WO2015097911A1 - フォークリフト及びフォークリフトの制御方法 - Google Patents

フォークリフト及びフォークリフトの制御方法 Download PDF

Info

Publication number
WO2015097911A1
WO2015097911A1 PCT/JP2013/085266 JP2013085266W WO2015097911A1 WO 2015097911 A1 WO2015097911 A1 WO 2015097911A1 JP 2013085266 W JP2013085266 W JP 2013085266W WO 2015097911 A1 WO2015097911 A1 WO 2015097911A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
brake
forklift
threshold
speed
Prior art date
Application number
PCT/JP2013/085266
Other languages
English (en)
French (fr)
Inventor
慎治 金子
泰司 大岩
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US14/363,015 priority Critical patent/US9624079B2/en
Priority to DE112013000267.1T priority patent/DE112013000267B4/de
Priority to JP2014526293A priority patent/JP5774224B1/ja
Priority to CN201380004009.3A priority patent/CN104884381B/zh
Priority to PCT/JP2013/085266 priority patent/WO2015097911A1/ja
Publication of WO2015097911A1 publication Critical patent/WO2015097911A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/431Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/10Inching

Definitions

  • the present invention provides a forklift having a variable displacement hydraulic pump driven by an engine, and a hydraulic motor that forms a closed circuit between the hydraulic pump and is driven by hydraulic oil discharged from the hydraulic pump;
  • the present invention relates to a forklift control method.
  • the hydraulic drive device includes a variable displacement travel hydraulic pump driven by an engine and a variable displacement hydraulic motor driven by hydraulic oil discharged from the travel hydraulic pump in a main hydraulic circuit that is a closed circuit. The vehicle is caused to travel by transmitting the drive of the hydraulic motor to the drive wheels.
  • the forklift to which such a hydraulic drive device is applied is also provided with a working hydraulic pump driven by an engine, and hydraulic oil is supplied from the working hydraulic pump to the working machine actuator to drive the working machine.
  • a working hydraulic pump driven by an engine
  • hydraulic oil is supplied from the working hydraulic pump to the working machine actuator to drive the working machine.
  • inching control for increasing or decreasing the absorption torque of the traveling hydraulic pump is performed (for example, Patent Document 1).
  • a forklift that performs inching control includes a work for handling cargo by depressing the accelerator pedal to increase the engine speed while the brake pedal is depressed (the vehicle is stopped) and moving the fork.
  • the accelerator pedal is depressed to increase the engine speed, and then the brake pedal is suddenly released to push the load with the fork or remove the fork from the gap between the luggage. There is work to pull out from.
  • Patent Document 1 describes that inching control suitable for a push-in operation and a pull-out operation peculiar to a forklift is performed.
  • the brake pedal is returned after the brake pedal is depressed to reduce the deceleration force, the accelerator pedal is further depressed or the cargo handling operation is performed while running.
  • the operator accidentally releases too much brake pedal there are various aspects, such as when the operator accidentally releases too much brake pedal.
  • the object of the present invention is to realize appropriate inching control in work using a forklift equipped with HST.
  • the present invention provides a variable displacement travel hydraulic pump driven by an engine, a hydraulic circuit that forms a closed circuit with the travel hydraulic pump and is driven by hydraulic oil discharged from the travel hydraulic pump And a forklift having drive wheels driven by the hydraulic motor, and a vehicle speed sensor for determining a vehicle speed of the forklift and an accelerator opening indicating an operation amount of an accelerator pedal for changing a fuel supply amount to the engine
  • An accelerator opening sensor that operates, a brake pedal that is used to brake the forklift and that operates an inching rate that is a reduction rate of a tilt angle of a swash plate included in the traveling hydraulic pump, and an operation of the brake pedal
  • An inching rate calculating unit that calculates the inching rate corresponding to the amount, the accelerator opening, and the block Inching rate increasing speed for determining an increasing rate of the inching rate based on at least one of a brake opening indicating an operation amount of the brake pedal, a changing speed of the brake opening, and the vehicle speed detected by the vehicle speed sensor And an arithmetic unit
  • the increase speed when the vehicle speed is equal to or lower than the predetermined vehicle speed threshold is smaller than the increase speed when the vehicle speed is larger than the vehicle speed threshold. Is preferred.
  • the increase speed when the change rate of the brake opening is greater than or equal to the predetermined opening change threshold is It is preferable that the change rate of the brake opening is smaller than the increase rate when the change rate of the brake opening is less than the opening change threshold.
  • the increasing speed in the case where the change speed of the brake opening is not less than the predetermined opening change threshold is preferably increased as the accelerator opening increases.
  • the increase speed is determined by a map of the increase speed set according to the accelerator opening. Preferably, it is defined.
  • the increase speed increases as the accelerator opening increases.
  • the present invention provides a variable displacement travel hydraulic pump driven by an engine, a hydraulic circuit that forms a closed circuit with the travel hydraulic pump and is driven by hydraulic oil discharged from the travel hydraulic pump And an accelerator opening indicating an operation amount of an accelerator pedal for changing a fuel supply amount to the engine, and for braking the forklift in controlling a forklift having a driving wheel driven by the hydraulic motor.
  • a swash plate included in the traveling hydraulic pump based on at least one of a brake opening indicating an operation amount of the brake pedal, a change speed of the brake opening, and a vehicle speed of the forklift detected by a vehicle speed sensor Forklift control method for determining the rate of increase of the inching rate, which is the reduction rate of the tilt angle of the fork A.
  • the increase speed when the vehicle speed is equal to or lower than the predetermined vehicle speed threshold is smaller than the increase speed when the vehicle speed is larger than the vehicle speed threshold. Is preferred.
  • the increase speed when the change rate of the brake opening is greater than or equal to the predetermined opening change threshold is It is preferable that the change rate of the brake opening is smaller than the increase rate when the change rate of the brake opening is less than the opening change threshold.
  • the increasing speed in the case where the change speed of the brake opening is not less than the predetermined opening change threshold is preferably increased as the accelerator opening increases.
  • the increase speed is determined by a map of the increase speed set according to the accelerator opening. Preferably, it is defined.
  • the increase speed increases as the accelerator opening increases.
  • the present invention can realize appropriate inching control in work using a forklift equipped with HST.
  • FIG. 1 is a diagram illustrating an overall configuration of a forklift according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the forklift shown in FIG.
  • FIG. 3 is a diagram showing a change in the inching rate with respect to the inching operation amount.
  • FIG. 4 is a diagram showing a characteristic line of the target absorption torque of the HST pump with respect to the actual engine speed.
  • FIG. 5 is a block diagram showing pump control including inching control for the HST pump by the control device.
  • FIG. 6 is a flowchart showing an example of control for determining the inching rate increase rate.
  • FIG. 7 is a diagram illustrating an example of an inching rate increasing speed map used in a state where the accelerator opening is equal to or greater than a predetermined accelerator opening threshold and the brake opening is less than the predetermined brake opening threshold.
  • FIG. 1 is a diagram showing an overall configuration of a forklift according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the forklift shown in FIG.
  • FIG. 3 is a diagram showing a change in the inching rate with respect to the inching operation amount.
  • the forklift 1 includes a vehicle body 3 having drive wheels 2 a and steering wheels 2 b, and a work machine 5 provided in front of the vehicle body 3.
  • the vehicle body 3 is provided with an engine 4 as an internal combustion engine, a variable displacement travel hydraulic pump 10 that drives the engine 4 as a drive source, and a variable displacement work machine hydraulic pump 16.
  • the drive wheel 2 a is driven by the power of the hydraulic motor 20 by connecting the variable displacement traveling hydraulic pump 10 and the variable displacement hydraulic motor 20 through a closed hydraulic circuit.
  • the forklift 1 travels by HST.
  • both the traveling hydraulic pump 10 and the work machine hydraulic pump 16 have a swash plate, and the capacity changes by changing the tilt angle of the swash plate.
  • the work machine 5 includes a lift cylinder 7 that raises and lowers the fork 6 and a tilt cylinder 8 that tilts the fork 6.
  • the driver's seat of the vehicle body 3 is provided with a forward / reverse lever 42a, a brake pedal (inching pedal) 40a, an accelerator pedal 41a, and a work machine operation lever (not shown) including a lift lever and a tilt lever for operating the work machine 5.
  • the brake pedal 40a and the accelerator pedal 41a are provided at positions where the operator of the forklift 1 can perform a stepping operation from the driver's seat. In FIG. 1, the inching pedal 40 a and the accelerator pedal 41 a are depicted in an overlapping state.
  • the forklift 1 includes a traveling hydraulic pump 10 and a hydraulic motor 20 connected by hydraulic supply pipes 10a and 10b of a main hydraulic circuit 100 serving as a closed circuit.
  • the traveling hydraulic pump 10 (hereinafter referred to as HST pump 10 as appropriate) is a device that is driven by the engine 4 to discharge hydraulic oil.
  • the HST pump 10 is a variable displacement pump whose capacity can be changed by changing the swash plate tilt angle, for example.
  • the hydraulic motor 20 (hereinafter referred to as HST motor 20 as appropriate) is driven by hydraulic fluid discharged from the HST pump 10.
  • the hydraulic motor 20 is a variable displacement hydraulic motor whose capacity can be changed by changing the swash plate tilt angle, for example.
  • the HST motor 20 may be a fixed displacement hydraulic motor.
  • the output shaft 20a of the HST motor 20 is connected to the drive wheel 2a via the transfer 20b, and the forklift 1 can be driven by rotating the drive wheel 2a.
  • the rotation direction of the HST motor 20 can be switched according to the supply direction of hydraulic oil from the HST pump 10. By switching the rotation direction of the HST motor 20, the forklift 1 can be moved forward or backward.
  • the forklift 1 moves forward, and when the hydraulic oil is supplied to the HST motor 20 from the hydraulic pressure supply line 10b. It is assumed that the forklift 1 moves backward.
  • the forklift 1 has a pump capacity setting unit 11, a motor capacity setting unit 21, and a charge pump 15.
  • the pump capacity setting unit 11 is provided in the HST pump 10.
  • the pump capacity setting unit 11 includes a forward pump electromagnetic proportional control valve 12, a reverse pump electromagnetic proportional control valve 13, and a pump capacity control cylinder 14.
  • the pump capacity setting unit 11 receives a command signal from a control device 30 described later with respect to the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13.
  • the capacity of the pump capacity setting unit 11 is changed when the pump capacity control cylinder 14 is operated in accordance with a command signal given from the control device 30 and the swash plate tilt angle of the HST pump 10 is changed.
  • the piston 14a In the pump displacement control cylinder 14, the piston 14a is held in a neutral state when the swash plate tilt angle is zero. For this reason, even if the engine 4 rotates, the amount of hydraulic oil discharged from the HST pump 10 to the main hydraulic circuit 100 is zero.
  • the pump control pressure from the forward pump electromagnetic proportional control valve 12 increases, the moving amount of the piston 14a increases. For this reason, the amount of change in the tilt angle of the swash plate in the HST pump 10 is also large. That is, when a command signal is given from the control device 30 to the forward pump electromagnetic proportional control valve 12, a pump control pressure corresponding to the command signal is given from the forward pump electromagnetic proportional control valve 12 to the pump displacement control cylinder 14. It is done.
  • the pump displacement control cylinder 14 is operated by the pump control pressure described above, the swash plate of the HST pump 10 is inclined so that a predetermined amount of hydraulic oil can be discharged to the hydraulic pressure supply line 10a.
  • hydraulic oil is discharged from the HST pump 10 to the hydraulic pressure supply line 10a, and the HST motor 20 rotates in the forward direction.
  • the reverse pump electromagnetic proportional control valve 13 controls the pump capacity according to the command signal.
  • Pump control pressure is applied to the cylinder 14. Then, the piston 14a moves to the right side in FIG.
  • the swash plate of the HST pump 10 tilts in the direction of discharging hydraulic oil to the hydraulic pressure supply line 10b in conjunction with this. .
  • the moving amount of the piston 14a increases as the pump control pressure supplied from the reverse pump electromagnetic proportional control valve 13 increases, the amount of change in the swash plate tilt angle of the HST pump 10 increases. That is, when a command signal is given from the control device 30 to the reverse pump electromagnetic proportional control valve 13, a pump control pressure corresponding to the command signal is given from the reverse pump electromagnetic proportional control valve 13 to the pump displacement control cylinder 14. It is done. Then, the swash plate of the HST pump 10 is inclined by the operation of the pump capacity control cylinder 14 so that a desired amount of hydraulic oil can be discharged to the hydraulic pressure supply line 10b. As a result, when the engine 4 rotates, hydraulic oil is discharged from the HST pump 10 to the hydraulic pressure supply line 10b, and the HST motor 20 rotates in the reverse direction.
  • the motor capacity setting unit 21 is provided in the HST motor 20.
  • the motor capacity setting unit 21 includes a motor electromagnetic proportional control valve 22, a motor cylinder control valve 23, and a motor capacity control cylinder 24.
  • motor control pressure is supplied from the motor electromagnetic proportional control valve 22 to the motor cylinder control valve 23, and the motor The capacity control cylinder 24 operates.
  • the motor capacity control cylinder 24 is operated, the swash plate tilt angle of the HST motor 20 changes in conjunction with this. For this reason, the capacity of the HST motor 20 is changed in accordance with a command signal from the control device 30.
  • the motor capacity setting unit 21 is configured such that the swash plate tilt angle of the HST motor 20 decreases as the motor control pressure supplied from the motor electromagnetic proportional control valve 22 increases.
  • the charge pump 15 is driven by the engine 4.
  • the charge pump 15 supplies pump control pressure to the pump displacement control cylinder 14 via the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13 described above. Further, the charge pump 15 has a function of supplying a motor control pressure to the motor cylinder control valve 23 via the motor electromagnetic proportional control valve 22.
  • the engine 4 drives the work machine hydraulic pump 16 in addition to the HST pump 10.
  • the work machine hydraulic pump 16 supplies hydraulic oil to a lift cylinder 7 and a tilt cylinder 8 that are work actuators for driving the work machine 5.
  • the forklift 1 includes an inching potentiometer (brake potentiometer) 40, an accelerator potentiometer 41, a forward / reverse lever switch 42, an engine rotation sensor 43, and a vehicle speed sensor 46.
  • the inching potentiometer 40 detects and outputs the operation amount when the brake pedal (inching pedal) 40a is operated.
  • the operation amount of the brake pedal 40a is the brake opening degree Bs or the inching operation amount Is.
  • the brake opening Bs or the inching operation amount Is output from the inching potentiometer 40 is input to the control device 30.
  • the inching rate I changes from 100% to 0% when the inching operation amount Is detected by the inching potentiometer 40 is in the range of 0% to 50%.
  • the inching rate I indicates a reduction rate with respect to a predetermined swash plate tilt angle of the HST pump 10 and can be rephrased as a reduction rate of the target absorption torque of the HST pump 10.
  • the mechanical brake rate indicating the effectiveness of the mechanical brake (not shown) changes from 0% to 100%. Note that there may be an overlap region where the inching operation amount Is is near 50% and both the inching rate I and the mechanical brake rate are 0% or more. This overlap region is determined in consideration of the operation feeling of the inching pedal 40a.
  • FIG. 4 is a diagram showing a characteristic line L2 of the target absorption torque Tm of the HST pump 10 with respect to the actual engine speed Nr.
  • the characteristic line L2 is changed to, for example, the characteristic line L3. That is, as the inching rate I decreases, the target absorption torque Tm of the HST pump 10 decreases.
  • the inching rate I corresponds to the reduction rate of the target absorption torque Tm of the HST pump 10.
  • the inching rate is 100%, the target absorption torque Tm of the HST pump 10 does not decrease.
  • the inching rate is 0%, the target absorption torque Tm of the HST pump 10 becomes 0.
  • releasing the brake when the operator of the forklift 1 releases his / her foot from the brake pedal 40a to reduce or reduce the braking force by the mechanical brake to zero, it is referred to as releasing the brake.
  • Applying the brake means that the operator of the forklift 1 depresses the brake pedal 40a to generate or increase the braking force by the mechanical brake.
  • the accelerator potentiometer 41 outputs the operation amount As when the accelerator pedal 41a is operated.
  • the operation amount As of the accelerator pedal 41a is also referred to as an accelerator opening degree As.
  • the accelerator opening As output from the accelerator potentiometer 41 is input to the control device 30.
  • the forward / reverse lever switch 42 is a selection switch for inputting the traveling direction of the forklift 1.
  • a forward / reverse lever switch 42 that can select three traveling directions of forward, neutral, and reverse by operating a forward / reverse lever 42a provided at a position that can be selectively operated from the driver's seat is applied. ing.
  • Information indicating the traveling direction selected by the forward / reverse lever switch 42 is given to the control device 30 as selection information.
  • the engine rotation sensor 43 detects the actual rotation speed of the engine 4.
  • the rotational speed of the engine 4 detected by the engine rotational sensor 43 is the actual engine rotational speed Nr.
  • Information indicating the actual engine speed Nr is input to the control device 30.
  • the rotational speed of the engine 4 per unit time is the rotational speed of the engine 4.
  • the actual engine speed Nr includes the actual rotational speed of the engine 4.
  • the control device 30 includes a processing unit 30C and a storage unit 30M.
  • the control device 30 is, for example, a computer.
  • the processing unit 30C is configured by combining, for example, a CPU (Central Processing Unit) and a memory.
  • the processing unit 30C controls the operation of the main hydraulic circuit 100 by reading a computer program stored in the storage unit 30M for controlling the main hydraulic circuit 100 and executing instructions described therein. . Further, the processing unit 30C reads a computer program for executing the forklift control method according to the present embodiment, and executes an instruction described therein, thereby determining an increase rate of the inching rate. The increasing speed of the inching rate will be described later.
  • the storage unit 30M stores the above-described computer program and data necessary for controlling the main hydraulic circuit 100 and determining the rate of increase of the inching rate.
  • the storage unit 30M is configured by, for example, a ROM (Read Only Memory), a storage device, or a combination thereof.
  • the controller 30 is electrically connected to various sensors such as an inching potentiometer 40, an accelerator potentiometer 41, a forward / reverse lever switch 42, an engine rotation sensor 43, pressure detection sensors 44 and 45, and a vehicle speed sensor 46.
  • the control device 30 generates a command signal for the forward pump electromagnetic proportional control valve 12, the reverse pump electromagnetic proportional control valve 13, or the motor electromagnetic proportional control valve 22 based on input signals from these various sensors, and The generated command signal is given to each electromagnetic proportional control valve 12, 13, 22.
  • FIG. 5 is a block diagram showing pump control including inching control for the HST pump 10 by the control device 30.
  • the control device 30 includes a target absorption torque calculation unit 31, an inching rate calculation unit 32, a fuel injection amount calculation unit 33, an inching rate increase speed determination unit 34, a modulation control unit 35, a multiplication unit 36, and an HST.
  • a pump electromagnetic proportional control output current converter 37 is provided.
  • the target absorption torque calculation unit 31 calculates the target absorption torque Tm of the HST pump 10 based on the accelerator opening As detected by the accelerator potentiometer 41.
  • the target absorption torque calculation unit 31 has a map M1 indicating the characteristics of the target absorption torque Tm with respect to the accelerator opening degree As.
  • the target absorption torque calculation unit 31 calculates a target absorption torque Tm corresponding to the input accelerator opening As based on the characteristic line L2 on the map M1, and outputs the target absorption torque Tm to the multiplication unit 36. .
  • the inching rate calculation unit 32 calculates the inching rate I based on the inching operation amount Is detected by the inching potentiometer 40.
  • the inching rate calculation unit 32 has a map M2 indicating the characteristics of the inching rate I with respect to the inching operation amount Is.
  • the map M2 has a characteristic line L1.
  • the inching rate calculation unit 32 calculates an inching rate I corresponding to the input inching operation amount Is based on the characteristic line L1 on the map M2, and outputs the inching rate I to the modulation control unit 35.
  • the inching rate increase rate determination unit 34 and the modulation control unit 35 function as an inching rate increase rate calculation unit. This function is based on at least one of the accelerator opening As, the brake opening Bs, the change speed Vbs of the brake opening Bs (hereinafter referred to as the appropriate brake opening change speed Vbs), and the vehicle speed Vc.
  • An increase speed Vi that is a speed when the inching rate I is increased when the brake pedal 40a is released (hereinafter, referred to as an inching rate increasing speed Vi as appropriate) is determined.
  • the inching rate increasing speed Vi is a speed at which the pump capacity of the HST pump 10 is restored (increased) when the operator of the forklift 1 releases the brake pedal 40a. If the inching rate increasing speed Vi is relatively large, the pump capacity of the HST pump 10 when the brake pedal 40a is released is restored relatively quickly. If the inching rate increasing speed Vi is relatively small, the restoration of the pump capacity of the HST pump 10 when the brake pedal 40a is released is relatively slow.
  • the inching rate increasing speed determination unit 34 has a plurality of predetermined inching rate increasing speed Vi patterns. In determining the inching rate increasing speed Vi, the inching rate increasing speed determining unit 34 determines at least one of the accelerator opening degree As, the brake opening degree Bs, the changing speed Vbs of the brake opening degree Bs, and the vehicle speed Vc. Based on the plurality of patterns, the inching rate increasing speed Vi is selected. The change speed Vbs of the brake opening Bs is obtained by the inching rate increase speed determination unit 34 from the change of the brake opening Bs per unit time.
  • the inching rate increasing speed Vi there are a total of five patterns of the inching rate increasing speed Vi, that is, the A pattern, the B pattern, the C pattern, the D pattern, and the E pattern, but the pattern is not limited to this. How to select the pattern of the inching rate increasing speed Vi will be described later.
  • the modulation control unit 35 changes the inching rate I input from the inching rate calculating unit 32 with the inching rate increasing rate Vi obtained from the pattern selected by the inching rate increasing rate determining unit 34, and sets the corrected inching rate Ic. Generate.
  • the modulation control unit 35 outputs the inching rate I that changes at the inching rate increasing speed Vi to the multiplication unit 36 as the corrected inching rate Ic.
  • the modulation control unit 35 changes the response of the HST pump 10 to the operation of the brake pedal 40a, specifically, the release (operation in which the operator releases the brake pedal 40a).
  • the modulation control unit 35 sets a cutoff frequency f of the inching rate I, and outputs a corrected inching rate Ic that is delayed and output according to the cutoff frequency f to the multiplication unit 36.
  • the cut-off frequency f can be obtained by equation (1).
  • is the time constant of the first-order lag element.
  • the input of the modulation control unit 35 is an inching rate I, and the output is a corrected inching rate Ic.
  • the relationship between the inching rate I that is an input and the corrected inching rate Ic that is an output is expressed by Equation (2).
  • equation (3) is obtained.
  • Icb in Expression (3) indicates a corrected inching rate Ic output from the modulation control unit 35 before the time ⁇ t before the correction inching rate Ic that is the output of the modulation control unit 35 at the present time.
  • Ic + ⁇ ⁇ dIc / dt I (2)
  • Ic + (Ic ⁇ Icb) ⁇ ⁇ / ⁇ t I (3)
  • the corrected inching rate Ic is the inching rate I input from the inching rate calculation unit 32 to the modulation control unit 35 at the present time and the corrected inching rate output from the modulation control unit 35 before time ⁇ t. It is represented by the relationship between the rate Icb, the time constant ⁇ , and the time ⁇ t.
  • the time ⁇ t can be a time required for one cycle of control.
  • the corrected inching rate Icb can be the corrected inching rate Ic output from the modulation control unit 35 in the previous control cycle.
  • the time constant ⁇ is set in advance.
  • the modulation control unit 35 delays the input inching rate I and outputs it as a corrected inching rate Ic.
  • the degree of delay is set by the cut-off frequency f or the time constant ⁇ . Increasing the cut-off frequency f (decreasing the time constant ⁇ ) reduces the degree of delay, and decreasing the cut-off frequency f (increasing the time constant ⁇ ) increases the degree of delay.
  • the modulation control unit 35 has a table TB and an increase speed map MP.
  • the table TB describes cut-off frequencies fa, fb, fd, and fe for four patterns of the A pattern, the B pattern, the D pattern, and the E pattern among the patterns of the inching rate increasing speed Vi.
  • the map MP has an increasing speed map MP set according to the accelerator opening degree As.
  • the map MP corresponds to the C pattern among the patterns of the inching rate increasing speed Vi.
  • the modulation control unit 35 outputs the corrected inching rate Ic by changing the degree of delay of the input inching rate I. For example, the modulation control unit 35 can increase the speed at which the corrected inching rate Ic approaches the inching rate I by increasing the cut-off frequency f, and the correction inching rate Ic can be increased by decreasing the cut-off frequency f. The speed approaching the inching rate I can be reduced. Note that the method by which the inching rate increase speed determination unit 34 and the modulation control unit 35 change the speed at which the corrected inching rate Ic approaches the inching rate I is not limited to that described above.
  • the multiplication unit 36 multiplies the target absorption torque Tm by the correction inching rate Ic. Then, the multiplication unit 36 outputs the corrected absorption torque Tc obtained by reducing the target absorption torque Tm corresponding to the correction inching rate Ic to the HST pump electromagnetic proportional control output current conversion unit 37.
  • the HST pump electromagnetic proportional control output current conversion unit 37 as an output control unit generates a corrected absorption torque command in which the target absorption torque Tm is reduced by the corrected inching rate Ic, and outputs it to the pump capacity setting unit 11 of the HST pump 10. . Then, the corrected inching rate Ic increases according to the inching rate increasing speed Vi determined by the inching rate increasing speed determining unit 34. As a result, the speed at which the pump capacity of the HST pump 10 is restored when the operator of the forklift 1 opens or depresses the brake pedal 40a is changed.
  • the corrected absorption torque command is a signal (current value in this embodiment) for causing the torque absorbed by the HST pump 10 to be the corrected absorption torque Tc output from the multiplication unit 36.
  • the corrected absorption torque command is output from the HST pump electromagnetic proportional control output current conversion unit 37 to the forward pump electromagnetic proportional control valve 12 or the reverse pump electromagnetic proportional control valve 13 of the pump capacity setting unit 11.
  • the fuel injection amount calculation unit 33 calculates an amount to be injected into the fuel injection injector of the engine 4 based on the input actual engine speed Nr and the accelerator operation amount As, and outputs the result to the fuel injection injector. .
  • control for determining the inching rate increasing speed Vi will be described.
  • FIG. 6 is a flowchart showing an example of control for determining the inching rate increasing speed Vi.
  • FIG. 7 is a diagram showing an example of a map of the inching rate increasing speed Vi used in a state where the accelerator opening As is equal to or greater than a predetermined accelerator opening threshold and the brake opening Bs is less than the predetermined brake opening threshold.
  • the control device 30 shown in FIGS. 1 and 5 determines the inching rate increasing speed Vi by executing the forklift control method according to the present embodiment.
  • step S101 the control device 30 shown in FIGS. 1 and 5, more specifically, the inching rate increase speed determination unit 34 shown in FIG. 5 acquires the accelerator opening As from the accelerator potentiometer 41 to obtain a predetermined accelerator opening. Compare with the threshold value P [%]. In step S101, it is determined whether the accelerator is ON or OFF. The accelerator opening threshold P is set to a value appropriate for this determination.
  • step S101 When the accelerator opening As is less than the accelerator opening threshold P (step S101, Yes), the accelerator is OFF.
  • the inching rate increase speed determination unit 34 compares the vehicle speed Vc of the forklift 1 acquired from the vehicle speed sensor 46 shown in FIG. In step S102, it is determined whether the forklift 1 is traveling or stopped.
  • the vehicle speed threshold value Q is set to a value appropriate for this determination.
  • step S105 the inching rate increase speed determination unit 34 acquires the brake opening Bs from the inching potentiometer 40. And a predetermined brake opening threshold value R [%].
  • step S105 it is determined whether the acceleration state is due to the single operation of the accelerator or the simultaneous operation of the accelerator and the brake.
  • the brake opening threshold R is set to a value appropriate for this determination.
  • the brake opening Bs is less than the brake opening threshold R (step S105, Yes)
  • the forklift 1 is accelerating by operating the accelerator alone.
  • step S106 the inching rate increasing speed determination unit 34 determines the inching rate increasing speed Vi as the pattern C.
  • step S105 when the brake opening Bs is equal to or greater than the brake opening threshold R (step S105, No), the accelerator and the brake are operated simultaneously.
  • step S107 the inching rate increase speed determination unit 34 compares the brake opening change speed Vbs with a predetermined opening change threshold S [%].
  • the brake opening Bs is 0% when the brake pedal 40a shown in FIG. 1 is not depressed. As the brake pedal 40a is depressed, the value of the brake opening Bs increases. That is, in this embodiment, the value of the brake opening Bs decreases when the brake is opened, and the value of the brake opening Bs increases when the brake is closed.
  • the brake opening change speed Vbs indicates how much the brake opening Bs has changed in a predetermined time, and thus takes a negative value when the brake is opened. Further, when the brake is released, it is determined whether or not the brake pedal 40a is released all at once.
  • the opening change threshold value S is set to a value appropriate for this determination. In step S107, if the brake opening change speed Vbs decreases, that is, if the absolute value of the brake opening change speed Vbs increases, the speed at which the brake pedal 40a is released increases.
  • step S107 Yes
  • the accelerator and the brake are operated simultaneously, and at that time, the brake pedal 40a is released at once.
  • This state indicates that the forklift 1 is in the pushing operation state.
  • the push-in operation is an operation when the forklift 1 pushes in a transported object or pulls out the fork 6 shown in FIG.
  • the push-in operation can be realized by increasing the rotational speed of the engine 4 in a stopped state, and then releasing the brakes at once to accelerate the forklift 1 rapidly.
  • the inching rate increasing speed determination unit 34 determines the inching rate increasing speed Vi as the pattern D.
  • the operator of the forklift 1 can determine that the brake pedal 40a is depressed and is working. It is considered to be a state.
  • the inching rate increasing speed determination unit 34 determines the inching rate increasing speed Vi as the pattern E.
  • the patterns A, B, C, D, and E described above are set to have different inching rate increasing speeds Vi according to the state of each forklift 1.
  • the inching rate increasing speed Vi of the pattern E is made smaller than the inching rate increasing speed Vi due to the pattern D, that is, the inching rate increasing speed Vi during the pushing operation.
  • the cut-off frequency f of the pattern E is made smaller than the cut-off frequency f of the pattern D.
  • the inching rate increasing speed Vi during the cargo handling operation can be made smaller than the inching rate increasing speed Vi during the pushing operation.
  • the inching rate increasing speed Vi in the pattern A that is, the inching rate increasing speed Vi in the stop state is made smaller than the inching rate increasing speed Vi in the pattern B, that is, the inching rate increasing speed Vi in the decelerating running state. If it does in this way, the inching rate increase speed Vi by the pattern A is applied. For this reason, when the brake pedal 40a is released after the forklift 1 stops, the speed at which the pump capacity of the HST pump 10 is restored is suppressed, so that the forklift 1 can be prevented from restarting. Further, the inching rate increasing speed Vi by the pattern B is applied while the forklift 1 travels at a reduced speed. For this reason, the brake force control performance by the HST10 pump using the brake pedal 40a can be ensured while the forklift 1 is traveling at a reduced speed. Can be stopped.
  • the inching rate increasing speed Vi of the pattern E that is, the inching rate increasing speed Vi during the cargo handling operation may be increased as the accelerator opening As increases.
  • the inching rate increasing speed Vi of the pattern C may be determined by an increasing speed map MP set according to the accelerator opening degree As shown in FIG. Good.
  • This map MP describes the cut-off frequencies f1, f2,... Fj for determining the inching rate increasing speed Vi when the accelerator opening As is As1, As2,.
  • the accelerator opening As increases in the order of As1, As2,... Asj, and the cut-off frequency f increases in the order of f1, f2,... Fj (j is an integer of 1 or more). That is, the map MP is determined such that the inching rate increasing speed Vi increases as the accelerator opening As increases.
  • control device 30 and the forklift 1 including the control device 30 can realize appropriate inching control in various work situations using the forklift including the HST.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

 フォークリフト1は、エンジンによって駆動される可変容量型の走行用油圧ポンプ、走行用油圧ポンプとの間で閉回路を形成し、走行用油圧ポンプから吐出された作動油によって駆動される油圧モータ及び油圧モータによって駆動される駆動輪を備える。フォークリフト1が備える制御装置30は、アクセル開度と、ブレーキペダルの操作量を示すブレーキ開度と、ブレーキ開度の変化速度と、車速センサによって検出された車速と、の少なくとも1つに基づきインチング率の増加速度を決定する。

Description

フォークリフト及びフォークリフトの制御方法
 本発明は、エンジンによって駆動される可変容量型の油圧ポンプと、前記油圧ポンプとの間で閉回路を形成し、前記油圧ポンプから吐出した作動油によって駆動される油圧モータと、を有するフォークリフト及びフォークリフトの制御方法に関する。
 駆動源であるエンジンと、駆動輪との間にHST(Hydro Static Transmission:静油圧式動力伝達装置)と称される油圧駆動装置が設けられているフォークリフトがある。油圧駆動装置は、閉回路である主油圧回路に、エンジンによって駆動される可変容量型の走行用油圧ポンプと、この走行用油圧ポンプから吐出された作動油によって駆動される可変容量型の油圧モータとを備えており、油圧モータの駆動を駆動輪に伝達することによって車両を走行させるようにしたものである。
 このような油圧駆動装置を適用したフォークリフトは、エンジンによって駆動される作業用油圧ポンプも備えており、作業用油圧ポンプから作動油を作業機用アクチュエータに供給して、作業機を駆動させる。このようなフォークリフトでは、走行用油圧ポンプの吸収トルクを増減させるインチング制御が行われる(例えば、特許文献1)。
特許第5144844号公報
 インチング制御を行うフォークリフトの作業としては、例えば、ブレーキペダルを踏み込んだ状態(車両停止状態)でアクセルペダルを踏み込んでエンジンの回転速度を上昇させ、フォークを動かして荷役作業を行うものがある。また、ブレーキペダルを踏み込んだ状態(車両停止状態)でアクセルペダルを踏み込んでエンジン回転速度を上昇させ、その後、ブレーキペダルを急に放すことによって、フォークで運搬物を押し込んだり、フォークを荷物の隙間から引き抜いたりする作業がある。
 特許文献1には、フォークリフト特有の押し込み作業及び引き抜き作業を行う場合に適したインチング制御を行うことが記載されている。この他にも、HSTを備えたフォークリフトによる作業では、ブレーキペダルを踏み込んだ後に減速力を弱めようとしてブレーキペダルを戻すような場合、その後さらにアクセルペダルを踏み込んだ場合又は走行しながら荷役操作をしているときにオペレータが誤ってブレーキペダルを放し過ぎてしまった場合等、様々な局面が存在する。
 本発明は、HSTを備えたフォークリフトを用いた作業において、適切なインチング制御を実現することを目的とする。
 本発明は、エンジンによって駆動される可変容量型の走行用油圧ポンプ、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータ及び前記油圧モータによって駆動される駆動輪を備えるフォークリフトであり、前記フォークリフトの車速を求める車速センサと、前記エンジンへの燃料供給量を変更するためのアクセルペダルの操作量を示すアクセル開度を検出するアクセル開度センサと、前記フォークリフトを制動するために用いられ、かつ前記走行用油圧ポンプが有する斜板の傾転角の低減割合であるインチング率を操作するブレーキペダルと、前記ブレーキペダルの操作量に対応する前記インチング率を演算するインチング率演算部と、前記アクセル開度と、前記ブレーキペダルの操作量を示すブレーキ開度と、前記ブレーキ開度の変化速度と、前記車速センサによって検出された前記車速と、の少なくとも1つに基づき前記インチング率の増加速度を決定するインチング率増加速度演算部と、を含む。
 前記アクセル開度が所定のアクセル開度閾値未満の状態において、前記車速が所定の車速閾値以下の場合における前記増加速度は、前記車速が前記車速閾値よりも大きい場合における前記増加速度よりも小さいことが好ましい。
 前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定の開度閾値以上の状態において、前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記ブレーキ開度の変化速度が前記開度変化閾値未満の場合における前記増加速度よりも小さいことが好ましい。
 前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値以上の状態において、前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっていることが好ましい。
 前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値未満の状態において、前記増加速度は、前記アクセル開度に応じて設定された前記増加速度のマップによって定められることが好ましい。
 前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっていることが好ましい。
 本発明は、エンジンによって駆動される可変容量型の走行用油圧ポンプ、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータ及び前記油圧モータによって駆動される駆動輪を備えるフォークリフトを制御するにあたって、前記エンジンへの燃料供給量を変更するためのアクセルペダルの操作量を示すアクセル開度と、前記フォークリフトを制動するために用いられるブレーキペダルの操作量を示すブレーキ開度と、前記ブレーキ開度の変化速度と、車速センサによって検出された前記フォークリフトの車速と、の少なくとも1つに基づき、前記走行用油圧ポンプが有する斜板の傾転角の低減割合であるインチング率の増加速度を決定する、フォークリフトの制御方法である。
 前記アクセル開度が所定のアクセル開度閾値未満の状態において、前記車速が所定の車速閾値以下の場合における前記増加速度は、前記車速が前記車速閾値よりも大きい場合における前記増加速度よりも小さいことが好ましい。
 前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定の開度閾値以上の状態において、前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記ブレーキ開度の変化速度が前記開度変化閾値未満の場合における前記増加速度よりも小さいことが好ましい。
 前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値以上の状態において、前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっていることが好ましい。
 前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値未満の状態において、前記増加速度は、前記アクセル開度に応じて設定された前記増加速度のマップによって定められることが好ましい。
 前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっていることが好ましい。
 本発明は、HSTを備えたフォークリフトを用いた作業において、適切なインチング制御を実現することができる。
図1は、本実施形態に係るフォークリフトの全体構成を示す図である。 図2は、図1に示したフォークリフトの制御系統を示すブロック図である。 図3は、インチング操作量に対するインチング率の変化を示す図である。 図4は、実エンジン回転数に対するHSTポンプの目標吸収トルクの特性線を示す図である。 図5は、制御装置によるHSTポンプに対するインチング制御を含むポンプ制御を示すブロック図である。 図6は、インチング率増加速度を決定する制御例を示すフローチャートである。 図7は、アクセル開度が所定のアクセル開度閾値以上かつブレーキ開度が所定のブレーキ開度閾値未満の状態において用いられるインチング率増加速度のマップの一例を示す図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。
 図1は、本実施形態に係るフォークリフトの全体構成を示す図である。図2は、図1に示したフォークリフトの制御系統を示すブロック図である。図3は、インチング操作量に対するインチング率の変化を示す図である。フォークリフト1は、駆動輪2a及び操向輪2bを有した車体3と、車体3の前方に設けられる作業機5とを有する。車体3には、内燃機関としてのエンジン4、エンジン4を駆動源として駆動する可変容量型の走行用油圧ポンプ10及び可変容量型の作業機油圧ポンプ16が設けられる。駆動輪2aは、可変容量型の走行用油圧ポンプ10と可変容量型の油圧モータ20とを閉じた油圧回路で連通させ、油圧モータ20の動力で駆動される。このように、フォークリフト1は、HSTによって走行する。本実施形態において、走行用油圧ポンプ10及び作業機油圧ポンプ16は、いずれも斜板を有し、斜板の傾転角が変更されることにより、容量が変化する。
 作業機5は、フォーク6を昇降させるリフトシリンダ7及びフォーク6をチルトさせるチルトシリンダ8を有する。車体3の運転席には、前後進レバー42a、ブレーキペダル(インチングペダル)40a、アクセルペダル41a並びに作業機5を操作するためのリフトレバー及びチルトレバーを含む図示しない作業機操作レバーが設けられる。ブレーキペダル40a及びアクセルペダル41aは、フォークリフト1のオペレータが、運転席から足踏み操作できる位置に設けられている。図1では、インチングペダル40aとアクセルペダル41aとが重なった状態で描かれている。
 図2に示すように、フォークリフト1は、閉回路となる主油圧回路100の油圧供給管路10a、10bによって接続された走行用油圧ポンプ10及び油圧モータ20を備えている。走行用油圧ポンプ10(以下、適宜HSTポンプ10という)は、エンジン4によって駆動されて作動油を吐出する装置である。本実施形態において、HSTポンプ10は、例えば、斜板傾転角を変更することによって容量を変更することのできる可変容量型のポンプである。
 油圧モータ20(以下、適宜HSTモータ20という)は、HSTポンプ10から吐出された作動油によって駆動される。油圧モータ20は、例えば、斜板傾転角を変更することによって容量を変更することのできる可変容量型の油圧モータである。HSTモータ20は、固定容量型の油圧モータであってもよい。HSTモータ20は、その出力軸20aがトランスファ20bを介して駆動輪2aに接続してあり、駆動輪2aを回転駆動することでフォークリフト1を走行させることができる。
 HSTモータ20は、HSTポンプ10からの作動油の供給方向に応じて回転方向を切り替えることが可能である。HSTモータ20の回転方向が切り替えられることにより、フォークリフト1を前進又は後進させることができる。以下の説明においては、便宜上、油圧供給管路10aからHSTモータ20に作動油が供給された場合にフォークリフト1が前進し、油圧供給管路10bからHSTモータ20に作動油が供給された場合にフォークリフト1が後進するものとする。
 このフォークリフト1は、ポンプ容量設定ユニット11、モータ容量設定ユニット21及びチャージポンプ15を有する。ポンプ容量設定ユニット11は、HSTポンプ10に設けられる。ポンプ容量設定ユニット11は、前進用ポンプ電磁比例制御バルブ12、後進用ポンプ電磁比例制御バルブ13及びポンプ容量制御シリンダ14を備える。ポンプ容量設定ユニット11は、前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13に対して、後述する制御装置30から指令信号が与えられる。ポンプ容量設定ユニット11は、制御装置30から与えられた指令信号に応じてポンプ容量制御シリンダ14が作動し、HSTポンプ10の斜板傾転角が変化することによってその容量が変更される。
 ポンプ容量制御シリンダ14は、斜板傾転角が0の状態において、ピストン14aが中立状態に保持されている。このため、エンジン4が回転しても、HSTポンプ10から主油圧回路100へ吐出される作動油の量はゼロである。
 HSTポンプ10の斜板傾転角が0の状態から、例えば、前進用ポンプ電磁比例制御バルブ12に対して制御装置30からHSTポンプ10の容量を増大する旨の指令信号が与えられると、この指令信号に応じて前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に対してポンプ制御圧力が与えられる。その結果、ピストン14aは、図2において左側に移動する。ポンプ容量制御シリンダ14のピストン14aが図2において左側に移動すると、これに連動してHSTポンプ10の斜板が油圧供給管路10aに対して作動油を吐出する方向へ向けて傾く。
 前進用ポンプ電磁比例制御バルブ12からのポンプ制御圧力が増大するにしたがって、ピストン14aの移動量が大きくなる。このため、HSTポンプ10における斜板の傾転角は、その変化量も大きなものとなる。つまり、前進用ポンプ電磁比例制御バルブ12に対して制御装置30から指令信号が与えられると、この指令信号に応じたポンプ制御圧力が前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に与えられる。前述したポンプ制御圧力によって、ポンプ容量制御シリンダ14が作動することにより、HSTポンプ10の斜板が油圧供給管路10aに対して所定量の作動油を吐出できるように傾く。この結果、エンジン4が回転すれば、HSTポンプ10から油圧供給管路10aに作動油が吐出されて、HSTモータ20は前進方向に回転する。
 前述の状態において、前進用ポンプ電磁比例制御バルブ12に対して制御装置30からHSTポンプ10の容量を減少する旨の指令信号が与えられると、この指令信号に応じて前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に供給されるポンプ制御圧力が減少する。このため、ポンプ容量制御シリンダ14のピストン14aは、中立位置に向かって移動する。この結果、HSTポンプ10の斜板傾転角が減少し、HSTポンプ10から油圧供給管路10aへの作動油の吐出量が減少する。
 制御装置30が、後進用ポンプ電磁比例制御バルブ13に対してHSTポンプ10の容量を増大する旨の指令信号が与えると、この指令信号に応じて後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に対してポンプ制御圧力が与えられる。すると、ピストン14aは、図2において右側に移動する。ポンプ容量制御シリンダ14のピストン14aが、図2において右側に移動すると、これに連動してHSTポンプ10の斜板が油圧供給管路10bに対して作動油を吐出する方向へ向かって傾転する。
 後進用ポンプ電磁比例制御バルブ13から供給されるポンプ制御圧力が増大するにしたがってピストン14aの移動量が大きくなるため、HSTポンプ10の斜板傾転角の変化量は大きくなる。つまり、後進用ポンプ電磁比例制御バルブ13に対して制御装置30から指令信号が与えられると、この指令信号に応じたポンプ制御圧力が後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に与えられる。そして、ポンプ容量制御シリンダ14の作動によりHSTポンプ10の斜板が油圧供給管路10bに対して所望量の作動油を吐出できるように傾く。この結果、エンジン4が回転すると、HSTポンプ10から油圧供給管路10bに作動油が吐出されて、HSTモータ20は、後進方向に回転する。
 後進用ポンプ電磁比例制御バルブ13に対して制御装置30からHSTポンプ10の容量を減少する旨の指令信号が与えられると、この指令信号に応じて後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に供給するポンプ制御圧力が減少し、ピストン14aが中立位置に向けて移動する。この結果、HSTポンプ10の斜板傾転角が減少するので、HSTポンプ10から油圧供給管路10bへ吐出される作動油の量が減少する。
 モータ容量設定ユニット21は、HSTモータ20に設けられる。モータ容量設定ユニット21は、モータ電磁比例制御バルブ22、モータ用シリンダ制御バルブ23及びモータ容量制御シリンダ24を備えている。モータ容量設定ユニット21では、モータ電磁比例制御バルブ22に対して制御装置30から指令信号が与えられると、モータ電磁比例制御バルブ22からモータ用シリンダ制御バルブ23にモータ制御圧力が供給されて、モータ容量制御シリンダ24が作動する。モータ容量制御シリンダ24が作動すると、これに連動してHSTモータ20の斜板傾転角が変化することになる。このため、制御装置30からの指令信号に応じてHSTモータ20の容量が変更されることになる。具体的には、モータ容量設定ユニット21は、モータ電磁比例制御バルブ22から供給されるモータ制御圧力が増加するにしたがって、HSTモータ20の斜板傾転角が減少するようになっている。
 チャージポンプ15は、エンジン4によって駆動される。チャージポンプ15は、前述した前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13を介してポンプ容量制御シリンダ14にポンプ制御圧力を供給する。また、チャージポンプ15は、モータ電磁比例制御バルブ22を介してモータ用シリンダ制御バルブ23にモータ制御圧力を供給する機能を有している。
 本実施形態において、エンジン4は、HSTポンプ10の他に、作業機油圧ポンプ16を駆動する。この作業機油圧ポンプ16は、作業機5を駆動するための作業用アクチュエータであるリフトシリンダ7及びチルトシリンダ8に作動油を供給する。
 フォークリフト1は、インチングポテンショメータ(ブレーキポテンショメータ)40、アクセルポテンショメータ41、前後進レバースイッチ42、エンジン回転センサ43及び車速センサ46を備えている。
 インチングポテンショメータ40は、ブレーキペダル(インチングペダル)40aが操作された場合に、その操作量を検出して出力する。ブレーキペダル40aの操作量は、ブレーキ開度Bs又はインチング操作量Isである。インチングポテンショメータ40が出力するブレーキ開度Bs又はインチング操作量Isは、制御装置30に入力される。本実施形態において、図3の特性線L1に示すように、インチングポテンショメータ40が検出したインチング操作量Isが0%から50%の範囲において、インチング率Iは、100%から0%に変化する。インチング率Iとは、HSTポンプ10の所定の斜板傾転角に対する低減割合を示すものであり、HSTポンプ10の目標吸収トルクの低減割合とも言い換えることができる。
 インチング操作量Isが50%から100%の範囲において、特性線LBに示すように、図示しない機械式ブレーキの効き具合を示すメカブレーキ率は、0%から100%に変化する。なお、インチング操作量Isが50%近傍に、インチング率Iとメカブレーキ率とがともに0%以上となるオーバーラップ領域が存在してもよい。このオーバーラップ領域は、インチングペダル40aの操作感覚を考慮して決定される。
 図4は、実エンジン回転数Nrに対するHSTポンプ10の目標吸収トルクTmの特性線L2を示す図である。この特性線L2にインチング率Iを乗算することによって、特性線L2は、例えば特性線L3に変化することを示している。すなわち、インチング率Iの減少によって、HSTポンプ10の目標吸収トルクTmが減少する。このように、インチング率Iは、HSTポンプ10の目標吸収トルクTmの低減割合に対応する。インチング率100%である場合、HSTポンプ10の目標吸収トルクTmは減少せず、インチング率0%である場合、HSTポンプ10の目標吸収トルクTmは0になる。
 本実施形態において、フォークリフト1のオペレータがブレーキペダル40aから足を放して、機械式ブレーキによる制動力を減少又は0にすることを、ブレーキを開放すると称する。ブレーキを効かせるとは、フォークリフト1のオペレータがブレーキペダル40aを踏み込んで、機械式ブレーキによる制動力を発生又は増加させることをいう。
 アクセルポテンショメータ41は、アクセルペダル41aが操作された場合にその操作量Asを出力するものである。アクセルペダル41aの操作量Asは、アクセル開度Asともいう。アクセルポテンショメータ41が出力するアクセル開度Asは、制御装置30に入力される。
 前後進レバースイッチ42は、フォークリフト1の進行方向を入力するための選択スイッチである。本実施形態では、運転席から選択操作できる位置に設けた前後進レバー42aの操作により、前進と、ニュートラルと、後進との3つの進行方向を選択することのできる前後進レバースイッチ42を適用している。この前後進レバースイッチ42によって選択された進行方向を示す情報は、選択情報として制御装置30に与えられることになる。
 エンジン回転センサ43は、エンジン4の実際の回転数を検出するものである。エンジン回転センサ43によって検出されたエンジン4の回転数は、実エンジン回転数Nrである。実エンジン回転数Nrを示す情報は、制御装置30に入力される。単位時間あたりにおけるエンジン4の回転数は、エンジン4の回転速度になる。本実施形態において、実エンジン回転数Nrには、エンジン4の実際の回転速度を含むものとする。
 制御装置30は、処理部30Cと記憶部30Mとを含む。制御装置30は、例えば、コンピュータである。処理部30Cは、例えば、CPU(Central Processing Unit)とメモリとを組み合わせて構成される。処理部30Cは、記憶部30Mに記憶されている、主油圧回路100を制御するためのコンピュータプログラムを読み込んでこれに記述されている命令を実行することにより、主油圧回路100の動作を制御する。また、処理部30Cは、本実施形態に係るフォークリフトの制御方法を実行するためのコンピュータプログラムを読み込んで、これに記述されている命令を実行することにより、インチング率の増加速度を決定する。インチング率の増加速度については後述する。記憶部30Mは、前述したコンピュータプログラム並びに主油圧回路100の制御及びインチング率の増加速度の決定に必要なデータ等を記憶している。記憶部30Mは、例えば、ROM(Read Only Memory)、ストレージデバイス又はこれらの組合せによって構成される。
 制御装置30には、インチングポテンショメータ40、アクセルポテンショメータ41、前後進レバースイッチ42、エンジン回転センサ43、圧力検出センサ44、45及び車速センサ46といった各種センサ類が電気的に接続されている。制御装置30は、これらの各種センサ類からの入力信号に基づいて、前進用ポンプ電磁比例制御バルブ12、後進用ポンプ電磁比例制御バルブ13又はモータ電磁比例制御バルブ22の指令信号を生成し、かつ生成した指令信号をそれぞれの電磁比例制御バルブ12、13、22に与える。
 図5は、制御装置30によるHSTポンプ10に対するインチング制御を含むポンプ制御を示すブロック図である。図5に示すように、制御装置30は、目標吸収トルク演算部31、インチング率演算部32、燃料噴射量演算部33、インチング率増加速度判定部34、モジュレーション制御部35、乗算部36及びHSTポンプ電磁比例制御出力電流変換部37を有する。
 目標吸収トルク演算部31は、アクセルポテンショメータ41が検出したアクセル開度Asをもとに、HSTポンプ10の目標吸収トルクTmを演算する。目標吸収トルク演算部31は、アクセル開度Asに対する目標吸収トルクTmの特性を示すマップM1を有している。目標吸収トルク演算部31は、マップM1上の特性線L2をもとに、入力されたアクセル開度Asに対応する目標吸収トルクTmを算出し、この目標吸収トルクTmを乗算部36に出力する。
 インチング率演算部32は、インチングポテンショメータ40が検出したインチング操作量Isをもとに、インチング率Iを演算する。インチング率演算部32は、インチング操作量Isに対するインチング率Iの特性を示すマップM2を有している。マップM2は、特性線L1を有している。インチング率演算部32は、マップM2上の特性線L1をもとに、入力されたインチング操作量Isに対応するインチング率Iを算出し、このインチング率Iをモジュレーション制御部35に出力する。
 本実施形態において、インチング率増加速度判定部34及びモジュレーション制御部35は、インチング率増加速度演算部として機能する。この機能は、アクセル開度Asと、ブレーキ開度Bsと、ブレーキ開度Bsの変化速度Vbs(以下、適宜ブレーキ開度変化速度Vbsという)と、車速Vcと、の少なくとも1つに基づいて、ブレーキペダル40aが開放されたときにインチング率Iを増加させる際の速度である増加速度Vi(以下、適宜インチング率増加速度Viという)を決定するものである。
 インチング率増加速度Viは、フォークリフト1のオペレータがブレーキペダル40aを放したときにおけるHSTポンプ10のポンプ容量が復元(増加)する際の速さである。インチング率増加速度Viが相対的に大きければ、ブレーキペダル40aを放したときにおけるHSTポンプ10のポンプ容量は相対的に速く復元する。インチング率増加速度Viが相対的に小さければ、ブレーキペダル40aを放したときにおけるHSTポンプ10のポンプ容量の復元は相対的に遅くなる。
 インチング率増加速度判定部34は、予め定められたインチング率増加速度Viのパターンを複数有している。インチング率増加速度Viを決定するにあたり、インチング率増加速度判定部34は、アクセル開度Asと、ブレーキ開度Bsと、ブレーキ開度Bsの変化速度Vbsと、車速Vcと、の少なくとも1つに基づき、複数のパターンの中からインチング率増加速度Viを選択する。ブレーキ開度Bsの変化速度Vbsは、単位時間あたりにおけるブレーキ開度Bsの変化から、インチング率増加速度判定部34によって求められる。本実施形態において、インチング率増加速度Viのパターンは、Aパターン、Bパターン、Cパターン、Dパターン及びEパターンの計5パターンが存在するが、これに限定されるものではない。インチング率増加速度Viのパターンの選び方は後述する。
 モジュレーション制御部35は、インチング率増加速度判定部34が選択したパターンから得られたインチング率増加速度Viで、インチング率演算部32から入力されたインチング率Iを変化させて、補正インチング率Icを生成する。モジュレーション制御部35は、インチング率増加速度Viで変化するインチング率Iを、補正インチング率Icとして乗算部36に出力する。
 インチング率増加速度Viを変更するにあたり、例えば、モジュレーション制御部35は、ブレーキペダル40aの操作、具体的には開放(オペレータがブレーキペダル40aを放す操作)に対するHSTポンプ10の応答性を変化させる。モジュレーション制御部35は、インチング率Iのカットオフ周波数fを設定し、このカットオフ周波数fに応じて遅延出力する補正インチング率Icを乗算部36に出力する。カットオフ周波数fは、式(1)によって求めることができる。τは、一次遅れ要素の時定数である。式(1)から分かるように、カットオフ周波数fは、時定数τの逆数である。
 f=1/(2×π×τ)・・・(1)
 モジュレーション制御部35の入力をインチング率I、出力を補正インチング率Icとする。モジュレーション制御部35への入力に対する出力が一次遅れに従う場合、入力であるインチング率Iと出力である補正インチング率Icとの関係は、式(2)のようになる。式(2)から、式(3)が得られる。式(3)のIcbは、現時点におけるモジュレーション制御部35の出力である補正インチング率Icよりも時間Δt前にモジュレーション制御部35から出力された補正インチング率Icを示す。
 Ic+τ×dIc/dt=I・・・(2)
 Ic+(Ic-Icb)×τ/Δt=I・・・(3)
 式(3)を補正インチング率について解くと、式(4)に示すようになる。式(4)から、補正インチング率Icは、現時点においてインチング率演算部32からモジュレーション制御部35に入力されたインチング率Iと、現時点よりも時間Δt前にモジュレーション制御部35から出力された補正インチング率Icbと、時定数τと、時間Δtとの関係で表される。時間Δtは、制御の1周期に要する時間とすることができる。補正インチング率Icbは、前回の制御周期においてモジュレーション制御部35から出力された補正インチング率Icとすることができる。時定数τは予め設定される。インチング率Iは、現時点においてインチング率演算部32から出力されたインチング率Iである。
 Ic=I×Δt/(Δt+τ)+Icb×τ/(Δt+τ)・・・(4)
 モジュレーション制御部35は、入力されたインチング率Iを遅延して、補正インチング率Icとして出力する。遅延の程度は、カットオフ周波数f又は時定数τによって設定される。カットオフ周波数fを大きく(時定数τを小さく)することにより遅延の程度は小さくなり、カットオフ周波数fを小さく(時定数τを大きく)することにより遅延の程度は大きくなる。
 モジュレーション制御部35は、テーブルTB及び増加速度のマップMPを有する。テーブルTBは、インチング率増加速度Viのパターンのうち、Aパターン、Bパターン、Dパターン及びEパターンの4パターンに対するカットオフ周波数fa、fb、fd、feが記述されている。マップMPは、アクセル開度Asに応じて設定された増加速度のマップMPを有する。マップMPは、インチング率増加速度Viのパターンのうち、Cパターンに対応する。
 モジュレーション制御部35は、入力されたインチング率Iの遅延の程度を変更することにより、補正インチング率Icとして出力する。モジュレーション制御部35は、例えば、カットオフ周波数fを大きくすることにより、補正インチング率Icがインチング率Iに近づく速度を速くすることができ、カットオフ周波数fを小さくすることにより補正インチング率Icがインチング率Iに近づく速度を遅くすることができる。なお、インチング率増加速度判定部34及びモジュレーション制御部35が、補正インチング率Icがインチング率Iに近づく速度を変更する方法は、前述したものに限定されない。
 乗算部36は、目標吸収トルクTmに補正インチング率Icを乗算する。そして、乗算部36は、補正インチング率Icに対応して目標吸収トルクTmを減少した補正吸収トルクTcをHSTポンプ電磁比例制御出力電流変換部37に出力する。
 出力制御部としてのHSTポンプ電磁比例制御出力電流変換部37は、補正インチング率Icで目標吸収トルクTmを減少した補正吸収トルク指令を生成して、HSTポンプ10のポンプ容量設定ユニット11に出力する。すると、インチング率増加速度判定部34が決定したインチング率増加速度Viに従って補正インチング率Icが増加する。その結果、フォークリフト1のオペレータがブレーキペダル40aを開放した場合又は踏み込んだ場合におけるHSTポンプ10のポンプ容量が復元する速さが変更される。
 補正吸収トルク指令は、HSTポンプ10が吸収するトルクが、乗算部36から出力された補正吸収トルクTcとなるようにするための信号(本実施形態では電流値)である。補正吸収トルク指令は、HSTポンプ電磁比例制御出力電流変換部37から、ポンプ容量設定ユニット11の前進用ポンプ電磁比例制御バルブ12又は後進用ポンプ電磁比例制御バルブ13に出力される。
 燃料噴射量演算部33は、入力される実エンジン回転数Nrとアクセル操作量Asとに基づいて、エンジン4の燃料噴射インジェクタに噴射すべき量を演算し、その結果を燃料噴射インジェクタに出力する。次に、インチング率増加速度Viを決定する制御の一例を説明する。
(インチング率増加速度Viを決定する制御例)
 図6は、インチング率増加速度Viを決定する制御例を示すフローチャートである。図7は、アクセル開度Asが所定のアクセル開度閾値以上かつブレーキ開度Bsが所定のブレーキ開度閾値未満の状態において用いられるインチング率増加速度Viのマップの一例を示す図である。図1及び図5に示す制御装置30は、本実施形態に係るフォークリフトの制御方法を実行することにより、インチング率増加速度Viを決定する。
 ステップS101において、図1及び図5に示す制御装置30、より具体的には図5に示すインチング率増加速度判定部34は、アクセルポテンショメータ41からアクセル開度Asを取得し、所定のアクセル開度閾値P[%]と比較する。ステップS101においては、アクセルがONであるかOFFであるかが判定される。アクセル開度閾値Pは、この判定に適切な値に設定される。
 アクセル開度Asがアクセル開度閾値P未満である場合(ステップS101、Yes)、アクセルはOFFである。この場合、ステップS102において、インチング率増加速度判定部34は、図5に示す車速センサ46から取得したフォークリフト1の車速Vcと、所定の車速閾値Qとを比較する。ステップS102においては、フォークリフト1が走行しているか停止しているかが判定される。車速閾値Qは、この判定に適切な値に設定される。
 車速Vcが所定の車速閾値Q[km/h]よりも大きい場合(ステップS102、Yes)、フォークリフト1は、減速して走行中である。この場合、ステップS103において、インチング率増加速度判定部34は、インチング率増加速度Viを、パターンBに決定する。車速Vcが所定の車速閾値Q[km/h]よりも以下である場合(ステップS102、No)、フォークリフト1は停止中である。この場合、ステップS104において、インチング率増加速度判定部34は、インチング率増加速度Viを、パターンAに決定する。
 ステップS101に戻り、アクセル開度Asがアクセル開度閾値P以上である場合(ステップS101、No)、ステップS105において、インチング率増加速度判定部34は、インチングポテンショメータ40からブレーキ開度Bsを取得し、所定のブレーキ開度閾値R[%]と比較する。ステップS105においては、アクセルの単独操作による加速状態か、アクセルとブレーキとの同時操作であるかが判定される。ブレーキ開度閾値Rは、この判定に適切な値に設定される。ブレーキ開度Bsがブレーキ開度閾値R未満である場合(ステップS105、Yes)、フォークリフト1はアクセルの単独操作によって加速中である。この場合、ステップS106において、インチング率増加速度判定部34は、インチング率増加速度Viを、パターンCに決定する。
 ステップS105に戻り、ブレーキ開度Bsがブレーキ開度閾値R以上である場合(ステップS105、No)、アクセルとブレーキとが同時操作されている。この場合、ステップS107において、インチング率増加速度判定部34は、ブレーキ開度変化速度Vbsと所定の開度変化閾値S[%]とを比較する。
 ブレーキ開度Bsは、図1に示すブレーキペダル40aが踏まれていない状態において0%となる。ブレーキペダル40aが踏み込まれるにしたがって、ブレーキ開度Bsの数値は増加する。すなわち、本実施形態において、ブレーキが開くとブレーキ開度Bsの値は減少し、ブレーキが閉じるとブレーキ開度Bsの値は増加する。ブレーキ開度変化速度Vbsは、所定時間にどの程度ブレーキ開度Bsが変化したかを示すので、ブレーキが開いた場合は負の値になる。また、ブレーキが開放される場合において、ブレーキペダル40aが一気に開放されたか否かが判定される。開度変化閾値Sは、この判定に適切な値に設定される。ステップS107において、ブレーキ開度変化速度Vbsが小さくなれば、すなわちブレーキ開度変化速度Vbsの絶対値が大きくなれば、ブレーキペダル40aが開放される速度は速くなる。
 ブレーキ開度変化速度Vbsが開度変化閾値S未満である場合(ステップS107、Yes)、アクセルとブレーキとが同時操作され、かつそのときにブレーキペダル40aが一気に開放される。この状態は、フォークリフト1が押し込み操作状態であることを示している。押し込み操作とは、フォークリフト1が運搬物を押し込んだり図1に示すフォーク6を荷物の隙間から抜いたりする場合の操作である。押し込み操作は、停止状態でエンジン4の回転速度を上昇させ、その後ブレーキを一気に開放させてフォークリフト1を急加速させることにより実現できる。この場合、ステップS108において、インチング率増加速度判定部34は、インチング率増加速度Viを、パターンDに決定する。
 ブレーキ開度変化速度Vbsが開度変化閾値S以上である場合(ステップS107、No)、フォークリフト1のオペレータは、ブレーキペダル40aを踏み込んで作業をしていると判定できるので、フォークリフト1は荷役操作状態であると考えられる。この場合、ステップS109において、インチング率増加速度判定部34は、インチング率増加速度Viを、パターンEに決定する。前述したパターンA、B、C、D、Eは、それぞれのフォークリフト1の状態に応じて、異なるインチング率増加速度Viとなるように設定される。
 例えば、パターンEのインチング率増加速度Vi、すなわち荷役操作時におけるインチング率増加速度Viを、パターンDによるインチング率増加速度Vi、すなわち押し込み操作時におけるインチング率増加速度Viよりも小さくする。例えば、パターンEのカットオフ周波数fをパターンDのカットオフ周波数fよりも小さくする。このようにすれば、荷役操作時におけるインチング率増加速度Viを、押し込み操作時におけるインチング率増加速度Viよりも小さくすることができる。その結果、フォークリフト1のオペレータが、荷役操作中にブレーキペダル40aを誤って放し過ぎた場合であっても、パターンEによるインチング率増加速度Viが適用されるため、フォークリフト1の急加速を抑制できる。このため、オペレータがブレーキペダル40aを放し過ぎてしまった場合であっても車速Vcの急上昇が抑制されるので、急加速によって荷をぶつけたり、急制動によって荷が崩れたりすることを抑制できる。その結果、オペレータの操作の負担を低減できる。また、オペレータが押し込み作業を行う場合、パターンDによるインチング率増加速度Viが適用されるため、オペレータの意思が優先される結果、容易に押し込み作業が実現できる。
 パターンAのインチング率増加速度Vi、すなわち停止状態でのインチング率増加速度Viを、パターンBによるインチング率増加速度Vi、すなわち減速走行状態でのインチング率増加速度Viよりも小さくする。このようにすると、パターンAによるインチング率増加速度Viが適用される。このため、フォークリフト1が停止した後にブレーキペダル40aを放した場合には、HSTポンプ10のポンプ容量が復元する速さは抑制されるため、フォークリフト1が再発進することを抑制できる。また、フォークリフト1が減速走行中には、パターンBによるインチング率増加速度Viが適用される。このため、フォークリフト1の減速走行中において、ブレーキペダル40aを用いたHST10ポンプによるブレーキ力のコントロール性能を確保することができるので、例えば、フォークリフト1のオペレータは、停止させたい位置でフォークリフト1を容易に停止させることができる。
 パターンEのインチング率増加速度Vi、すなわち荷役操作時におけるインチング率増加速度Viは、アクセル開度Asが大きくなるにしたがって大きくしてもよい。このようにすることで、フォークリフト1が荷役作業中に、オペレータがブレーキペダル40aを踏み込んでから開放した後においては、オペレータがアクセルペダル41aを小さく踏んでいる場合は急加速せず、また、大きく踏んでいる場合は力強く加速させることができる。
 パターンCのインチング率増加速度Vi、すなわちフォークリフト1が加速状態におけるインチング率増加速度Viは、例えば、図7に示す、アクセル開度Asに応じて設定された増加速度のマップMPによって定められてもよい。このマップMPは、アクセル開度AsがAs1、As2、・・・Asjに対応して、インチング率増加速度Viを決定するためのカットオフ周波数f1、f2、・・・fjが記述されている。アクセル開度AsはAs1、As2、・・・Asjの順に大きくなり、カットオフ周波数fはf1、f2、・・・fjの順に大きくなる(jは1以上の整数)。すなわち、マップMPは、アクセル開度Asが大きくなるにしたがって、インチング率増加速度Viが大きくなるように定められている。このようにすることで、フォークリフト1の加速中においては、オペレータがアクセルペダル41aを小さく踏んだ場合は急加速せず、また、大きく踏めば力強く加速させることができる。このように、制御装置30及びこれを備えたフォークリフト1は、HSTを備えたフォークリフトによる様々な作業の局面において、適切なインチング制御を実現することができる。
 以上、本実施形態を説明したが、前述した内容により本実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。
1 フォークリフト
2a 駆動輪
4 エンジン
5 作業機
10 走行用油圧ポンプ(HSTポンプ)
11 ポンプ容量設定ユニット
12 前進用ポンプ電磁比例制御バルブ
13 後進用ポンプ電磁比例制御バルブ
14 ポンプ容量制御シリンダ
16 作業機油圧ポンプ
20 油圧モータ(HSTモータ)
21 モータ容量設定ユニット
30 制御装置
30C 処理部
30M 記憶部
31 目標吸収トルク演算部
32 インチング率演算部
33 燃料噴射量演算部
34 インチング率増加速度判定部
35 モジュレーション制御部
36 乗算部
37 HSTポンプ電磁比例制御出力電流変換部
40 インチングポテンショメータ
40a ブレーキペダル(インチングペダル)
41 アクセルポテンショメータ
41a アクセルペダル
43 エンジン回転センサ
46 車速センサ
100 主油圧回路

Claims (12)

  1.  エンジンによって駆動される可変容量型の走行用油圧ポンプ、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータ及び前記油圧モータによって駆動される駆動輪を備えるフォークリフトであり、
     前記フォークリフトの車速を求める車速センサと、
     前記エンジンへの燃料供給量を変更するためのアクセルペダルの操作量を示すアクセル開度を検出するアクセル開度センサと、
     前記フォークリフトを制動するために用いられ、かつ前記走行用油圧ポンプが有する斜板の傾転角の低減割合であるインチング率を操作するブレーキペダルと、
     前記ブレーキペダルの操作量に対応する前記インチング率を演算するインチング率演算部と、
     前記アクセル開度と、前記ブレーキペダルの操作量を示すブレーキ開度と、前記ブレーキ開度の変化速度と、前記車速センサによって検出された前記車速と、の少なくとも1つに基づき前記インチング率の増加速度を決定するインチング率増加速度演算部と、
     を含む、フォークリフト。
  2.  前記アクセル開度が所定のアクセル開度閾値未満の状態において、
     前記車速が所定の車速閾値以下の場合における前記増加速度は、前記車速が前記車速閾値よりも大きい場合における前記増加速度よりも小さい、請求項1に記載のフォークリフト。
  3.  前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定の開度閾値以上の状態において、
     前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記ブレーキ開度の変化速度が前記開度変化閾値未満の場合における前記増加速度よりも小さい、請求項1に記載のフォークリフト。
  4.  前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値以上の状態において、
     前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっている、請求項1に記載のフォークリフト。
  5.  前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値未満の状態において、
     前記増加速度は、前記アクセル開度に応じて設定された前記増加速度のマップによって定められる、請求項1に記載のフォークリフト。
  6.  前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっている、請求項5に記載のフォークリフト。
  7.  エンジンによって駆動される可変容量型の走行用油圧ポンプ、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータ及び前記油圧モータによって駆動される駆動輪を備えるフォークリフトを制御するにあたって、
     前記エンジンへの燃料供給量を変更するためのアクセルペダルの操作量を示すアクセル開度と、前記フォークリフトを制動するために用いられるブレーキペダルの操作量を示すブレーキ開度と、前記ブレーキ開度の変化速度と、車速センサによって検出された前記フォークリフトの車速と、の少なくとも1つに基づき、前記走行用油圧ポンプが有する斜板の傾転角の低減割合であるインチング率の増加速度を決定する、
     フォークリフトの制御方法。
  8.  前記アクセル開度が所定のアクセル開度閾値未満の状態において、
     前記車速が所定の車速閾値以下の場合における前記増加速度は、前記車速が前記車速閾値よりも大きい場合における前記増加速度よりも小さい、請求項7に記載のフォークリフトの制御方法。
  9.  前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定の開度閾値以上の状態において、
     前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記ブレーキ開度の変化速度が前記開度変化閾値未満の場合における前記増加速度よりも小さい、請求項7に記載のフォークリフトの制御方法。
  10.  前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値以上の状態において、
     前記ブレーキ開度の変化速度が所定の開度変化閾値以上の場合における前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっている、請求項7に記載のフォークリフトの制御方法。
  11.  前記アクセル開度が所定のアクセル開度閾値以上かつ前記ブレーキ開度が所定のブレーキ開度閾値未満の状態において、
     前記増加速度は、前記アクセル開度に応じて設定された前記増加速度のマップによって定められる、請求項7に記載のフォークリフトの制御方法。
  12.  前記増加速度は、前記アクセル開度が大きくなるにしたがって大きくなっている、請求項11に記載のフォークリフトの制御方法。
PCT/JP2013/085266 2013-12-27 2013-12-27 フォークリフト及びフォークリフトの制御方法 WO2015097911A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/363,015 US9624079B2 (en) 2013-12-27 2013-12-27 Forklift and control method of forklift
DE112013000267.1T DE112013000267B4 (de) 2013-12-27 2013-12-27 Gabelstapler und Steuerverfahren eines Gabelstaplers
JP2014526293A JP5774224B1 (ja) 2013-12-27 2013-12-27 フォークリフト及びフォークリフトの制御方法
CN201380004009.3A CN104884381B (zh) 2013-12-27 2013-12-27 叉车及叉车的控制方法
PCT/JP2013/085266 WO2015097911A1 (ja) 2013-12-27 2013-12-27 フォークリフト及びフォークリフトの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085266 WO2015097911A1 (ja) 2013-12-27 2013-12-27 フォークリフト及びフォークリフトの制御方法

Publications (1)

Publication Number Publication Date
WO2015097911A1 true WO2015097911A1 (ja) 2015-07-02

Family

ID=53477837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085266 WO2015097911A1 (ja) 2013-12-27 2013-12-27 フォークリフト及びフォークリフトの制御方法

Country Status (5)

Country Link
US (1) US9624079B2 (ja)
JP (1) JP5774224B1 (ja)
CN (1) CN104884381B (ja)
DE (1) DE112013000267B4 (ja)
WO (1) WO2015097911A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185918A1 (ja) * 2017-04-06 2018-10-11 株式会社小松製作所 作業車両及び作業車両の制御方法
IT201700078668A1 (it) 2017-07-13 2019-01-13 Cnh Ind Italia Spa Sistema di avanzamento per un veicolo da costruzione
CN108757651A (zh) * 2018-08-20 2018-11-06 杭叉集团股份有限公司 电动叉车及其液压控制系统
CN109205516A (zh) * 2018-08-29 2019-01-15 广州市广韬教学设备有限公司 一种叉车制动系统及其制动方法
EP3901442B1 (en) 2019-04-04 2023-09-20 Komatsu Ltd. Work vehicle, control device for work vehicle, and control method for work vehicle
WO2023077344A1 (zh) * 2021-11-04 2023-05-11 中联重科股份有限公司 基于液压的控制系统、方法、起重设备和履带式行走设备
CN114291766B (zh) * 2021-12-20 2024-04-12 河南嘉晨智能控制股份有限公司 一种工业车辆微动驾驶感改善方法
CN114674576B (zh) * 2022-03-22 2022-11-22 江苏省特种设备安全监督检验研究院 一种叉车制动性能试验方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180274A (ja) * 2007-01-24 2008-08-07 Komatsu Ltd 油圧駆動装置及び油圧駆動車両
JP5092069B1 (ja) * 2012-03-30 2012-12-05 株式会社小松製作所 ホイールローダ及びホイールローダの制御方法
JP5144844B1 (ja) * 2012-04-26 2013-02-13 株式会社小松製作所 フォークリフト及びフォークリフトのインチング制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406271B2 (ja) * 2000-03-10 2003-05-12 Tcm株式会社 産業用車両の走行駆動装置
CN100364879C (zh) 2004-03-01 2008-01-30 上海市闸北区物流工程技术研究所 节能装卸搬运电动车
KR101391570B1 (ko) 2008-10-23 2014-05-02 주식회사 두산 지게차의 주행조종장치
CN201415932Y (zh) 2009-06-24 2010-03-03 合肥力威汽车油泵有限公司 叉车控制阀的壳体
CN201606326U (zh) 2009-12-31 2010-10-13 安徽蓝博旺机械有限责任公司 一种电液微动阀
CN201713285U (zh) 2010-04-28 2011-01-19 浙江高宇液压机电有限公司 一种叉车控制阀上用的装置
CN202851161U (zh) 2012-08-29 2013-04-03 林德(中国)叉车有限公司 一种用于控制叉车动力系统实时调速的装置
CN203255168U (zh) 2013-03-30 2013-10-30 山东山推机械有限公司 一种侧面叉车制动液液控微动阀装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180274A (ja) * 2007-01-24 2008-08-07 Komatsu Ltd 油圧駆動装置及び油圧駆動車両
JP5092069B1 (ja) * 2012-03-30 2012-12-05 株式会社小松製作所 ホイールローダ及びホイールローダの制御方法
JP5144844B1 (ja) * 2012-04-26 2013-02-13 株式会社小松製作所 フォークリフト及びフォークリフトのインチング制御方法

Also Published As

Publication number Publication date
US9624079B2 (en) 2017-04-18
JPWO2015097911A1 (ja) 2017-03-23
US20160289055A1 (en) 2016-10-06
CN104884381B (zh) 2016-12-07
DE112013000267T5 (de) 2015-08-27
JP5774224B1 (ja) 2015-09-09
CN104884381A (zh) 2015-09-02
DE112013000267B4 (de) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5774224B1 (ja) フォークリフト及びフォークリフトの制御方法
JP5563062B2 (ja) アクセルペダル装置
JP5144844B1 (ja) フォークリフト及びフォークリフトのインチング制御方法
JP5968559B1 (ja) 作業車両及び作業車両の制御方法
JP5707538B1 (ja) フォークリフト及びフォークリフトの制御方法
JP5902877B1 (ja) 作業車両及び作業車両の制御方法
WO2016056079A1 (ja) 作業車両及び作業車両の制御方法
JP5680804B1 (ja) フォークリフト及びフォークリフトの制御方法
JP5749861B1 (ja) フォークリフト及びフォークリフトの制御方法
JP6658190B2 (ja) 車速制御装置
WO2020195727A1 (ja) 作業機械、及び作業機械の制御方法
JP5775220B1 (ja) フォークリフト及びフォークリフトの制御方法
JP5341041B2 (ja) 油圧駆動式の車両、およびその制御方法と装置
WO2015093337A1 (ja) 作業車両
JP4432832B2 (ja) 産業車両の速度制御装置、産業車両、及び産業車両の速度制御方法
JP5866489B1 (ja) 作業車両及び作業車両の制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014526293

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130002671

Country of ref document: DE

Ref document number: 112013000267

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14363015

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900257

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13900257

Country of ref document: EP

Kind code of ref document: A1