WO2015096780A1 - 珠宝玉石鉴定方法及装置 - Google Patents

珠宝玉石鉴定方法及装置 Download PDF

Info

Publication number
WO2015096780A1
WO2015096780A1 PCT/CN2014/094982 CN2014094982W WO2015096780A1 WO 2015096780 A1 WO2015096780 A1 WO 2015096780A1 CN 2014094982 W CN2014094982 W CN 2014094982W WO 2015096780 A1 WO2015096780 A1 WO 2015096780A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
tested
raman
jewellery
light
Prior art date
Application number
PCT/CN2014/094982
Other languages
English (en)
French (fr)
Inventor
赵自然
张丽
耿莹莹
王红球
易裕民
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to BR112015032683-8A priority Critical patent/BR112015032683B1/pt
Priority to JP2016542925A priority patent/JP6302561B2/ja
Priority to EP14873997.2A priority patent/EP3088870B1/en
Priority to MX2016008398A priority patent/MX360341B/es
Publication of WO2015096780A1 publication Critical patent/WO2015096780A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/87Investigating jewels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Definitions

  • the invention relates to the technical field of jewellery and jade detection, in particular to a method and a device for identifying jewels and jade by using Raman spectroscopy.
  • Some new methods for jewellery and jade identification include thermal reaction, chemical reaction, Mohs hardness, thermal conductivity, infrared, ultraviolet visible, X-ray diffraction analysis, etc. These methods are either destructive to the sample to be tested and are not suitable for jewelry and jade. Non-destructive testing; it has the disadvantages of expensive instrument, poor mobility, complicated maintenance, complicated operation, and unsuitable for micro-area analysis. Therefore, it is necessary to use a device and method with simple operation and accurate results for the identification of jewellery and jade. .
  • a jewellery and jade identification method comprising the steps of:
  • the jewellery and jade identification method may further include the following steps before the step (a):
  • the jewellery and jade identification method may further include:
  • step (c) may further include:
  • the similarity can be defined as
  • A(x) is the Raman spectral curve function of the sample to be tested
  • B(x) is a standard Raman spectral curve function
  • the similarity can be defined as
  • A(x) is the Raman spectral curve function of the sample to be tested
  • B(x) is the standard Raman spectral curve function
  • a 1 , A 2 ,..., A n and B 1 , B 2 ,..., B n respectively n sample points for A(x) and B(x).
  • the similarity can be defined as
  • A(x) is the Raman spectral curve function of the sample to be tested
  • B(x) is the standard Raman spectral curve function
  • a 1 , A 2 ,..., A n and B 1 , B 2 ,..., B n respectively n sample points for A(x) and B(x).
  • step (c) may further include: before the step (c1):
  • a jewellery and jade identification device comprising:
  • a stage having a bearing surface for carrying a sample to be tested thereon, the bearing surface being provided with one or more light exit holes, the light exit holes corresponding to one or more measurements position;
  • An optical probe located below the bearing surface, for emitting excitation light from below the bearing surface through one of the light exit holes to its corresponding measurement position and collecting from the measurement position from the test position Raman light of the sample;
  • a data processing device for generating a Raman spectral curve from the Raman light collected by the optical probe and comparing the Raman spectral curve with a standard Raman spectroscopy library of jewels to identify the sample to be tested.
  • the jewellery and jade identification device may further include a protective baffle and a sliding rail carrying a protective baffle, the protective baffle being located above the carrying surface and capable of sliding in a vertical direction along the sliding rail shift.
  • the diameter of the light exit hole may be scalable.
  • the carrying surface may have a first light exit hole and a second light exit hole respectively corresponding to the first measurement position and the second measurement position, and the stage can be moved in a horizontal direction relative to the optical probe such that The measurement position corresponding to the optical probe is switched between the first measurement position and the second measurement position.
  • At least one aspect of the above-described technical solution of the present invention enables rapid detection of jewels and jade by a combination of a light exit hole of a bearing surface on a stage and an optical probe below the load bearing surface. This solution enables efficient, simple and accurate identification of jewellery and jade samples.
  • FIG. 1 is a perspective view schematically showing a jewellery and jade identification device according to an embodiment of the present invention
  • FIG. 2 is a side view schematically showing a jewellery and jade identification device according to an embodiment of the present invention
  • FIG. 3 is a flow chart schematically showing a method for identifying a jewellery jade according to an embodiment of the present invention
  • FIG. 4 is a flow chart schematically showing a jewellery and jade identification method according to another embodiment of the present invention.
  • FIG. 5 is a flow chart schematically showing steps of comparing a Raman spectrum curve of a sample to be tested and a standard Raman spectrum library according to an embodiment of the present invention.
  • 6 and 7 show an identification example of a jewelry identification method according to an embodiment of the present invention.
  • the jewellery and jig identification device 20 can include a stage 21, an optical probe 22, and a data processing device (not shown).
  • the stage 21 (which may be in the form of a bracket, a tray, a pallet, etc.) may have a bearing surface 211 for carrying a sample 26 to be tested thereon, the bearing surface 211 being provided with light exit holes 212, 213
  • the light exit holes 212, 213 correspond to measurement positions.
  • the light exit holes may have one or more, and accordingly, there may be one or more measurement positions corresponding thereto.
  • the optics The probe 22 is located below the bearing surface 211 for emitting excitation light from below the bearing surface 111 through the light exit holes 212, 213 to the measurement position and collecting Raman light from the sample to be tested 26 from the measurement position.
  • the data processing device is capable of generating a Raman spectral curve from the Raman light collected by the optical probe 22 and comparing the Raman spectral curve to a standard Raman spectroscopy library of jewels to identify the sample to be tested 26.
  • the sample to be tested 26 (for example, a bead string) is placed on the bearing surface 211 and the optical probe 22 irradiates the excitation light through the light exit holes 212, 213 on the bearing surface 211 from below to the sample to be tested. 26.
  • this aspect can prevent the optical device from interfering with the sample to be tested 26, and on the other hand, the light exit of the optical probe 22 and the sample to be tested 26 can be maintained.
  • the stable distance for example, can make the focus position of the excitation light be located near the light exit holes 212, 213, which can accurately ensure multiple measurements of the sample 26 to be tested, and the measurement of the plurality of samples to be tested 26 is performed with the same illumination intensity. It is not necessary to adjust the relative position of the optical probe 22 to the sample to be tested 26 each time, so that it is easy to suppress the error due to the measurement consistency problem.
  • the jewellery and jade identification device 20 is easily applied to the rapid detection of a series of samples 26 to be tested, for example, for bead strings, only The bead string is moved on the bearing surface 211, so that the beads on the bead string are sequentially placed at the light exit holes 212, 213, so that the rapid detection of each bead in the bead string can be realized.
  • the optical system of the optical probe 22 may be constructed of optical discrete components, or the optical probe 22 may be a fiber optic probe.
  • optical probe 22 may include a laser source, or the laser source may be separate from optical probe 22.
  • the laser wavelength used may be 785 nm, and other wavelengths may be used.
  • the optical probe 22 may also include the necessary control modules, such as modules for laser drive and control, or the control module may be disposed external to the optical probe 22, such as in a data processing device.
  • the data processing apparatus may have a standard Raman spectrum of a jewellery jade sample of a known composition for comparison and a library of standard Raman spectra of a pseudo-mim (eg, plastic, glass, etc.).
  • the data processing device may also have special tools for the user to collect and create or supplement a library of standard Raman spectra.
  • the jewellery and jade identification device 1 may further include a guard baffle 23 and a slide rail 24 carrying the guard baffle 23.
  • the guard baffle 23 is located above the load bearing surface 26 and is slidable in the vertical direction along the slide rail 24.
  • the protective barrier 23 can be mounted to the shift The slider 25 is moved and slidably coupled to the slide rail 24 by moving the slider 25.
  • the protective baffle 23 is used to cover the light exit hole above the bearing surface 211 when detecting, so as to prevent the excitation light from harming the operator's eyes.
  • the diameters of the light exit holes 212, 213 are scalable. For jewellery jade, different parts may have different compositional differences, and therefore, it is sometimes necessary to perform a special test on a small part of the sample to be tested 26. In order to accurately direct the excitation light to the desired portion of the sample 26 to be tested while avoiding interference with the detection results by other portions of the sample to be tested 26, the diameters of the apertures 212, 213 may be reduced. When a larger portion of the sample 26 to be tested is required to be detected, the diameter of the apertures 212, 213 can be enlarged to allow more excitation light to reach the sample 26 to be tested to avoid loss of light intensity and to improve signal to noise ratio.
  • the light exit holes 212, 213 may have one or more.
  • the bearing surface 26 may have a first light exit hole 212 and a second light exit hole 213 corresponding to the first measurement position and the second measurement position, respectively, and the stage 21 can be horizontally opposite to the optical probe 22.
  • the movement causes the measurement position corresponding to the optical probe 22 to switch between the first measurement position and the second measurement position.
  • the detection does not have to move the sample to be tested one by one. This is very helpful for improving the efficiency of fast detection, especially when there are more light holes.
  • loading/unloading of the sample 26 to be tested can be performed on both sides of the stage 21 in the translational direction, and the sample to be tested 26 is switched one by one by the reciprocal translation of the stage 21 to improve efficiency.
  • FIG. 3 schematically illustrates a flow chart of a jewellery jade identification method 10 in accordance with an embodiment of the present invention. As shown by the solid line in FIG. 3, the jewellery and jade identification method 10 can include the following steps:
  • Step 200 Place a sample to be tested 26 on a light exit hole 212 on the bearing surface 211 of the stage 21, and transmit the excitation light through the light exit hole 212 through the optical probe 22 located under the bearing surface 211 to the Sample 26 to be tested and collecting Raman light from the sample to be tested;
  • Step 300 obtaining a Raman spectrum curve of the sample to be tested from the Raman light of the collected sample to be tested;
  • Step 400 The Raman spectrum curve is compared with a standard Raman spectroscopy library of jewels to identify the sample to be tested.
  • Step 200 includes an optional step 100 of measuring the Raman spectrum of the jewel sample of known composition and/or the Raman spectrum of the pseudo-imitation to obtain a standard Raman spectrum to establish a standard Raman spectrum library.
  • the standard Raman spectroscopy library may be collected in the field, or may have been previously collected, or even purchased as a commercial standard Raman spectroscopy library module.
  • Fig. 4 schematically illustrates a jewellery jade identification method 10' in which more than one light exit aperture is utilized in accordance with another embodiment of the present invention.
  • the jewellery and jade identification method 10' is different from the jewellery and jade identification method 10 shown in Fig. 3 in that it further includes the following steps:
  • Step 500 Place another sample to be tested 26 at another light exit hole 213 on the bearing surface 211 of the stage 21, and move the stage 21 in the horizontal direction with respect to the optical probe 22 such that the optical probe 22 Excitation light is emitted through the other light exit hole 213 on the bearing surface 211 onto the other sample to be tested 26 and collects Raman light from the other sample to be tested 26;
  • Step 600 obtaining a Raman spectrum curve of the another sample to be tested 26 from the collected Raman light of the other sample to be tested 26;
  • Step 700 Compare the Raman spectrum curve of the other sample to be tested 26 with a standard Raman spectrum library of jewels to identify the other sample to be tested 26.
  • Fig. 5 schematically shows an example of the step 400 in the jewellery and jade identification method 10, 10' described above.
  • the step 400 can include:
  • Step 403 Calculate the similarity between the Raman spectrum curve and the standard Raman spectrum curve in the standard Raman spectrum library.
  • Corr represents the similarity between the Raman spectral curve function of the sample to be tested and the standard Raman spectral curve function, and " ⁇ " represents the dot product operation.
  • A(x) and B(x) may be sampled separately to obtain n sample points, denoted as A 1 , A 2 , . . . , A n and B 1 , B 2 , . . . , B n , the similarity of the Raman spectral curve function of the sample to be tested and the standard Raman spectral curve function Corr can be calculated according to the formula (2):
  • also represents a dot product operation.
  • A(x) and B(x) may also be sampled separately to obtain n sample points, respectively denoted as A 1 , A 2 , . . . , A n and B 1 , B 2 ,... , B n , the similarity of the Raman spectral curve function of the sample to be tested and the standard Raman spectral curve function Corr can be calculated according to the formula (3):
  • the above similarity calculation may be performed for the entire Raman spectrum curve, or may be performed only for the portion having the characteristic portion in the Raman spectrum curve.
  • the similarity with the Raman spectral curve function and the standard Raman spectral curve function of the sample to be tested The calculations are basically the same and will not be described here. The above is merely an example of some similarity calculations, and some other similarity calculation methods known to those skilled in the art are also feasible.
  • the composition of the sample to be tested is consistent with the composition of the sample corresponding to the standard Raman spectral curve.
  • the identification of the sample to be tested is completed. Conversely, if it is below a predetermined threshold, it can be determined that the composition of the sample to be tested does not coincide with the composition of the sample corresponding to the standard Raman spectral curve.
  • the predetermined threshold can be given according to actual detection requirements, accuracy of the detection instrument, and the like.
  • step 400 may also include two optional steps prior to step 403 above. which is:
  • Step 401 Search for one or more characteristic peaks from the Raman spectral curve
  • Step 402 Calculate the peak position and the peak width of the searched characteristic peak, and compare the peak position and the peak width with the peak position and the peak width of the characteristic peak in the standard Raman spectral curve to be needed in step 403.
  • the calculated standard Raman spectroscopy curve was used for pre-screening.
  • the standard Raman spectrum curve which is significantly different from the Raman spectrum curve of the sample to be tested 26 can be eliminated by peak search and peak screening, thereby reducing the amount of calculation in step 403.
  • two high and low thresholds can be estimated by using the statistical distribution of peak signals in the Raman spectral curve.
  • the search process when the signal amplitude is greater than the high threshold, the peak is considered to be found. And find backward and backward to find the peak start and end points below the low threshold, and then calculate the peak height, peak width and other parameters.
  • the present invention is not limited thereto, and other methods capable of performing characteristic peak search and calculation of peak width and peak position are also possible.
  • the similarity calculation may even be simplified to whether or not the Raman spectrum curve of the sample to be tested 26 is in a certain one.
  • the characteristic peak corresponding to the characteristic peak of the standard Raman spectrum curve exists at more or more positions to directly determine.
  • Fig. 6 is a view showing the identification results of the Hetian jade sample, in which the dotted line shows the Raman spectrum curve of the sample to be measured, and the solid line shows the standard Raman spectrum curve of Hetian jade. It can be clearly seen from Fig. 6 that the characteristic peak of the Raman spectrum curve of the measured sample is substantially identical to the standard Raman spectrum curve, and the sample can be determined to be Hetian jade.
  • the identification result shown in FIG. 7 indicates that the Raman spectrum curve of the sample to be tested is consistent with the standard Raman spectrum curve of the polystyrene plastic, which indicates that the sample to be tested is made of polystyrene plastic. Made of fake imitations.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

ー种珠宝玉石鉴定方法及设备,所述方法包括以下步骤:(a) 将ー待测样品放置到载物台的承载表面上的一出光孔处,利用位于承载表面下方的光学探头将激发光通过所述出光孔发射到所述待测样品上并收集来自待测样品的拉曼光;(b)由所收集到的待测样品的拉曼光获得待测样品的拉曼光谱曲线;以及(c)将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品进行鉴定。所述方法及设备可以实现对珠宝玉石样品的高效、简便和准确的鉴定。

Description

珠宝玉石鉴定方法及装置
本申请要求于2013年12月27日递交中国专利局的、申请号为201310741368.9的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明涉及珠宝玉石检测技术领域,尤其涉及一种利用拉曼光谱技术来对珠宝玉石进行鉴定的方法和设备。
背景技术
随着物质文化生活的提高,人们对珠宝玉石的需求日益增多,促进了珠宝玉石市场的繁荣发展,然而,随着珠宝玉石市场的扩大,各种各样的人工宝石干扰了市场的正常发展,各种以假乱真、以次充好的现象层出不穷。对于珠宝玉石的鉴定,显得越来越重要。传统的珠宝玉石的鉴定方法包括放大镜观测、硬度测定、折光率测定以及显微镜观测等,这些方法参数单一、精确度低、不能对物质进行唯一性识别,同时,这些技术很大程度上依赖于鉴定人员的知识积累与经验。一些新型的珠宝玉石鉴定方法包括热反应、化学反应、摩氏硬度、热导性、红外,紫外可见、X射线衍射分析等,这些方法中要么对被测样品具有破坏性,不适宜对珠宝玉石的无损检测;要么具有仪器贵重、可移动性差、维护精细复杂,并且操作复杂,不适宜进行微区分析等缺点,因此,需要一种操作简单,结果准确的设备和方法应用于珠宝玉石的鉴定。
发明内容
本发明的目的是提供一种利用拉曼光谱测量的珠宝玉石鉴定方法及设备,其能够快速、高效、准确地鉴定待测样品的真伪。
为了实现上述发明目的,本发明的技术方案通过以下方式来实现:
根据本发明的第一方面,提供一种珠宝玉石鉴定方法,包括以下步骤:
(a)将一待测样品放置到载物台的承载表面上的一出光孔处,利用位于承 载表面下方的光学探头将激发光通过所述出光孔发射到所述待测样品上并收集来自待测样品的拉曼光;
(b)由所收集到的待测样品的拉曼光获得待测样品的拉曼光谱曲线;以及
(c)将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品进行鉴定。
进一步地,所述珠宝玉石鉴定方法在上述步骤(a)之前还可以包括以下步骤:
(o)对已知成分的珠宝玉石样品的拉曼光谱和/或伪仿品的拉曼光谱进行测量以获得标准拉曼光谱从而建立标准拉曼光谱图库。
更进一步地,所述珠宝玉石鉴定方法还可以包括:
(d)将另一待测样品放置到载物台的承载表面上的另一出光孔处,将载物台相对于光学探头在水平方向上移动使得所述光学探头将激发光通过承载表面上的所述另一出光孔发射到所述另一待测样品上并收集来自所述另一待测样品的拉曼光;
(e)由所收集到的所述另一待测样品的拉曼光获得所述另一待测样品的拉曼光谱曲线;以及
(f)将所述另一待测样品的拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对所述另一待测样品进行鉴定。
进一步地,所述步骤(c)还可以包括:
(c1)计算所述拉曼光谱曲线与标准拉曼光谱图库中的标准拉曼光谱曲线的相似度。
具体地,所述相似度可以定义成
Figure PCTCN2014094982-appb-000001
其中A(x)为待测样品的拉曼光谱曲线函数,B(x)为标准拉曼光谱曲线函数。
具体地,所述相似度可以定义成
Figure PCTCN2014094982-appb-000002
其中A(x)为待测样品的拉曼光谱曲线函数,B(x)为标准拉曼光谱曲线函数,A1,A2,…,An以及B1,B2,…,Bn分别为A(x)和B(x)的n个采样点。
具体地,所述相似度可以定义成
Figure PCTCN2014094982-appb-000003
其中A(x)为待测样品的拉曼光谱曲线函数,B(x)为标准拉曼光谱曲线函数,A1,A2,…,An以及B1,B2,…,Bn分别为A(x)和B(x)的n个采样点。
具体地,所述步骤(c)在步骤(c1)之前还可以包括:
(c01)从所述拉曼光谱曲线中搜索一个或更多个特征峰;
(c02)计算所搜索到的特征峰的峰位与峰宽,并将所述峰位与峰宽与标准拉曼光谱曲线中的特征峰的峰位与峰宽对比以对需要在步骤(c1)中进行计算的标准拉曼光谱曲线进行预筛选。
根据本发明的另一方面,提供一种珠宝玉石鉴定设备,包括:
载物台,所述载物台具有用于将待测样品承载于其上的承载表面,所述承载表面设有一个或更多个出光孔,所述出光孔对应于一个或更多个测量位置;
光学探头,所述光学探头位于所述承载表面下方,用于将激发光从所述承载表面下方通过所述出光孔中的一个发射到其所对应的测量位置和从该测量位置收集来自待测样品的拉曼光;和
数据处理装置,所述数据处理装置用于根据光学探头收集到的拉曼光生成拉曼光谱曲线并将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品进行鉴定。
进一步地,所述珠宝玉石鉴定设备还可以包括防护挡板和承载防护挡板的滑轨,所述防护挡板位于所述承载表面上方并能够沿所述滑轨在竖直方向上滑 移。
进一步地,所述出光孔的直径可以是可缩放的。
更进一步地,所述承载表面可以具有第一出光孔和第二出光孔,分别对应于第一测量位置和第二测量位置,所述载物台能够相对于光学探头在水平方向上移动使得所述光学探头所对应的测量位置在第一测量位置和第二测量位置之间切换。
本发明的上述技术方案中的至少一个方面能够通过载物台上的承载表面的出光孔和承载表面下方的光学探头的组合来实现对于珠宝玉石的快速检测。这种方案可以实现对于珠宝玉石样品的高效、简便和准确的鉴定。
附图说明
图1示意性地示出根据本发明一实施例的珠宝玉石鉴定设备的立体图;
图2示意性地示出根据本发明一实施例的珠宝玉石鉴定设备的侧视图;
图3示意性地示出根据本发明一实施例的珠宝玉石鉴定方法的流程图;
图4示意性地示出根据本发明另一实施例的珠宝玉石鉴定方法的流程图;
图5示意性地示出根据本发明一实施例的对比待测样品的拉曼光谱曲线和标准拉曼光谱图库的步骤的流程图;和
图6和7示出根据本发明的实施例的珠宝鉴定方法的鉴定示例。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号表示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图1-2示意性地示出根据本发明一实施例的珠宝玉石鉴定设备的立体图和侧视图。该珠宝玉石鉴定设备20可以包括载物台21、光学探头22和数据处理装置(未示出)。所述载物台21(例如可以是托架、托盘、托板等形式)可以具有用于将待测样品26承载于其上的承载表面211,所述承载表面211设有出光孔212、213,所述出光孔212、213对应于测量位置。所述出光孔可以有一个或更多个,相应地,与之对应的测量位置也可以有一个或更多个。所述光学 探头22位于所述承载表面211下方,用于将激发光从所述承载表面111下方通过所述出光孔212、213发射到测量位置和从测量位置收集来自待测样品26的拉曼光。所述数据处理装置能够根据光学探头22收集到的拉曼光生成拉曼光谱曲线并将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品26进行鉴定。
在本发明的实施例中,待测样品26(例如珠串)被放置于承载表面211之上而光学探头22从下方将激发光通过承载表面211上的出光孔212、213照射到待测样品26。与传统的将光学装置放在待测样品上方的方式相比,这一方面能够避免光学装置妨碍取放待测样品26,另一方面也使得光学探头22的出光口与待测样品26可以保持稳定的距离,例如可以使得激发光的聚焦位置位于出光孔212、213附近,这可以准确地保证待测样品26的多次测量、多个待测样品26的测量以同样的照射光强进行,而不需要每次调整光学探头22与待测样品26的相对位置,从而易于抑制由于测量一致性问题造成的误差。而且,由于不需要每次调整光学探头22与待测样品26的相对位置,该珠宝玉石鉴定设备20易于应用于对成串的待测样品26的快速检测,例如,对于珠串,只需要在承载表面211上移动珠串,使珠串上的珠子依次置于出光孔212、213处,即可实现对珠串中的每个珠子的快速检测。
作为示例,光学探头22的光学系统可以由光学分立元件构成,或者,光学探头22可以为光纤探头。作为示例,光学探头22可以包括激光源,或者激光源也可以与光学探头22是分立的。在一示例中,所使用的激光波长可以是785nm,也可以采用其它波长。作为示例,光学探头22也可以包括必要的控制模块,例如用于激光驱动和控制的模块,或者,该控制模块也可以设置于光学探头22外部,例如设置在数据处理装置中。
作为示例,所述数据处理装置可以具有用于进行对比的已知成分的珠宝玉石样品的标准拉曼光谱以及伪仿品(例如塑料、玻璃等)的标准拉曼光谱的图库。所述数据处理装置还可以具有专门工具,方便使用者采集和建立或补充标准拉曼光谱的图库。
作为示例,如图1-2所示,珠宝玉石鉴定设备1还可以包括防护挡板23和承载防护挡板23的滑轨24。所述防护挡板23位于所述承载表面26上方并能够沿所述滑轨24在竖直方向上滑移。在一示例中,防护挡板23可以安装于移 动滑块25上,并通过移动滑块25与滑轨24实现可滑移地连接。所述防护挡板23用于在进行检测时在承载表面211的上方遮住出光孔,以免激发光伤害到操作者的眼睛。
在一示例中,所述出光孔212、213的直径是可缩放的。对于珠宝玉石而言,其不同的局部可能具有不同的成分差别,因此,有时需要对待测样品26的某个小的局部进行特别检测。为了精确地将激发光引导至所期望的待测样品26的局部而避免待测样品26的其它部分对检测结果的干扰,可以缩小出光孔212、213的直径。而当需要对待测样品26的更大的局部进行检测时,可以扩大出光孔212、213的直径使更多的激发光到达待测样品26以避免光强损失和提高信噪比。
如上所述,出光孔212、213可以有一个或更多个。例如,所述承载表面26可以具有第一出光孔212和第二出光孔213,分别对应于第一测量位置和第二测量位置,所述载物台21能够相对于光学探头22在水平方向上移动使得所述光学探头22所对应的测量位置在第一测量位置和第二测量位置之间切换。这意味着当预先将不同的待测样品26放置于不同的出光孔处(例如第一、第二出光孔212、213)则可以通过载物台21的平移来切换对于不同的待测样品26的检测,而不必逐个地移动待测样品。这对于提高快速检测的效率很有帮助,特别是设置有比较多的出光孔的情况。例如可以在载物台21沿平移方向的两侧上进行待测样品26的装载/卸载,而利用载物台21的往复平移来逐个切换待测样品26以提高效率。
图3示意性地示出根据本发明的一实施例的珠宝玉石鉴定方法10的流程图。如图3中的实线框所示,该珠宝玉石鉴定方法10可以包括以下步骤:
步骤200:将一待测样品26放置到载物台21的承载表面211上的一出光孔212处,利用位于承载表面211下方的光学探头22将激发光通过所述出光孔212发射到所述待测样品26上并收集来自待测样品的拉曼光;
步骤300:由所收集到的待测样品的拉曼光获得待测样品的拉曼光谱曲线;以及
步骤400:将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品进行鉴定。
作为示例,如图3中的虚线框所示,该珠宝玉石鉴定方法10还可以在上述 步骤200之前包括可选的步骤100:对已知成分的珠宝玉石样品的拉曼光谱和/或伪仿品的拉曼光谱进行测量以获得标准拉曼光谱从而建立标准拉曼光谱图库。
在本发明的上述实施例中,标准拉曼光谱图库可以是现场采集的,也可以是之前已经收集好的,甚至可以是购买的商业标准拉曼光谱图库模块。
图4示意性地示出了根据本发明的另一实施例的珠宝玉石鉴定方法10’,其中利用了不止一个出光孔。该珠宝玉石鉴定方法10’与如图3所示的珠宝玉石鉴定方法10相比,区别在于,还包括以下步骤:
步骤500:将另一待测样品26放置到载物台21的承载表面211上的另一出光孔213处,将载物台21相对于光学探头22在水平方向上移动使得所述光学探头22将激发光通过承载表面211上的所述另一出光孔213发射到所述另一待测样品26上并收集来自所述另一待测样品26的拉曼光;
步骤600:由所收集到的所述另一待测样品26的拉曼光获得所述另一待测样品26的拉曼光谱曲线;以及
步骤700:将所述另一待测样品26的拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对所述另一待测样品26进行鉴定。
本领域技术人员应当理解,虽然,上述示例仅以两个出光孔为例进行介绍,但是也可以采用更多的出光孔,并通过载物台21的平移在这些出光孔之间进行切换以实现对不同的待测样品26的更换。如前所述,利用多于一个出光孔的结构,可以进一步提高检测效率,这在快速检测中尤其有益。
图5示意性地示出了上述珠宝玉石鉴定方法10、10’中的步骤400的示例。在该示例中,该步骤400可以包括:
步骤403:计算所述拉曼光谱曲线与标准拉曼光谱图库中的标准拉曼光谱曲线的相似度。
相似度的计算有多种方法。例如,假定待测样品的拉曼光谱曲线函数为A(x),标准拉曼光谱曲线函数为B(x),在一示例中,可以通过式(1)对两者的相似度进行计算:
Figure PCTCN2014094982-appb-000004
其中Corr表示待测样品的拉曼光谱曲线函数和标准拉曼光谱曲线函数的相似度,“·”表示点积运算。
在另一示例中,可以对A(x)和B(x)分别进行采样以各获得n个采样点,分别表示为A1,A2,…,An以及B1,B2,…,Bn,待测样品的拉曼光谱曲线函数和标准拉曼光谱曲线函数的相似度Corr可以根据式(2)进行计算:
Figure PCTCN2014094982-appb-000005
其中,“·”也表示点积运算。
在另一示例中,亦可以对A(x)和B(x)分别进行采样以各获得n个采样点,分别表示为A1,A2,…,An以及B1,B2,…,Bn,待测样品的拉曼光谱曲线函数和标准拉曼光谱曲线函数的相似度Corr可以根据式(3)进行计算:
Figure PCTCN2014094982-appb-000006
上述相似度计算可以针对整个拉曼光谱曲线进行,也可以仅针对于拉曼光谱曲线中具有特征部分的局部进行。对于上述步骤700中另一待测样品的拉曼光谱曲线函数和标准拉曼光谱曲线函数的相似度的计算,与上述待测样品的拉曼光谱曲线函数和标准拉曼光谱曲线函数的相似度的计算基本相同,在此不再赘述。以上仅是给出了一些相似度计算的示例,本领域技术人员所知的一些其他的相似度计算方法也是可行的。
对于待测样品的拉曼光谱曲线函数和标准拉曼光谱曲线函数的相似度,如果其超过预定的阈值,则可以判定待测样品的成分与标准拉曼光谱曲线所对应的样品的成分一致以完成对于待测样品的鉴定。相反,如果其低于预定的阈值,则可以判定待测样品的成分与标准拉曼光谱曲线所对应的样品的成分不一致。该预定的阈值可以根据实际的检测需要、检测仪器的精度等因素来给出。
如图所示,步骤400还可以包括在上述步骤403之前的两个可选的步骤, 即:
步骤401:从所述拉曼光谱曲线中搜索一个或更多个特征峰;以及
步骤402:计算所搜索到的特征峰的峰位与峰宽,并将所述峰位与峰宽与标准拉曼光谱曲线中的特征峰的峰位与峰宽对比以对需要在步骤403中进行计算的标准拉曼光谱曲线进行预筛选。
由于珠宝玉石种类繁多,在对珠宝玉石的鉴定中,可能需要将待测样品26的拉曼光谱曲线与多种标准拉曼光谱曲线分别进行对比。如果对于每种标准拉曼光谱曲线都进行相似度计算,则可能导致计算量较大。而借助于上述步骤401、402,可以通过峰搜索和峰筛选排除掉与待测样品26的拉曼光谱曲线差异明显的标准拉曼光谱曲线,从而减小步骤403中的计算量。对于特征峰的搜索以及峰宽和峰高的计算,例如可以利用拉曼光谱曲线中的峰信号统计分布估计出两个高低阈值,在搜索过程中,当信号幅度大于高阈值,认为找到峰,并向前向后找到小于低阈值处认为是峰起始和结束点,进而计算峰高、峰宽等参数。但本发明不限于此,其它的能够进行特征峰的搜索以及峰宽和峰位的计算的方法也是可行的。
另外,作为示例,在待测样品26的拉曼光谱曲线的特征峰比较明显的情况下,在实际中,相似度计算甚至可以简化成搜索待测样品26的拉曼光谱曲线中是否在某一个或更多个位置上存在与标准拉曼光谱曲线的特征峰相对应的特征峰来直接进行确定。
图6和图7给出了利用根据本发明的实施例的珠宝玉石鉴定方法来鉴定样品的示例。图6示出了和田玉样品的鉴定结果图,其中虚线所示的是所测样品的拉曼光谱曲线,实线所示的是和田玉的标准拉曼光谱曲线。从图6中可以清楚地看出,所测得的样品的拉曼光谱曲线的特征峰与标准拉曼光谱曲线基本一致,可以判定该样品为和田玉。
而在另一鉴定示例中,图7示出的鉴定结果表明待测样品的拉曼光谱曲线与聚苯乙烯塑料的标准拉曼光谱曲线相一致,这表明该待测样品为由聚苯乙烯塑料制成的伪仿品。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本发明总体构思的一些实施例已被显示和说明,本领域普通技术人员 将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (12)

  1. 一种珠宝玉石鉴定方法,包括以下步骤:
    (a)将一待测样品放置到载物台的承载表面上的一出光孔处,利用位于承载表面下方的光学探头将激发光通过所述出光孔发射到所述待测样品上并收集来自待测样品的拉曼光;
    (b)由所收集到的待测样品的拉曼光获得待测样品的拉曼光谱曲线;以及
    (c)将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品进行鉴定。
  2. 根据权利要求1所述的珠宝玉石鉴定方法,其中,在上述步骤(a)之前还包括以下步骤:
    (o)对已知成分的珠宝玉石样品的拉曼光谱和/或伪仿品的拉曼光谱进行测量以获得标准拉曼光谱从而建立标准拉曼光谱图库。
  3. 根据权利要求1或2所述的珠宝玉石鉴定方法,还包括:
    (d)将另一待测样品放置到载物台的承载表面上的另一出光孔处,将载物台相对于光学探头在水平方向上移动使得所述光学探头将激发光通过承载表面上的所述另一出光孔发射到所述另一待测样品上并收集来自所述另一待测样品的拉曼光;
    (e)由所收集到的所述另一待测样品的拉曼光获得所述另一待测样品的拉曼光谱曲线;以及
    (f)将所述另一待测样品的拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对所述另一待测样品进行鉴定。
  4. 根据权利要求1或2所述的珠宝玉石鉴定方法,其中,所述步骤(c)包括:
    (c1)计算所述拉曼光谱曲线与标准拉曼光谱图库中的标准拉曼光谱曲线的相似度。
  5. 根据权利要求4所述的珠宝玉石鉴定方法,其中,所述相似度定义成
    Figure PCTCN2014094982-appb-100001
    其中A(x)为待测样品的拉曼光谱曲线函数,B(x)为标准拉曼光谱曲线函数。
  6. 根据权利要求4所述的珠宝玉石鉴定方法,其中,所述相似度定义成
    Figure PCTCN2014094982-appb-100002
    其中A(x)为待测样品的拉曼光谱曲线函数,B(x)为标准拉曼光谱曲线函数,A1,A2,…,An以及B1,B2,…,Bn分别为A(x)和B(x)的n个采样点。
  7. 根据权利要求4所述的珠宝玉石鉴定方法,其中,所述相似度定义成
    Figure PCTCN2014094982-appb-100003
    其中A(x)为待测样品的拉曼光谱曲线函数,B(x)为标准拉曼光谱曲线函数,A1,A2,…,An以及B1,B2,…,Bn分别为A(x)和B(x)的n个采样点。
  8. 根据权利要求4所述的珠宝玉石鉴定方法,其中,所述步骤(c)在步骤(c1)之前还包括:
    (c01)从所述拉曼光谱曲线中搜索一个或更多个特征峰;
    (c02)计算所搜索到的特征峰的峰位与峰宽,并将所述峰位与峰宽与标准拉曼光谱曲线中的特征峰的峰位与峰宽对比以对需要在步骤(c1)中进行计算的标准拉曼光谱曲线进行预筛选。
  9. 一种珠宝玉石鉴定设备,包括:
    载物台,所述载物台具有用于将待测样品承载于其上的承载表面,所述承载表面设有一个或更多个出光孔,所述出光孔对应于一个或更多个测量位置;
    光学探头,所述光学探头位于所述承载表面下方,用于将激发光从所述承载表面下方通过所述出光孔中的一个发射到其所对应的测量位置和从该测量位置收集来自待测样品的拉曼光;和
    数据处理装置,所述数据处理装置用于根据光学探头收集到的拉曼光生成拉曼光谱曲线并将该拉曼光谱曲线与珠宝玉石的标准拉曼光谱图库进行对比以对待测样品进行鉴定。
  10. 根据权利要求9所述的珠宝玉石鉴定设备,还包括防护挡板和承载防 护挡板的滑轨,所述防护挡板位于所述承载表面上方并能够沿所述滑轨在竖直方向上滑移。
  11. 根据权利要求9所述的珠宝玉石鉴定设备,其中,所述出光孔的直径是可缩放的。
  12. 根据权利要求9-11中任一项所述的珠宝玉石鉴定设备,其中,所述承载表面具有第一出光孔和第二出光孔,分别对应于第一测量位置和第二测量位置,所述载物台能够相对于光学探头在水平方向上移动使得所述光学探头所对应的测量位置在第一测量位置和第二测量位置之间切换。
PCT/CN2014/094982 2013-12-27 2014-12-25 珠宝玉石鉴定方法及装置 WO2015096780A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112015032683-8A BR112015032683B1 (pt) 2013-12-27 2014-12-25 Método e aparelho de identificação de gemas
JP2016542925A JP6302561B2 (ja) 2013-12-27 2014-12-25 珠玉宝石鑑定方法及び機器
EP14873997.2A EP3088870B1 (en) 2013-12-27 2014-12-25 Method and device for identifying jewellery and gems
MX2016008398A MX360341B (es) 2013-12-27 2014-12-25 Metodo y dispositivo para identificar joyeria y gemas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310741368.9A CN104749158B (zh) 2013-12-27 2013-12-27 珠宝玉石鉴定方法及装置
CN201310741368.9 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015096780A1 true WO2015096780A1 (zh) 2015-07-02

Family

ID=53372311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094982 WO2015096780A1 (zh) 2013-12-27 2014-12-25 珠宝玉石鉴定方法及装置

Country Status (10)

Country Link
US (1) US10036707B2 (zh)
EP (1) EP3088870B1 (zh)
JP (1) JP6302561B2 (zh)
CN (1) CN104749158B (zh)
BR (1) BR112015032683B1 (zh)
CL (1) CL2016001588A1 (zh)
DE (1) DE102014226451A1 (zh)
HK (1) HK1212031A1 (zh)
MX (1) MX360341B (zh)
WO (1) WO2015096780A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866235A (zh) * 2016-03-28 2016-08-17 王利晨 宝石鉴定装置和方法
CN106053425A (zh) * 2016-05-10 2016-10-26 南京理工大学 一种拉曼光谱宝玉石鉴定装置及方法
CN108240978B (zh) * 2016-12-26 2020-01-21 同方威视技术股份有限公司 基于拉曼光谱的自学习式定性分析方法
JP2018185556A (ja) * 2017-04-24 2018-11-22 田中 佳子 会員の認証方法
CN108535258A (zh) * 2018-03-16 2018-09-14 上海交通大学 一种快速无损判别区分软玉产地的方法
CN108802003B (zh) * 2018-05-25 2020-10-30 浙江大学 一种快速、无损鉴定蚕丝制品及含量的方法
CN108613964A (zh) * 2018-06-12 2018-10-02 柯志升 一种宝石鉴定便携式拉曼光谱仪
JP7319808B2 (ja) * 2019-03-29 2023-08-02 ローム株式会社 半導体装置および半導体パッケージ
CN109916768B (zh) * 2019-04-28 2021-04-20 深圳出入境检验检疫局工业品检测技术中心 一种口岸珠宝玉石快速检测装置
KR102172914B1 (ko) * 2019-06-07 2020-11-03 한국생산기술연구원 라만 스펙트럼 식별 고속 탐색 방법 및 장치
GB2589345A (en) * 2019-11-27 2021-06-02 Perkinelmer Singapore Pte Ltd Raman spectrometer
CN113640272A (zh) * 2021-07-13 2021-11-12 黄埔海关技术中心 一种基于便携式拉曼光谱仪的谱库建立和检测方法及应用
CN115112598B (zh) * 2022-08-23 2023-04-07 国检中心深圳珠宝检验实验室有限公司 一种翡翠自动检测模型的建模方法、模型及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799786A (en) * 1985-06-13 1989-01-24 The British Petroleum Company P.L.C. Method of diamond identification
CN1385691A (zh) * 2001-05-16 2002-12-18 昆明理工大学 一种宝石矿物的拉曼识别法
US20130321792A1 (en) * 2012-06-04 2013-12-05 Frederick W. Shapiro Universal tool for automated gem and mineral identification and measurement

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012141A (en) 1974-11-18 1977-03-15 Walter William Hanneman Identification of gemstones by relative reflectance measurements coupled with a scale calibrated in gem names
JPS604120Y2 (ja) 1976-06-10 1985-02-05 日本分光工業株式会社 レーザーラマン分光光度計の試料設置機構
JPH0774761B2 (ja) 1987-12-16 1995-08-09 株式会社島津製作所 スペクトルパターンの類似度判定法
GB2219081B (en) * 1988-05-06 1992-12-02 Gersan Ets Identifying specific objects or zones
US5455673A (en) 1994-05-27 1995-10-03 Eastman Chemical Company Apparatus and method for measuring and applying a convolution function to produce a standard Raman spectrum
US5811817A (en) * 1996-04-25 1998-09-22 Ravich; Gilbert Norman Method & apparatus for detecting fracture filled diamonds
DE19729352A1 (de) * 1997-07-09 1999-01-14 Basf Ag Zentrifugierverfahren zur Probencharakterisierung
GB0017639D0 (en) * 2000-07-18 2000-09-06 Gersan Ets Instrument for examining a gemstone
US6687620B1 (en) 2001-08-01 2004-02-03 Sandia Corporation Augmented classical least squares multivariate spectral analysis
US6583879B1 (en) 2002-01-11 2003-06-24 X-Rite, Incorporated Benchtop spectrophotometer with improved targeting
CA2547460A1 (en) * 2003-11-28 2005-06-09 Haishan Zeng Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy
US7656515B2 (en) 2005-11-10 2010-02-02 Checkflix, Inc. Apparatus and method for analysis of optical storage media
GB0606891D0 (en) * 2006-04-05 2006-05-17 Council Cent Lab Res Councils Raman Analysis Of Pharmaceutical Tablets
US7428044B2 (en) 2006-11-16 2008-09-23 Tokyo Electron Limited Drift compensation for an optical metrology tool
JP2008268059A (ja) 2007-04-23 2008-11-06 St Japan Inc 試料ホルダ
EP1992939A1 (en) 2007-05-16 2008-11-19 National University of Ireland, Galway A kernel-based method and apparatus for classifying materials or chemicals and for quantifying the properties of materials or chemicals in mixtures using spectroscopic data.
US8325337B2 (en) * 2007-07-13 2012-12-04 Purdue Research Foundation Time resolved raman spectroscopy
CN101676717B (zh) * 2008-09-19 2013-12-04 天士力制药集团股份有限公司 一种中药制品的检测方法
CH700695A2 (de) 2009-03-25 2010-09-30 Eduard Kny Einrichtung zur optischen Untersuchung einer lichtdurchlässigen, festen oder mindestens teilweise flüssigen Probe.
JP5277082B2 (ja) * 2009-06-15 2013-08-28 株式会社日立ハイテクノロジーズ 蛍光分析方法
WO2011015228A1 (en) 2009-08-04 2011-02-10 Stepra Ltd An apparatus for verifying the identity of a final fluid product for medical or pharmaceutical use
JP5225235B2 (ja) * 2009-08-24 2013-07-03 株式会社エージーティ・ジェム・ラボラトリー 宝石物質の鑑別方法
US20130009119A1 (en) 2010-03-22 2013-01-10 Cabot Security Materials, Inc. Wavelength selective sers nanotags
US20110292376A1 (en) 2010-05-26 2011-12-01 Kukushkin Igor V Apparatus and method for detecting raman and photoluminescence spectra of a substance
US9268121B2 (en) * 2010-12-01 2016-02-23 Koninklijke Philips N.V. Sensor device with double telecentric optical system
CN102540781B (zh) 2010-12-28 2015-09-30 上海微电子装备有限公司 一种背面对准装置及方法
CN202049112U (zh) * 2011-03-28 2011-11-23 张娴 一种珍珠质量检测装置
US8411265B2 (en) * 2011-06-14 2013-04-02 C8 Medisensors Inc. Apparatus for stabilizing mechanical, thermal, and optical properties and for reducing the fluorescence of biological samples for optical evaluation
CN103185696B (zh) * 2011-12-27 2015-07-22 国家纳米科学中心 一种固体样品载物台、分光光度计及lspr检测方法
JP2013174497A (ja) * 2012-02-24 2013-09-05 Sony Corp ラマン散乱光測定方法及びラマン散乱光測定試料用容器
US20130297254A1 (en) 2012-05-04 2013-11-07 Morpho Detection, Inc. Systems and methods for identifying a mixture
US20140118733A1 (en) * 2012-10-30 2014-05-01 Mustard Tree Instruments, Llc Multiple-Vial, Rotating Sample Container Assembly for Raman Spectroscopy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799786A (en) * 1985-06-13 1989-01-24 The British Petroleum Company P.L.C. Method of diamond identification
CN1385691A (zh) * 2001-05-16 2002-12-18 昆明理工大学 一种宝石矿物的拉曼识别法
US20130321792A1 (en) * 2012-06-04 2013-12-05 Frederick W. Shapiro Universal tool for automated gem and mineral identification and measurement

Also Published As

Publication number Publication date
DE102014226451A1 (de) 2015-07-02
MX2016008398A (es) 2017-01-23
CN104749158B (zh) 2020-12-11
US20150185155A1 (en) 2015-07-02
CN104749158A (zh) 2015-07-01
US10036707B2 (en) 2018-07-31
CL2016001588A1 (es) 2016-11-25
EP3088870A4 (en) 2017-08-02
BR112015032683B1 (pt) 2020-12-15
EP3088870B1 (en) 2019-09-25
JP2017502296A (ja) 2017-01-19
HK1212031A1 (zh) 2016-06-03
JP6302561B2 (ja) 2018-03-28
EP3088870A1 (en) 2016-11-02
MX360341B (es) 2018-10-30
BR112015032683A2 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2015096780A1 (zh) 珠宝玉石鉴定方法及装置
Butler et al. Using Raman spectroscopy to characterize biological materials
US9810633B2 (en) Classification of surface features using fluoresence
JP6802379B2 (ja) ダイヤモンドを識別するためのデバイス
US9766179B2 (en) Chemical characterization of surface features
JP2020506369A (ja) 宝石用原石のスクリーニング装置および方法
TWI664415B (zh) 用於判定晶圓上缺陷之資訊之系統及方法
JP2014518390A5 (zh)
JP2010500569A5 (zh)
TWI756306B (zh) 光學特性測定裝置及光學特性測定方法
JP2012032239A (ja) 試料検査装置及び試料検査方法
JP2023036975A (ja) 製品検査方法及び製品検査装置
WO2021130757A1 (en) Combined ocd and photoreflectance method and system
KR101535494B1 (ko) 단위 영역 패치기법을 활용한 초대면적 고속 라만 분석 방법 및 장치
TWM515103U (zh) 可變光源拉曼光譜擷取設備
CN209102625U (zh) 一种珠宝反射率检测仪
RU2567119C1 (ru) Способ дистанционного беспробоотборного обнаружения и идентификации химических веществ и объектов органического происхождения и устройство для его осуществления
KR20150061221A (ko) 라만 분광 온도계
JP2006220582A (ja) センシング装置
GR1010142B (el) Μικροσκοπιο μικροαναλυσης ιχνων
TWM566810U (zh) Dual-use diamond detector
JP2017062263A (ja) 試料分析装置及び試料分析プログラム
KR20140048831A (ko) 포린 표면 피처들과 네이티브 표면 피처들의 구별

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873997

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032683

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008398

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016542925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873997

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015032683

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151228