WO2015097869A1 - 平面導波路型レーザ装置 - Google Patents

平面導波路型レーザ装置 Download PDF

Info

Publication number
WO2015097869A1
WO2015097869A1 PCT/JP2013/085134 JP2013085134W WO2015097869A1 WO 2015097869 A1 WO2015097869 A1 WO 2015097869A1 JP 2013085134 W JP2013085134 W JP 2013085134W WO 2015097869 A1 WO2015097869 A1 WO 2015097869A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
planar waveguide
clad
medium
isotropic medium
Prior art date
Application number
PCT/JP2013/085134
Other languages
English (en)
French (fr)
Inventor
洋次郎 渡辺
武司 崎村
柳澤 隆行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380081855.5A priority Critical patent/CN105874661B/zh
Priority to EP13900231.5A priority patent/EP3089287B1/en
Priority to PCT/JP2013/085134 priority patent/WO2015097869A1/ja
Priority to JP2015554449A priority patent/JP6253672B2/ja
Priority to US15/036,539 priority patent/US9780519B2/en
Publication of WO2015097869A1 publication Critical patent/WO2015097869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/175Solid materials amorphous, e.g. glass phosphate glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Definitions

  • the present invention relates to a planar waveguide laser device having a planar waveguide structure suitable for a light source such as LIDAR, for example.
  • the planar waveguide laser device has a structure in which a thin flat plate-like laser medium extending in the traveling direction of laser light is sandwiched between two clads having a refractive index lower than that of the laser medium, The laser medium functions as a waveguide.
  • This planar waveguide laser device has a thin waveguide and a high pumping density. Therefore, even if a laser medium with a small stimulated emission cross section is used, a large gain can be obtained, and high-efficiency amplification and oscillation operations can be achieved. Can be realized. Further, by expanding the waveguide in the width direction, it is possible to scale the output while keeping the excitation density at a predetermined value.
  • this planar waveguide laser device has a high gain, and a plurality of waveguide modes easily amplifies and oscillates, so that it is difficult to amplify and oscillate laser light with the necessary linearly polarized light. There is a case. In addition, it is difficult to cause amplification or oscillation of laser light by limiting to a desired mode. In addition, it is difficult to efficiently output laser light by suppressing unnecessary light amplification (parasitic amplification) and parasitic oscillation that is confined in the waveguide due to total reflection on the outside and end surfaces of the cladding. It is.
  • a planar waveguide laser device that can oscillate laser light in a desired mode has been proposed (see, for example, Patent Document 1).
  • a birefringent laser medium having an optical axis in a cross section perpendicular to the optical axis, which is the traveling direction of laser light, is applied to the core.
  • a material having a refractive index between the refractive index for the TE polarized light and the refractive index for the TM polarized light of the laser medium is used.
  • either TE-polarized light or TM-polarized light does not satisfy the total reflection condition, so that only one of the polarized light that satisfies the total reflection condition can be oscillated, and laser light is oscillated in a desired mode. be able to.
  • the conventional planar waveguide laser device is configured as described above, it is essential to use a birefringent laser medium as a laser medium applied to the core. For this reason, there has been a problem that laser light having a desired wavelength that can be realized by applying an isotropic laser medium cannot be output in a desired mode.
  • the present invention has been made to solve the above-described problems, and is a planar waveguide laser capable of outputting a laser beam having a desired wavelength in a desired mode by applying an isotropic medium to the core.
  • the object is to obtain a device.
  • the planar waveguide laser device is joined to at least one of a flat plate-shaped isotropic medium that propagates laser light incident from the side surface and an upper surface and a lower surface of the isotropic medium.
  • a clad, and the clad is made of a birefringent material having different refractive indexes in two polarization directions perpendicular to the optical axis, which is the traveling direction of laser light in the isotropic medium, and isotropic
  • the conductive medium is made of a material having a refractive index between the refractive indexes of the two polarization directions in the cladding.
  • the cladding is made of a birefringent material having different refractive indexes in two polarization directions orthogonal to the optical axis, which is the traveling direction of the laser light in the isotropic medium, and isotropic. Since the medium is made of a material having a refractive index between the refractive indexes of the two polarization directions in the cladding, laser light having a desired wavelength that can be realized by applying an isotropic medium is desired. With this, there is an effect that can be selectively output.
  • FIG. 1 is a perspective view showing a planar waveguide laser device according to Embodiment 1 of the present invention.
  • FIG. It is sectional drawing which shows the planar waveguide type laser apparatus by Embodiment 1 of this invention. It is explanatory drawing which shows typically the polarization dependence of the propagation of the laser beam in the planar waveguide type laser apparatus by Embodiment 1 of this invention. It is sectional drawing which shows typically an example of the procedure of the manufacturing method of a planar waveguide type laser apparatus (the 1). It is sectional drawing which shows typically an example of the procedure of the manufacturing method of a planar waveguide type laser apparatus (the 2). It is sectional drawing which shows typically an example of the procedure of the manufacturing method of a planar waveguide type laser apparatus (the 3).
  • FIG. 1 is a perspective view showing a planar waveguide laser device according to Embodiment 1 of the present invention
  • FIG. 2 is a sectional view showing the planar waveguide laser device according to Embodiment 1 of the present invention.
  • the laser medium 1 is composed of a flat isotropic medium, and the laser medium 1 generates a gain by absorbing the excitation light incident from the side surface and forming an inverted distribution state.
  • the member amplifies the laser beam by the gain.
  • the directions parallel to two orthogonal sides of the surface in the plane parallel to the upper surface and the lower surface (a pair of rectangular surfaces) of the laser medium 1 are the x axis and the z axis, respectively.
  • a direction perpendicular to both the x-axis and the z-axis is taken as a y-axis.
  • the z-axis direction is the optical axis that is the propagation direction (traveling direction) of the laser light.
  • the clad 2a is bonded to the lower surface of the laser medium 1 so that the optical axis (c-axis) is perpendicular to the bonding surface with the laser medium 1, and has two polarization directions orthogonal to the optical axis of the laser beam. It is made of birefringent materials having different refractive indexes (the refractive index for the polarized light in the x-axis direction is nx and the refractive index for the polarized light in the y-axis direction is ny).
  • the clad 2b is bonded to the upper surface of the laser medium 1 so that the optical axis (c-axis) is perpendicular to the bonding surface with the laser medium 1, and has two polarization directions orthogonal to the optical axis of the laser beam. It is made of birefringent materials having different refractive indexes (the refractive index for the polarized light in the x-axis direction is nx and the refractive index for the polarized light in the y-axis direction is ny).
  • the laser medium 1 and the clad 2a the material of which the refractive index nc of the laser medium 1 is ny ⁇ nc ⁇ nx in relation to the refractive indexes nx and ny of the clads 2a and 2b. 2b is configured.
  • specific material combinations of the laser medium 1 and the clads 2a and 2b that satisfy the relationship of ny ⁇ nc ⁇ nx will be exemplified. However, the combination is not limited to these.
  • Laser medium 1 ⁇ Clad 2a, 2b Er, Yb-doped phosphate glass ⁇ Calcite (CaCO3), BBO or quartz Yb: YAG, Nd: YAG, Er: YAG, Tm: YAG, Ho: YAG, Tm, Ho: YAG or Pr: YAG ⁇ KTP Nd: Glass, Er: Glass ⁇ ⁇ Calcite, BBO, LBO or quartz
  • the laser medium 1 when Er, Yb-added phosphate glass is used as the laser medium 1, the laser medium 1 has a refractive index of about 1.52 at a wavelength of 1535 nm. Further, when calcite is used as the clads 2a and 2b, the clads 2a and 2b have a wavelength range of about 1.48 (abnormal light refractive index ne) to about 1.63 (ordinary light refractive index no) at a wavelength of 1535 nm. And has a refractive index corresponding to the polarization direction.
  • an optical waveguide is used for linearly polarized laser light in which the refractive index nc in the laser medium 1 is larger than the refractive indexes of the clads 2a and 2b.
  • the laser medium 1 guides laser light generated by stimulated emission by irradiation of excitation light with respect to linearly polarized laser light whose refractive index nc in the laser medium 1 is larger than that of the claddings 2a and 2b. It functions as a wave core and functions as a laser medium.
  • FIG. 3 is an explanatory view schematically showing the polarization dependence of the propagation of laser light in the planar waveguide laser device according to the first embodiment of the present invention.
  • clads 2a and 2b are bonded to the upper and lower surfaces of a laser medium 1 made of Er, Yb-doped phosphate glass formed in a flat plate shape.
  • 2a and 2b are formed of calcite whose c-axis (optical axis) and y-axis are parallel to each other.
  • the laser medium 1 When excitation light is incident from at least one of the four side surfaces of the laser medium 1, the laser medium 1 generates gain by absorbing the excitation light and forming an inverted distribution state. When the laser medium 1 forms an inverted distribution state, when laser light (seed light) enters from at least one side surface, the laser medium 1 amplifies the laser light by its gain. In the example of FIG. 3, laser light is incident along the z-axis from the left end side of the laser medium 1. When the refractive index nc of the laser medium 1 that is the core refractive index is larger than the refractive index of the clads 2a and 2b, the light propagating in the waveguide is at the interface between the core (laser medium 1) and the clads 2a and 2b.
  • a component that satisfies the total reflection condition is confined in the laser medium 1, and the component is propagated as a waveguide mode.
  • the refractive index nc of the laser medium 1 that is the core refractive index is smaller than the refractive index of the clads 2a and 2b, a radiation mode in which light leaks from the interface between the core (laser medium 1) and the clads 2a and 2b, A big loss occurs.
  • the refractive index ny that the laser light having the polarization in the y-axis direction (TM mode laser light) is felt by the clads 2a and 2b is about Since it is 1.48 and is smaller than the refractive index nc (about 1.52) of the laser medium 1 that is the core refractive index, the TM mode laser light propagates in the waveguide mode.
  • the refractive index nx of the laser beams having polarization in the x-axis direction (TE mode laser beams) felt by the clads 2a and 2b is about 1.63.
  • nc the refractive index of the laser medium 1 that is the core refractive index
  • total reflection does not occur at the interface between the core (laser medium 1) and the clads 2a and 2b, and the radiation mode is obtained.
  • a large loss occurs while the TE mode laser light propagates through the planar waveguide laser device. Therefore, in the example of FIG. 3, only the TM mode laser beam is selected and amplified.
  • the planar waveguide laser device when the laser light is incident in parallel with the z-axis direction, the planar waveguide laser device operates as a laser amplifier that amplifies and outputs only the polarization component in the y-axis direction. Therefore, in the planar waveguide laser device according to the first embodiment, an output of linearly polarized light can be obtained with high efficiency without adding an optical element such as a polarizer that restricts polarization. Further, laser light (seed light) having a y-polarized component may be used, and the restriction on the polarization state of the seed light before entering the planar waveguide laser device can be relaxed. For example, even if the polarization ratio of the y-polarized light and the x-polarized light of the seed light before entering the planar waveguide laser device is 9: 1, only the y-polarized light can be amplified.
  • a total reflection mirror is installed on one of the surfaces perpendicular to the z-axis of the laser medium 1 and a partial reflection mirror is installed on the other surface, laser light oscillation occurs between the total reflection mirror and the partial reflection mirror. A part of the laser beam is output from the partial reflecting mirror. At this time, since the TE mode laser beam receives a large loss, the oscillation is suppressed, and only the TM mode laser beam is oscillated to obtain a linearly polarized output. Therefore, in the planar waveguide laser device according to the first embodiment, an output of linearly polarized light can be obtained with high efficiency without adding an optical element such as a polarizer that restricts polarization.
  • the total reflection mirror and the partial reflection mirror may be realized by directly forming a dielectric film or a metal film on a surface perpendicular to the z-axis of the laser medium 1.
  • the configuration described above can amplify or oscillate laser light linearly polarized in the y-axis direction with high efficiency by suppressing amplification or oscillation in the x-axis direction.
  • 4 to 8 are cross-sectional views schematically showing an example of the procedure of the method for manufacturing the planar waveguide laser device.
  • the laser medium 1 is cut so as to have a flat plate shape, one of the zx planes is polished (see FIG. 4).
  • a clad 2b made of a material having a refractive index nx, ny of ny ⁇ nc ⁇ nx is bonded to the polished surface of the laser medium 1 (see FIG. 5).
  • the clad 2b may be directly bonded to the laser medium 1 by a method such as optical contact, surface activation bonding, or diffusion bonding, or an optical adhesive having a refractive index smaller than that of the laser medium 1 is used. Alternatively, it may be bonded to the laser medium 1. Further, a thin film of the clad 2b may be formed on the polished surface of the laser medium 1 by using a sputtering method, a vapor deposition method, a CVD (Chemical Vacuum Deposition) method, or the like. Further, the laser medium 1 and the clad 2b may be joined with a buffer layer sandwiching the thermal expansion difference.
  • polishing is performed until the zx surface of the laser medium 1 has a predetermined thickness (see FIG. 6), and the refractive index nx, ny of ny ⁇ nc ⁇ nx is given to the surface of the polished laser medium 1.
  • the clad 2a made of a material is joined (see FIG. 7).
  • the clad 2a can also be bonded by the same method as the clad 2b.
  • the laminate of the laser medium 1 and the clads 2a and 2b is cut in a direction as shown in FIG. 8 to manufacture a planar waveguide laser device having a desired size.
  • the planar waveguide laser device having a structure in which the upper and lower sides of the laser medium 1 are sandwiched between the clads 2a and 2b has been described.
  • the clads 2a and 2b satisfying the relationship of refractive index ny ⁇ nc ⁇ nx.
  • only one of the clads 2 may be bonded to the upper surface or the lower surface of the laser medium 1.
  • the surface of the laser medium 1 on which the clad 2 is not joined may be in contact with air without providing anything (air may be used as the clad), or the refractive index of the laser medium 1.
  • a material having an arbitrary refractive index smaller than nc may be bonded as the cladding.
  • only the TM mode laser beam is selected by bonding to the laser medium 1 so that the optical axes (c-axis) of the clads 2a and 2b are oriented in the y-axis direction.
  • the optical axes of the clads 2a and 2b satisfying the relationship of refractive index nx ⁇ nc ⁇ ny are joined to the laser medium 1 so as to face the x-axis direction, and only TE mode laser light is selected. You may do it.
  • a structure may be employed in which the optical axis (c-axis) of the satisfactory clads 2a and 2b is bonded to the laser medium 1 so as to face the x-axis direction.
  • laser light having polarization perpendicular to the optical axes (c-axis) of the clads 2a and 2b propagates in the planar waveguide laser device in the waveguide mode.
  • the laser light having the polarization in the optical axis direction becomes a radiation mode, and a large loss occurs during the propagation of the planar waveguide laser device.
  • only laser light having a specific polarization direction is selected and amplified, and an output of laser light linearly polarized in the x-axis direction or the y-axis direction is obtained.
  • At least one of the upper surface and the lower surface of the laser medium 1 that is an isotropic medium having a refractive index nc has no ⁇ nc ⁇ ne or , Ne ⁇ nc ⁇ no, so that the clad 2 having a refractive index satisfying the relationship is bonded. Therefore, at a desired wavelength (for example, 1535 nm) that can be realized by applying an isotropic medium, the clad 2 This produces an effect of selectively outputting only polarized light whose refractive index is lower than the refractive index nc.
  • the clad 2a and 2b are made of birefringent materials having different refractive indexes in two polarization directions.
  • the clad 2a and 2b are made of an anisotropic medium such as a biaxial crystal.
  • an inert isotropic medium is used instead of the laser medium 1, the planar waveguide laser device functions as a polarizer.
  • FIG. FIG. 9 is an explanatory view schematically showing an example of an optical path of laser light in a planar waveguide laser device.
  • the laser medium 1 transmits the radiation mode to the claddings 2a and 2b.
  • the leaked laser light may be reflected at the boundary between the clads 2a and 2b and the outside and enter the laser medium 1 again.
  • the laser light incident again on the laser medium 1 is amplified (hereinafter, amplification of laser light other than the laser light to be output is referred to as parasitic amplification), and the gain accumulated in the laser medium 1 is consumed. May occur.
  • the laser beam reflected at the boundary between the cladding 2a and 2b and the outside is leaked to the cladding 2a and 2b as a radiation mode in addition to the cladding external propagation light L2 output from the output end face as it is, and the cladding 2a, 2b
  • the laser beam totally reflected at the boundary between 2b and the outside satisfies the total reflection condition even at the output end face of the laser medium 1, there is a total reflection circular mode L3 that is completely confined in the laser medium 1 and the clads 2a and 2b.
  • the laser light reflected under the total reflection condition (cladding external propagation light L2, total reflection circulation mode L3) has a small loss, so that laser oscillation (hereinafter referred to as parasitic oscillation) is performed inside the laser medium 1 and the clads 2a and 2b. ) And the gain in the laser medium 1 is consumed.
  • the efficiency of the planar waveguide laser device as an amplifier and laser oscillator is reduced. Therefore, in the second embodiment, reflection of laser light leaked to the clads 2a and 2b as a radiation mode at the boundary between the clads 2a and 2b and the outside is suppressed, and only desired laser light is amplified and oscillated with high efficiency.
  • a planar waveguide laser device that can be used will be described.
  • FIG. 10 is a perspective view showing a planar waveguide laser device according to Embodiment 2 of the present invention
  • FIG. 11 is a cross-sectional view showing the planar waveguide laser device according to Embodiment 2 of the present invention.
  • the absorption layer 5a is bonded to the lower surface of the clad 2a (the surface not bonded to the laser medium 1) and is made of a material that absorbs laser light.
  • the absorption layer 5b is bonded to the upper surface of the clad 2b (the surface not bonded to the laser medium 1), and is made of a material that absorbs laser light.
  • the absorbing layers 5a and 5b may be made of a material that absorbs laser light.
  • Cr chromium
  • a chromium-added material can be used.
  • FIG. 12 is an explanatory view schematically showing the polarization dependence of the propagation of laser light in the planar waveguide laser device according to the second embodiment of the present invention.
  • clads 2a and 2b are bonded to the upper and lower surfaces of a laser medium 1 made of Er, Yb-doped phosphate glass formed in a flat plate shape.
  • 2a and 2b are formed of calcite whose c-axis (optical axis) and y-axis are parallel to each other.
  • the refractive index nc of the laser medium 1 is about 1.52
  • the refractive index nx of the claddings 2a and 2b is about 1.63 (ordinary ray refractive index no)
  • the refractive index ny of the claddings 2a and 2b is about 1.48. (Extraordinary ray refractive index ne).
  • the waveguide is totally reflected at the boundary between the core (laser medium 1) and the clads 2a and 2b and propagates inside the core. Reflected and propagated at the boundary between the mode L1 and the clads 2a and 2b and the outside, the clad externally propagated light L2 output from the output end face, reflected at the border between the clads 2a and 2b and the outside, and further all at the output end face There is a total reflection circulation mode L3 in which the laser beam is completely confined inside the laser medium 1 and the clads 2a and 2b while satisfying the reflection condition.
  • the clad external propagation light L2 and the total reflection circular mode L3 are polarizations corresponding to a refractive index lower than the refractive indexes of the clads 2a and 2b among the two polarized lights generated in the laser medium 1, as already described. Caused by.
  • the gain stored in the laser medium 1 is consumed, so that the gain for the desired laser light (laser light in the waveguide mode L1) is reduced.
  • the efficiency of laser light amplification and oscillation is reduced.
  • Components other than the waveguide mode L1 are reflected at the boundary between the cladding 2a and 2b and the outside.
  • the absorption layers 5a and 5b are disposed outside the clads 2a and 2b, the components of the laser light reflected outside the clads 2a and 2b are absorbed by the absorption layers 5a and 5b.
  • the cladding 2a and 2b are bonded to the laser medium 1 and then chromium or titanium is formed by sputtering or vapor deposition as in the first embodiment. It can be formed by depositing an absorption layer 5a made of, for example, on the lower surface of the clad 2a. Moreover, it can form by forming the absorption layer 5b which consists of chromium, titanium, etc. on the upper surface of the clad 2b. Note that the metal film of chromium or titanium can absorb laser light in a wide wavelength band because the wavelength dependency of absorption is small.
  • a material that selectively absorbs a wavelength at which the laser medium 1 has the largest gain may be used.
  • the Er and Yb-doped phosphate glass when Er and Yb-doped phosphate glass is used as the laser medium 1 and a laser beam having a wavelength of 1550 nm is amplified, the Er and Yb-doped phosphate glass has a large gain at a wavelength of 1535 nm. It is important to suppress parasitic oscillation.
  • the absorption layers 5a and 5b it is possible to suppress parasitic amplification and parasitic oscillation at a wavelength of 1535 nm by using a material having an absorption peak near the wavelength of 1535 nm.
  • the clad external propagation light L2 and the total reflection circulation mode L3 generated in the planar waveguide laser device are suppressed.
  • the lower surface of the clad 2a (the surface not joined to the laser medium 1) and the upper surface of the clad 2b (joined to the laser medium 1).
  • the surface on the side that has not been made may be a roughened surface.
  • the absorption layers 5a and 5b may be attached to the roughened surfaces of the clads 2a and 2b. If comprised in this way, it will become possible to amplify desired laser light efficiently by suppressing parasitic amplification and parasitic oscillation by scattering of the laser light by a roughening surface, and absorption of the laser light by absorption layer 5a, 5b. Become.
  • the planar waveguide laser device having a structure in which the upper and lower sides of the laser medium 1 are sandwiched between the clads 2 a and 2 b has been described.
  • the clad 2 and the absorption layer 5 are formed only on the upper surface or the lower surface of the laser medium 1. You may make it join.
  • the surface of the laser medium 1 on the side where the cladding 2 and the absorption layer 5 are not joined may be in contact with air without providing anything (air may be used as the cladding), or the laser medium.
  • a material having an arbitrary refractive index smaller than the refractive index nc of 1 may be bonded as a clad.
  • the lower surface of the clad 2a is provided with the absorption layer 5a that absorbs laser light
  • the upper surface of the clad 2b is provided with the absorption layer 5b that absorbs laser light.
  • the clad external propagation light L2 caused by the polarization corresponding to the smaller refractive index of the laser medium 1 with respect to the refractive index of the cladding 2a, 2b of the two polarized lights generated in the laser medium 1.
  • parasitic amplification and parasitic oscillation are suppressed, and desired laser light propagating in the waveguide mode L1 can be efficiently amplified.
  • FIG. 13 is a cross-sectional view showing a planar waveguide laser device according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. In the first and second embodiments the laser medium 1 and the clads 2a and 2b form a rectangular parallelepiped.
  • the laser light incident side is shown. At least one of the side surfaces or the side surface on the laser light output side may be inclined.
  • the side surfaces of the laser medium 1 and the clads 2a and 2b are parallel to the xy plane, but the planar waveguide laser of the third embodiment.
  • the side surfaces of the laser medium 1 and the clads 2a and 2b are inclined with respect to the xy plane.
  • both the side surface on the laser beam incident side and the side surface on the laser beam output side are inclined with respect to the xy plane.
  • the laser medium (parasitic oscillation) generated between the pair of side surfaces perpendicular to the z-axis of the laser medium 1 is suppressed by tilting the side surfaces of the laser medium 1 and the clads 2a and 2b with respect to the xy plane.
  • the pair of side surfaces are inclined, but the same effect can be obtained even when only one of the side surfaces is inclined.
  • FIG. FIG. 14 is a sectional view showing a planar waveguide laser device according to Embodiment 4 of the present invention.
  • the laser beam is output from the side surface of the laser medium 1 facing the side surface on the side where the laser beam is incident.
  • the opposite side of the laser medium 1 and the clads 2a and 2b may be provided with a high-reflectivity coating 6 that reflects the laser light.
  • the laser medium 1 on the side facing the side on which the laser beam is incident and the side surfaces of the clads 2a and 2b are provided with a coating 6 having a high reflectivity for reflecting the laser beam
  • the laser medium 1 When the laser beam amplified and propagated along the z-axis (the laser beam propagated in the right direction in the figure) reaches the side surface on which the high-reflectivity coating 6 is applied, it is reflected on the side surface. The light is output from the side surface on the incident side. That is, the laser beam is propagated back and forth. Since the laser beam is reflected on the side surface on which the coating 6 having a high reflectance is applied and propagated in the left direction in the figure, it is further amplified by the laser medium 1, so that the output of the laser beam is increased. be able to.
  • FIG. 15 is a sectional view showing a planar waveguide laser device according to Embodiment 5 of the present invention.
  • the clad 7a is a second clad bonded to the lower surface (the surface not bonded to the laser medium 1) of the clad 2a.
  • the clad 7b is a second clad bonded to the upper surface of the clad 2b (the surface not bonded to the laser medium 1).
  • the clads 2a and 2b correspond to the first clad.
  • the xz plane of the clad 2a and 2b that is not joined to the laser medium 1 is an air layer, and the excitation light incident from the side faces is clad 2a and clad 2b. Or between the upper and lower air layers.
  • the excitation light incident from the side surface is It is confined between the clad 2a and the clad 2b or between the clad 7a and the clad 7b.
  • the refractive indexes of the claddings 7a and 7b with respect to the excitation light may be any as long as the excitation light can be confined between the cladding 7a and the cladding 7b.
  • the refractive index of the laser medium 1 with respect to the pumping light is nc
  • the refractive index of the clads 2a and 2b with respect to the pumping light is n1 (the clads 2a and 2b are made of a birefringent material.
  • the refractive index nc of the laser medium 1 and the refractive index n1 of the clad 2a, 2b have a relationship of nc> n1. If satisfied, the clads 7a and 7b are made of a material that satisfies the condition of n1> n2. On the other hand, when the refractive index nc of the laser medium 1 and the refractive index n1 of the claddings 2a and 2b satisfy the relationship of n1> nc, the claddings 7a and 7b are made of a material that satisfies the condition of nc> n2.
  • the wavelength of the excitation light is 940 nm, MgF2, SiO2 and other optical glass materials as the clads 7a and 7b
  • excitation light can be confined between the clad 7a and the clad 7b.
  • the material is not limited to MgF 2 or SiO 2 as long as it satisfies the above conditions.
  • the pump light can be confined between the clad 7a and the clad 7b, the high-power pump light can be guided to the laser medium 1, so that the output of the laser light can be increased. Is possible. Even when the difference between the refractive index nc of the laser medium 1 for the pumping light and the refractive index n2 of the claddings 7a and 7b for the pumping light is small, the refractive index n1 of the claddings 2a and 2b for the pumping light and the cladding for the pumping light By increasing the difference between the refractive index n2 of 7a and 7b, it is possible to increase the numerical aperture NA of the excitation light incident. Moreover, since excitation light does not face an air layer, it is possible to improve reliability.
  • FIG. FIG. 16 is a cross-sectional view showing a planar waveguide laser device according to Embodiment 6 of the present invention.
  • the substrate 3 is bonded to the upper surface of the clad 2b (the surface on the side not bonded to the laser medium 1) with the bonding agent 4.
  • the substrate 3 is bonded to the upper surface of the clad 2b, but the substrate 3 may be bonded to the lower surface of the clad 2a.
  • the planar waveguide can be reinforced as compared with the case where the xz plane of the clad 2b is an air layer, and thus reliability can be improved.
  • the bonding agent 4 is used to bond the substrate 3 and the clad 2b.
  • the bonding method of the substrate 3 and the cladding 2b is not limited to the method using the bonding agent 4, for example, surface activated bonding. Etc.
  • FIG. 17 is a cross-sectional view showing a planar waveguide laser device according to Embodiment 7 of the present invention.
  • the c-axis and the y-axis of the clads 2a and 2b are parallel to each other, but the optical axes (c-axis) of the clads 2a and 2b are inclined with respect to the joint surface with the laser medium 1 (clad 2a , 2b may be inclined in the z-axis direction).
  • the c-axes of the clads 2a and 2b are inclined in the z-axis direction.
  • the angle formed by the c-axis and the z-axis of the clads 2a and 2b is defined as ⁇ (0 ° ⁇ ⁇ ⁇ 180 ° is defined from the symmetry).
  • the refractive index ny with respect to the polarized light in the y-axis direction is ne ⁇ ny ⁇ . It changes depending on the angle ⁇ formed in the range of no or no ⁇ ny ⁇ ne.
  • ne ⁇ no it is possible to adjust the refractive indexes of the clads 2a and 2b with respect to the TM mode (when ne ⁇ no) by adjusting the inclination angle ⁇ of the c-axis with respect to the z-axis. It is possible to control the spatial mode.
  • FIG. 18 is a top view showing a planar waveguide laser device according to an eighth embodiment of the present invention.
  • a coating 8a having a high reflectance that reflects the laser beam L5 is applied to a part of the side surface (yz plane) of the laser medium 1 on which the seed light L4 is incident.
  • a part of the side surface (yz surface) of the laser medium 1 facing the side surface of the laser medium 1 on which the seed light L4 is incident is provided with a high-reflectance coating 8b that reflects the laser light L5. .
  • the laser light L5 in the laser medium 1 is converted into the high-reflectance coating 8a.
  • 8b is propagated in the laser medium 1 while being repeatedly reflected by the side surface.
  • the laser beam L5 is folded back by total reflection at the end face 9 (xy plane) of the laser medium 1.
  • the end face 9 may be coated with a high reflectance that reflects the laser light L5.
  • the laser beam L5 is applied with the high-reflectance coating 8b. It is emitted as amplified light L6 from the part which is not done.
  • the TE mode becomes the divergence mode and the TM mode becomes the waveguide mode if the wavelength of the laser light is 1535 nm.
  • the optical path length of the laser beam L5 can be increased by applying the coatings 8a and 8b having high reflectivity to a part of the pair of side surfaces of the laser medium 1, a high output of the laser beam can be obtained. Can be achieved.
  • FIG. 19 is a top view showing a planar waveguide laser device according to Embodiment 9 of the present invention.
  • the pair of side surfaces to which the high-reflectivity coatings 8a and 8b are applied are shown in parallel.
  • the high-reflectivity coating 8a is applied.
  • the side surface on which the high reflectance coating 8b is applied may be non-parallel.
  • the laser light L5 in the laser medium 1 has a high reflectance coating.
  • the incident angle with respect to the side surface on which 8a and 8b are applied changes (in the drawing, the incident angle gradually decreases in the rightward conveyance, and the incident angle gradually increases in the leftward conveyance).
  • the laser beam L5 in the laser medium 1 can be turned back without touching the right side surface (xy plane) of the laser medium 1 in the drawing. Thereby, deterioration of beam quality can be reduced as compared with the eighth embodiment. Further, since the density of the laser beam can be increased, the extraction of energy can be increased and the output of the laser beam can be increased.
  • FIG. FIG. 20 is a top view showing a planar waveguide laser device according to Embodiment 10 of the present invention.
  • the laser medium 1 is drawn except for the clads 2a and 2b.
  • the optical axes (c-axis) of the clads 2a and 2b are perpendicular to the joint surface between the laser medium 1 and the clads 2a and 2b (the c-axis and the y-axis of the clads 2a and 2b are parallel). As shown in FIG.
  • the optical axes (c-axis) of the clads 2a and 2b are parallel to the joint surface between the laser medium 1 and the clads 2a and 2b (c-axis of the clads 2a and 2b). May be in the xz plane). Further, the optical axes (c-axis) of the clads 2a and 2b may be inclined with respect to the traveling direction of the laser light. In the example of FIG. 20, it is inclined by ⁇ .
  • the optical axes (c-axis) of the clads 2a and 2b are in the xz plane, and the angle between the c-axis and the z-axis of the clads 2a and 2b is ⁇ (symmetry). From 0 ° ⁇ ⁇ ⁇ 180 °).
  • the refractive index nx with respect to the polarized light in the x-axis direction is ne ⁇ nx ⁇ . It varies depending on the angle ⁇ formed in the range of no or no ⁇ nx ⁇ ne.
  • the angle formed by the optical axis (c-axis) of the clads 2a and 2b and the traveling direction of the laser light is a radiation mode outside the range of ⁇
  • parasitic oscillation and parasitic in the x-axis direction are performed.
  • the suppression of amplification and other circular modes also have the effect of suppressing parasitic oscillation and parasitic amplification.
  • ne ⁇ no it is possible to adjust the refractive index of the clads 2a and 2b with respect to the TE mode by adjusting the inclination angle ⁇ of the c-axis with respect to the z-axis, and to control the spatial mode. Can do. Further, parasitic oscillation and parasitic amplification can be suppressed.
  • FIG. FIG. 21 is a top view showing a planar waveguide laser device according to Embodiment 11 of the present invention.
  • the laser medium 1 is drawn except for the clads 2a and 2b.
  • the optical axes (c-axis) of the clads 2a and 2b are perpendicular to the joint surface between the laser medium 1 and the clads 2a and 2b (the c-axis and the y-axis of the clads 2a and 2b are parallel). As shown in FIG.
  • the optical axes (c-axis) of the clads 2a and 2b are parallel to the joint surface between the laser medium 1 and the clads 2a and 2b (c-axis of the clads 2a and 2b). And the z-axis may be parallel).
  • the optical axes (c-axis) of the clads 2a and 2b are parallel to the z-axis, and the angle between the traveling direction of the laser beam and the c-axis is ⁇ (0 ° ⁇ ⁇ ⁇ 180 ° due to symmetry). Defined).
  • the refractive index of the clads 2a and 2b with respect to the TE mode can be adjusted, and the spatial mode Can be controlled.
  • FIG. FIG. 22 is a top view showing a planar waveguide laser device according to the twelfth embodiment of the present invention.
  • the laser medium 1 is drawn except for the clads 2a and 2b.
  • the optical axes (c-axis) of the clads 2a and 2b are perpendicular to the joint surface between the laser medium 1 and the clads 2a and 2b (the c-axis and the y-axis of the clads 2a and 2b are parallel). As shown in FIG.
  • the optical axes (c-axis) of the clads 2a and 2b are parallel to the joint surface between the laser medium 1 and the clads 2a and 2b (c-axis of the clads 2a and 2b). And the z-axis may be parallel).
  • the optical axes (c-axis) of the clads 2a and 2b are parallel to the z-axis, and the angle between the traveling direction of the laser beam and the c-axis is ⁇ (0 ° ⁇ ⁇ ⁇ 180 ° due to symmetry). Defined).
  • the refractive index nTE is ne ⁇ nTE ⁇ no. Or in the range of no ⁇ nTE ⁇ ne, depending on the angle ⁇ formed.
  • the refractive index of the clads 2a and 2b with respect to the TE mode can be adjusted, and the spatial mode Can be controlled.
  • planar waveguide laser device is suitable for use as a laser light source for extracting linearly polarized light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

 屈折率ncを有する等方性媒質であるレーザ媒質1の上面及び下面のうち、少なくとも一方の面に、no<nc<ne又はne<nc<noの関係を満足する屈折率を有するクラッド2を接合するように構成する。これにより、等方性媒質を適用することで実現可能な所望の波長(例えば、1535nm)において、クラッド2で感じる屈折率が、屈折率ncよりも小さくなる偏光だけを選択的に出力することができるようになる。

Description

平面導波路型レーザ装置
 この発明は、例えば、LIDARなどの光源に好適な平面導波路型構造を有する平面導波路型レーザ装置に関するものである。
 平面導波路型レーザ装置は、レーザ光の進行方向に伸長している薄い平板状のレーザ媒質が、そのレーザ媒質よりも屈折率が低い2つのクラッドで挟み込まれている構造を有しており、そのレーザ媒質が導波路として機能する。
 この平面導波路型レーザ装置は、導波路の厚さが薄く、励起密度が高いため、誘導放出断面積が小さいレーザ媒質を用いても、大きな利得が得られ、高効率な増幅や発振動作を実現することができる。
 また、導波路を幅方向に広げることによって、励起密度を所定の値に保ったままでの出力のスケーリングが可能である。
 一方、この平面導波路型レーザ装置は、利得が高く、複数の導波路モードが簡単に増幅や発振を起こしてしまうため、必要な直線偏光でのレーザ光の増幅や発振を起こさせることが困難な場合がある。また、所望のモードに制限してレーザ光の増幅や発振を起こさせることが困難である。
 また、不要な光の増幅(寄生増幅)や、クラッド外部の面と端面での全反射で導波路内に閉じ込められて発振する寄生発振を抑制して、効率よくレーザ光を出力することが困難である。
 そこで、所望のモードでレーザ光を発振させることが可能な平面導波路型レーザ装置が提案されている(例えば、特許文献1を参照)。
 この平面導波路型レーザ装置は、レーザ光の進行方向である光軸に対して垂直な断面内に光学軸を有する複屈折性のレーザ媒質をコアに適用しており、レーザ媒質の上面及び下面に接合されるクラッドの材料として、レーザ媒質のTE偏光に対する屈折率と、TM偏光に対する屈折率との間の屈折率を有する材料を用いている。
 これにより、TE偏光又はTM偏光のいずれか一方が全反射条件を満たさなくなるため、全反射条件を満足するいずれか一方の偏光のレーザ発振だけが可能になり、所望のモードでレーザ光を発振させることができる。
WO2009-016703号公報(例えば、段落番号[0008])
 従来の平面導波路型レーザ装置は以上のように構成されているので、コアに適用されるレーザ媒質として、複屈折性のレーザ媒質を適用することが必須である。このため、等方性のレーザ媒質を適用することで実現可能な所望の波長のレーザ光を所望のモードで出力することができない課題があった。
 この発明は上記のような課題を解決するためになされたもので、等方性媒質をコアに適用して、所望の波長のレーザ光を所望のモードで出力することができる平面導波路型レーザ装置を得ることを目的とする。
 この発明に係る平面導波路型レーザ装置は、側面から入射されたレーザ光を伝搬する平板状の等方性媒質と、等方性媒質の上面及び下面のうち、少なくとも一方の面に接合されるクラッドとを備え、そのクラッドが、その等方性媒質内でのレーザ光の進行方向である光軸と直交する2つの偏光方向の屈折率が異なる複屈折材料で構成されており、その等方性媒質が、そのクラッドにおける2つの偏光方向の屈折率の間の屈折率を有する材料で構成されているようにしたものである。
 この発明によれば、クラッドが、等方性媒質内でのレーザ光の進行方向である光軸と直交する2つの偏光方向の屈折率が異なる複屈折材料で構成されており、その等方性媒質が、そのクラッドにおける2つの偏光方向の屈折率の間の屈折率を有する材料で構成されているので、等方性媒質を適用することで実現可能な所望の波長のレーザ光を所望のモードで選択的に出力することができる効果がある。
この発明の実施の形態1による平面導波路型レーザ装置を示す斜視図である。 この発明の実施の形態1による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態1による平面導波路型レーザ装置におけるレーザ光の伝搬の偏光依存性を模式的に示す説明図である。 平面導波路型レーザ装置の製造方法の手順の一例を模式的に示す断面図である(その1)。 平面導波路型レーザ装置の製造方法の手順の一例を模式的に示す断面図である(その2)。 平面導波路型レーザ装置の製造方法の手順の一例を模式的に示す断面図である(その3)。 平面導波路型レーザ装置の製造方法の手順の一例を模式的に示す断面図である(その4)。 平面導波路型レーザ装置の製造方法の手順の一例を模式的に示す断面図である(その5)。 平面導波路型レーザ装置におけるレーザ光の光路の一例を模式的に示す説明図である。 この発明の実施の形態2による平面導波路型レーザ装置を示す斜視図である。 この発明の実施の形態2による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態2による平面導波路型レーザ装置におけるレーザ光の伝搬の偏光依存性を模式的に示す説明図である。 この発明の実施の形態3による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態4による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態5による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態6による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態7による平面導波路型レーザ装置を示す断面図である。 この発明の実施の形態8による平面導波路型レーザ装置を示す上面図である。 この発明の実施の形態9による平面導波路型レーザ装置を示す上面図である。 この発明の実施の形態10による平面導波路型レーザ装置を示す上面図である。 この発明の実施の形態11による平面導波路型レーザ装置を示す上面図である。 この発明の実施の形態12による平面導波路型レーザ装置を示す上面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による平面導波路型レーザ装置を示す斜視図であり、図2はこの発明の実施の形態1による平面導波路型レーザ装置を示す断面図である。
 図1及び図2において、レーザ媒質1は平板状の等方性媒質で構成されており、レーザ媒質1は側面から入射された励起光を吸収して反転分布状態を形成することで利得を発生し、反転分布状態を形成しているとき、側面からレーザ光が入射されると、その利得によって当該レーザ光を増幅する部材である。
 図1及び図2では、レーザ媒質1の上面及び下面(一対の矩形状の面)に平行な面内で、この面の直交する2つの辺に平行な方向をそれぞれx軸とz軸とし、これらのx軸とz軸の両方に垂直な方向をy軸としている。
 また、ここでは、z軸方向をレーザ光の伝搬方向(進行方向)である光軸とする。
 クラッド2aはレーザ媒質1との接合面に対して、光学軸(c軸)が垂直となるようにレーザ媒質1の下面に接合されており、レーザ光の光軸と直交する2つの偏光方向の屈折率(x軸方向の偏光に対する屈折率がnx、y軸方向の偏光に対する屈折率がny)が異なる複屈折材料で構成されている。
 クラッド2bはレーザ媒質1との接合面に対して、光学軸(c軸)が垂直となるようにレーザ媒質1の上面に接合されており、レーザ光の光軸と直交する2つの偏光方向の屈折率(x軸方向の偏光に対する屈折率がnx、y軸方向の偏光に対する屈折率がny)が異なる複屈折材料で構成されている。
 この実施の形態1では、レーザ媒質1の屈折率ncが、クラッド2a,2bの屈折率nx,nyとの関係で、ny<nc<nxとなるような材料で、レーザ媒質1及びクラッド2a,2bが構成される。
 以下、ny<nc<nxの関係を満足するレーザ媒質1及びクラッド2a,2bの具体的な材料の組み合わせを例示する。ただし、組み合わせは、これらに限るものではない。
 レーザ媒質1 ⇔ クラッド2a,2b

 Er,Yb添加リン酸ガラス ⇔ カルサイト(CaCO3)、BBO又は水晶

 Yb:YAG、Nd:YAG、Er:YAG、Tm:YAG、Ho:YAG、Tm,Ho:YAG又はPr:YAG ⇔ KTP

 Nd:Glass、Er:Glass ⇔ カルサイト、BBO、LBO又は水晶
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラスを用いる場合、レーザ媒質1は、波長1535nmにおいて、約1.52の屈折率を有する。
 また、クラッド2a,2bとしてカルサイトを用いる場合、クラッド2a,2bは、波長1535nmにおいて、約1.48(異常光線屈折率ne)から約1.63(常光線屈折率no)の間の範囲で、偏光方向に対応する屈折率を有する。
 このとき、カルサイトのc軸(結晶軸でもあり、光学軸でもある)が、y軸に対して平行になるように配置した場合には、レーザ媒質1の屈折率ncと、クラッド2a,2bの屈折率nx,nyとの関係は、下記のようになる。
 ny=ne(約1.48)<nc(約1.52)<nx=no(約1.63)となる。
 したがって、レーザ媒質1の上下をクラッド2a,2bで挟んだ構造では、レーザ媒質1内の屈折率ncがクラッド2a,2bの屈折率よりも大きくなる直線偏光のレーザ光に対して、光導波路を形成する。
 つまり、レーザ媒質1は、レーザ媒質1内の屈折率ncがクラッド2a,2bの屈折率よりも大きくなる直線偏光のレーザ光に対して、励起光の照射による誘導放出で生じたレーザ光を導波するコアとして機能するとともに、レーザ媒質としての機能を発揮する。
 ここで、上記の構造を有する平面導波路型レーザ装置の動作について説明する。
 図3はこの発明の実施の形態1による平面導波路型レーザ装置におけるレーザ光の伝搬の偏光依存性を模式的に示す説明図である。
 図3の平面導波路型レーザ装置の例では、平板状に形成されているEr,Yb添加リン酸ガラスからなるレーザ媒質1の上面及び下面には、クラッド2a,2bが接合されており、クラッド2a,2bは、c軸(光学軸)とy軸が平行となるようなカルサイトで形成されている。
 このときのレーザ媒質1の屈折率nc及びクラッド2a,2bの屈折率nx,nyは、波長1535nmにおいて、nc=約1.52、nx=no(約1.63)、ny=ne(約1.48)となる。
 レーザ媒質1における4つの側面のうち、少なくとも1つの側面から励起光が入射されると、レーザ媒質1では、その励起光を吸収して反転分布状態を形成することで利得を発生する。
 レーザ媒質1は、反転分布状態を形成しているとき、少なくとも1つの側面からレーザ光(種光)が入射されると、その利得によって当該レーザ光を増幅する。
 図3の例では、レーザ媒質1の左端側からz軸に沿って、レーザ光を入射している。
 コア屈折率であるレーザ媒質1の屈折率ncがクラッド2a,2bの屈折率と比べて大きい場合、導波路内を伝搬する光のうち、コア(レーザ媒質1)とクラッド2a,2bの界面で全反射条件を満足する成分がレーザ媒質1内に閉じ込められ、その成分が導波路モードとして伝搬される。
 一方、コア屈折率であるレーザ媒質1の屈折率ncがクラッド2a,2bの屈折率と比べて小さい場合、コア(レーザ媒質1)とクラッド2a,2bの界面から光が漏れ出す放射モードとなり、大きな損失が発生する。
 図3の例では、レーザ媒質1中をz軸方向に伝搬するレーザ光のうち、y軸方向の偏光を有するレーザ光(TMモードのレーザ光)がクラッド2a,2bで感じる屈折率nyは約1.48であり、コア屈折率であるレーザ媒質1の屈折率nc(約1.52)と比べて小さいため、TMモードのレーザ光は導波路モードで伝搬する。
 一方、レーザ媒質1中をz軸方向に伝搬するレーザ光のうち、x軸方向の偏光を有するレーザ光(TEモードのレーザ光)がクラッド2a,2bで感じる屈折率nxは約1.63であり、コア屈折率であるレーザ媒質1の屈折率nc(約1.52)と比べて大きいため、コア(レーザ媒質1)とクラッド2a,2bの界面では全反射が起こらず、放射モードになる。
 その結果、TEモードのレーザ光が平面導波路型レーザ装置中を伝搬する間に大きな損失が発生する。したがって、図3の例では、TMモードのレーザ光のみが選択されて増幅されることになる。
 このように、レーザ光をz軸方向と平行に入射させた場合、平面導波路型レーザ装置は、y軸方向の偏光成分のみを増幅して出力するレーザ増幅器として動作する。
 したがって、この実施の形態1の平面導波路型レーザ装置では、偏光子などの偏光を制限する光学素子を追加することなく、直線偏光の出力を高効率で得ることができる。
 また、y偏光成分を有するレーザ光(種光)を使用すればよく、平面導波路型レーザ装置への入射前の種光の偏光状態の制限を緩和させることができる。例えば、平面導波路型レーザ装置への入射前の種光のy偏光とx偏光の偏光比が9:1としても、y偏光のみを増幅させることができる。
 また、レーザ媒質1のz軸に垂直な面の一方に全反射鏡を設置し、もう一方の面に部分反射鏡を設置すると、全反射鏡と部分反射鏡の間でレーザ光の発振が発生し、その部分反射鏡から当該レーザ光の一部が出力される。
 このとき、TEモードのレーザ光は、大きな損失を受けるために発振が抑制され、TMモードのレーザ光のみが発振されて、直線偏光の出力が得られる。
 したがって、この実施の形態1の平面導波路型レーザ装置では、偏光子などの偏光を制限する光学素子を追加することなく、直線偏光の出力を高効率で得ることができる。
 なお、全反射鏡と部分反射鏡については、レーザ媒質1のz軸に垂直な面に、誘電体膜又は金属膜を直接成膜することによって実現するようにしてもよい。
 以上で説明した構成は、x軸方向の増幅又は発振を抑制することによって、y軸方向に直線偏光したレーザ光を高い効率で増幅又は発振させることが可能である。
 次に、この実施の形態1における平面導波路型レーザ装置の製造方法について説明する。
 図4から図8は平面導波路型レーザ装置の製造方法の手順の一例を模式的に示す断面図である。
 まず、レーザ媒質1が平板状になるように切断した後、zx面のうち、一方の面を研磨する(図4を参照)。
 次に、レーザ媒質1の研磨した面に対して、ny<nc<nxの屈折率nx,nyを有する材料からなるクラッド2bを接合する(図5を参照)。
 このクラッド2bは、オプティカルコンタクト、表面活性化接合、拡散接合などの方法で、レーザ媒質1に直接接合するようにしてもよいし、レーザ媒質1よりも小さな屈折率を有する光学接着剤を用いて、レーザ媒質1に接合するようにしてもよい。
 また、レーザ媒質1の研磨した面に対して、クラッド2bの薄膜をスパッタ法や蒸着法、CVD(Chemical Vacuum Deposition)法などを用いて成膜するようにしてもよい。また、レーザ媒質1とクラッド2bの熱膨張差を緩和させるようなバッファ層を挟んで接合するようにしてもよい。
 次に、レーザ媒質1のzx面が所定の厚さになるまで研磨し(図6を参照)、研磨したレーザ媒質1の面に対して、ny<nc<nxの屈折率nx,nyを有する材料からなるクラッド2aを接合する(図7を参照)。このクラッド2aも、クラッド2bと同様の方法によって接合することができる。
 最後に、レーザ媒質1及びクラッド2a,2bの積層体を、図8に示すような方向に切断することで、所望の大きさの平面導波路型レーザ装置が製造される。
 この実施の形態1では、レーザ媒質1の上下をクラッド2a,2bで挟んだ構造の平面導波路型レーザ装置について説明したが、屈折率がny<nc<nxの関係を満足するクラッド2a,2bのうち、いずれかのクラッド2だけをレーザ媒質1の上面又は下面に接合するようにしてもよい。
 この場合、クラッド2が接合されていない側のレーザ媒質1の面には、何も設けずに空気と接するようにしてもよいし(空気をクラッドとしてもよいし)、レーザ媒質1の屈折率ncよりも小さな任意の屈折率を有する材料をクラッドとして接合するようにしてもよい。
 また、この実施の形態1では、クラッド2a,2bの光学軸(c軸)がy軸方向に向くようにレーザ媒質1に接合して、TMモードのレーザ光のみを選択するようにしているものを示したが、屈折率がnx<nc<nyの関係を満足するクラッド2a,2bの光学軸をx軸方向に向くようにレーザ媒質1に接合して、TEモードのレーザ光のみを選択するようにしてしてもよい。
 上記の他にも、レーザ媒質1の常光線屈折率noが異常光線屈折率neよりも小さい材料からなる場合で、屈折率がnx(=no)<nc<ny(=ne)の関係を満足するクラッド2a,2bの光学軸(c軸)をy軸方向に向くようにレーザ媒質1に接合する構成でもよいし、屈折率がny(=no)<nc<nx(=ne)の関係を満足するクラッド2a,2bの光学軸(c軸)をx軸方向に向くようにレーザ媒質1に接合する構成でもよい。
 このように構成すれば、上述した説明とは逆に、クラッド2a,2bの光学軸(c軸)に垂直方向の偏光を有するレーザ光は導波路モードで平面導波路型レーザ装置中を伝搬し、光学軸方向の偏光を有するレーザ光は放射モードとなって平面導波路型レーザ装置の伝搬中に大きな損失が発生する。その結果、特定の偏光方向のレーザ光のみが選択されて増幅され、x軸方向又はy軸方向に直線偏光したレーザ光の出力が得られる。
 さらに、クラッド2a,2bの光学軸(c軸)を、レーザ媒質1の屈折率ncに対してne<nc<no、又は、no<nc<neの関係を満足するように配置することによって、上記の関係を満足する範囲内で、任意の方向に直線偏光したレーザ光を得ることができる。
 以上で明らかなように、この実施の形態1によれば、屈折率ncを有する等方性媒質であるレーザ媒質1の上面及び下面のうち、少なくとも一方の面に、no<nc<ne、又は、ne<nc<noの関係を満足する屈折率を有するクラッド2を接合するように構成したので、等方性媒質を適用することで実現可能な所望の波長(例えば、1535nm)において、クラッド2で感じる屈折率が、屈折率ncよりも小さくなる偏光だけを選択的に出力することができる効果を奏する。
 この実施の形態1では、2つの偏光方向の屈折率が異なる複屈折材料でクラッド2a,2bが構成されているものを示したが、二軸結晶などの異方性媒質でクラッド2a,2bを構成し、レーザ媒質1内を伝搬するレーザ光の光軸に直交する2つの偏光がクラッド2a,2bで感じる屈折率の間にコア(レーザ媒質1)の屈折率を有するような構成でも同様の効果を得ることができる。
 なお、レーザ媒質1の代わりに、不活性の等方性媒質を用いた場合、この平面導波路型レーザ装置は偏光子として機能する。
実施の形態2.
 図9は平面導波路型レーザ装置におけるレーザ光の光路の一例を模式的に示す説明図である。
 クラッド2a,2bの外側の屈折率がクラッド2a,2bの屈折率よりも小さい場合、導波路モードL1として増幅又は発振するレーザ光のほかに、レーザ媒質1から、放射モードとしてクラッド2a,2bに漏れ出したレーザ光が、クラッド2a,2bと外部の境界で反射して、再度、レーザ媒質1に入射することがある。
 その結果、レーザ媒質1に再度入射されたレーザ光が増幅されて(以下、出力したいレーザ光以外のレーザ光の増幅を寄生増幅と称する)、レーザ媒質1に蓄積されている利得を消費してしまう現象を生じることがある。
 このような場合として、クラッド2a,2bと外部の境界で反射したレーザ光がそのまま出力端面から出力されるクラッド外部伝搬光L2のほか、放射モードとしてクラッド2a,2bに漏れ出して、クラッド2a,2bと外部の境界で全反射するレーザ光が、レーザ媒質1の出力端面でも全反射条件を満たす場合に、レーザ媒質1とクラッド2a,2b内に完全に閉じ込められる全反射周回モードL3がある。
 特に、全反射条件で反射するレーザ光(クラッド外部伝搬光L2、全反射周回モードL3)は損失が小さいために、レーザ媒質1とクラッド2a,2bの内部でレーザ発振(以下、寄生発振と称する)を発生させ、レーザ媒質1中の利得を消費する。その結果、平面導波路型レーザ装置の増幅器及びレーザ発振器としての効率を低下させてしまうことになる。
 そこで、この実施の形態2では、放射モードとしてクラッド2a,2bに漏れ出したレーザ光のクラッド2a,2bと外部の境界での反射を抑制し、所望のレーザ光のみを高効率に増幅及び発振することができる平面導波路型レーザ装置について説明する。
 図10はこの発明の実施の形態2による平面導波路型レーザ装置を示す斜視図であり、図11はこの発明の実施の形態2による平面導波路型レーザ装置を示す断面図である。
 図10及び図11において、x軸、y軸及びz軸の方向は、上記実施の形態1における図1及び図2と同様である。
 吸収層5aはクラッド2aの下面(レーザ媒質1と接合していない側の面)に接合されており、レーザ光を吸収する材料で構成されている。
 吸収層5bはクラッド2bの上面(レーザ媒質1と接合していない側の面)に接合されており、レーザ光を吸収する材料で構成されている。
 なお、吸収層5a,5bは、レーザ光を吸収する材料であればよく、例えば、クロム(Cr)やクロム添加材料などを使用することができる。
 次に平面導波路型レーザ装置の動作について説明する。
 図12はこの発明の実施の形態2による平面導波路型レーザ装置におけるレーザ光の伝搬の偏光依存性を模式的に示す説明図である。
 図12の平面導波路型レーザ装置の例では、平板状に形成されているEr,Yb添加リン酸ガラスからなるレーザ媒質1の上面及び下面には、クラッド2a,2bが接合されており、クラッド2a,2bは、c軸(光学軸)とy軸が平行となるようなカルサイトで形成されている。
 このときのレーザ媒質1の屈折率ncは約1.52、クラッド2a,2bの屈折率nxは約1.63(常光線屈折率no)、クラッド2a,2bの屈折率nyは約1.48(異常光線屈折率ne)である。
 吸収層5a,5bを設けていない平面導波路型レーザ装置では、図9で説明したように、コア(レーザ媒質1)とクラッド2a,2bの境界で全反射してコア内部を伝搬する導波路モードL1と、クラッド2a,2bと外部の境界で反射されて伝搬し、出力端面から出力されるクラッド外部伝搬光L2と、クラッド2a,2bと外部との境界で反射し、さらに出力端面でも全反射条件を満たして、レーザ媒質1とクラッド2a,2bの内部でレーザ光が完全に閉じ込められる全反射周回モードL3とが存在する。
 このうち、クラッド外部伝搬光L2と全反射周回モードL3は、既に説明したように、レーザ媒質1中で生じる2つの偏光のうち、クラッド2a,2bの屈折率よりも低い屈折率に対応する偏光によって引き起こされる。
 クラッド外部伝搬光L2及び全反射周回モードL3が発生すると、レーザ媒質1に蓄えられている利得を消費してしまうため、所望のレーザ光(導波路モードL1のレーザ光)に対する利得が低下してレーザ光の増幅及び発振の効率が低下する。導波路モードL1以外の成分は、クラッド2a,2bと外部の境界で反射される。
 この実施の形態2では、クラッド2a,2bの外部に吸収層5a,5bを配置しているので、クラッド2a,2bの外部で反射するレーザ光の成分が吸収層5a,5bに吸収される。
 その結果、クラッド外部伝搬光L2と全反射周回モードL3を抑制して、導波路モードL1で伝搬する所望のレーザ光を効率よく増幅することが可能になる。
 吸収層5a,5bを有する平面導波路型レーザ装置の製造方法として、上記実施の形態1と同様に、クラッド2a,2bをレーザ媒質1に接合したのち、スパッタ法や蒸着法によって、クロムやチタンなどからなる吸収層5aをクラッド2aの下面に成膜することによって形成することができる。また、クロムやチタンなどからなる吸収層5bをクラッド2bの上面に成膜することによって形成することができる。
 なお、クロムやチタンの金属膜は、吸収率の波長依存性が小さいため、広い波長帯域のレーザ光を吸収させることが可能である。したがって、レーザ媒質1としてEr,Yb添加リン酸ガラスを用いて、波長1550nmのレーザ光を増幅する場合、Er,Yb添加リン酸ガラスが利得を持つ1535nmの寄生発振を抑制することが可能である。
 また、吸収層5a,5bとしては、レーザ媒質1が最も大きな利得を持つ波長を選択的に吸収する材料を使用するようにしてもよい。
 例えば、Er,Yb添加リン酸ガラスをレーザ媒質1として使用し、波長1550nmのレーザ光を増幅する場合、Er,Yb添加リン酸ガラスは波長1535nmに大きな利得を持つため、波長1535nmの寄生増幅及び寄生発振を抑制することが重要である。
 そこで、吸収層5a,5bとしては、波長1535nm付近に吸収のピークがある材料を使用することにより、波長1535nmの寄生増幅及び寄生発振を抑制することが可能になる。
 この実施の形態2では、クラッド2a,2bの外部に吸収層5a,5bを配置することで、平面導波路型レーザ装置で発生するクラッド外部伝搬光L2及び全反射周回モードL3を抑制するものを示したが、吸収層5a,5bをクラッド2a,2bの外部に配置する代わりに、クラッド2aの下面(レーザ媒質1と接合していない側の面)及びクラッド2bの上面(レーザ媒質1と接合していない側の面)を荒らし面にしてもよい。
 クラッド2aの下面及びクラッド2bの上面を荒らし面にすることで、クラッド2a,2bと外部の境界で反射する光が荒らし面で散乱するため、寄生増幅及び寄生発振の成分に損失を与えることができる。
 また、クラッド2a,2bの荒らし面に、吸収層5a,5bを付着させるようにしてもよい。
 このように構成すれば、荒らし面によるレーザ光の散乱と、吸収層5a,5bによるレーザ光の吸収によって、寄生増幅や寄生発振を抑制し、所望のレーザ光を効率よく増幅させることが可能になる。
 この実施の形態2では、レーザ媒質1の上下をクラッド2a,2bで挟んだ構造の平面導波路型レーザ装置について説明したが、レーザ媒質1の上面又は下面だけに、クラッド2及び吸収層5を接合するようにしてもよい。
 この場合、クラッド2及び吸収層5が接合されていない側のレーザ媒質1の面には、何も設けずに空気と接するようにしてもよいし(空気をクラッドとしてもよいし)、レーザ媒質1の屈折率ncよりも小さな任意の屈折率を有する材料をクラッドとして接合するようにしてもよい。
 以上で明らかなように、この実施の形態2によれば、クラッド2aの下面に、レーザ光を吸収する吸収層5aを備えるとともに、クラッド2bの上面に、レーザ光を吸収する吸収層5bを備えるように構成したので、レーザ媒質1中で生じる2つの偏光のうち、クラッド2a,2bの屈折率に対して、レーザ媒質1の小さい方の屈折率に対応する偏光によって引き起こされるクラッド外部伝搬光L2及び全反射周回モードL3を吸収又は散乱させて、寄生増幅及び寄生発振を抑制し、導波路モードL1で伝搬する所望のレーザ光を効率よく増幅することができる効果を奏する。
実施の形態3.
 図13はこの発明の実施の形態3による平面導波路型レーザ装置を示す断面図であり、図13において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 上記実施の形態1,2では、レーザ媒質1及びクラッド2a,2bが直方体を形成しているものを示したが、レーザ媒質1及びクラッド2a,2bの側面のうち、レーザ光が入射される側の側面、又は、レーザ光を出力する側の側面の少なくとも一方が傾いていてもよい。
 即ち、上記実施の形態1,2の平面導波路型レーザ装置では、レーザ媒質1及びクラッド2a,2bの側面がxy面に平行になっているが、この実施の形態3の平面導波路型レーザ装置では、レーザ媒質1及びクラッド2a,2bの側面がxy面に対して傾いている。
 図13の例では、レーザ光が入射される側の側面と、レーザ光を出力する側の側面との双方がxy面に対して傾いている。
 このように、レーザ媒質1及びクラッド2a,2bの側面をxy面に対して傾けることで、レーザ媒質1のz軸に垂直な一対の側面間で発生するレーザ発振(寄生発振)を抑制して、所望のレーザ光を効率良く増幅させることが可能になる。
 図13の例では、一対の側面を傾けているが、いずれか一方の側面だけを傾けても同様の効果を得ることができる。
実施の形態4.
 図14はこの発明の実施の形態4による平面導波路型レーザ装置を示す断面図であり、図14において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 上記実施の形態1~3では、レーザ光が入射される側の側面と対向しているレーザ媒質1の側面からレーザ光を出力するものを示したが、レーザ光が入射される側の側面と対向している側のレーザ媒質1及びクラッド2a,2bの側面に、レーザ光を反射する高反射率のコーティング6が施されているものであってもよい。
 レーザ光が入射される側の側面と対向している側のレーザ媒質1及びクラッド2a,2bの側面に、レーザ光を反射する高反射率のコーティング6が施されている場合、レーザ媒質1によって増幅されてz軸に沿って伝搬されたレーザ光(図中、右方向に伝搬されたレーザ光)が、高反射率のコーティング6が施されている側面に到達すると、その側面に反射されて、入射側の側面から出力されるようになる。即ち、レーザ光は往復伝搬されるようになる。
 レーザ光が高反射率のコーティング6が施されている側面に反射されて、図中、左方向に伝搬されることで、さらにレーザ媒質1によって増幅されるため、レーザ光の高出力化を図ることができる。
実施の形態5.
 図15はこの発明の実施の形態5による平面導波路型レーザ装置を示す断面図であり、図15において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 クラッド7aはクラッド2aの下面(レーザ媒質1と接合していない側の面)に接合されている第2のクラッドである。
 クラッド7bはクラッド2bの上面(レーザ媒質1と接合していない側の面)に接合されている第2のクラッドである。
 この実施の形態5では、クラッド2a,2bが第1のクラッドに相当する。
 上記実施の形態1,3,4では、クラッド2a,2bにおけるレーザ媒質1と接合していない側のxz面が空気層になっており、側面から入射される励起光は、クラッド2aとクラッド2bの間、又は、上下の空気層の間に閉じ込められる。
 これに対して、この実施の形態5では、クラッド2a,2bにおけるレーザ媒質1と接合していない側のxz面にクラッド7a,7bが接合されているため、側面から入射される励起光は、クラッド2aとクラッド2bの間、又は、クラッド7aとクラッド7bの間に閉じ込められる。
 ここで、励起光に対するクラッド7a,7bの屈折率は、クラッド7aとクラッド7bの間に励起光を閉じ込めることが可能であればよい。
 例えば、励起光に対するレーザ媒質1の屈折率がnc、励起光に対するクラッド2a,2bの屈折率がn1(クラッド2a,2bは複屈折材料で構成されているため、励起光に対するクラッド2a,2bの屈折率は偏光方向によって変化する)、励起光に対するクラッド7a,7bの屈折率がn2であるとき、レーザ媒質1の屈折率ncとクラッド2a,2bの屈折率n1が、nc>n1の関係を満足する場合、n1>n2の条件を満足する材料で、クラッド7a,7bを構成する。
 一方、レーザ媒質1の屈折率ncとクラッド2a,2bの屈折率n1が、n1>ncの関係を満足する場合、nc>n2の条件を満足する材料で、クラッド7a,7bを構成する。
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラス、クラッド2a,2bとしてカルサイトを用いる場合、励起光の波長が940nmであれば、クラッド7a,7bとして、MgF2、SiO2、その他光学ガラス材料などを用いれば、上記の条件を満足するため、クラッド7aとクラッド7bの間に励起光を閉じ込めることができる。
 ただし、上記の条件を満足する材料であれば、MgF2やSiO2などに限るものでない。
 このように、クラッド7aとクラッド7bの間に励起光を閉じ込めることが可能な構成であれば、高出力な励起光をレーザ媒質1に導くことができるため、レーザ光の高出力化を図ることが可能である。
 また、励起光に対するレーザ媒質1の屈折率ncと、励起光に対するクラッド7a,7bの屈折率n2との差が小さい場合でも、励起光に対するクラッド2a,2bの屈折率n1と、励起光に対するクラッド7a,7bの屈折率n2との差を大きくすることで、励起光の入射の開口数NAを大きくすることが可能になる。また、励起光が空気層に面しないため、信頼性を高めることが可能である。
実施の形態6.
 図16はこの発明の実施の形態6による平面導波路型レーザ装置を示す断面図であり、図16において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 基板3はクラッド2bの上面(レーザ媒質1と接合していない側の面)に接合剤4によって接合されている。
 図16の例では、基板3がクラッド2bの上面に接合されている例を示しているが、基板3がクラッド2aの下面に接合されていてもよい。
 基板3をクラッド2bのxz面に接合することで、クラッド2bのxz面が空気層になっている場合よりも、平面導波路を補強することができるため、信頼性を高めることが可能である。
 ここでは、接合剤4を用いて、基板3とクラッド2bを接合しているが、基板3とクラッド2bの接合方法は、接合剤4を用いる方法に限るものではなく、例えば、表面活性化接合などでもよい。
実施の形態7.
 図17はこの発明の実施の形態7による平面導波路型レーザ装置を示す断面図であり、図17において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 上記実施の形態1~6では、レーザ媒質1との接合面に対して、クラッド2a,2bの光学軸(c軸)が垂直になるように、クラッド2a,2bがレーザ媒質1と接合されているものを示したが(クラッド2a,2bのc軸とy軸が平行)、レーザ媒質1との接合面に対して、クラッド2a,2bの光学軸(c軸)が傾いている(クラッド2a,2bのc軸がz軸方向に傾いている)ものであってもよい。
 この実施の形態7では、図17に示すように、クラッド2a,2bのc軸をz軸方向に傾けている。
 クラッド2a,2bのc軸とz軸のなす角をθ(対称性より0°≦θ≦180°と定義する)とする。
 このとき、レーザ媒質1内を伝搬するレーザ光の光軸に直交する2つの偏光に対するクラッド2a,2bの屈折率nx,nyのうち、y軸方向の偏光に対する屈折率nyは、ne<ny<no、又は、no<ny<neの範囲で、なす角θに依存して変化する。
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラス、クラッド2a,2bとしてカルサイトを用いる場合、レーザ光の波長1535nmであれば、59°≦θ≦121°の範囲で、ny<ncが満たされる。
 θ=約59°や、θ=約121°の付近では、ny≒ncとなり、TMモードに対するレーザ媒質1の屈折率ncとクラッド2a,2bの屈折率nyとの差を小さくすることが可能である。このため、高次モード化を低減させることが可能である。
 また、ne<noの場合には、z軸に対するc軸の傾き角θを調整することにより、TMモード(ne<noの場合)に対するクラッド2a,2bの屈折率を調整することが可能であり、空間モードを制御することが可能である。
実施の形態8.
 図18はこの発明の実施の形態8による平面導波路型レーザ装置を示す上面図である。ただし、図18では、説明の便宜上、クラッド2a,2bを除いて、レーザ媒質1だけを描画している。
 この実施の形態8では、種光L4が入射されるレーザ媒質1の側面(yz面)の一部に、レーザ光L5を反射する高反射率のコーティング8aが施されている。また、種光L4が入射されるレーザ媒質1の側面に対向しているレーザ媒質1の側面(yz面)の一部に、レーザ光L5を反射する高反射率のコーティング8bが施されている。
 レーザ媒質1の側面(yz面)のうち、高反射率のコーティング8aが施されていない部分から種光L4が入射されると、レーザ媒質1内のレーザ光L5は、高反射率のコーティング8a,8bが施されている側面によって反射を繰り返しながらレーザ媒質1内を伝搬する。
 レーザ光L5は、レーザ媒質1の端面9(xy面)で全反射によって折り返される。または、端面9にレーザ光L5を反射する高反射率のコーティングを施してもよい。
 その後、レーザ媒質1のもう一方の側面(yz面)のうち、高反射率のコーティング8bが施されていない部分にレーザ光L5が到達すると、レーザ光L5は、高反射率のコーティング8bが施されていない部分から増幅光L6として出射される。
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラス、クラッド2a,2bとしてカルサイトを用いる場合、レーザ光の波長1535nmであれば、TEモードは発散モードとなり、TMモードは導波路モードとなる。
 上記のように、レーザ媒質1の一対の側面の一部に、高反射率のコーティング8a,8bを施すことにより、レーザ光L5の光路長を拡長することができるため、レーザ光の高出力化を図ることができる。
実施の形態9.
 図19はこの発明の実施の形態9による平面導波路型レーザ装置を示す上面図である。
 ただし、図19では、説明の便宜上、クラッド2a,2bを除いて、レーザ媒質1だけを描画している。
 上記実施の形態8では、高反射率のコーティング8a,8bが施されている一対の側面が平行であるものを示したが、図19に示すように、高反射率のコーティング8aが施されている側面と、高反射率のコーティング8bが施されている側面とが非平行であってもよい。
 高反射率のコーティング8aが施されている側面と、高反射率のコーティング8bが施されている側面とが非平行である構成では、レーザ媒質1内のレーザ光L5は、高反射率のコーティング8a,8bが施されている側面に対する入射角度が変化する(図中、右方向への搬送では、入射角度が徐々に小さくなり、左方向への搬送では、入射角度が徐々に大きくなる)。
 このため、レーザ媒質1内のレーザ光L5は、図中、レーザ媒質1の右側の側面(xy面)に触れることなく折り返すことができるようになる。
 これにより、上記実施の形態8よりも、ビーム品質の劣化を低減させることができる。
 また、レーザ光を高密度化できるため、エネルギーの抜き出しを高めることができ、レーザ光の高出力化を図ることができる。
実施の形態10.
 図20はこの発明の実施の形態10による平面導波路型レーザ装置を示す上面図である。ただし、図20では、説明の便宜上、クラッド2a,2bを除いて、レーザ媒質1だけを描画している。
 上記実施の形態1では、クラッド2a,2bの光学軸(c軸)が、レーザ媒質1とクラッド2a,2bの接合面に対して垂直(クラッド2a,2bのc軸とy軸が平行)であるものを示したが、図20に示すように、クラッド2a,2bの光学軸(c軸)が、レーザ媒質1とクラッド2a,2bの接合面に対して平行(クラッド2a,2bのc軸がxz面内にある)であってもよい。
 また、クラッド2a,2bの光学軸(c軸)が、レーザ光の進行方向に対して傾いているものであってもよい。図20の例では、θだけ傾いている。
 この実施の形態10では、図20に示すように、クラッド2a,2bの光学軸(c軸)がxz面内にあり、クラッド2a,2bのc軸とz軸のなす角がθ(対称性より0°≦θ≦180°と定義する)である。
 このとき、レーザ媒質1内を伝搬するレーザ光の光軸に直交する2つの偏光に対するクラッド2a,2bの屈折率nx,nyのうち、x軸方向の偏光に対する屈折率nxは、ne<nx<no、又は、no<nx<neの範囲で、なす角θに依存して変化する。
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラス、クラッド2a,2bとしてカルサイトを用いる場合、レーザ光の波長1535nmであれば、59°≦θ≦121°の範囲で、nx<ncが満たされる。
 θ=約59°や、θ=約121°の付近では、nx≒ncとなり、TEモードに対するレーザ媒質1の屈折率ncとクラッド2a,2bの屈折率nxとの差を小さくすることが可能である。このため、高次モード化を低減させることが可能である。
 また、クラッド2a,2bの光学軸(c軸)とレーザ光の進行方向とのなす角が、θの範囲外においては放射モードとなるため、上記の例では、x軸方向の寄生発振及び寄生増幅の抑制や、その他の周回モードについても寄生発振及び寄生増幅を抑制する効果がある。
 また、ne<noの場合には、z軸に対するc軸の傾き角θを調整することにより、TEモードに対するクラッド2a,2bの屈折率を調整することが可能であり、空間モードを制御することができる。また、寄生発振及び寄生増幅を抑制することができる。
実施の形態11.
 図21はこの発明の実施の形態11による平面導波路型レーザ装置を示す上面図である。ただし、図21では、クラッド2a,2bを除いて、レーザ媒質1だけを描画している。
 上記実施の形態8では、クラッド2a,2bの光学軸(c軸)が、レーザ媒質1とクラッド2a,2bの接合面に対して垂直(クラッド2a,2bのc軸とy軸が平行)であるものを示したが、図21に示すように、クラッド2a,2bの光学軸(c軸)が、レーザ媒質1とクラッド2a,2bの接合面に対して平行(クラッド2a,2bのc軸とz軸が平行)であってもよい。
 この実施の形態11では、クラッド2a,2bの光学軸(c軸)がz軸と平行であり、レーザ光の進行方向とc軸のなす角がθ(対称性より0°≦θ≦180°と定義する)であるとする。
 このとき、レーザ媒質1内を伝搬するレーザ光の光軸に直交する2つの偏光がクラッド2a,2bで感じる屈折率nTE,nTM(=ny)のうち、屈折率nTEは、ne<nTE<no、又は、no<nTE<neの範囲で、なす角θに依存して変化する。
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラス、クラッド2a,2bとしてカルサイトを用いる場合、レーザ光の波長1535nmであれば、59°≦θ≦121°の範囲で、nTE<ncが満たされる。
 θ=約59°や、θ=約121°の付近では、nTE≒ncとなり、TEモードに対するレーザ媒質1の屈折率ncとクラッド2a,2bの屈折率nTEとの差を小さくすることが可能である。このため、高次モード化を低減させることが可能である。
 このように、クラッド2a,2bのc軸とz軸が平行であっても、ne<noの場合には、TEモードに対するクラッド2a,2bの屈折率を調整することが可能であり、空間モードを制御することができる。
実施の形態12.
 図22はこの発明の実施の形態12による平面導波路型レーザ装置を示す上面図である。ただし、図22では、クラッド2a,2bを除いて、レーザ媒質1だけを描画している。
 上記実施の形態9では、クラッド2a,2bの光学軸(c軸)が、レーザ媒質1とクラッド2a,2bの接合面に対して垂直(クラッド2a,2bのc軸とy軸が平行)であるものを示したが、図22に示すように、クラッド2a,2bの光学軸(c軸)が、レーザ媒質1とクラッド2a,2bの接合面に対して平行(クラッド2a,2bのc軸とz軸が平行)であってもよい。
 この実施の形態12では、クラッド2a,2bの光学軸(c軸)がz軸と平行であり、レーザ光の進行方向とc軸のなす角がθ(対称性より0°≦θ≦180°と定義する)であるとする。
 このとき、レーザ媒質1内を伝搬するレーザ光の光軸に直交する2つの偏光がクラッド2a,2bで感じる屈折率nTE,nTM(=ny)のうち、屈折率nTEは、ne<nTE<no、又は、no<nTE<neの範囲で、なす角θに依存して変化する。
 例えば、レーザ媒質1としてEr,Yb添加リン酸ガラス、クラッド2a,2bとしてカルサイトを用いる場合、レーザ光の波長1535nmであれば、59°≦θ≦121°の範囲で、nTE<ncが満たされる。
 θ=約59°や、θ=約121°の付近では、nTE≒ncとなり、TEモードに対するレーザ媒質1の屈折率ncとクラッド2a,2bの屈折率nTEとの差を小さくすることが可能である。このため、高次モード化を低減させることが可能である。
 このように、クラッド2a,2bのc軸とz軸が平行であっても、ne<noの場合には、TEモードに対するクラッド2a,2bの屈折率を調整することが可能であり、空間モードを制御することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る平面導波路型レーザ装置は、直線偏光を取り出すレーザ光源として利用するのに好適である。
 1 レーザ媒質(平板状の等方性媒質)、2a,2b クラッド(第1のクラッド)、3 基板、4 接合剤、5a,5b 吸収層、6 高反射率のコーティング、7a,7b クラッド(第2のクラッド)、8a,8b 高反射率のコーティング、9 レーザ媒質1の端面。

Claims (19)

  1.  側面から入射されたレーザ光を伝搬する平板状の等方性媒質と、
     前記等方性媒質の上面及び下面のうち、少なくとも一方の面に接合されるクラッドとを備え、
     前記クラッドは、前記等方性媒質内でのレーザ光の進行方向である光軸と直交する2つの偏光方向の屈折率が異なる複屈折材料で構成されており、
     前記等方性媒質は、前記クラッドにおける2つの偏光方向の屈折率の間の屈折率を有する材料で構成されていることを特徴とする平面導波路型レーザ装置。
  2.  前記等方性媒質は、入射された励起光を吸収して反転分布状態を形成することで利得を発生し、前記反転分布状態を形成しているとき、前記側面からレーザ光が入射されると、その利得によって当該レーザ光を増幅するレーザ媒質で構成されていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  3.  前記レーザ媒質は、活性イオンが添加されたガラスであり、
     前記複屈折材料は、カルサイト、BBO、LBO又は水晶であることを特徴とする請求項2記載の平面導波路型レーザ装置。
  4.  前記レーザ媒質は、活性イオンが添加されたガラスとして、Er,Yb添加リン酸ガラスを用いていることを特徴とする請求項3記載の平面導波路型レーザ装置。
  5.  前記レーザ媒質は、活性イオンが添加されたYAGであり、
     前記複屈折材料は、KTPであることを特徴とする請求項2記載の平面導波路型レーザ装置。
  6.  前記クラッドの上面及び下面のうち、前記等方性媒質と接合していない側の面が荒らし面になっていることを特徴とする請求項2記載の平面導波路型レーザ装置。
  7.  前記クラッドの上面及び下面のうち、前記等方性媒質と接合していない側の面に、前記レーザ光を吸収する吸収層が接合されていることを特徴とする請求項2記載の平面導波路型レーザ装置。
  8.  前記吸収層は、クロムまたはクロム添加材料で構成されていることを特徴とする請求項7記載の平面導波路型レーザ装置。
  9.  前記等方性媒質及び前記クラッドの側面のうち、前記レーザ光が入射される側の側面又は前記レーザ光が出射される側の側面の少なくとも一方が傾いていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  10.  レーザ光が入射される前記等方性媒質の側面と対向している前記等方性媒質の側面に、前記レーザ光を反射するコーティングが施されていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  11.  前記クラッドの上面及び下面のうち、前記等方性媒質と接合していない側の面に、第2のクラッドが接合されていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  12.  側面から入射されたレーザ光を伝搬する平板状の等方性媒質と、
     前記等方性媒質の上面及び下面のうち、少なくとも一方の面に接合される第1のクラッドと、
     前記第1のクラッドの上面及び下面のうち、前記等方性媒質と接合していない側の面に接合される第2のクラッドとを備え、
     前記等方性媒質は、入射された励起光を吸収して反転分布状態を形成することで利得を発生し、前記反転分布状態を形成しているとき、前記側面からレーザ光が入射されると、その利得によって当該レーザ光を増幅するレーザ媒質で構成されており、
     前記第1のクラッドは、前記等方性媒質内でのレーザ光の進行方向である光軸と直交する2つの偏光方向の屈折率が異なる複屈折材料で構成されており、
     前記第2のクラッドは、前記励起光に対する前記等方性媒質の屈折率が、前記励起光に対する前記第1のクラッドの屈折率より高い場合、前記励起光に対する前記第2のクラッドの屈折率が、前記励起光に対する前記第1のクラッドの屈折率より低くなる材料で構成され、前記励起光に対する前記等方性媒質の屈折率が、前記励起光に対する前記第1のクラッドの屈折率より低い場合、前記励起光に対する前記第2のクラッドの屈折率が、前記励起光に対する前記等方性媒質の屈折率より低くなる材料で構成されていることを特徴とする平面導波路型レーザ装置。
  13.  前記クラッドの上面及び下面のうち、前記等方性媒質と接合していない側の面が基板に接合されていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  14.  前記クラッドの光学軸が、前記等方性媒質と前記クラッドの接合面に対して傾いていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  15.  レーザ光が入射される前記等方性媒質の側面の一部に、前記レーザ光を反射するコーティングが施されているとともに、前記等方性媒質の側面に対向している前記等方性媒質の側面の一部に、前記レーザ光を反射するコーティングが施されていることを特徴とする請求項1記載の平面導波路型レーザ装置。
  16.  レーザ光が入射される前記等方性媒質の側面と、前記等方性媒質の側面に対向している前記等方性媒質の側面とが非平行であることを特徴とする請求項15記載の平面導波路型レーザ装置。
  17.  前記クラッドの光学軸が、前記等方性媒質と前記クラッドの接合面に対して垂直であることを特徴とする請求項1記載の平面導波路型レーザ装置。
  18.  前記クラッドの光学軸が、前記等方性媒質と前記クラッドの接合面に対して平行であることを特徴とする請求項1記載の平面導波路型レーザ装置。
  19.  前記クラッドの光学軸が、前記等方性媒質内でのレーザ光の進行方向に対して傾いていることを特徴とする請求項18記載の平面導波路型レーザ装置。
PCT/JP2013/085134 2013-12-27 2013-12-27 平面導波路型レーザ装置 WO2015097869A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380081855.5A CN105874661B (zh) 2013-12-27 2013-12-27 平面波导型激光装置
EP13900231.5A EP3089287B1 (en) 2013-12-27 2013-12-27 Flat waveguide-type laser device
PCT/JP2013/085134 WO2015097869A1 (ja) 2013-12-27 2013-12-27 平面導波路型レーザ装置
JP2015554449A JP6253672B2 (ja) 2013-12-27 2013-12-27 平面導波路型レーザ装置
US15/036,539 US9780519B2 (en) 2013-12-27 2013-12-27 Flat waveguide-type laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085134 WO2015097869A1 (ja) 2013-12-27 2013-12-27 平面導波路型レーザ装置

Publications (1)

Publication Number Publication Date
WO2015097869A1 true WO2015097869A1 (ja) 2015-07-02

Family

ID=53477800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085134 WO2015097869A1 (ja) 2013-12-27 2013-12-27 平面導波路型レーザ装置

Country Status (5)

Country Link
US (1) US9780519B2 (ja)
EP (1) EP3089287B1 (ja)
JP (1) JP6253672B2 (ja)
CN (1) CN105874661B (ja)
WO (1) WO2015097869A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069252A (ja) * 2015-09-28 2017-04-06 三菱電機株式会社 平面導波路型レーザ増幅器
CN109565142A (zh) * 2016-08-17 2019-04-02 三菱电机株式会社 脊波导型激光装置
EP3460545A4 (en) * 2016-06-14 2019-06-19 Mitsubishi Electric Corporation WAVE PLAN GUIDE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151043B1 (en) 2014-05-26 2020-06-17 Mitsubishi Electric Corporation Optical device
JP2017220652A (ja) * 2016-06-10 2017-12-14 大学共同利用機関法人自然科学研究機構 レーザ装置とその製造方法
US11289872B2 (en) * 2017-12-28 2022-03-29 Mitsubishi Electric Corporation Planar waveguide and laser amplifier
CN109755849B (zh) * 2019-02-14 2020-09-01 聊城大学 一种“面发射”波导激光器谐振腔的制备方法
CN110367955A (zh) * 2019-08-19 2019-10-25 深圳市矽赫科技有限公司 光纤传感器及生命体征检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248584A (ja) * 1988-03-29 1989-10-04 Nec Corp Qスイッチ固体レーザ装置
JP2007333756A (ja) * 2006-06-12 2007-12-27 Fujitsu Ltd 光導波路デバイスおよび光変調器
WO2009016703A1 (ja) 2007-07-27 2009-02-05 Mitsubishi Electric Corporation 平面導波路型レーザ装置
WO2009035585A2 (en) * 2007-09-11 2009-03-19 Hewlett-Packard Development Company, L.P. Hybrid integrated source of polarization-entangled photons
JP2009194176A (ja) * 2008-02-14 2009-08-27 Toshiba Corp 固体レーザ装置及びレーザ加工方法
JP2009277943A (ja) * 2008-05-15 2009-11-26 Mitsubishi Electric Corp 光増幅器及び光発振器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010612B2 (ja) 1977-03-14 1985-03-19 日本電気株式会社 ヘテロダイン検波光通信装置
JPS59188605A (ja) 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> 導波形光モ−ドフイルタ
JPH1152160A (ja) * 1997-08-08 1999-02-26 Toyota Central Res & Dev Lab Inc 光デバイスの製造方法
US7065121B2 (en) 2001-07-24 2006-06-20 Gsi Group Ltd. Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications
JP2003057689A (ja) 2001-08-21 2003-02-26 Ricoh Co Ltd 光学素子および該光学素子を用いた画像表示装置
JP2003270611A (ja) 2002-03-19 2003-09-25 Ricoh Co Ltd 光偏向素子、該偏向素子を用いた光偏向装置、および画像表示装置
JP2004109355A (ja) 2002-09-17 2004-04-08 Yasuhiro Koike 光学材料の製造方法、光学材料並びに光学素子
JP2004296671A (ja) * 2003-03-26 2004-10-21 Japan Science & Technology Agency 固体レーザ装置
US7649920B2 (en) 2007-04-03 2010-01-19 Topcon Corporation Q-switched microlaser apparatus and method for use
JP2009123883A (ja) * 2007-11-14 2009-06-04 Mitsubishi Electric Corp 光増幅器及び光発振器
JP5868003B2 (ja) * 2011-01-14 2016-02-24 三菱電機株式会社 平面導波路型レーザ装置およびその製造方法
JP5645753B2 (ja) * 2011-05-26 2014-12-24 三菱電機株式会社 平面導波路型レーザ装置
WO2013100051A1 (ja) * 2011-12-27 2013-07-04 住友電気工業株式会社 光ファイバおよび光ケーブル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248584A (ja) * 1988-03-29 1989-10-04 Nec Corp Qスイッチ固体レーザ装置
JP2007333756A (ja) * 2006-06-12 2007-12-27 Fujitsu Ltd 光導波路デバイスおよび光変調器
WO2009016703A1 (ja) 2007-07-27 2009-02-05 Mitsubishi Electric Corporation 平面導波路型レーザ装置
WO2009035585A2 (en) * 2007-09-11 2009-03-19 Hewlett-Packard Development Company, L.P. Hybrid integrated source of polarization-entangled photons
JP2009194176A (ja) * 2008-02-14 2009-08-27 Toshiba Corp 固体レーザ装置及びレーザ加工方法
JP2009277943A (ja) * 2008-05-15 2009-11-26 Mitsubishi Electric Corp 光増幅器及び光発振器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069252A (ja) * 2015-09-28 2017-04-06 三菱電機株式会社 平面導波路型レーザ増幅器
EP3460545A4 (en) * 2016-06-14 2019-06-19 Mitsubishi Electric Corporation WAVE PLAN GUIDE
CN109565142A (zh) * 2016-08-17 2019-04-02 三菱电机株式会社 脊波导型激光装置
EP3487015A4 (en) * 2016-08-17 2019-08-07 Mitsubishi Electric Corporation RIBS FIBER LASER DEVICE
CN109565142B (zh) * 2016-08-17 2021-03-26 三菱电机株式会社 脊波导型激光装置
US10985521B2 (en) 2016-08-17 2021-04-20 Mitsubishi Electric Corporation Ridge waveguide laser device

Also Published As

Publication number Publication date
EP3089287A4 (en) 2017-08-30
CN105874661B (zh) 2019-02-19
CN105874661A (zh) 2016-08-17
EP3089287B1 (en) 2021-07-28
US20160301179A1 (en) 2016-10-13
JP6253672B2 (ja) 2017-12-27
US9780519B2 (en) 2017-10-03
JPWO2015097869A1 (ja) 2017-03-23
EP3089287A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6253672B2 (ja) 平面導波路型レーザ装置
JP4754020B2 (ja) 平面導波路型レーザ装置
US9337609B2 (en) Passively Q-switched element and passively Q-switched laser device
JP2010199288A (ja) パルスレーザ装置
US10985521B2 (en) Ridge waveguide laser device
JP6124683B2 (ja) 平面導波路型レーザ装置
JP5645753B2 (ja) 平面導波路型レーザ装置
JP5868003B2 (ja) 平面導波路型レーザ装置およびその製造方法
WO2014091540A1 (ja) 平面導波路型レーザ装置
US10116113B2 (en) Planar waveguide laser apparatus
JP6655927B2 (ja) 平面導波路型レーザ増幅器
WO2019116544A1 (ja) リッジ光導波路及びレーザ装置
JP6690869B2 (ja) 平面導波路及びレーザ増幅器
JP2006106104A (ja) 偏光解消素子
WO2014097370A1 (ja) 導波路型レーザ装置
JP2013089790A (ja) 平面導波路型レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554449

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15036539

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900231

Country of ref document: EP