WO2015096448A1 - 数字电源设备用控制装置和数字电源设备 - Google Patents

数字电源设备用控制装置和数字电源设备 Download PDF

Info

Publication number
WO2015096448A1
WO2015096448A1 PCT/CN2014/081619 CN2014081619W WO2015096448A1 WO 2015096448 A1 WO2015096448 A1 WO 2015096448A1 CN 2014081619 W CN2014081619 W CN 2014081619W WO 2015096448 A1 WO2015096448 A1 WO 2015096448A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
digital
output end
nonlinear gain
output
Prior art date
Application number
PCT/CN2014/081619
Other languages
English (en)
French (fr)
Inventor
侯召政
李迎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US14/586,088 priority Critical patent/US20150188417A1/en
Publication of WO2015096448A1 publication Critical patent/WO2015096448A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a control device for a digital power supply.
  • the current power supply for outputting a constant voltage usually encounters input disturbances and output disturbances.
  • input disturbances and output disturbances In order to stabilize the output voltage, it is necessary to suppress this part of the disturbance, especially input surge, voltage transient drop and load dynamics. Where the rate of change is high.
  • feedforward can usually be used to solve the problem.
  • load disturbances it is usually possible to increase the output capacitance, increase the dynamic system bandwidth to reduce the output impedance or reduce the dynamic output impedance by nonlinear control. Increase the dynamic system bandwidth. Change with nonlinear gain.
  • the intermediate bus the transit bus converter and the Po int of Load power supply in the field of communication power supply, there is a trend toward digitalization. How to make the digital power controller compatible with both load disturbance and input disturbance? The implementation of digital power controllers places higher demands.
  • the currently used digital power controller Buck converter Buck converter
  • This method of fitting the reciprocal curve has a problem that the operation delay is long, the resources are consumed, and the feedforward effect is poor.
  • an embodiment of the present invention provides a control apparatus, including: an operational amplifier, an analog to digital converter, a feedback digital filter, a digital pulse width modulator, a power stage circuit, a feedforward digital filter, and a feedback network; ,
  • An input of the operational amplifier is a reference voltage input, and an output of the operational amplifier is sequentially connected to the analog to digital converter, a feedback digital filter, a digital pulse width modulator, and a power stage circuit;
  • the first output end of the power stage circuit is connected back to the input end of the operational amplifier via a feedback network, and the second output end of the power stage circuit is directly outputted;
  • An input of the feedforward digital filter is a voltage input, and an output of the feedforward digital filter is coupled to an input of the digital pulse width modulator.
  • the feedforward digital filter includes:
  • the digital signal input end is connected to the input end of the first channel, and the output end of the first channel is connected to the digital signal output end;
  • the digital signal input end is connected to the input ends of the two non-linear gain units, and the output end of one of the two non-linear gain units is connected to the first channel, and the other nonlinear gain unit The output end is connected to the second channel;
  • An output of the second channel is coupled to the digital signal output.
  • the first channel is a proportional link P channel
  • the second channel is an integral link I channel.
  • the feedback digital filter includes:
  • a digital signal input terminal a third channel, a fourth channel, a fifth channel, a digital signal output terminal, and at least one nonlinear gain unit;
  • the digital signal input end is connected to the digital signal output end via the third channel, the fourth channel, and the fifth channel respectively;
  • An input end of the nonlinear gain unit is connected to the digital signal input end, and an output end of the nonlinear gain unit is respectively connected to the third channel, the fourth channel, and the fifth channel, and each nonlinear gain unit Corresponds to one channel.
  • the third channel is a proportional link P channel
  • the fourth channel is an integral link I channel
  • the fifth channel is a differential link D channel.
  • the quantity of the multiple non-linear gain units corresponds to the number of channels, and each The outputs of the nonlinear gain units are connected to one channel.
  • an embodiment of the present invention provides a digital power supply device, wherein the main control device of the digital power supply device uses the above control device.
  • the beneficial effects of the invention are as follows: by setting a feedforward digital filter, implementing a feedforward function, reducing the number of tables for realizing the reciprocal curve, avoiding the problems of long operation delay, high resource consumption, and poor feedforward effect, Have a good application prospects.
  • FIG. 1 is a schematic diagram of a control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a feedforward digital filter of a control device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a feedback digital filter of a control device according to an embodiment of the present invention
  • Equipment schematic is a schematic diagram of a feedforward digital filter of a control device according to an embodiment of the present invention
  • control device 1 is a control device according to Embodiment 1 of the present invention, the control device includes: an operational amplifier, an analog to digital converter, a feedback digital filter, a digital pulse width modulator, a power stage circuit, a feedforward digital filter, and Feedback network
  • the input end of the operational amplifier is a reference voltage input end, and the output end of the operational amplifier is connected to the input end of the analog to digital converter;
  • An output of the analog to digital converter is coupled to an input of the feedback digital filter
  • An output of the feedback digital filter is coupled to an input of the digital pulse width modulator
  • An output of the digital pulse width modulator is coupled to an input of the power stage circuit
  • a first output end of the power stage circuit is connected back to the input end of the operational amplifier via a feedback network, and a second output end of the power stage circuit is directly outputted;
  • the input of the feedforward digital filter is a voltage input (Vin input), and the output of the feedforward digital filter is connected to the input of the digital pulse width modulator.
  • Figure 2 shows the feedforward digital filter in the above control device, comprising: a digital signal input terminal, a first channel, a second channel, a digital signal output terminal and two non-linear gain units (as shown in Fig. 2)
  • the two nonlinear gain units may be a first nonlinear gain unit and a second nonlinear gain unit from top to bottom;
  • the digital signal input end is connected to the input end of the first channel, and the output end of the first channel is connected to the output end;
  • the digital signal input terminal is connected to the input ends of the two nonlinear gain units, and the output end of one of the two nonlinear gain units is connected to the first channel, and the output end of the other nonlinear gain unit is Second channel connection;
  • the output of the second channel is connected to the digital signal output.
  • the first channel in the feedforward digital filter may be a proportional link P channel; the second channel may be an integral link I channel.
  • E ( N ) is generally referred to as an error signal, and E ( N ) is used as an input of two nonlinear gain units, and different nonlinear gain units are obtained according to different values of E ( N ). Output.
  • the output of E ( N ) and the first nonlinear gain unit is the two input signals of the first channel, and the two input signals are operated in the first channel to obtain the output of the first channel; generally, the operation is multiplication.
  • the output of the second nonlinear gain unit 2 serves as an input to the second channel, and the output of the second channel is obtained based on the output of the second nonlinear gain unit.
  • Figure 3 shows a feedback digital filter in the above control device, the feedback digital filter comprising: a digital signal input terminal, a third channel, a fourth channel, a fifth channel, a digital signal output terminal and at least one nonlinear gain unit ;
  • the digital signal input end is connected to the digital signal output end via the third channel, the fourth channel, and the fifth channel respectively;
  • the input ends of the plurality of nonlinear gain units are connected to the digital signal input end, and the output ends of the nonlinear gain unit are respectively connected to the third channel, the fourth channel, and the fifth channel, and each nonlinear gain unit corresponds to one channel.
  • the number of multiple nonlinear gain units corresponds to the number of channels, each non-line One by one
  • the output end of the gain unit is connected to a channel.
  • the output of the first nonlinear gain unit is connected to the third channel
  • the output of the second nonlinear gain unit is connected to the fourth channel
  • the output of the third nonlinear gain unit is correspondingly connected. Fifth channel.
  • the third channel may be a proportional link P channel; the fourth channel may be an integral link I channel; and the fifth channel may be a differential link D channel.
  • control device 1 The control device of the embodiment of the present invention will be further described below with reference to the accompanying drawings and specific working principles.
  • the structure of the control device shown in Figure 1 includes:
  • An operational amplifier that amplifies the error between the sample reference and the output measurement.
  • An ADC analog-to-digital converter
  • An ADC consists of a zero-order keeper and quantization step, and the output of the preamplifier with adjustable gain is quantized to a digital signal value;
  • a PID feedforward unit ie, feedforward digital filter
  • feedforward digital filter has a structure similar to that of a feedback digital filter, except that there is no differential link D channel and only two nonlinear gain units, using two of the nonlinear gain units and The proportional link P channel and the integral link I channel cooperate to realize the feedforward function;
  • a PID feedback unit ie, a feedback digital filter that acts as a digital filter for the loop to generate a digital control signal;
  • the digital filter contains a number that the nonlinear gain unit quantifies based on the error between the sample reference value and the output measurement value The signal value changes the current loop coefficient;
  • a DPWM Digital Pulse Width Modulator
  • ADC analog to digital converter
  • Both the feedback digital filter and the feedforward digital filter include a nonlinear gain unit that varies the current loop coefficient based on the error between the sampled reference value and the output measured value and quantized digital signal values.
  • the common power supply outputs a constant voltage, it is a regulator system.
  • feedforward is usually used to solve the input disturbance.
  • load disturbances increase the output capacitance and increase the dynamic system bandwidth to reduce the output resistance.
  • Resolving or reducing the dynamic output impedance by nonlinear control increasing the dynamic system bandwidth can be changed with a nonlinear gain unit.
  • a digital controller ie, a control device
  • the invention realizes the feedforward function by using a redundant digital filter without adding a hardware scheme, and has a good application prospect.
  • Embodiment 2 Embodiment 2
  • FIG. 4 is a diagram of a digital power supply device according to an embodiment of the present invention.
  • the digital power supply device includes: a casing 21, further comprising: a power circuit disposed in the casing 21, and a power circuit
  • the main control device uses the control device given in the first embodiment. Since the feedforward digital filter is provided in the main control device, the number of tables for realizing the reciprocal curve is reduced, and the problem of long operation delay, high resource consumption, and poor feedforward effect is avoided.

Abstract

一种数字电源设备用控制装置和数字电源设备,属于数字电源领域。该控制装置包括:运算放大器、模拟到数字转换器、反馈数字滤波器、数字脉宽调制器、功率级电路、前馈数字滤波器和反馈网络;其中,运算放大器的输入端为参考电压输入端,运算放大器的输出端与模拟到数字转换器、反馈数字滤波器、数字脉宽调制器和功率级电路顺次连接;功率级电路的输出端经反馈网络回连至运算放大器输入端;前馈数字滤波器的输入端为Vin输入端,前馈数字滤波器的输出端与数字脉宽调制器的输入端连接。通过设置前馈数字滤波器,实现前馈功能,减少为了实现倒数曲线的表的个数,避免了运算延时长、耗费资源多、前馈效果差的问题。

Description

一 一
数字电源设备用控制装置和数字电源设备
技术领域
本发明涉及通信技术领域, 尤其涉及一种用于数字电源的控制装置。
背景技术
目前用于输出恒定电压的电源, 作为一种调节器系统, 通常会遇到输入 扰动、输出扰动,为了稳定输出电压,需要抑制这部分扰动,特别是输入浪涌、 电压瞬态跌落以及负载动态变化率较高的场合。
对于输入扰动通常可釆用前馈来解决, 对于负载扰动, 通常可釆用增加 输出电容、增加动态系统带宽来减少输出阻抗或通过非线性控制减少动态输出 阻抗来解决,增加动态系统带宽可以釆用非线性增益来改变。对于通信电源领 域的中间母线、 中转母线变换器及点负载(Po int of Load ) 电源均具有向数 字化发展的趋势,如何使数字电源控制器兼容解决负载扰动和解决输入扰动这 两种应用,对于数字电源控制器的实现提出了更高要求。 目前常用的数字电源 控制器 Buck类变换器(降压变换器)要抵消 Vin (电压输入端, Input vol tage ) 输出扰动需要釆用 Vin的倒数来抵消。
这种拟合倒数曲线的方法存在运算延时长、 耗费资源多, 造成前馈效果 差的问题。
发明内容
本发明实施方式的目的是提供一种数字电源设备用控制装置和数字电源 设备,可解决目前数字电源控制器中釆用 Vin的倒数抵消 Vin输出扰动所存在的 - - 运算延时长、 耗费资源多、 前馈效果差的问题。 第一方面, 本发明实施例提供一种控制装置, 包括: 运算放大器、模拟到 数字转换器、 反馈数字滤波器、 数字脉宽调制器、 功率级电路、 前馈数字滤波 器和反馈网络; 其中,
所述运算放大器的输入端为参考电压输入端,所述运算放大器的输出端与 所述模拟到数字转换器、反馈数字滤波器、数字脉宽调制器和功率级电路顺次 连接;
所述功率级电路的第一输出端经反馈网络回连至所述运算放大器输入端, 所述功率级电路的第二输出端直接输出;
所述前馈数字滤波器的输入端为电压输入端,所述前馈数字滤波器的输出 端与所述数字脉宽调制器的输入端连接。
结合第一方面,在第一方面的第一种实现方式中, 所述前馈数字滤波器包 括:
数字信号输入端、 第一通道、 第二通道、 数字信号输出端和两个非线性增 益单元; 其中,
所述数字信号输入端与所述第一通道的输入端连接,所述第一通道的输出 端与所述数字信号输出端连接;
所述数字信号输入端与所述两个非线性增益单元的输入端连接,所述两个 非线性增益单元中的一个非线性增益单元的输出端与第一通道连接,另一个非 线性增益单元的输出端与所述第二通道连接;
所述第二通道的输出端与所述数字信号输出端连接。
结合第一方面的第一种实现方式, 在第一方面的第二种实施方式中, 所 述第一通道为比例环节 P通道;
所述第二通道为积分环节 I通道。
结合第一方面或第一方面的第一种实现方式或第一方面的第二种实现方 — — 式, 在第一方面的第三种实施方式中, 所述反馈数字滤波器包括:
数字信号输入端、 第三通道、 第四通道、 第五通道、 数字信号输出端和至 少一个非线性增益单元; 其中,
所述数字信号输入端分别经所述第三通道、第四通道、第五通道与所述数 字信号输出端连接;
所述非线性增益单元的输入端与所述数字信号输入端连接,所述非线性增 益单元的输出端分别与所述第三通道、 第四通道、 第五通道连接, 每个非线性 增益单元对应一个通道。
结合第一方面的第三种实现方式,在第一方面的第四种实施方式中, 所述 第三通道为比例环节 P通道;
所述第四通道为积分环节 I通道;
所述第五通道为差分环节 D通道。
结合第一方面的第三种实现方式或第一方面的第四种实现方式,在第一方 面的第五种实施方式中, 所述多个非线性增益单元的数量与通道的数量对应, 每个非线性增益单元的输出端对应连接一个通道。
第二方面一方面,本发明实施例提供一种数字电源设备,该数字电源设备 的主控制装置釆用上述控制装置。 本发明的有益效果为: 通过设置前馈数字滤波器, 实现前馈功能, 减少为 了实现倒数曲线的表的个数, 避免了运算延时长、 耗费资源多、 前馈效果差的 问题, 具有有良好的应用前景。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下, 一 一 还可以根据这些附图获得其他附图。 图 1为本发明实施例提供的控制装置示意图;
图 2为本发明实施例提供的控制装置的前馈数字滤波器的示意图; 图 3为本发明实施例提供的控制装置的反馈数字滤波器的示意图; 图 4为本发明实施例提供的数字电源设备示意图。
具体实施方式 下面结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明的实施例, 本领域普通技术人员在没有做出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明的保护范围。
实施例一
图 1所示为本发明实施例一提供的控制装置, 该控制装置包括: 运算放大 器、 模拟到数字转换器、 反馈数字滤波器、 数字脉宽调制器、 功率级电路、 前 馈数字滤波器和反馈网络;
其中,运算放大器的输入端为参考电压输入端,运算放大器的输出端与所 述模拟到数字转换器的输入端连接;
模拟到数字转换器的输出端与反馈数字滤波器的输入端连接;
反馈数字滤波器的输出端与数字脉宽调制器的输入端连接;
数字脉宽调制器的输出端与功率级电路的输入端连接;
功率级电路的第一输出端经反馈网络回连至所述运算放大器输入端,所述 功率级电路的第二输出端直接输出;
前馈数字滤波器的输入端为电压输入端 (Vin输入端) , 前馈数字滤波器 的输出端与所述数字脉宽调制器的输入端连接。 图 2所示为上述控制装置中的前馈数字滤波器, 包括: 数字信号输入端、 第一通道、 第二通道、 数字信号输出端和两个非线性增益单元(按图 2中所示 的两个非线性增益单元从上至下可以是第一非线性增益单元、第二非线性增益 单元) ; 其中,
数字信号输入端与第一通道的输入端连接,第一通道的输出端与输出端连 接;
数字信号输入端与两个非线性增益单元的输入端连接,两个非线性增益单 元中的一个非线性增益单元的输出端与第一通道连接,另一个非线性增益单元 的输出端与所述第二通道连接;
第二通道的输出端与数字信号输出端连接。
上述前馈数字滤波器中的第一通道可以是比例环节 P通道; 第二通道可以 是积分环节 I通道。
图 1所示的控制装置中, E ( N )—般是指误差信号, E ( N )作为两个非线 性增益单元的输入,根据 E ( N )的值不同,得到不同的非线性增益单元的输出。
E ( N )与第一非线性增益单元的输出是第一通道的两个输入信号, 这两个 输入信号在第一通道中做运算, 得到第一通道的输出; 一般这个运算是乘法。
第二非线性增益单元 2的输出作为第二通道的输入, 根据第二非线性增益 单元的输出得到第二通道的输出。
图 3所示为上述控制装置中的反馈数字滤波器, 该反馈数字滤波器包括: 数字信号输入端、 第三通道、 第四通道、 第五通道、 数字信号输出端和至少一 个非线性增益单元;
其中, 数字信号输入端分别经第三通道、 第四通道、 第五通道与数字信号 输出端连接;
多个非线性增益单元的输入端与数字信号输入端连接,非线性增益单元的 输出端分别与第三通道、 第四通道、 第五通道连接, 每个非线性增益单元对应 一个通道。 具体的: 多个非线性增益单元的数量与通道的数量对应, 每个非线 一 一
性增益单元的输出端对应连接一个通道,如第一非线性增益单元的输出对应连 接第三通道, 第二非线性增益单元的输出对应连接第四通道, 第三非线性增益 单元的输出对应连接第五通道。
上述反馈数字滤波器中, 第三通道可以是比例环节 P通道; 第四通道可以 是积分环节 I通道; 第五通道可以是差分环节 D通道。
下面结合附图和具体工作原理对本发明实施例的控制装置作进一步说明。 如图 1所示该控制装置的结构包括:
一个运算放大器 , 能放大釆样参考值与输出测量值之间的误差。
一个 ADC (模拟到数字转换器) 包含零阶保持器和量化环节, 釆样前级增 益可调的运算放大器的输出并量化为数字信号值;
一个 PID前馈单元(即前馈数字滤波器), 其结构与反馈数字滤波器类似, 不同的是没有差分环节 D通道和只有两个非线性增益单元, 利用其中的两个非 线性增益单元和比例环节 P通道和积分环节 I通道配合, 实现前馈功能;
一个 PID反馈单元(即反馈数字滤波器) , 作为环路的数字滤波器, 产生 数字控制信号;数字滤波器包含非线性增益单元根据釆样参考值与输出测量值 之间的误差并量化的数字信号值改变当前环路系数;
一个 DPWM (数字脉宽调制器) , 在将 ADC (模拟到数字转换器) 的数字信 号值送给反馈数字滤波器, 根据反馈数字滤波器产生的数字控制信号转化为 DPWM波;
反馈数字滤波器和前馈数字滤波器均包含非线性增益单元根据釆样参考 值与输出测量值之间的误差并量化的数字信号值改变当前环路系数。
由于常用电源输出恒定电压, 为一种调节器系统, 通常遇到输入扰动、 输 出扰动时, 为了稳定输出电压, 需要抑制这部分扰动; 尤其是输入浪涌、 电压 瞬态跌落以及负载动态变化率较高的场合; 对于输入扰动通常釆用前馈来解 决, 对于负载扰动, 通常釆用增加输出电容、 增加动态系统带宽来减少输出阻 — — 抗或通过非线性控制减少动态输出阻抗来解决,增加动态系统带宽可以釆用非 线性增益单元来改变。 一般来说, 数字控制器(即控制装置) 中会包含 1个以 上的数字滤波器, 通常会有一个及一个以上的数字滤波器是冗余的。本发明在 不增加硬件方案的情况下, 利用冗余的数字滤波器实现了前馈功能, 具有有良 好的应用前景。 实施例二
图 4所示为在上述实施例一的基础上,本发明实施例提供的数字电源设备, 该数字电源设备包括: 机壳 21 , 还包括: 设置在机壳 21内的电源电路, 电源电 路的主控制装置釆用上述实施例一给出的控制装置。由于主控制装置中设有前 馈数字滤波器, 减少为了实现倒数曲线的表的个数, 避免了运算延时长、 耗费 资源多, 前馈效果差的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求书的保护范围为准。

Claims

权 利 要 求
1、 一种数字电源设备用控制装置, 其特征在于, 包括:
运算放大器、 模拟到数字转换器、 反馈数字滤波器、 数字脉宽调制器、 功 率级电路、 前馈数字滤波器和反馈网络; 其中,
所述运算放大器的输入端为参考电压输入端,所述运算放大器的输出端与 所述模拟到数字转换器的输入端连接;
所述模拟到数字转换器的输出端与所述反馈数字滤波器的输入端连接; 所述反馈数字滤波器的输出端与所述数字脉宽调制器的输入端连接; 所述数字脉宽调制器的输出端与所述功率级电路的输入端连接; 所述功率级电路的第一输出端经反馈网络回连至所述运算放大器输入端, 所述功率级电路的第二输出端直接输出;
所述前馈数字滤波器的输入端为电压输入端,所述前馈数字滤波器的输出 端与所述数字脉宽调制器的输入端连接。
2、如权利要求 1所述的控制装置,其特征在于,所述前馈数字滤波器包括: 数字信号输入端、 第一通道、 第二通道、 数字信号输出端和两个非线性增 益单元; 其中,
所述数字信号输入端与所述第一通道的输入端连接,所述第一通道的输出 端与所述数字信号输出端连接;
所述数字信号输入端与所述两个非线性增益单元的输入端连接,所述两个 非线性增益单元中的一个非线性增益单元的输出端与第一通道连接,另一个非 线性增益单元的输出端与所述第二通道连接;
所述第二通道的输出端与所述数字信号输出端连接。
3、 如权利要求 2所述的控制装置, 其特征在于, 所述第一通道为比例环节 P通道;
所述第二通道为积分环节 I通道。
4、 如权利要求 1至 3任一所述的控制装置, 其特征在于, 所述反馈数字滤 波器包括:
数字信号输入端、 第三通道、 第四通道、 第五通道、 数字信号输出端和至 少一个非线性增益单元; 其中,
所述数字信号输入端分别经所述第三通道、第四通道、第五通道与所述输 出端连接;
所述非线性增益单元的输入端与所述数字信号输入端连接,所述非线性增 益单元的输出端分别与所述第三通道、 第四通道、 第五通道连接, 每个非线性 增益单元对应一个通道。
5、 如权利要求 4所述的控制装置, 其特征在于, 所述第三通道为比例环节
P通道;
所述第四通道为积分环节 I通道;
所述第五通道为差分环节 D通道。
6、 如权利要求 4或 5所述的控制装置, 其特征在于, 所述多个非线性增益 单元的数量与通道的数量对应,每个非线性增益单元的输出端对应连接一个通 道。
7、 一种数字电源设备, 其特征在于, 该数字电源设备的主控制单元釆用 上述权利要求 1至 6任一项所述的控制装置。
PCT/CN2014/081619 2013-12-27 2014-07-04 数字电源设备用控制装置和数字电源设备 WO2015096448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/586,088 US20150188417A1 (en) 2013-12-27 2014-12-30 Control apparatus applied to digital power supply device, and digital power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310740227.5 2013-12-27
CN201310740227.5A CN103683860A (zh) 2013-12-27 2013-12-27 数字电源设备用控制装置和数字电源设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/586,088 Continuation US20150188417A1 (en) 2013-12-27 2014-12-30 Control apparatus applied to digital power supply device, and digital power supply device

Publications (1)

Publication Number Publication Date
WO2015096448A1 true WO2015096448A1 (zh) 2015-07-02

Family

ID=50320452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081619 WO2015096448A1 (zh) 2013-12-27 2014-07-04 数字电源设备用控制装置和数字电源设备

Country Status (3)

Country Link
US (1) US20150188417A1 (zh)
CN (1) CN103683860A (zh)
WO (1) WO2015096448A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683860A (zh) * 2013-12-27 2014-03-26 华为技术有限公司 数字电源设备用控制装置和数字电源设备
US10439491B2 (en) * 2014-02-14 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Power supply electronic circuit with IBC to control current ripple
US9941789B2 (en) * 2015-11-02 2018-04-10 Infineon Technologies Ag Feedforward circuit for DC-to-DC converters with digital voltage control loop
DE102016205037A1 (de) 2016-03-24 2017-09-28 Robert Bosch Gmbh Gleichspannungs-Konverter und Verfahren zur Regelung eines Gleichspannungs-Konverters
CN106547299B (zh) * 2016-10-09 2017-11-03 河北汉光重工有限责任公司 一种高精度闭环参考电源
US10386882B2 (en) * 2017-04-14 2019-08-20 Allegro Microsystems, Llc Control circuit
US10181791B2 (en) 2017-04-14 2019-01-15 Allegro Microsystems, Llc Converter digital control circuit with adaptive compensation
US11469666B2 (en) 2019-10-01 2022-10-11 Allegro Microsystems, Llc Converter digital control circuit with adaptive feedforward compensation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807851A (zh) * 2010-03-29 2010-08-18 北京新雷能科技股份有限公司 开关电源负载扰动前馈控制电路
CN102884719A (zh) * 2010-02-26 2013-01-16 瑞典爱立信有限公司 用于开关模式电源的前馈数字控制单元及其方法
CN103036470A (zh) * 2012-12-05 2013-04-10 华为技术有限公司 一种数字电源控制器
EP2671312A2 (en) * 2011-02-02 2013-12-11 Telefonaktiebolaget L M Ericsson (PUBL) Digital control unit having a transient detector for controlling a switched mode power supply
CN103683860A (zh) * 2013-12-27 2014-03-26 华为技术有限公司 数字电源设备用控制装置和数字电源设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749217B2 (en) * 2011-06-29 2014-06-10 Texas Instruments Incorporated Primary voltage sensing and control for converter
CN103472720A (zh) * 2013-09-11 2013-12-25 国家电网公司 一种svc控制器的电压增益调节装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884719A (zh) * 2010-02-26 2013-01-16 瑞典爱立信有限公司 用于开关模式电源的前馈数字控制单元及其方法
CN101807851A (zh) * 2010-03-29 2010-08-18 北京新雷能科技股份有限公司 开关电源负载扰动前馈控制电路
EP2671312A2 (en) * 2011-02-02 2013-12-11 Telefonaktiebolaget L M Ericsson (PUBL) Digital control unit having a transient detector for controlling a switched mode power supply
CN103036470A (zh) * 2012-12-05 2013-04-10 华为技术有限公司 一种数字电源控制器
CN103683860A (zh) * 2013-12-27 2014-03-26 华为技术有限公司 数字电源设备用控制装置和数字电源设备

Also Published As

Publication number Publication date
US20150188417A1 (en) 2015-07-02
CN103683860A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015096448A1 (zh) 数字电源设备用控制装置和数字电源设备
CN101847968B (zh) 高阶多路反馈结构的高性能d类音频功率放大器
US20190280594A1 (en) Voltage regulation circuit of single inductor and multiple outputs and control method
US9641060B2 (en) Switching mode power supply
US9876424B2 (en) Compensation network, switching power supply circuit and circuit compensation method
KR102390302B1 (ko) 견고한 안정 피드백 기능의 전력 컨버터
CN103516219B (zh) 直流电源模块的控制电路
KR102075448B1 (ko) 델타-시그마 변조기
CN108075781A (zh) Δ-σ调制器及用于提高δ-σ调制器的稳定性的方法
JP2015523844A (ja) デジタル電流均等化装置、アナログ電流均等化装置、電流均等化方法及びシステム
JP6085252B2 (ja) 多数のフィードバックパスを備えるシグマデルタ二乗差rms−dcコンバータ
US20090016544A1 (en) Low-power digital-to-analog converter
CN103631299B (zh) 一种恒定压差、可变输出电压低压差线性稳压器
US10193505B2 (en) Configurable control loop topology for a pulse width modulation amplifier
CN1883111B (zh) 具有控制输出级的调节装置的放大器
CN108897711B (zh) 应用于两线制总线的模拟前端装置
CN109116903B (zh) 一种适用于感性负载的双极型高精度恒流驱动系统及方法
CN104699163B (zh) 一种低压差线性稳压器
US10164673B2 (en) DC offset cancellation method and device
US9843257B2 (en) Set point independent regulation of a switched mode power converter
CN108233712B (zh) 一种单电感双输出开关变换器的解耦补偿装置及方法
CN203337725U (zh) 用于光伏并网逆变器系统中网侧相电压的采样电路
CN107612389B (zh) 一种基于平均电流前馈的高频开关电源并联均流控制方法
CN204480102U (zh) 低压差线性稳压器
US9559645B2 (en) Switched amplifier for a variable supply voltage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874427

Country of ref document: EP

Kind code of ref document: A1