 to serve as a sealing means.
  • a socket portion 74 for electrically connecting the heating means 52 to an external power source is provided on the free end side of the L-shaped portion 28b of the protruding portion 28 of the second housing 10.
  • the socket part 74 opens toward the opposite side of the flow path 4, and the two terminals 76 provided in the socket part 74 are electrically connected to the first electrode 60 and the second electrode 62, respectively. And is attached to the second housing 10 by insert molding.
  • the valve body 30 When the engine is stopped, there is no differential pressure between the upstream crankcase and the downstream intake system, so the valve body 30 is seated on the valve seat 18 by gravity. When the air temperature is low, water adhering to the inner peripheral surface of the housing 6 and the valve body 30 forming the flow path 4 is frozen. Such frozen water becomes a factor that inhibits the movement of the valve body 30 in the vertical direction.
  • the heating means 52 when the heating means 52 is energized, the heating element 66 generates heat, and the heat is transferred to the partition wall 58, the heat receiving part 44 of the heat transfer body 40, and the heat dissipation part 42 of the heat transfer body 40. It is transmitted in order.
  • the heat of the heat radiating part 42 melts the frozen water between the valve body 30 and the heat transfer body 40, and the valve body 30 becomes movable. Since the water frozen on the side surface of the valve body 30 is melted by contacting or approaching the heat radiating portion 42 as the valve body 30 rises, the vertical movement of the valve body 30 is not hindered.
  • the heat of the heat radiating part 42 is transmitted through the valve body 30 itself, the first cylindrical part 12, the second cylindrical part 24 and the air in the flow path 4, and the upper end of the first compression coil spring 38 is a heat transfer body. Since the first compression coil spring 38 is also transmitted after coming into contact with 40, the frozen water adhering to the lower side of the valve body 30 and the inner peripheral surfaces of the first cylindrical portion 12 and the second cylindrical portion 24 is melted.
  • the heating means 52 When the heating means 52 is energized in conjunction with the power supply of the vehicle accessory system or the engine start, the frozen water in the PCV valve 2 can be quickly melted. can do.
  • the valve body 30 After the upper end of the first compression coil spring 38 comes into contact with the heat transfer body 40, the valve body 30 has a levitation force based on the differential pressure on the resultant force of the gravity of the valve body 30 and the urging force of the first compression coil spring 38. Ascend to a balanced position and adjust the flow rate of the blow-by bus.
  • moisture containing blowby gas or blowby gas components enters the interface where the heat transfer body 40 and the first housing 8 or the second housing 10 come into contact with each other.
  • the exit from these interfaces is either the flow path 4 or the circumferential groove 70 in which the O-ring 72 is fitted.
  • the moisture containing the blowby gas or the blowby gas component that has returned to the flow path 4 is sucked into the intake system.
  • the moisture containing the blowby gas or the blowby gas component reaching the circumferential groove 70 is sealed between the first joint portion 20 and the second joint portion 26 by the O-ring 72.
  • the first housing 8 and the second housing 10 cannot enter the interface where they contact.
  • the heating means 52 arranged in the chamber 54 is hermetically isolated from the flow path 4 and is not exposed to moisture containing blowby gas or blowby gas components. Therefore, it is not necessary to perform anticorrosion treatment on the heating means 52, and the cost can be reduced.
  • the PCV valve 2 includes the heating means 52, the entire valve does not need to be made of metal unlike the case where heat generated by the engine is used. Therefore, the material of the housing 6 and the valve body 30 can be made of resin, and the PCV valve 2 is lightweight.
  • the heat transfer body 40 is a plate-like member, and the heat receiving portion 44 has a shape bent upward by about 90 degrees with respect to the heat radiating portion 42, so that most of the chamber 54 and the socket portion 74 are formed.
  • the protrusion 28 has an L shape. Therefore, the shape of the PCV valve 2 does not hinder the assembly of the PCV valve 2 to the head cover, and it is easy to attach the external power supply to the socket portion 74.
  • the present invention is not limited to the above-described embodiment, and can be widely modified.
  • it is good also as a member which exhibits a flat form, without bending a heat exchanger.
  • the housing may be integrally molded without being divided, and the flow path heat transfer body that is attached by insert molding and exposed to the flow path of blow-by gas may be heated from the outside of the housing by a heating means.

Abstract

【課題】バルブ内で凍結した水分を速やかに溶かすとともに、ブローバイガスに対する発熱体のシール性が良好なPCVバルブを提供する。 【解決手段】PCVバルブ(2)は、ブローバイガスの流路(4)を形成するハウジング(6)と、流路内に配置され、ハウジングに設けられた弁座(18)と協働する弁体(30)と、弁体を弁座に向けて付勢するばね(38)と、弁体を外囲する放熱部(42)を有する伝熱体(40)と、流路に対して気密に隔離され、伝熱体を加熱する発熱体(66)を有する加熱手段(52)とを備える。伝熱体の一端側が、ハウジングに形成された受容孔(50)に受容されている。加熱手段は、受容孔の一部を画成する隔壁(58)を介して伝熱体の一端側を加熱するように配置されることにより、流路に対して気密に隔離される。

Description

PCVバルブ
 本発明は、内燃機関のブローバイガス還元装置において、ブローバイガスの流量を調整するPCVバルブに関する。
 自動車のエンジン等において燃焼室からピストンとシリンダとの隙間を通りクランクケースに漏れ出たガスであるブローバイガスには、未燃焼の炭化水素(HC)や一酸化炭素(CO)等が含まれる。これらは大気汚染の原因物質であるため、ブローバイガスを大気中に放出するのではなく、これを吸気系に戻して混合気と共に再燃焼させるPCV(ポジティブクランクケースベンチレーション)システムが普及している。しかし、吸気系に戻すブローバイガスの量を増加させると、エンジン性能を低下させることになる。そのため、ブローバイガスの流量を調整するPCVバルブが設けられている。
 バルブの上流側と下流側との圧力差によってバルブの開度が調整される差圧駆動式の流量調整弁であるPCVバルブでは、エンジンの停止時に圧力差がなくなるためにPCVバルブが全閉状態となる。この時、気温が低いと、吸入空気中に含まれていた水分がPCVバルブ内で凍結することがある。すると、エンジンを始動させてPCVバルブの前後に圧力差が生じても、弁体が動かず、PCVバルブが全閉状態のままとなる。このように、PCVバルブ内で水分が凍結してブローバイガスの流路が閉塞すると、クランクケースの圧力が上昇し、エンジンからオイルが漏れたり、駆動部の焼きつきが生じたりするおそれがある。そのため、PCVバルブの凍結を防止する手段が提案されている。
 PCVバルブの凍結を防止する手段を大きく分けると、エンジン等で発生する熱を利用する手段と、PCVバルブを加熱するための装置を新たに設ける手段とがある。特許文献1で提案されているのは、後者の手段に相当し、電気ヒータで弁体を加熱する構造である。電気ヒータは、内周面が弁箱の内面の一部となるボビンと、ボビンの外周に配置されたコイルとから構成されている。
特開2008-115734号公報
 エンジン等で発生する熱を利用してPCVバルブの凍結を解凍する場合には、PCVバルブ全体を熱伝導率の高い金属で製造する必要がある。そのため、重量が増加するという問題や、金属材料の切削加工が必要なためコストが増加するという問題があった。また、エンジンが暖まらないとPCVバルブも暖まらないため、より即効性の高い解凍手段が求められていた。
 また、特許文献1に提案されている電気ヒータを備えたPCVバルブでは、発熱体であるコイル及びその電気的接続手段とブローバイガスとの間のシール性を十分に確保できないおそれがあった。ブローバイガスは、pH2程度の強い酸性を示すため、コイルや電極に接触するとこれらを腐食させる。これらの腐食を防止するためにチタン処理等の防食処理を施すと、コストが増加するという問題があった。
 本発明は、このような従来技術の課題に鑑みてなされたものであり、凍結の防止の即効性が高く、ブローバイガスに対する発熱体のシール性が良好なPCVバルブを提供することを主目的とする。
 本発明に係るPCVバルブ(2)のある側面は、ブローバイガスの流路(4)を形成するハウジング(6)と、前記流路内に配置され、前記ハウジングに設けられた弁座(18)と協働する弁体(30)と、前記弁体を前記弁座に向けて付勢するばね(38)と、前記弁体を外囲する放熱部(42)を有する伝熱体(40)と、前記流路に対して気密に隔離され、前記伝熱体を加熱する発熱体(66)を有する加熱手段(52)とを備えることを特徴とする。
 本構成によれば、PCVバルブ内で凍結した水分を溶かすために、エンジンの熱を利用する必要がないため、ハウジングや弁体の素材を熱伝導性は良いが重い金属ではなく、熱伝導性は悪くとも軽く製造コストの低い樹脂等にすることができ、軽量のPCVバルブを低コストで製造できる。また、加熱手段は、流路から気密に隔離されているため、ブローバイガスによって腐食されるおそれがなく、防食処理を施す必要がなくなり、コストが削減できる。
 本発明のある側面は、上記構成に加えて、前記ハウジングには、前記伝熱体の一端側を形成する受熱部(44)を受容するように前記流路に向けて開口した受容孔(50)が形成されており、前記加熱手段は、前記受容孔の少なくとも一部を画成する隔壁(58)を介して前記伝熱体の前記受熱部を加熱し、前記伝熱体の前記放熱部における前記弁体に近接する部分は、前記流路に露出していることを特徴とする。
 本構成によれば、簡易な構成で、加熱手段を流路から気密に隔離できる。
 本発明のある側面は、上記構成に加えて、前記ハウジングは、前記流路の上流側を形成する第1ハウジング(8)と、前記流路の下流側を形成する第2ハウジング(10)とを有し、前記流路が貫通し、全周にわたって前記第1ハウジング及び前記第2ハウジングの双方に当接して、前記第1ハウジングと前記第2ハウジングとの接合部をシールする環状部材(72)をさらに備えることを特徴とする。または、環状部材に代えて、前記第1ハウジングと前記第2ハウジングとの接合部は、溶着によってシールされる。
 本構成によれば、簡易なシール手段を用いることができるため、製造コストを抑えることができる。
 本発明のある側面は、上記構成に加えて、前記伝熱体の前記受熱部の先端側、前記隔壁及び前記発熱体は、各々平板状を呈し、積層されることを特徴とする。
 本構成によれば、発熱体から伝熱体の受熱部への熱伝達を効率的に行うことができる。
 本発明のある側面は、上記構成に加えて、前記発熱体は、PTCヒータからなることを特徴とする。
 本構成によれば、温度センサを使用せずに発熱体の温度を一定に保てるため、発熱体を備えたPCVバルブを小型化できる。
 本発明のある側面は、上記構成に加えて、前記ハウジングには、前記加熱手段を収容するチャンバ(54)がさらに形成されており、前記加熱手段は、前記隔壁及び前記発熱体間に挟持される第1電極(60)と、一端側が前記発熱体を押圧する導電性圧縮コイルばね(68)と、前記隔壁に対向する前記チャンバの内面に取り付けられて、前記圧縮コイルばねの他端側に押圧される第2電極(62)とを有することを特徴とする。
 本構成によれば、加熱手段の電導性及び伝熱性を高めることができるとともに、加熱手段のPCVバルブへの取り付けが容易となる。
 本発明のある側面は、上記構成に加えて、前記伝熱体は板状の金属からなり、前記放熱部には前記弁体を挿通させる貫通孔(46)が形成されていることを特徴とする。
 本構成によれば、部材構成が簡素化され、PCVバルブを小型化でき、コストを削減できる。
 本発明によれば、加熱手段を備えたPCVバルブを軽量化できるとともに、加熱手段がブローバイガスによって腐食されないようにすることができる。
本発明の実施形態に係るPCVバルブの斜視図。 本発明の実施形態に係るPCVバルブの縦断面図。
 以下、本発明の実施形態について図面を参照して説明する。説明に当たり、方向を示す用語は、図面に示す方向に従う。
 図1は、PCVバルブ2の斜視図であり、図2は、図1におけるII-II断面の断面図である。PCVバルブ2は、その内部にブローバイガスの流路4が形成されており、流路4の下端側(上流側)がクランクケースのヘッドカバー(図示せず)に取り付けられ、流路4の上端側(下流側)がブローバイガスホース(図示せず)を介して吸気系に接続されて、流路4を介してクランクケースと吸気系とを連通させている。
 PCVバルブ2のハウジング6は、上流側流路4aを形成する第1ハウジング8と下流側流路4bを形成する第2ハウジング10とによって構成される。
 第1ハウジング8は、樹脂を素材とし、射出成形によって成形される。第1ハウジング8は、上流側流路4aが上下方向に延在するように形成された第1円筒部12を有する。第1円筒部12の下端には、内径が縮径された流入孔14が形成されており、流入孔14を形成する下端壁16の円環状の上面が弁座18となっている。下端壁16より上側の第1円筒部12の内径は略一定である。第1ハウジング8は、第1円筒部12の上端側の外周面から外側に延出して第2ハウジング10に接合されて平面視で円環状を呈する第1接合部20と、第1接合部20の平面視で半円状を呈する側面全体から一側方に突出した蓋部22とを有する。第1接合部20の下面と蓋部22の下面とは、1つの平面を構成する。
 第2ハウジング10は、樹脂を素材とし、射出成形によって成形される。第2ハウジング10は、下流側流路4bが上下方向に延在するように形成された第2円筒部24を有する。第2円筒部24の内径は、略一定であり、第1円筒部12の内径より小さい。第2円筒部24の外径は、第1円筒部12の外形よりも小さい。第2ハウジング10を第1ハウジング8と組み合わせたとき、下流側流路4bは上流側流路4aと同軸になる。第2円筒部24の上端側の外周面は、ブローバイガスホースが固定されるように外側に凸になっている。第2ハウジング10は、第2円筒部24の下端側の外周面から外側に延出して、第1ハウジング8の第1接合部20に接合される平面視で円環状を呈する第2接合部26と、第2接合部26の平面視で半円状を呈する側面の下側の全体から第1ハウジング8の蓋部22と同方向に突出した突出部28とを有する。突出部28は、第2接合部26の側面から一側方に延出する基部28aと、基部28aから上方に延出した後、一側方に延出してL字状を呈するL形部28bとを有する。第1接合部20及び蓋部22の組み合わさった外周面と第2接合部26及び基部28aの組み合わさった外周面とが整合しており、互いが溶着にされて取り付けられる。突出部28の詳細な構造は、関連する部材の説明と共に後述する。
 ハウジング6の流路4内には、弁体30が弁座18に着座可能に配置される。弁体30は、樹脂もしくは金属を素材とする。弁体30は、概ね円柱形状を呈する本体部32と、本体部32の下端に形成された円環状のフランジ34とを有する。本体部32の上端面と側周面との間には切欠面36が形成されている。本体部32の外径は、上側が下側よりもわずかに小さくなっているとともに、弁体30が流路4内を上下に移動できるように、上流側流路4aの径よりも小さく、下流側流路4bの径よりもわずかに小さい。フランジ34の外径は、フランジ34の下面が弁座18に着座可能になるように、流入孔14の内径よりも大きい。
 第1圧縮コイルばね38は、弁体30の本体部32を取り囲むように配置される。第1圧縮コイルばね38の下端は、フランジ34の上面に接している。
 弁体30に熱を伝える伝熱体40は、一端側が第1ハウジング8及び第2ハウジング10に挟持されるようにハウジング6内に配置される。伝熱体40は、平板を約90°屈曲させた形状を呈し、第1ハウジング8及び第2ハウジング10に挟持された一端側の放熱部42が上下方向に直交するように配置されており、他端側の受熱部44が上方に向けて屈曲されて上下方向に平行に配置される。伝熱体40は、金属又はセラミック等の熱伝導率の高い物質であって、ブローバイガスによって腐食しないように耐食性のある物質又は防食処理された物質を素材とする。
 放熱部42には、上下に貫通する円形の貫通孔46が流路4と同軸に形成されており、上流側流路4aと下流側流路4bとを連通させている。貫通孔46の内径は、第1円筒部12の内径より小さく、第2円筒部24の内径と略等しい。よって、貫通孔46の内周面及び放熱部42の下面の貫通孔46の周縁部48は、流路4に露出している。弁体30が弁座18に着座した状態では、第1圧縮コイルばね38の上端は周縁部48からわずかに離間しているが、PCVバルブ2の開度が所定の開度以上になると、第1圧縮コイルばね38の上端は周縁部48に接触し、第1圧縮コイルばね38は弁体30を弁座18に向けて付勢する。なお、弁体30が弁座18に着座した状態で、第1圧縮コイルばね38の上端が周縁部48に接し、第1圧縮コイルばね38が常に弁体30を弁座18に向けて付勢するようにしても良い。貫通孔46は、弁体30を挿通させており、弁体30が弁座18に着座した状態で、放熱部42の上面と弁体30の上端とが略同じ高さに位置する。また、弁体30の切欠面36の上下方向の長さは、放熱部42の上下方向の厚さより小さい。弁体30の本体部32の外径は貫通孔46の内径よりもわずかに小さいため、ブローバイガスが流れる弁体30と貫通孔46の内周面との間隙は、非常に狭くなっている。
 伝熱体40は、インサート成形によって第2ハウジング10に取り付けられるため、第2ハウジング10の第2接合部26から突出部28にかけては、受熱部44を埋設するように受容する受容孔50が形成されている。よって、受容孔50は、流路4に向かって開口した有底の孔となる。また、伝熱体40の放熱部42の外縁も第2ハウジング10に埋設されるように取り付けられ、貫通孔46の内周面と第2円筒部24の内周面とが滑らかに連続するように放熱部42の上面側は全体が第2ハウジング10に当接しており、貫通孔46の周辺の放熱部42の下面側は第2ハウジング10に当接していない。
 受熱部44を加熱する加熱手段52は、流路4に対して受熱部44よりも外側に配置される。第2ハウジング10の突出部28には、下方に開口したチャンバ54が形成されており、加熱手段52はチャンバ54内に配置される。チャンバ54の下方の開口は、第1ハウジング8の蓋部22に覆われる。チャンバ54の下方の開口の周縁部分と蓋部22周縁との接触領域は、超音波溶着により接合される。また、蓋部22には、チャンバ54内に突入して加熱手段52の落下を防止する凸部56が設けられている。加熱手段52は、受容孔50とチャンバ54とを隔てる隔壁58を介して、受熱部44を加熱する。隔壁58は、熱を伝えるため薄いほうが望ましく、また、薄くしたとしても、PCVバルブ2の外壁を構成していないため、PCVバルブ2の強度に大きな影響は与えない。
 加熱手段52を構成する第1電極60が、隔壁58のチャンバ54側に取り付けられている。第1電極60は、金属を素材とする薄板を断面視で90°に屈曲させて、伝熱体40の受熱部44の形状に対応するような形状を呈し、隔壁58に密着している。従って、第1電極60の上側は、上下方向に平行な平板状を呈し、下側は上下方向に直交する平板状を呈する。チャンバ54内で第1電極60の上側部分の取り付け面と対向する面には、第2電極62が取り付けられている。第2電極62は、金属を素材とし、概ね平板状を呈する。第2電極62の中央には、第1電極60から遠ざかるように窪んだ凹部64が形成されている。第1電極60及び第2電極62は、インサート成形によって第2ハウジング10に取り付けられる。
 第1電極60と第2電極62との間には、発熱体66と、第2圧縮コイルばね68とが配置されている。発熱体66は、第1電極60の平板状を呈する上側部分の表面の面積に略対応する表面の面積を有する平板形状を呈し、一方の表面が、第1電極60の上側部分に整合するように密接し、かつ電気的に接続するように取り付けられている。第2圧縮コイルばね68は、導電性を有し、一端が第2電極62の凹部64に取り付けられ、他端が発熱体66の他方の表面に取り付けられる。よって、第2圧縮コイルばね68は、第2電極62と発熱体66とを電気的に接続すると共に、発熱体66を第1電極60に向けて付勢して発熱体66の落下を防止する。発熱体66は、電流が流れることによって発熱する。発熱体66は、PTCヒータとすることが望ましい。PTCヒータとは、PTC(Positive Temperature Coefficient)特性を有するヒータである。PTC特性とは、温度が上がるにつれて電気抵抗が大きくなる特性である。従って、PTCヒータは、電圧が一定の場合、温度が上がるに従ってヒータを流れる電流が低くなるため、発熱量も下がり、所定の温度で安定するという性質を有する。このような性質をもたないヒータを発熱体66として使用する場合は、温度センサと、温度センサに検出された温度に応じて電流のオン・オフを切り替えるスイッチを付けることが望ましい。
 加熱手段52は、発熱体66を第2圧縮コイルばね68で第1電極60に押し付ける構造をとっているため、発熱体66と第1電極60との電導性及び伝熱性を良好に保つことができる。チャンバ54を設けたことにより、このような加熱手段52の構造がコンパクトにまとまり、発熱体66及び第2圧縮コイルばね68を容易に取り付けることが出来る。また、第1電極60は、熱伝導性が良く、PTCヒータからなる発熱体66よりも加工が容易な金属板からなるため、隔壁58のチャンバ側の面を覆うように加工及び配置され、発熱体66で発生した熱が伝熱体40に伝わりやすくなっている。
 第1ハウジング8の第1接合部20と第2ハウジング10の第2接合部26とが組み合わさって、上面が開口した環状の周溝70が流路4を取り囲むように形成される。隔壁58の遊端は、第2ハウジング側でこの周溝70の一部を画成している。周溝70には、Oリング72がシール部材として嵌め込まれ、周溝70の上面の開口は、伝熱体40によって蓋をされる。すなわち、図2に示すように、伝熱体40は、流路4に露出した部分以外は、第1ハウジング8の第1接合部20、並びに第2ハウジング10の受容孔50及び第2接合部26に取り囲まれ、第1接合部20と第2接合部26との境界は、Oリング72でシールされるため、流路4を通るブローバイガスは、PCVバルブ2の外部や、チャンバ54に漏洩しない。換言すると、流路4とチャンバ54とが気密に隔離されているため、伝熱体40の一部が流路4に露出していても、チャンバ54に収容された加熱手段52はブローバイガスに接触しない。Oリング72に代えて、第1接合部20と第2接合部26とを流路4を取り囲むように溶着して、シール手段としても良い。
 第2ハウジング10の突出部28のL形部28bの遊端側には、加熱手段52を外部電源と電気的に接続するためのソケット部74が設けられている。ソケット部74は、流路4の反対側に向かって開口しており、ソケット部74内に設けられた2つの端子76は、それぞれ第1電極60及び第2電極62と電気的に接続されており、インサート成形によって第2ハウジング10に取り付けられている。
 次に、PCVバルブ2の作用及び効果について説明する。
 エンジンが停止しているときは、上流側のクランクケースと下流側の吸気系との間に差圧がないため、弁体30は、重力により弁座18に着座している。気温が低い場合、流路4を形成するハウジング6の内周面や弁体30に付着した水分が凍結する。このような凍結水分は、弁体30の上下方向への移動を阻害する要因となる。本実施形態に係るPCVバルブ2では、加熱手段52に通電すると、発熱体66が発熱し、その熱が、隔壁58、伝熱体40の受熱部44、伝熱体40の放熱部42へと順に伝わる。すると、放熱部42の熱が弁体30と伝熱体40との間で凍結した水分を溶かし、弁体30が移動可能となる。弁体30の側面で凍結した水分は、弁体30の上昇と共に放熱部42に接触又は近接することによって溶けるため、弁体30の上下動を阻害しない。また、放熱部42の熱は、弁体30自体、第1円筒部12、第2円筒部24及び流路4内の空気を介して、また、第1圧縮コイルばね38の上端が伝熱体40に接触した後は第1圧縮コイルばね38をも伝わるため、弁体30の下側や、第1円筒部12及び第2円筒部24の内周面に付着した凍結水分を溶かす。
 車両のアクセサリー系統の電源やエンジンの始動に連動させて、加熱手段52に通電するとPCVバルブ2内の凍結水分を素早く溶かすことができ、常時あるいは気温に応じて加熱手段52に通電すると凍結を予防することができる。
 このように、PCVバルブ2内の水分の凍結が防止された場合は、エンジンを始動させると、クランクケースと吸気系との間に差圧が生じ、差圧に基づく浮揚力が弁体30の重力よりも大きくなって、弁体30が上昇して弁座18から離間して弁体30の上端側が第2円筒部24内に進入し、PCVバルブ2が開状態になり、ブローバイガスが、弁体30と第1円筒部12、伝熱体40及び第2円筒部24との間を流れ、吸気系に供給される。第1圧縮コイルばね38の上端が伝熱体40に接触した後は、弁体30は、差圧に基づく浮揚力が弁体30の重力と第1圧縮コイルばね38の付勢力との合力に均衡する位置まで上昇してブローバイバスの流量を調整する。
 ところで、ブローバイガスあるいはブローバイガスの成分を含んだ水分は、伝熱体40と第1ハウジング8又は第2ハウジング10とが接触する界面に侵入する。これらの界面からの出口は、流路4またはOリング72が嵌め込まれた周溝70のいずれかである。流路4に戻ったブローバイガスあるいはブローバイガスの成分を含んだ水分は、吸気系に吸引される。周溝70に至ったブローバイガスあるいはブローバイガスの成分を含んだ水分は、第1接合部20と第2接合部26との間がOリング72でシールされているため、周溝70の下方の第1ハウジング8と第2ハウジング10とが接触する界面に侵入することができない。よって、チャンバ54に配置された加熱手段52は、流路4から気密に隔離され、ブローバイガス又はブローバイガスの成分を含んだ水分に曝されるおそれがない。そのため、加熱手段52に防食処理を施す必要がなく、コストを削減できる。
 PCVバルブ2は、加熱手段52を備えるため、エンジンで発生する熱を利用する場合のようにバルブ全体を金属にする必要がない。そのため、ハウジング6や弁体30の素材を樹脂とすることができ、PCVバルブ2が軽量になっている。
 また、伝熱体40が、板状部材であり、受熱部44が放熱部42に対して上方に向けて約90度折り曲げられた形状を呈することにより、チャンバ54の大部分及びソケット部74が、L字状を呈する突出部28に収まっている。そのため、PCVバルブ2の形状は、PCVバルブ2のヘッドカバーへの組付けを阻害せず、外部電源のソケット部74への取り付けも容易となっている。
 以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、伝熱体を屈曲させず、平板状を呈する部材としても良い。また、ハウジングを分割せず一体として成形し、インサート成形により取り付けられてブローバイガスの流路に露出する流路伝熱体をハウジングの外部から加熱手段によって加熱してもよい。
2...PCVバルブ、4...流路、6...ハウジング、8...第1ハウジング、10...第2ハウジング、12...第1円筒部、14...流入孔、18...弁座、24...第2円筒部、28...突出部、30...弁体、32...本体部、34...フランジ、38...第1圧縮コイルばね、40...伝熱体、42...放熱部、44...受熱部、46...貫通孔、50...受容孔、52...加熱手段、54...チャンバ、58...隔壁、60...第1電極、62...第2電極、66...発熱体、68...第2圧縮コイルばね、70...周溝、72...Oリング、74...ソケット部

Claims (8)

  1.  ブローバイガスの流路を形成するハウジングと、
     前記流路内に配置され、前記ハウジングに設けられた弁座と協働する弁体と、
     前記弁体を前記弁座に向けて付勢するばねと、
     前記弁体を外囲する放熱部を有する伝熱体と、
     前記流路に対して気密に隔離され、前記伝熱体を加熱する発熱体を有する加熱手段とを備えることを特徴とするPCVバルブ。
  2.  前記ハウジングには、前記伝熱体の一端側を形成する受熱部を受容するように前記流路に向けて開口した受容孔が形成されており、
     前記加熱手段は、前記受容孔の少なくとも一部を画成する隔壁を介して前記伝熱体の前記受熱部を加熱し、
     前記伝熱体の前記放熱部における前記弁体に近接する部分は、前記流路に露出していることを特徴とする請求項1に記載のPCVバルブ。
  3.  前記ハウジングは、前記流路の上流側を形成する第1ハウジングと、前記流路の下流側を形成する第2ハウジングとを有し、
     前記流路が貫通し、全周にわたって前記第1ハウジング及び前記第2ハウジングの双方に当接して、前記第1ハウジングと前記第2ハウジングとの接合部をシールする環状部材をさらに備えることを特徴とする請求項1又は請求項2に記載のPCVバルブ。
  4.  前記ハウジングは、樹脂を素材として前記流路の上流側を形成する第1ハウジングと、樹脂を素材として前記流路の下流側を形成する第2ハウジングとを有し、
     前記流路を外囲する前記第1ハウジングと前記第2ハウジングとの接合部は、溶着によってシールされることを特徴とする請求項1又は請求項2に記載のPCVバルブ。
  5.  前記伝熱体の前記受熱部の先端側、前記隔壁及び前記発熱体は、各々平板状を呈し、積層されることを特徴とする請求項2~請求項4のいずれかに記載のPCVバルブ。
  6.  前記発熱体は、PTCヒータからなることを特徴とする請求項1~請求項5のいずれかに記載のPCVバルブ。
  7.  前記ハウジングには、前記加熱手段を収容するチャンバがさらに形成されており、
     前記加熱手段は、前記隔壁及び前記発熱体間に挟持される第1電極と、一端側が前記発熱体を押圧する導電性圧縮コイルばねと、前記隔壁に対向する前記チャンバの内面に取り付けられて、前記圧縮コイルばねの他端側に押圧される第2電極とを有することを特徴とする請求項2~請求項6のいずれかに記載のPCVバルブ。
  8.  前記伝熱体は板状の金属からなり、前記放熱部には前記弁体を挿通させる貫通孔が形成されていることを特徴とする請求項1~請求項7のいずれかに記載のPCVバルブ。
PCT/JP2014/006109 2013-12-25 2014-12-05 Pcvバルブ WO2015098005A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14874494.9A EP3088693B1 (en) 2013-12-25 2014-12-05 Pcv valve
CN201480070742.XA CN105849373B (zh) 2013-12-25 2014-12-05 Pcv阀
US15/104,611 US10006325B2 (en) 2013-12-25 2014-12-05 PCV valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-267298 2013-12-25
JP2013267298A JP6126988B2 (ja) 2013-12-25 2013-12-25 Pcvバルブ

Publications (1)

Publication Number Publication Date
WO2015098005A1 true WO2015098005A1 (ja) 2015-07-02

Family

ID=53477912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006109 WO2015098005A1 (ja) 2013-12-25 2014-12-05 Pcvバルブ

Country Status (6)

Country Link
US (1) US10006325B2 (ja)
EP (1) EP3088693B1 (ja)
JP (1) JP6126988B2 (ja)
KR (1) KR101629104B1 (ja)
CN (1) CN105849373B (ja)
WO (1) WO2015098005A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017000936A1 (de) * 2016-02-03 2017-08-03 Eichenauer Heizelemente Gmbh & Co. Kg Rückschlagventil mit Vereisungsschutz
JP6672189B2 (ja) * 2017-01-13 2020-03-25 ヤンマー株式会社 エンジン装置
DE102018211450B3 (de) * 2018-07-11 2019-08-22 Bayerische Motoren Werke Aktiengesellschaft Diagnosefähige Anschlussvorrichtung einer Entlüftungsvorrichtung für eine Brennkraftmaschine
CN112648395B (zh) * 2020-12-21 2022-11-25 曲阜天博汽车零部件制造有限公司 一种pcv阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098709U (ja) * 1983-12-12 1985-07-05 トヨタ自動車株式会社 エンジンのブロ−バイガス還元装置
JPH0542620U (ja) * 1991-11-05 1993-06-11 トーソク株式会社 流量制御弁の合成樹脂製弁体構造
JP2000161040A (ja) * 1998-11-27 2000-06-13 Aisan Ind Co Ltd 内燃機関のpcv装置
JP2002129928A (ja) * 2000-10-25 2002-05-09 Honda Motor Co Ltd 内燃機関のpcvバルブの取付け構造
JP2008115734A (ja) 2006-11-02 2008-05-22 Aisan Ind Co Ltd Pcvバルブ
EP2546482A1 (de) * 2011-07-12 2013-01-16 Mann + Hummel Gmbh Heizeinrichtung einer Fluidleitung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164762A (en) * 1979-06-08 1980-12-22 Nippon Soken Inc Intake-air heater for internal-combustion engine
JPS61122313U (ja) * 1985-01-21 1986-08-01
DE19525542A1 (de) * 1995-07-13 1997-01-16 Mann & Hummel Filter Heizeinrichtung
DE60229533D1 (de) * 2001-08-30 2008-12-04 Cooper Standard Automotive Inc Erwärmtes kurbelgehäuseentlüftungsventil und erwärmte schlauchanordnungen
US6546921B1 (en) * 2002-04-30 2003-04-15 Miniature Precision Components Heated PCV valve
JP2008111345A (ja) * 2006-10-30 2008-05-15 Aisan Ind Co Ltd Pcvバルブ
US20080099000A1 (en) * 2006-10-30 2008-05-01 Aisan Kogyo Kabushiki Kaisha PCV valve
JP4778536B2 (ja) * 2007-06-26 2011-09-21 愛三工業株式会社 Pcvバルブ
JP2009127543A (ja) * 2007-11-26 2009-06-11 Aisan Ind Co Ltd Pcvバルブの加熱装置
CN101575996A (zh) * 2008-05-07 2009-11-11 中国第一汽车集团公司 气缸体内置通道曲轴箱通风结构
DE102011106593B4 (de) * 2010-07-06 2022-01-13 BRUSS Sealing Systems GmbH Gehäuse für einen Verbrennungsmotor und ein an dem Gehäuse befestigtes PCV-Ventil zur Kurbelgehäuseentlüftung, und Verfahren zum Befestigen eines PCV-Ventils an einem Gehäuse
JP5282774B2 (ja) * 2010-10-21 2013-09-04 トヨタ自動車株式会社 Pcvバルブの取付構造
CN202811008U (zh) * 2012-08-30 2013-03-20 长城汽车股份有限公司 带有pcv阀的装置
US9976457B2 (en) * 2012-09-07 2018-05-22 Miniature Precision Components, Inc. Turbo PCV valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098709U (ja) * 1983-12-12 1985-07-05 トヨタ自動車株式会社 エンジンのブロ−バイガス還元装置
JPH0542620U (ja) * 1991-11-05 1993-06-11 トーソク株式会社 流量制御弁の合成樹脂製弁体構造
JP2000161040A (ja) * 1998-11-27 2000-06-13 Aisan Ind Co Ltd 内燃機関のpcv装置
JP2002129928A (ja) * 2000-10-25 2002-05-09 Honda Motor Co Ltd 内燃機関のpcvバルブの取付け構造
JP2008115734A (ja) 2006-11-02 2008-05-22 Aisan Ind Co Ltd Pcvバルブ
EP2546482A1 (de) * 2011-07-12 2013-01-16 Mann + Hummel Gmbh Heizeinrichtung einer Fluidleitung

Also Published As

Publication number Publication date
KR20150075360A (ko) 2015-07-03
JP6126988B2 (ja) 2017-05-10
EP3088693B1 (en) 2018-10-17
CN105849373A (zh) 2016-08-10
EP3088693A1 (en) 2016-11-02
CN105849373B (zh) 2018-06-15
US10006325B2 (en) 2018-06-26
JP2015124611A (ja) 2015-07-06
KR101629104B1 (ko) 2016-06-09
EP3088693A4 (en) 2017-08-23
US20160312671A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
US7387114B2 (en) Heating device for a fluid line and method of manufacture
WO2015098005A1 (ja) Pcvバルブ
US10247153B2 (en) Heating device for a fluid line
US10196946B2 (en) Check valve with anti-icing protection
US20080099000A1 (en) PCV valve
US20080053530A1 (en) Valve with freeze-proof heated valve seat
US20040231651A1 (en) Heated pcv valve and hose assemblies
WO2016039132A1 (ja) 流体用の配管装置
JP2014173437A (ja) ブローバイガスヒーター
EP3540186B1 (en) Blowby heater
KR102148527B1 (ko) 온도 퓨즈에 대한 단열 차폐 구조를 갖는 배터리용 냉각수 가열 장치
EP3488661B1 (en) Blowby heater
JP2017078394A (ja) ブローバイガスヒータ
US20140311212A1 (en) Gas sensor with heat shielding
KR102053024B1 (ko) 냉각수 가열식 히터
JP2008063959A (ja) スロットル装置
EP3249208B1 (en) Blowby heater
KR102040484B1 (ko) 냉각수 가열식 히터
JP4746517B2 (ja) Pcvバルブ
KR20210025243A (ko) 플레이트 열변형 방지구조를 갖는 배터리용 냉각수 가열 장치
WO2017033383A1 (ja) ブローバイガスヒーター用電極接続部及びこれを用いたブローバイガスヒーター
CN110573366A (zh) 冷却剂加热器
KR102040483B1 (ko) 냉각수 가열식 히터
EP3510834A1 (fr) Dispositif de chauffage électrique
LU100736B1 (en) Blowby Heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15104611

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014874494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874494

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE