WO2015097838A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015097838A1
WO2015097838A1 PCT/JP2013/085032 JP2013085032W WO2015097838A1 WO 2015097838 A1 WO2015097838 A1 WO 2015097838A1 JP 2013085032 W JP2013085032 W JP 2013085032W WO 2015097838 A1 WO2015097838 A1 WO 2015097838A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
time
threshold
output
Prior art date
Application number
PCT/JP2013/085032
Other languages
English (en)
French (fr)
Inventor
祐介 荒尾
啓輔 田邉
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2015554424A priority Critical patent/JP6216804B2/ja
Priority to PCT/JP2013/085032 priority patent/WO2015097838A1/ja
Priority to CN201380079225.4A priority patent/CN105850024B/zh
Publication of WO2015097838A1 publication Critical patent/WO2015097838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to an overvoltage protection function in a power converter.
  • FIG. 1 is an example of a configuration diagram of the power conversion device and the AC motor 105 of the present embodiment.
  • the three-phase AC power source 101, the DC converter 102, the smoothing capacitor 103, the power converter 104, the AC motor 105, the DC voltage detector 106, the output controller 107, the time integrating unit 108, and the data output unit 109 are provided. Have.
  • the smoothing capacitor 103 smoothes the DC voltage input from the DC converter 102 and outputs the DC voltage to the power converter 104.
  • the smoothing capacitor 103 may be input with a DC voltage directly from the generator without passing through the DC converter 102.
  • the smoothing capacitor 103 may be constituted by a single capacitor or a plurality of capacitors, and the intention of the present invention does not change even if the plurality of capacitors are connected in series or in parallel.
  • the power conversion unit 104 is configured by an AC conversion circuit using, for example, an IGBT and a flywheel diode, and receives the DC voltage of the smoothing capacitor 103 and the output command of the output calculation unit 108 as input, converts the DC voltage into an AC voltage, Output to AC motor 105.
  • the AC motor 105 may be either an induction motor or a synchronous motor.
  • the output control unit 107 receives the DC voltage value output from the DC voltage detection unit 106 and the time integration value output from the time integration unit 108, and outputs an output command to the power conversion unit 104. Further, the output control unit 107 determines that an overvoltage state occurs when the DC voltage value exceeds the first threshold, and the state where the DC voltage value is smaller than the first threshold and exceeds the second threshold is predetermined. When the time elapses, it is determined that the overvoltage is continued, and a cutoff command is output to the power conversion unit 104.
  • the time integration unit 108 receives the DC voltage value output by the DC voltage detection unit 106, performs time integration according to the DC voltage value, and outputs the time integration value to the output control unit 107. Further, the time integration unit 108 outputs the state in which the DC voltage value exceeds the second threshold and the time integration value to the data output unit 109.
  • the output control unit 107 continues to compare with the second threshold value (S204), and the acquired DC voltage value exceeds the second threshold value. Then, the integration time accumulated by the time integration unit and the predetermined time determined for comparison are acquired (S205).
  • the second threshold value is, for example, 100% of the smoothing capacitor rated voltage value (400 V for 400 V rating). Alternatively, the second threshold value is set to a value that satisfies the life required for the power conversion device by performing a life test of the capacitor to be used.
  • the output control unit 107 compares the acquired accumulated time with a predetermined time (S206), and if the acquired accumulated time exceeds a predetermined time T0, sends an output cutoff command to the power conversion unit (S207).
  • FIG. 3 is a diagram showing the relationship between the DC voltage threshold and the time until output shutoff in this example.
  • T0 is set to 100 seconds as a predetermined time.
  • T0 is set to a value that satisfies the life required for the power converter by conducting a life test of the capacitor to be used.
  • FIG. 3 shows that when the acquired DC voltage value is larger than the second threshold value V2 and smaller than the first threshold value V1, after the time T0 has elapsed, the output control unit 107 shuts off the output. This means issuing a shutdown command. Similarly, when the DC voltage value is larger than the first threshold value V1, a cutoff command is issued immediately.
  • control is performed using the% value of the accumulated time, but the calculation may be performed using the time itself, or the time may be counted in a form in which the time is replaced with another numerical value as a value based on the time. Good.
  • Tx in FIG. 7 varies depending on the degree to which the DC voltage value exceeds the second threshold value. For example, when the DC voltage value becomes the second threshold value V2, the predetermined time T2 is set to 100 seconds. Assuming that the integration time is 100% at the maximum, the time integration unit 108 uses the addition rate per second as the addition time, and adds 1% to the integration time every 1 second.
  • the output control unit 107 determines whether or not the% value of the accumulated time exceeds a predetermined time of 100%, and gives a cutoff command to the power conversion unit 104.
  • the output control unit 107 gives a cutoff command to the power conversion unit 104 also when the DC voltage value exceeds the first threshold value V1.
  • This embodiment is a modification of the second embodiment, and an operation example of overvoltage determination in the power converter will be described.
  • the configuration of the present embodiment is the same as that of FIG. 1 described in the first embodiment, and is a three-phase AC power source 101, a DC converter 102, a smoothing capacitor 103, a power converter 104, an AC motor 105, and a DC voltage detector 106.
  • An output control unit 107, a time integration unit 108, and a data output unit 109 As in the first embodiment, this embodiment shows the operation of the output control unit 107 in FIG.
  • FIG. 8 shows the operation of the time integration unit 108.
  • the time integration unit 108 acquires a DC voltage value from the DC voltage detection unit 106 (S801).
  • the time integration unit 108 compares the acquired DC voltage value with a predetermined second threshold value (S802), and subtracts time from the DC voltage value if the acquired DC voltage value is below the second threshold value. (S803), and subtract time is subtracted from the stored accumulated time (S804). If the acquired DC voltage value exceeds the second threshold, the time integration unit 108 acquires the addition time from the DC voltage value (S805), and adds the addition time to the stored integration time (S806). .
  • the accumulated time is stored in, for example, a memory, RAM, EEPROM, or the like arranged in the MCU. As for the addition time, FIG. 6 is used as in the first embodiment. The subtraction time will be described with reference to FIG.
  • FIG. 9 is a diagram showing the relationship between the DC voltage threshold and the time taken for the integration time to change from 100% to 0% in this example.
  • T7 is set to 100 seconds as the time at the DC voltage threshold V2. This means that the threshold time V2 is T7 (100 seconds) from 100% to 0%.
  • T6 is set to 60 seconds, for example, as the time at the DC voltage threshold V6 (V6 ⁇ V2).
  • T5 is set to 30 seconds, for example, as the time at the DC voltage threshold V5 (V5 ⁇ V6 ⁇ V2).
  • the time values as indicated by T5 to T7 may be set to satisfy the life required for the power converter from the relationship between the voltage value and leakage current after conducting a life test of the capacitor to be used. Good.
  • the time integration unit 108 subtracts the integration time when the DC voltage value falls below the second threshold value V2. For example, when the DC voltage value becomes the second threshold value V2, the predetermined time T2 is set to 100 seconds. Assuming that the integration time is 100% at the maximum, the time integration unit 108 subtracts 1% from the integration time every 1 second, with the subtraction rate per second as the subtraction time. In the second embodiment, when the DC voltage value reaches the second threshold value V2, 1% is added to the integration time. In this embodiment, when the second threshold value V2 is reached, the addition time and Since the subtraction times match, the operation is performed without changing the integration time.
  • the operation when the second threshold value V2 is reached may be added when the second threshold value V2 is exceeded, and subtracted when the second threshold value V2 is not reached. It is possible to add the value when the value exceeds the threshold value, and to subtract the value when the value falls below the second threshold value V2, and the intention of the method does not change.
  • the predetermined time T6 is set to 60 seconds. Assuming that the integration time is 100% at maximum, the time integration unit 108 subtracts 100/60% from the integration time every 1 second, with the subtraction rate per second as the subtraction time. That is, when the DC voltage value becomes V6, the time integration unit 108 subtracts 100/60% per second, so that the integration time becomes 0% after a maximum of 60 seconds.
  • the predetermined time T5 is set to 30 seconds. Assuming that the integration time is 100% at the maximum, the time integration unit 108 subtracts 100/30% from the integration time every 1 second, with the subtraction rate per second being the subtraction time. That is, when the time integration unit 108 is in a state where the DC voltage value is V5, 100/30% is subtracted per second, so the integration time becomes 0% after a maximum of 30 seconds.
  • the output control unit 107 determines whether the percentage value of the accumulated time exceeds a predetermined time of 100%, and gives a cutoff command to the power conversion unit 104.
  • the output control unit 107 gives a cutoff command to the power conversion unit 104 also when the DC voltage value exceeds the first threshold value V1.
  • Smoothing capacitors 113 ⁇ / b> A and 113 ⁇ / b> B smooth the DC voltage input from DC converter 102 and output the DC voltage to power converter 104.
  • the smoothing capacitor 103 may be input with a DC voltage directly from the generator without passing through the DC converter 102.
  • a state is shown in which a plurality of capacitors are connected in series.
  • the output control unit 117 inputs the DC voltage values for the two systems output from the DC voltage detection unit 116 and the time integration values for the two systems output from the time integration unit 108, and outputs an output command to the power conversion unit 104. To do. Further, the output control unit 117 determines that an overvoltage state occurs when one of the DC voltage values for the two systems exceeds the first threshold, and either one of the DC voltage values for the two systems is the second threshold. When a predetermined time elapses, the overvoltage continuation state is determined and a cutoff command is output to the power conversion unit 104.
  • the time integration unit 108 receives the DC voltage values for the two systems output from the DC voltage detection unit 106, performs time integration separately for the two systems according to the DC voltage values for the two systems, and outputs the control unit The integrated time value for two systems is output to 107. Further, the time integration unit 108 outputs to the data output unit 119 the state of two systems whose DC voltage value exceeds the second threshold and the time integration value of the two systems.
  • the data output unit 119 includes, for example, a user interface such as a terminal block or a display panel that performs input / output, and the DC voltage values for the two systems output by the time integration unit 118 exceed the second threshold. And the time integrated value for the two systems are input, and the state where the DC voltage value exceeds the second threshold is judged as a warning state on the terminal or display panel of the user interface, and the two systems are separated as warning signals. Outputs or displays the accumulated time value for two systems separately.
  • the overvoltage judgment method performed in the first embodiment, the second embodiment, or the third embodiment is performed separately for two systems, and the state of the smoothing capacitors 113A and 113B is individually monitored.
  • the overvoltage state can be accurately determined.
  • the number of smoothing capacitors is not limited to two, and the intention of the present invention does not change even if a plurality of smoothing capacitors are determined separately.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本発明は、従来技術における、一瞬上昇した直流電圧によって、モータ駆動がフリーランとなると、適応用途が限られてしまうという課題や、減速時において出力が遮断されると、電力変換装置としての回生能力が制限され、適応用途が限られてしまうという課題を解決することを目的としている。本発明においては、直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部の出力を制御する出力制御部と、前記直流電圧部の電圧を検出する直流電圧検出部と、を備え、前記出力制御部は、前記直流電圧検出部が検出した電圧値が第一の閾値を超えた時点で前記電力変換部の出力を遮断する制御と、前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに、第一の閾値よりも小さい第二の閾値を超えた状態となる時間に基づいて前記電力変換部の出力を遮断する制御とを行う。

Description

電力変換装置
 本発明は、電力変換装置における過電圧保護機能に関する。
 本技術分野の背景技術として、特開2012-70573号公報(特許文献1)がある。この公報には、「直流電圧が上昇し、直流電圧検出器52によって検出された直流電圧検出値Vdcが第2の直流電圧レベルVOV2を超えると、保護回路50はゲート駆動回路51に禁止信号を出力してインバータ装置2の運転の停止を行うが、このときには一時的な直流電圧の上昇と判断してインバータ装置2の外部に異常信号発生器55から異常出力信号は出力しない。一方、インバータ装置2が一時停止中に直流電圧がさらに上昇し、直流電圧検出値Vdcが第1の直流電圧レベルVOV1を超えると、インバータ装置2の保護が必要と判断してインバータ装置2の外部に異常出力信号を出力する。」と記載されている(要約参照)。
特開2012-70573号公報
 特許文献1では、電圧の上昇をいち早く察知し、電圧が上がりすぎることを防止するために遮断後、運転を再び開始するあるいは異常出力信号を出力する方法が開示されている。
 しかしこのような装置では、一瞬上昇した直流電圧によって、モータ駆動がフリーランとなるため、連続してトルクを出す必要がある場合や連続した運転が必要な場合で、使用領域が制限される。減速時において出力が遮断されることにより、電力変換装置としての回生能力は制限され、適応用途も限られてしまう可能性がある。一般的に回生能力が足りない場合には、外部につけた抵抗器で電力を消費させたり、回生コンバータを用いて電力を系統に戻したりする必要があるため、その対策に費用が多くかかってしまう。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部の出力を制御する出力制御部と、前記直流電圧部の電圧を検出する直流電圧検出部と、を備え、前記出力制御部は、前記直流電圧検出部が検出した電圧値が第一の閾値を超えた時点で前記電力変換部の出力を遮断する制御と、前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに、第一の閾値よりも小さい第二の閾値を超えた状態となる時間に基づいて前記電力変換部の出力を遮断する制御とを行うことを特徴とする。
 本発明によれば、直流電圧部の寿命破壊を防ぎつつ、電力変換装置の回生能力を向上させることができる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1~3における電力変換装置の構成図の例である。 実施例1~3における出力制御部の動作を示したフローチャートである。 実施例1における直流電圧の閾値と出力遮断までの時間の関係を示した図である。 実施例1および2における時間積算部の動作を示したフローチャートである。 実施例1における直流電圧と警告信号と積算時間との関係を示した図である。 実施例2および3における直流電圧の閾値と出力遮断までの時間の関係を示した図である。 実施例2における直流電圧と警告信号と積算時間との関係を示した図である。 実施例3における時間積算部の動作を示したフローチャートである。 実施例3における直流電圧の閾値と積算時間クリアまでの時間との関係を示した図である。 実施例3における直流電圧と警告信号と積算時間との関係を示した図である。 実施例4における電力変換装置の構成図の例である。
 以下、実施例を図面を用いて説明する。
 本実施例では、電力変換器における過電圧判断の動作例を説明する。
 図1は、本実施例の電力変換装置と交流電動機105の構成図の例である。本実施例では、三相交流電源101、直流変換部102、平滑コンデンサ103、電力変換部104、交流電動機105、直流電圧検出部106、出力制御部107、時間積算部108、データ出力部109を有する。
 三相交流電源101は、例えば電力会社から供給される三相交流電圧や発電機から供給される交流電圧であり、直流変換部102に出力する。直流変換部102は、例えばダイオードで構成された直流変換回路やIGBTとフライホイールダイオードを用いた直流変換回路で構成され、三相交流電源101から入力された交流電圧を、直流電圧に変換し、平滑コンデンサ103に出力する。図1では、ダイオードで構成された直流変換部を示している。
 平滑コンデンサ103は、直流変換部102から入力された直流電圧を平滑化し、電力変換部104に直流電圧を出力する。例えば発電機の出力が直流電圧の場合、平滑コンデンサ103は、直流変換部102を介さず、直接発電機から直流電圧を入力されても構わない。また、平滑コンデンサ103は、単体のコンデンサで構成されてもいいし、複数のコンデンサで構成されても良く、複数のコンデンサは直列につながれても並列につながれても本発明の意図は変わらない。
 電力変換部104は、例えばIGBTとフライホイールダイオードを用いた交流変換回路で構成され、平滑コンデンサ103の直流電圧と、出力演算部108の出力指令を入力とし、直流電圧を交流電圧に変換し、交流電動機105に出力する。交流電動機105は、誘導電動機であっても、同期電動機であっても、どちらでも構わない。
 直流電圧検出部106は、平滑コンデンサ103にかかる直流電圧を検出し、直流電圧値として取り込み、直流電圧値を出力制御部107および時間積算部108に出力する。直流電圧検出部106は、コンデンサが複数配置されている場合、コンデンサ個々の電圧を検出しても良いし、全体にかかる電圧を検出しても良い。本実施例では、コンデンサが単体で付いている、あるいは複数のコンデンサが全体として一つと見なした状態の例を示している。直流電圧検出部106が、複数のコンデンサ個々の電圧値を取得する場合には、取得した電圧値毎に本実施例の電圧判定を行っても良い。
 出力制御部107は、直流電圧検出部106が出力した直流電圧値及び、時間積算部108が出力した時間積算値を入力とし、電力変換部104に出力指令を出力する。また、出力制御部107は、直流電圧値が第一の閾値を超えた場合に、過電圧状態と判断し、直流電圧値が第一の閾値よりも小さく、第二の閾値を超えた状態が所定の時間経過した場合に、過電圧継続状態と判断し、電力変換部104に遮断指令を出力する。
 時間積算部108は、直流電圧検出部106が出力した直流電圧値を入力とし、前記直流電圧値に応じて、時間の積算を行い、出力制御部107に時間積算値を出力する。また、時間積算部108は、直流電圧値が第二の閾値を超えた状態と時間積算値を、データ出力部109に出力する。
 データ出力部109は、例えば、入出力を行う端子台や表示パネル等のユーザインターフェースで構成され、時間積算部108が出力した直流電圧値が第二の閾値を超えた状態と時間積算値を入力とし、ユーザインターフェースの端子あるいは表示パネル上に、直流電圧値が第二の閾値を超えた状態を警告状態と判断し警告信号として出力する、あるいは時間積算値を表示する。
 図2は、過電圧状態および過電圧継続状態を判断する際の出力制御部107の動作を示している。出力制御部107は、直流電圧検出部106から直流電圧値を取得する(S201)。出力制御部107は、取得した直流電圧値と予め決められた第一の閾値、と比較し(S202)、取得した直流電圧値が第一の閾値を超えていれば、電力変換部に出力遮断指令を送る(S203)。第一の閾値は、例えば平滑コンデンサ定格電圧値の105%(400V定格であれば420V)とする。あるいは、第一の閾値は、使用するコンデンサの寿命試験を行い、電力変換装置に必要とされる寿命を満たす値を設定してもよい。また、出力制御部107は、取得した直流電圧値が第一の閾値を下回っていれば、続けて第二の閾値と比較し(S204)、取得した直流電圧値が第二の閾値を超えていれば、時間積算部が積算している積算時間及び比較するために決められた所定の時間を取得する(S205)。第二の閾値は、例えば平滑コンデンサ定格電圧値の100%(400V定格であれば400V)とする。あるいは、第二の閾値は、使用するコンデンサの寿命試験を行い、電力変換装置に必要とされる寿命を満たす値を設定する。出力制御部107は、取得した積算時間と所定の時間を比較し(S206)、取得した積算時間が所定の時間T0を超えていれば、電力変換部に出力遮断指令を送る(S207)。
 図3は、本実施例における直流電圧の閾値と出力遮断までの時間の関係を示した図である。T0は、例えば所定の時間として100秒と設定する。あるいは、T0は、使用するコンデンサの寿命試験を行い、電力変換装置に必要とされる寿命を満たす値を設定する。
 図3は、取得した直流電圧値が第二の閾値V2より大きく第一の閾値V1よりも小さい場合は、T0時間経過後、出力制御部107が出力を遮断するために、電力変換部104に遮断指令を出すことを意味している。同様に直流電圧値が第一の閾値V1より大きい場合は、直ちに遮断指令が出される。
 図4は、時間積算部108の動作を示したものである。時間積算部108は、直流電圧検出部106から直流電圧値を取得する(S401)。時間積算部108は、取得した直流電圧値と予め決められた第二の閾値、と比較し(S402)、取得した直流電圧値が第二の閾値を下回っていれば、積算時間を0にクリアする(S403)。時間積算部108は、取得した直流電圧値が第二の閾値を超えていれば、直流電圧値から加算時間を取得し(S404)、記憶されている積算時間に加算時間を加算する(S405)。積算時間は、例えばMCUに配置されたメモリやRAM、EEPROM等に記憶する。加算時間については図5を用いて説明する。
 図5は、本実施例における直流電圧と警告信号と積算時間との関係を示した図である。出力制御部107が、電力変換部104に出力指令を与えた後、時間積算部108は、直流電圧監視を開始する。時間積算部108は、図5において直流電圧値が第二の閾値V2を上回ると、時間積算を開始し、データ出力部に警告信号および積算時間を出力する。T0は、例えば所定の時間として100秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの加算割合を加算時間として、1秒経過するごとに積算時間に1%を加算する。出力制御部107は、積算時間の%値が、所定の時間100%を超えたかどうかを判断して、電力変換部104に遮断指令を与える。出力制御部107は、直流電圧値が第一の閾値V1を上回った場合も、電力変換部104に遮断指令を与える。
 上記の方法により、出力制御部107が、直流平滑部、特に本実施例で説明した平滑コンデンサの寿命を考慮した過電圧状態を判断することで、電力変換装置の駆動範囲を広げる。
 実施例においては、積算時間の%値を用いて制御を行うが、時間そのものを用いて演算してもよいし、時間に基づく値として、時間を他の数値に置き換えた形式でカウントしてもよい。
 本実施例は、実施例1の変形例であって、電力変換器における過電圧判断の動作例を説明する。本実施例では実施例1と、共通する部分については同様の符号を用いて説明し、異なる部分について詳細に説明するものとする。本実施例の構成は、実施例1にて説明した図1と同様であり、三相交流電源101、直流変換部102、平滑コンデンサ103、電力変換部104、交流電動機105、直流電圧検出部106、出力制御部107、時間積算部108、データ出力部109を有する。本実施例は、実施例1と同様、図2に出力制御部107の動作を示している。また、本実施例は、実施例1と同様、図4に時間積算部108の動作を示している。
 図6は、本実施例における直流電圧の閾値と出力遮断までの時間の関係を示した図である。T1は例えば所定の時間として0秒と設定する。T2は例えば所定の時間として100秒と設定する。T3は例えば所定の時間として60秒と設定する。T4は例えば所定の時間として30秒と設定する。あるいは、T0からT4で示すような時間の値は、使用するコンデンサの寿命試験を行い、電圧値と漏れ電流の関係から電力変換装置に必要とされる寿命を満たすような値を設定してもよい。図3は、T0時間経過後、出力制御部107が出力を遮断するために、電力変換部104に遮断指令を出すことを意味している。
 図7は、本実施例における直流電圧と警告信号と積算時間との関係を示した図である。出力制御部107が、電力変換部104に出力指令を与えた後、時間積算部108は、直流電圧監視を開始する。時間積算部108は、図7において直流電圧値が第二の閾値V2を上回ると、時間積算を開始し、データ出力部に警告信号および積算時間を出力する。
 図7のTxは、直流電圧値が第二の閾値を超えた度合いにより異なる。例えば、直流電圧値が第二の閾値V2となった場合に所定の時間T2を100秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの加算割合を加算時間として、1秒経過するごとに積算時間に1%を加算する。
 また、例えば、直流電圧値が閾値V3(V2<V3<V1)となった場合に所定の時間T3を60秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの加算割合を加算時間として、1秒経過するごとに積算時間に100/60%を加算する。すなわち、時間積算部108が、直流電圧値がV3の状態となった場合、1秒当たり100/60%を加算するため、積算時間は60秒後に100%となる。
 また、例えば、直流電圧値が閾値V4(V2<V3<V4<V1)となった場合に所定の時間T4を30秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの加算割合を加算時間として、1秒経過するごとに積算時間に100/30%を加算する。すなわち、時間積算部108が、直流電圧値がV4の状態となった場合、1秒当たり100/30%を加算するため、積算時間は30秒後に100%となる。
 また、例えば、直流電圧値が第一の閾値V1となった場合に所定の時間T1を0秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの加算割合を加算時間として、1秒経過するごとに積算時間に100%を加算する。すなわち、時間積算部108が、直流電圧値がV1の状態となった場合、1秒当たり100%を加算するため、積算時間は1秒後に100%となる。
 図7は、直流電圧が変動しているため、図6の直流電圧値と時間の関係に基づいて、直流電圧が上昇するにつれ、積算時間の加算が徐々に多くなっている様子を示している。本実施例では、基準となる時間を1秒と設定したが、より早い周期を基準としても良い。
 出力制御部107は、実施例1同様、積算時間の%値が、所定の時間100%を超えたかどうかを判断して、電力変換部104に遮断指令を与える。出力制御部107は、直流電圧値が第一の閾値V1を上回った場合も、電力変換部104に遮断指令を与える。
 上記の方法により、出力制御部107が、直流平滑部、特に本実施例で説明した平滑コンデンサの寿命を考慮した過電圧状態を判断することで、電力変換装置の駆動範囲を広げる。
 本実施例は、実施例2の変形例であって、電力変換器における過電圧判断の動作例を説明する。本実施例では実施例1と、共通する部分については同様の符号を用いて説明し、異なる部分について詳細に説明するものとする。本実施例の構成は、実施例1にて説明した図1と同様であり、三相交流電源101、直流変換部102、平滑コンデンサ103、電力変換部104、交流電動機105、直流電圧検出部106、出力制御部107、時間積算部108、データ出力部109を有する。本実施例は、実施例1と同様、図2に出力制御部107の動作を示している。
 図8は、時間積算部108の動作を示したものである。時間積算部108は、直流電圧検出部106から直流電圧値を取得する(S801)。時間積算部108は、取得した直流電圧値と予め決められた第二の閾値、と比較し(S802)、取得した直流電圧値が第二の閾値を下回っていれば、直流電圧値から減算時間を取得し(S803)、記憶されている積算時間に減算時間を減算する(S804)。時間積算部108は、取得した直流電圧値が第二の閾値を超えていれば、直流電圧値から加算時間を取得し(S805)、記憶されている積算時間に加算時間を加算する(S806)。積算時間は、例えばMCUに配置されたメモリやRAM、EEPROM等に記憶する。加算時間については、実施例1と同様に図6を用いる。減算時間については、図9を用いて説明する。
 図9は、本実施例における直流電圧の閾値と積算時間が100%から0%になるまでの時間の関係を示した図である。直流電圧の閾値V2における時間としてT7は100秒と設定する。これは閾値V2では、積算時間が100%から0%になるまでの時間はT7(100秒)であることを意味する。同様に直流電圧の閾値V6(V6<V2)における時間としてT6は例えば60秒と設定する。同様に直流電圧の閾値V5(V5<V6<V2)における時間としてT5は例えば30秒と設定する。あるいは、T5からT7で示すような時間の値は、使用するコンデンサの寿命試験を行い、電圧値と漏れ電流の関係から電力変換装置に必要とされる寿命を満たすような値を設定してもよい。
 図10は、本実施例における直流電圧と警告信号と積算時間との関係を示した図である。出力制御部107が、電力変換部104に出力指令を与えた後、時間積算部108は、直流電圧監視を開始する。時間積算部108は、図10において直流電圧値が第二の閾値V2を下回っている場合、積算時間が0%であれば、さらなる減算は行わない。時間積算部108は直流電圧値が第二の閾値V2を上回ると、時間積算を開始し、データ出力部に警告信号および積算時間を出力する。時間積算部108は、直流電圧値が第二の閾値V2を上回っている場合、実施例2と同様に積算時間を加算していく。
 時間積算部108は、直流電圧値が第二の閾値V2を下回った場合、積算時間を減算していく。例えば、直流電圧値が第二の閾値V2となった場合に所定の時間T2を100秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの減算割合を減算時間として、1秒経過するごとに積算時間に1%を減算する。実施例2では、直流電圧値が第二の閾値V2となった場合に、積算時間に1%を加算するとあり、本実施例では、第二の閾値V2となった場合には、加算時間及び減算時間が一致するため、積算時間を変化させない動作となる。第二の閾値V2となった場合の動作は、第二の閾値V2以上となった場合に加算し、第二の閾値V2を下回った場合に減算する、としてもいいし、第二の閾値V2を上回った場合に加算し、第二の閾値V2以下となった場合に減算する、としてもよく、本方法の意図は変わらない。
 また、例えば、直流電圧値が閾値V6を下回った場合に所定の時間T6を60秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの減算割合を減算時間として、1秒経過するごとに積算時間に100/60%を減算する。すなわち、時間積算部108が、直流電圧値がV6の状態となった場合、1秒当たり100/60%を減算するため、積算時間は最大60秒後に0%となる。
 また、例えば、直流電圧値が閾値V5を下回った場合に所定の時間T5を30秒と設定する。積算時間が最大100%であるとすると、時間積算部108は、1秒当たりの減算割合を減算時間として、1秒経過するごとに積算時間に100/30%を減算する。すなわち、時間積算部108が、直流電圧値がV5の状態となった場合、1秒当たり100/30%を減算するため、積算時間は最大30秒後に0%となる。
 時間積算部108は、再び直流電圧値が第二の閾値V2を上回った場合、その直流電圧値に応じて積算時間を加算していく。本実施例では、基準となる時間を1秒と設定したが、より早い周期を基準としても良い。
 出力制御部107は、実施例2同様、積算時間の%値が、所定の時間100%を超えたかどうかを判断して、電力変換部104に遮断指令を与える。出力制御部107は、直流電圧値が第一の閾値V1を上回った場合も、電力変換部104に遮断指令を与える。
 上記の方法により、出力制御部107が、直流平滑部、特に本実施例で説明した平滑コンデンサの寿命を考慮した過電圧状態を判断することで、電力変換装置の駆動範囲を広げる。
 本実施例は、実施例1の変形例であって、電力変換器における過電圧判断の動作例を説明する。本実施例では実施例1と、共通する部分については同様の符号を用いて説明し、異なる部分について詳細に説明するものとする。本実施例の構成は、実施例1にて説明した図1の変形として、三相交流電源101、直流変換部102、平滑コンデンサ113A、平滑コンデンサ113B、電力変換部104、交流電動機105、直流電圧検出部116、出力制御部117、時間積算部118、データ出力部119を有する。
 平滑コンデンサ113Aおよび113Bは、直流変換部102から入力された直流電圧を平滑化し、電力変換部104に直流電圧を出力する。例えば発電機の出力が直流電圧の場合、平滑コンデンサ103は、直流変換部102を介さず、直接発電機から直流電圧を入力されても構わない。本実施例では、複数のコンデンサが直列につながれている様子を示している。
 直流電圧検出部116は、平滑コンデンサ113Aおよび113Bにかかる二系統の直流電圧を別々に検出し、直流電圧値として取り込み、直流電圧値を出力制御部117および時間積算部118に二系統分を出力する。
 出力制御部117は、直流電圧検出部116が出力した二系統分の直流電圧値及び、時間積算部108が出力した二系統分の時間積算値を入力とし、電力変換部104に出力指令を出力する。また、出力制御部117は、二系統分の直流電圧値いずれか一方が第一の閾値を超えた場合に、過電圧状態と判断し、二系統分の直流電圧値いずれか一方が第二の閾値を超えた状態が所定の時間経過した場合に、過電圧継続状態と判断し、電力変換部104に遮断指令を出力する。
 時間積算部108は、直流電圧検出部106が出力した二系統分の直流電圧値を入力とし、前記二系統分の直流電圧値に応じて、二系統別々に時間の積算を行い、出力制御部107に二系統分の時間積算値を出力する。また、時間積算部108は、直流電圧値が第二の閾値を超えた二系統分の状態と二系統分の時間積算値を、データ出力部119に出力する。
 データ出力部119は、例えば、入出力を行う端子台や表示パネル等のユーザインターフェースで構成され、時間積算部118が出力した二系統分の直流電圧値が第二の閾値を超えた二系統分の状態と二系統分の時間積算値を入力とし、ユーザインターフェースの端子あるいは表示パネル上に、直流電圧値が第二の閾値を超えた状態を警告状態と判断し警告信号として二系統分別々に出力する、あるいは時間積算値を二系統分別々に表示する。
 実施例4においては、実施例1または実施例2または実施例3で実施した過電圧判断の方法を二系統別々に行うものであり、平滑コンデンサ113Aおよび113Bうを個別に状態監視することにより、より正確に過電圧状態を判断できる。なお、平滑化コンデンサは、2つに限定されるものではなく、複数の平滑化コンデンサを別々に判断しても、本発明の意図は変わらない。
 上記の方法により、出力制御部117が、直流平滑部、特に本実施例で説明した平滑コンデンサの寿命を考慮した過電圧状態を判断することで、電力変換装置の駆動範囲を広げる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
101・・・三相交流電源、102・・・直流変換部、103・・・平滑コンデンサ、104・・・電力変換部、105・・・交流電動機、106・・・直流電圧検出部、107・・・出力制御部、108・・・時間積算部、109・・・データ出力部、113A・・・平滑コンデンサA、113B・・・平滑コンデンサB、116・・・直流電圧検出部、117・・・出力制御部、118・・・時間積算部、119・・・データ出力部

Claims (10)

  1.  直流電圧を平滑化する直流電圧部と、
     直流電圧を交流電圧に変換する電力変換部と、
     前記電力変換部の出力を制御する出力制御部と、
     前記直流電圧部の電圧を検出する直流電圧検出部と、
    を備え、
     前記出力制御部は、前記直流電圧検出部が検出した電圧値が第一の閾値を超えた時点で前記電力変換部の出力を遮断する制御と、前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに第一の閾値よりも小さい第二の閾値を超えた状態となる時間に基づいて前記電力変換部の出力を遮断する制御と、を行うことを特徴とする電力変換装置。
  2.  前記出力制御部は、前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに前記第二の閾値を超えた状態で所定時間経過した場合に、前記電力変換部の出力を遮断する制御を行うことを特徴とする請求項1に記載の電力変換装置。
  3.  前記直流電圧部は、平滑化コンデンサであって、前記第二の閾値を前記平滑コンデンサの定格電圧に基づいて設定することを特徴とする請求項1に記載の電力変換装置。
  4.  前記出力制御部は、前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに前記第二の閾値を超えた場合、前記電圧値が前記第一の閾値に近いほど、前記電力変換部の出力を遮断するまでの時間を短く制御することを特徴とする請求項1に記載の電力変換装置。
  5.  前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに、第一の閾値よりも小さい第二の閾値を超えた状態となる時間を積算する時間積算部を備え、
     前記出力制御部は、前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに前記第二の閾値を超えた状態が所定の時間以下経過後、前記第二の閾値を下回った場合、前記時間積算部が積算した時間を0にすることを特徴とする請求項1に記載の電力変換装置。
  6.  前記直流電圧検出部が検出した電圧値が前記第一の閾値を超えずに、第一の閾値よりも小さい第二の閾値を超えた状態となる時間を積算する時間積算部を備え、
     前記出力制御部は、前記直流電圧検出部が検出した電圧値が前記第二の閾値を超えた状態が所定の時間以下経過後、前記第二の閾値を下回った場合、前記第二の閾値を下回った時間に応じて前記時間積算部が積算した時間を減じていくことを特徴とする請求項1記載の電力変換装置。
  7.  前記出力制御部は、前記直流電圧検出部が検出した電圧値が前記第二の閾値を超えた場合、前記時間積算部が積算または減じた時間から、再度積算を開始することを特徴とする請求項6に記載の電力変換装置。
  8.  データを出力するデータ出力部を備え、
    前記データ出力部は、前記時間積算部の時間積算値を表示することを特徴とする請求項5または6に記載の電力変換装置。
  9.  データを出力するデータ出力部を備え、
    前記データ出力部は、前記直流電圧検出部が検出した電圧値が前記第二の閾値を超えた場合、警告を出力することを特徴とする請求項1に記載の電力変換装置。
  10.  前記直流電圧部は複数の平滑化コンデンサを備え、前記直流電圧検出部はそれぞれの平滑化コンデンサに対して配置され、前記出力制御部は、それぞれの直流電圧検出部が検出した電圧値が第一の閾値を超えた時点で前記電力変換部の出力を遮断し、前前記直流電圧検出部が検出した電圧値が前記第二の閾値を超えた状態が、前記所定の時間以上経過した場合、前記電力変換部の出力を遮断する制御を行うことを特徴とする請求項1に記載の電力変換装置。
PCT/JP2013/085032 2013-12-27 2013-12-27 電力変換装置 WO2015097838A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015554424A JP6216804B2 (ja) 2013-12-27 2013-12-27 電力変換装置
PCT/JP2013/085032 WO2015097838A1 (ja) 2013-12-27 2013-12-27 電力変換装置
CN201380079225.4A CN105850024B (zh) 2013-12-27 2013-12-27 电力转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085032 WO2015097838A1 (ja) 2013-12-27 2013-12-27 電力変換装置

Publications (1)

Publication Number Publication Date
WO2015097838A1 true WO2015097838A1 (ja) 2015-07-02

Family

ID=53477773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085032 WO2015097838A1 (ja) 2013-12-27 2013-12-27 電力変換装置

Country Status (3)

Country Link
JP (1) JP6216804B2 (ja)
CN (1) CN105850024B (ja)
WO (1) WO2015097838A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009915A (ja) * 2017-06-26 2019-01-17 東芝三菱電機産業システム株式会社 電圧異常検出装置
EP3584916A1 (en) * 2018-06-18 2019-12-25 LSIS Co., Ltd. Method for controlling inverter
CN111480288A (zh) * 2018-11-22 2020-07-31 三菱电机株式会社 电力转换系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235278A1 (ja) * 2017-06-23 2018-12-27 東芝三菱電機産業システム株式会社 電力変換装置の制御装置
CN109066579B (zh) * 2018-09-20 2020-02-07 重庆惠科金渝光电科技有限公司 一种过压保护方法及装置
CN114008907B (zh) * 2019-07-16 2024-03-08 株式会社日立产机系统 电力转换装置和劣化诊断系统
CN113411033A (zh) * 2021-07-15 2021-09-17 中冶赛迪工程技术股份有限公司 一种变频器带电机负载输入过电压判别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119933A (ja) * 1999-10-19 2001-04-27 Fujitsu Denso Ltd 過電流保護回路
JP2008141390A (ja) * 2006-11-30 2008-06-19 Denso Corp 過電流保護回路
WO2010055568A1 (ja) * 2008-11-13 2010-05-20 株式会社MERSTech 保護回路付き磁気エネルギー回生スイッチ
JP2011188581A (ja) * 2010-03-05 2011-09-22 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置および過負荷保護方法
JP2012070573A (ja) * 2010-09-27 2012-04-05 Fuji Electric Co Ltd インバータ装置の過電圧保護方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942143B2 (ja) * 2005-12-15 2012-05-30 東芝三菱電機産業システム株式会社 インバータ装置及びその過電圧保護方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119933A (ja) * 1999-10-19 2001-04-27 Fujitsu Denso Ltd 過電流保護回路
JP2008141390A (ja) * 2006-11-30 2008-06-19 Denso Corp 過電流保護回路
WO2010055568A1 (ja) * 2008-11-13 2010-05-20 株式会社MERSTech 保護回路付き磁気エネルギー回生スイッチ
JP2011188581A (ja) * 2010-03-05 2011-09-22 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置および過負荷保護方法
JP2012070573A (ja) * 2010-09-27 2012-04-05 Fuji Electric Co Ltd インバータ装置の過電圧保護方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009915A (ja) * 2017-06-26 2019-01-17 東芝三菱電機産業システム株式会社 電圧異常検出装置
EP3584916A1 (en) * 2018-06-18 2019-12-25 LSIS Co., Ltd. Method for controlling inverter
CN111480288A (zh) * 2018-11-22 2020-07-31 三菱电机株式会社 电力转换系统

Also Published As

Publication number Publication date
JPWO2015097838A1 (ja) 2017-03-23
CN105850024B (zh) 2019-01-01
CN105850024A (zh) 2016-08-10
JP6216804B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6216804B2 (ja) 電力変換装置
JP5947109B2 (ja) 無停電電源装置、無停電電源装置の制御方法
US8030878B2 (en) Motor driving device having power failure detection function
JP2012070573A (ja) インバータ装置の過電圧保護方法
TWI509976B (zh) 電動機驅動用電源裝置及使用該電源裝置之回生方法
JP6882390B2 (ja) 真空ポンプおよびその運転方法
CN105099134B (zh) 电力电子变换系统中直流母线电容电压的泄放方法及装置
CN109699196B (zh) 电力转换装置和电力转换装置系统
JP2016073029A (ja) Lclフィルタ保護機能を有するモータ制御装置
JP4604498B2 (ja) モータ駆動用インバータ制御装置、および空気調和機
EP2506423A2 (en) Power Converting Device
CN108347213B (zh) 电动机驱动装置
CN111071048A (zh) 电容放电方法和装置、电子设备和存储介质
US9866105B2 (en) Method of controlling an inverter
JP2012157154A (ja) モータ制御装置
JP2015035894A (ja) 電力変換装置および電力変換装置の制御方法
US10277026B2 (en) Power converter
JP4851183B2 (ja) 過電流検出機能を備えたコンデンサ入力型整流回路及びそれを用いたインバータ装置
KR20160141979A (ko) 인버터 보호 장치
JP6462206B2 (ja) 電力変換装置および制御方法
JP2018007334A (ja) 電動機駆動装置
JP4609634B2 (ja) 交流−交流直接変換器の保護装置
EP3229367A1 (en) Power converter and control method of power converter
JP6539354B2 (ja) 電力変換装置
CN108352793B (zh) 电力转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900518

Country of ref document: EP

Kind code of ref document: A1