WO2015096177A1 - 从电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置 - Google Patents

从电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置 Download PDF

Info

Publication number
WO2015096177A1
WO2015096177A1 PCT/CN2013/090983 CN2013090983W WO2015096177A1 WO 2015096177 A1 WO2015096177 A1 WO 2015096177A1 CN 2013090983 W CN2013090983 W CN 2013090983W WO 2015096177 A1 WO2015096177 A1 WO 2015096177A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
gas
furnace gas
furnace
temperature
Prior art date
Application number
PCT/CN2013/090983
Other languages
English (en)
French (fr)
Inventor
高麟
汪涛
郭定江
Original Assignee
成都易态科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都易态科技有限公司 filed Critical 成都易态科技有限公司
Priority to US15/107,829 priority Critical patent/US10246331B2/en
Publication of WO2015096177A1 publication Critical patent/WO2015096177A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/04Purification of phosphorus
    • C01B25/047Purification of phosphorus of yellow phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • C01B25/027Preparation of phosphorus of yellow phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid

Definitions

  • the invention relates to a method, a device and a special phosphorus collecting device for recovering yellow phosphorus from an electric furnace to produce phosphorus furnace gas.
  • the electric furnace method of industrial application of yellow phosphorus production process is divided into a production process using a large self-baking electrode to produce a phosphorus electric furnace and a production process using a multi-electrode phosphorus electric furnace.
  • the two processes differ in terms of furnace type and scale, raw material processing requirements, and furnace gas removal measures, the main processes are basically the same, that is, a mixture of phosphate rock, silica and coke.
  • the material is sent to the electric furnace, and the mixture in the electric furnace is reduced to generate furnace gas, and the furnace gas escapes from the reaction melting zone, and the furnace gas filtration layer formed by the continuously replenished mixture in the upper part of the furnace carries a part of the mixture.
  • the impurities are discharged from the electric furnace, and then separated by dust removal, condensation washing, and purification to obtain yellow phosphorus products, and the tail gas is recycled or discharged.
  • the capacity of the electric furnace transformer is generally 50,000-90000KVA, the output is generally above 30,000 tons/year, and the self-baking electric furnace is adopted; the raw materials for the furnace are very strict (such as furnace) Coke moisture, particle size, etc., usually pre-processed by sintering method or pellet method before entering the furnace.
  • the generated furnace gas temperature is generally higher than 350 °C ;
  • the furnace gas discharged from the electric furnace Enter the electrostatic precipitator (ie dry dust removal), the furnace gas after dust removal and purification (the dust content is generally around 50mg/m 3 ), enter the condensate recovery system to obtain crude phosphorus, and then introduce the crude phosphorus into the crude phosphorus refining system for refining. , get yellow phosphorus products.
  • the capacity and output of electric furnace transformer are much smaller than that of large-scale self-baking electrode, which is generally less than 28000 KVA, and the output is generally 7000-10000 tons/year.
  • the layout is generally three-phase six or three-phase seven-diameter 500mm or 600mm diameter graphite electrode; the raw material is not required to be sintered or pelletized, the drying pretreatment is adopted, the lump ore is placed in the furnace, and the furnace gas temperature is generally 100.
  • the furnace gas discharged from the electric furnace directly enters the condensing recovery system (ie, wet dust removal), and the condensed yellow phosphorus enters the collecting tank as coarse phosphorus, and then the crude phosphorus is introduced into the crude phosphorus refining system for purification. Get yellow phosphorus products and a lot of mud phosphorus.
  • the above-mentioned production process using a large self-baking electrode to produce a phosphorus electric furnace can generate less mud phosphorus and waste water, the construction cost of the electrostatic precipitator supporting facilities is huge, the operation and maintenance costs are high, the technical requirements of the personnel are high, and the furnace gas is in the furnace gas.
  • the dust purification treatment is not sufficient, and it is not ideal to solve the problem of PM2.5 emissions in the exhaust gas.
  • the production process using a multi-electrode phosphorus furnace has a large amount of mud phosphorus which is difficult to separate, and the dust content in the exhaust gas is higher.
  • the applicant of the present invention has provided a method and a device for producing yellow phosphorus using a multi-electrode phosphorus electric furnace and a phosphorus electric furnace using a large self-baking electrode, respectively, in the Chinese Patent Application No. 2013104546439, 2013104548326.
  • Yellow phosphorus production method because both methods use a dry dust removal system for the electric furnace to make phosphorus furnace gas Dedusting and purifying, and a filter for installing a porous material membrane filter is used in the dry dust removal system to perform high-temperature precision filtration on the electric furnace phosphorus furnace gas. Therefore, substantially no mud phosphorus is generated during the production of yellow phosphorus by the two methods. Can reduce the dust content of the exhaust gas.
  • the technical problem to be solved by the invention is firstly to provide a method, a device and a special phosphorus collecting device for recovering yellow phosphorus in an electric furnace phosphorus furnace gas which does not adopt a spray cooling method when condensing an electric furnace to produce a phosphorus furnace gas, and solve the current spraying
  • the general problem caused by the cooling method will also provide a method and apparatus for producing yellow phosphorus using a large self-baking electrode for a phosphorus electric furnace, which does not employ a spray cooling method for condensing the phosphorus furnace gas of the electric furnace.
  • the method for recovering yellow phosphorus from an electric furnace to produce phosphorus furnace gas comprises the following steps:
  • the dust removal and purification of the phosphorus furnace gas of the electric furnace is performed by using a dry dust removal system, thereby making the electric furnace system
  • the solid content of the phosphorus furnace gas reaches 10-50 mg/m 3 or less
  • the above method of the present invention does not use the spray cooling method to condense the phosphorus furnace gas of the electric furnace to recover yellow phosphorus, but uses a partition heat exchanger to first condense and precipitate the yellow phosphorus through the low temperature medium and attach a large amount to the partition heat exchanger. Surface, re-passing the high-temperature medium to melt the yellow phosphorus attached to the surface of the partition heat exchanger and dripping into the phosphorus collecting tank at the bottom of the phosphorus collecting device, finally collecting yellow phosphorus, solving the problem of mud phosphorus and wastewater, reducing the time and steam of crude phosphorus refining. Consumption.
  • the furnace gas inlet temperature of the phosphorus collection device is controlled to be 180-220 ° C, and the tail gas outlet temperature of the phosphorus collection device is controlled to be 10-30 ° C.
  • the furnace gas inlet temperature of the phosphorus collection device is lower than 180 °C, the phosphorus vapor in the furnace gas will be prematurely condensed, thereby reducing the yellow phosphorus recovery rate of the phosphorus collection device;
  • the temperature is lower than 220 °C, it is not convenient for the phosphorus collecting device to rapidly condense the phosphorus vapor. Controlling the exhaust gas outlet temperature of the phosphorus collection device to 10 ° C or less will increase the difficulty of refrigeration and is not necessary.
  • the exhaust gas outlet temperature of the phosphorus collection device is above 30 ° C, the condensation of phosphorus vapor is insufficient, which will decrease. Yellow phosphorus recovery rate.
  • the low temperature medium and the high temperature medium may be selected from a plurality of types of refrigerants and heat mediums suitable for the present invention.
  • the actual verification proves that the low-temperature medium uses chilled brine, and the high-temperature medium can achieve better results by using water vapor.
  • the electric furnace is made of phosphorus furnace
  • the mixture of phosphate rock, silica and coke is fed into a multi-electrode phosphorus electric furnace, and the mixture in the multi-electrode phosphorus electric furnace is reduced to generate furnace gas.
  • the furnace gas escapes from the reaction melting zone, and after passing through the furnace gas filtration layer formed by the continuously replenished mixture in the upper part of the furnace, the impurities in a part of the mixture are discharged from the multi-electrode phosphorus electric furnace, and can be connected through
  • the heat exchange device is installed on the flue of the electric furnace and the dry dust removal system or/and the thickness of the furnace gas filter layer described in the electric furnace is adjusted or/and the electrode power is adjusted under strict premise of the mixture treatment so as to be in the dry dust removal system
  • the furnace gas temperature is maintained above the phosphorus vapor dew point temperature.
  • the above technical means for maintaining the temperature of the furnace gas in the dry dedusting system above the dew point temperature of the phosphorus vapor one is to control the temperature of the furnace gas by using a heat exchange device, and the other is to adjust the furnace gas filtration layer in the electric furnace. Thickness, third, adjust the electrode power under the premise of strict mixture processing. These three methods can be used in combination or separately. Wherein, since the temperature of the furnace gas generated by the multi-electrode phosphorus-making electric furnace is generally low, the temperature of the furnace gas to be filtered which is passed into the filter is maintained above the dew point temperature of the phosphorus vapor through the heat exchange device, generally through the heat exchange device The furnace gas is heated.
  • the main function of the furnace gas filter layer is to reduce the entrainment of dust in the furnace gas.
  • the furnace gas filter layer was often required to be thick. Since the multi-electrode phosphorus electric furnace is used, the furnace gas temperature itself is usually low. At this time, the temperature of the furnace gas to be filtered into the filter is maintained at the dew point of the phosphorus vapor by adjusting the thickness of the furnace gas filter layer. Above the temperature, the thickness of the furnace gas filter layer should be reduced, which can reduce the heat loss of the furnace gas passing through the furnace gas filter layer, thereby increasing the temperature of the furnace gas to be filtered into the filter.
  • the conventional processing requirements for the raw materials are not high (such as coke moisture, particle size, etc.). If excessive electrode power is used, the side reaction may increase and the yellow phosphorus production may be reduced. Therefore, if the temperature of the furnace gas to be filtered into the filter is maintained above the dew point temperature of the phosphorus vapor by adjusting the electrode power, the premise is that the raw material should be strictly treated, for example, by using a sintering method or a pellet method to pre-treat the raw material. After the treatment, it is put into the furnace. In this case, the electrode power can be increased by increasing the voltage and current.
  • the dry dedusting system includes at least a filter for electrolysis furnace phosphorus gas filtration, the filter having a porous material membrane filter that meets the following working conditions, and operations to be performed on the filter include -
  • the above method requires inputting temperature to the filter. It is the furnace gas to be filtered above the dew point temperature of the phosphorus vapor.
  • applying it to the phosphorus furnace gas filtration environment also needs to overcome the phosphorus vapor condensation caused by the sudden change of the surface temperature of the sintered inorganic porous material membrane filter core during the driving, back blowing and parking of the filter.
  • the filter membrane is contaminated, and the technique of blocking the pores is difficult.
  • the above-mentioned means of injecting a certain temperature of an inert preheating gas, an inert backflushing gas and an inert replacement gas are employed.
  • a significant advantage of using a filter having a porous material membrane cartridge is also the high precision of dust collection.
  • the dust collecting precision of the filter is required to be 10-20 mg/m 3 or less in the cleaned furnace gas after filtration.
  • a porous membrane filter cartridge of the corresponding pore size can be selected. The test is found to be in the environment of the phosphorus furnace gas filtration, when the dust content of the clean furnace gas after the filter is filtered is less than 20 mg / m 3 , the pressure of the inert backflush gas should be controlled at 0. 2 - 1. OMPa is most guaranteed The porous membrane filter works stably for a long time.
  • the temperature of the furnace gas to be filtered into the filter is maintained at 187. 5 - 280 °C.
  • the phosphorus vapor in the furnace gas may be condensed, causing the filter to fail to work normally; when the temperature of the furnace gas to be filtered into the filter is higher than 280 At °C, the yield of yellow phosphorus is lowered.
  • the temperature of the furnace gas to be filtered which is introduced into the filter is further preferably 187. 5 - 220 ° C, at which time the yield of yellow phosphorus is relatively high.
  • the apparatus for recovering yellow phosphorus from the electric furnace to produce phosphorus furnace gas comprises a dry dust removal system and a phosphorus collection device connected with the dry dust removal system, wherein the dry dust removal system is at a temperature of the phosphorus furnace gas of the electric furnace Desulfurizing and purifying the phosphorus furnace gas of the electric furnace under the condition that the phosphorus vapor dew point temperature of the phosphorus furnace gas in the electric furnace is more than 10-50 mg/m 3 , the receiving
  • the phosphorus device has a heat exchange chamber composed of a casing and a partition heat exchanger disposed in the heat exchange chamber, and the heat exchange chamber is provided with a tail gas outlet and a furnace gas inlet communicating with an output end of the dry dust removal system, and the partition wall is exchanged
  • the internal flow path of the heat exchanger is respectively connected to the low temperature medium source and the high temperature medium source through the switchable device.
  • the dry dust removal system includes a filter for electric furnace phosphorus furnace gas filtration, the filter has a porous material membrane filter element that meets the following working conditions, and the operations to be performed for the filter include: 1 Operation performed when driving: Injecting inert preheating gas into the filter, thereby preheating the porous material membrane filter element in the filter to above the dew point temperature of the phosphorus vapor in the phosphorus furnace gas of the electric furnace;
  • the invention relates to a special phosphorus collecting device for recovering yellow phosphorus from a phosphorus furnace gas in an electric furnace, wherein the phosphorus collecting device has a heat exchange chamber formed by a casing and a heat exchanger connected to the heat exchange chamber, and heat exchange The chamber is provided with a tail gas outlet and a furnace gas inlet connected to the output end of the dry dust removal system, and the internal flow path of the partition wall heat exchanger is respectively connected to the low temperature medium source and the high temperature medium source through the switchable device.
  • the partition wall heat exchanger may be a warp tube heat exchanger. The direction of the warp in the warp tube heat exchanger is preferably set vertically, which makes it easier for the yellow phosphorus to melt and then drip into the phosphorus collecting tank.
  • the invention uses a large self-baking electrode to produce a phosphorus electric furnace to produce yellow phosphorus, and the steps included are as follows:
  • the dust removal and purification of the phosphorus furnace gas of the electric furnace is performed by using a dry dust removal system, thereby making the electric furnace system
  • the solid content of the phosphorus furnace gas reaches 10-50 mg/m 3 or less
  • the electric furnace is made of phosphorus furnace gas, and the mixture prepared by proportionally mixing phosphate rock, silica and coke is fed into a large-scale self-baking electrode-making phosphorus electric furnace, and the mixture in the large-scale self-baking electrode-making phosphorus electric furnace occurs.
  • the reduction reaction generates furnace gas, and the furnace gas escapes from the reaction melting zone.
  • the impurities in a part of the mixture are discharged from the large self-baking electrode phosphorus electric furnace. And the high temperature furnace gas produced.
  • the above method of the present invention does not use a spray cooling method to condense the phosphorus furnace gas of the electric furnace to recover yellow phosphorus, but to
  • the partition wall heat exchanger is used to firstly condense and precipitate the yellow phosphorus and deposit a large amount of the yellow phosphorus on the surface of the partition heat exchanger, and then pass the high-temperature medium to melt the yellow phosphorus attached to the surface of the partition heat exchanger and drop it into the bottom of the phosphorus collecting device.
  • the yellow phosphorus is finally collected in the phosphorus collection tank to solve the problem of mud phosphorus and wastewater, and reduce the time and steam consumption of crude phosphorus refining.
  • the furnace gas inlet temperature of the phosphorus collection device is controlled to be 180-220 °C, and the tail gas outlet temperature of the phosphorus collection device is controlled to be 10-30 °C.
  • the furnace gas inlet temperature of the phosphorus collection device is lower than 180 °C, the phosphorus vapor in the furnace gas will be prematurely condensed, thereby reducing the yellow phosphorus recovery rate of the phosphorus collection device; when the furnace gas inlet temperature of the phosphorus collection device is lower than At 220 °C, it is not convenient to quickly condense phosphorus vapor in the phosphorus collection device. Controlling the exhaust gas outlet temperature of the phosphorus collection device to 10 °C or less will increase the difficulty of refrigeration and is not necessary. When the exhaust gas outlet temperature of the phosphorus collection device is above 30 °C, the condensation of phosphorus vapor is insufficient, which will decrease. Yellow phosphorus recovery rate.
  • the low temperature medium and the high temperature medium may be selected from a plurality of types of refrigerants and heat mediums suitable for the present invention.
  • the actual verification proves that the low-temperature medium uses chilled brine, and the high-temperature medium can achieve better results by using water vapor.
  • the dry dust removal system includes a filter for the furnace furnace to filter the phosphorus furnace gas, the filter device has a porous material membrane filter element that meets the following working conditions, and the operations to be performed for the filter include:
  • the above method requires inputting temperature to the filter. It is the furnace gas to be filtered above the dew point temperature of the phosphorus vapor.
  • applying it to the phosphorus furnace gas filtration environment also needs to overcome the phosphorus vapor condensation caused by the sudden change of the surface temperature of the sintered inorganic porous material membrane filter core during the driving, back blowing and parking of the filter.
  • the filter membrane is contaminated, and the technique of blocking the pores is difficult.
  • the above-mentioned means of injecting a certain temperature of an inert preheating gas, an inert backflushing gas and an inert replacement gas are employed.
  • the temperature of the inert preheating gas, the inert backflushing gas, and the inert replacement gas is controlled above the phosphorus vapor dew point temperature to be contaminated by the filter core paste, but it is preferable to use an inert preheating gas, an inert backflush gas, and The temperature of the inert replacement gas is controlled to be substantially the same as the temperature of the furnace gas to be filtered which is passed into the filter (when the filter gas is introduced into the filter) When the temperature is higher than the dew point temperature of the phosphorus vapor, this can stabilize the temperature of the filter element and increase the service life of the filter element.
  • a significant advantage of using a filter having a porous material membrane cartridge is also the high precision of dust collection.
  • the dust collecting precision of the filter is required to be 10-20 mg/m 3 or less in the cleaned furnace gas after filtration.
  • a porous membrane filter cartridge of the corresponding pore size can be selected. The test is found to be in the case of a phosphorus furnace gas filtration environment, when the dust content of the clean furnace gas after the filter is filtered is less than 20 mg / m 3 , the pressure of the inert backflush gas should be controlled at 0. 2 - 1. OMPa is most guaranteed The porous membrane filter works stably for a long time.
  • the temperature of the phosphorus furnace gas generated by the electric furnace of the large-scale self-baking electrode is generally higher, it is possible to completely satisfy the requirement that the temperature of the furnace gas to be filtered into the filter is higher than the dew point temperature of the phosphorus vapor.
  • it is further possible to adjust the electrode by installing a heat exchange device on the flue connecting the electric furnace and the dry dust removal system or/and adjusting the thickness of the furnace gas filter layer described in the electric furnace or/and strictly performing the mixture treatment. The power thus maintains the temperature of the furnace gas to be filtered into the filter at 420-590 °C.
  • the temperature of the furnace gas to be filtered into the filter can be kept at 420. 590 °C.
  • the temperature of the furnace gas to be filtered into the filter is 420-590 °C, which is much higher than the dew point which will cause the phosphorus vapor in the furnace gas to condense. Therefore, the normal operation of the filter can be guaranteed.
  • the filtration temperature is 420-590 °C
  • the yield of yellow phosphorus is found to be high.
  • the temperature of the furnace gas to be filtered which is introduced into the filter is further preferably 420 to 530 ° C, at which time the yield of yellow phosphorus is higher.
  • the temperature of the furnace gas to be filtered into the filter is 420-530 °C
  • the temperature of the clean furnace gas discharged from the filter is still high.
  • the furnace gas output from the filter can be passed to the waste heat boiler to cool down to 180. — Re-enter the phosphorus collection device at 220 °C.
  • the main function of the waste heat boiler is to cool the furnace gas (of course, the waste heat boiler can also recover heat). Therefore, no matter what kind of cooling equipment is used, the function is to cool the furnace gas, which is equivalent to the waste heat boiler.
  • the apparatus for the above method for producing yellow phosphorus by using a large self-baking electrode phosphorus electric furnace comprising a dry dust removing system and a phosphorus collecting device connected to the dry dust removing system, wherein the dry dust removing system is in the temperature of the phosphorus furnace gas in the electric furnace Dedusting and purifying the phosphorus furnace gas of the electric furnace under conditions of a phosphorus dew point temperature of the phosphorus furnace gas in the electric furnace, so that the solid content of the electric furnace phosphorus furnace gas reaches 10-50 mg/m 3 or less.
  • the phosphorus collecting device has a heat exchange chamber composed of a casing and a partition wall heat exchanger disposed in the heat exchange chamber, and the heat exchange chamber is provided with a tail gas outlet and a furnace gas inlet communicating with an output end of the dry dust removing system, the partition wall
  • the internal flow path of the heat exchanger is respectively connected to the low temperature medium source and the high temperature medium source through the switchable device.
  • the dry dust removal system includes a filter for electric furnace phosphorus furnace gas filtration, the filter has a porous material membrane filter element that meets the following working conditions, and the operations to be performed for the filter include: 1 Operation performed when driving: Injecting inert preheating gas into the filter, thereby preheating the porous material membrane filter element in the filter to above the dew point temperature of the phosphorus vapor in the phosphorus furnace gas of the electric furnace;
  • the temperature of the furnace gas to be filtered into the filter is maintained at 420-590 ° C ; between the filter and the phosphorus collecting device, the furnace gas output from the filter is cooled to 180-220 ° C and then enters the phosphorus collection.
  • the waste heat boiler of the device is maintained at 420-590 ° C ; between the filter and the phosphorus collecting device, the furnace gas output from the filter is cooled to 180-220 ° C and then enters the phosphorus collection.
  • partition wall heat exchanger uses a slab tube heat exchanger.
  • Figure 1 is a flow chart of the yellow phosphorus process provided by the applicant in Chinese Patent Application No. 2013104546439.
  • 2 is a schematic diagram of a process flow according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a process flow according to another embodiment of the present invention.
  • Figure 4 is a schematic view showing the arrangement of a plurality of phosphorus collecting devices of the present invention.
  • Fig. 1 is a flow chart showing the process of yellow phosphorus provided by the applicant in the Chinese Patent Application No. 2013104546439, the present invention being improved in the technical solution of the patent application.
  • the Chinese patent application No. 2013104546439 is now described.
  • the electric furnace 1 is connected to the dry dust removal system 3 through the exhaust pipe 2 (the heat exchange device 6 is arranged on the exhaust pipe 2), and the dust removal device of the dry dust removal system 3 is provided by the filter. 301 and a mechanical dust collector 302 located between the filter 301 and the electric furnace 1.
  • the furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 for primary dust removal and then into the filter.
  • the second stage dust removal purification is performed in 301; the clean furnace gas discharged from the filter 301 is introduced into the condensing recovery system 4, and the condensing recovery system 4 includes a spray tower 401 and a collecting tank 402, and the yellow phosphorus sprayed and condensed by the spray tower 401 enters the collection.
  • the groove 402 is coarse phosphorus, and the crude phosphorus is re-purified into the crude phosphorus refining system 5, and the crude phosphorus refining system 5 includes a refining pot 501.
  • the crude phosphorus is heated, stirred, and clarified in the refining pot 501 by steam.
  • the filter 301 is also connected to a gas supply device 303 for supplying the filter 301 with the inert preheating gas, inert backflush gas and inert replacement gas required for the filter 301.
  • the air supply device 303 is connected to the first output pipe 305 and the second output pipe 306 via the heater 304.
  • the output end of the first output pipe 305 is connected to the backflushing device of the filter 301, and the output end of the second output pipe 306 is connected.
  • the mechanical dust collector 302 can also be a gravity dust remover, a cyclone dust collector or the like.
  • a plurality of sintered inorganic porous material membrane filter elements are arranged through an orifice plate, and a venturi for backflushing is installed above each group of sintered inorganic porous material membrane filter elements, and the reverse blowing inertness of each venturi tube is entered.
  • the gas is controlled by a pulse valve, and each pulse valve is connected to the first output pipe in FIG. 1 through an air bag (not shown).
  • the Chinese patent application No. 2013104546439 also specifically describes the yellow phosphorus process flow through a plurality of examples.
  • the examples are divided into two groups.
  • the first group of embodiments relates to the first method of using a multi-electrode phosphorus-making electric furnace
  • the second group of embodiments uses the second method of a large-scale self-baking electrode for a phosphorus electric furnace.
  • the same set of equipment is used in each embodiment, and the raw materials thereof are equally divided from the same batch of mineral grade, ratio, and treatment process (treated by prior art). from.
  • a refining pot 501 (each of which corresponds to one refining pot 501) in the crude phosphorus refining system 5 in accordance with the number of the examples.
  • the outlet of the condensate recovery system 4 can be switched between these refining pots 501; when the raw material of one embodiment is completely reacted and the phosphorus is collected, when the next batch of raw materials (i.e., the raw material of another embodiment) is added, Switching to the corresponding refining pot 501, thus, the calculated yellow phosphorus yield can be obtained by calculating the amount of yellow phosphorus obtained in each of the refining pots 501.
  • a multi-electrode phosphorus electric furnace with a transformer capacity of 15000 KVA is used. 50 tons of the mixture is continuously added to the electric furnace 1 to carry out the reaction.
  • the gas supply device 303 and the heater 304 are activated, and the high temperature inert preheating gas is passed through the second output pipe 306 to enter the filtration from the furnace gas inlet pipe of the filter 301.
  • the valve 301 is used to preheat the sintered inorganic porous material membrane filter element (using the FeAl intermetallic compound membrane membrane filter element) in the filter 301 to 187.5 ° C, and then close the valve on the second output tube 306.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removing system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 200 ° C on the inlet pipe of the filter gas of the filter 301.
  • the filter 301 initiates an online backflush every 600 s. When backflushing, the inert backflush gas output from the gas supply device 303 is heated. 6MPa ⁇
  • the pressure of the inert gas is 0. 6MPa.
  • the dust content of the cleaned furnace gas after filtration is about 5 mg/m 3 .
  • the crude phosphorus enters the corresponding refining pot 501 to obtain a yellow phosphorus product, and at the same time, almost no mud phosphorus is generated, and in the exhaust gas The dust content is extremely low.
  • the yield of yellow phosphorus was calculated to be 98.5%, which is much higher than the current yield level of 72-87%.
  • Embodiment 1 After the end of Embodiment 1, the embodiment 2 is directly carried out using its equipment.
  • the second batch of 50 tons of the mixture was continuously fed to the electric furnace 1 for reaction, and at the same time, switched to another refining pot 501.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removal system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 250 ° C on the inlet pipe of the filter gas of the filter 301.
  • the filter 301 initiates an online backflushing every 600 s.
  • the inert backflush gas output from the gas supply device 303 is heated by the heater 304 to 187. 5 ° C, and then acts on the sintered inorganic porous material membrane filter element, inert backflushing. 6MPa ⁇
  • the pressure of the gas is 0. 6MPa.
  • the dust content of the cleaned furnace gas after filtration is about 5 mg/m 3 .
  • the crude phosphorus enters the corresponding refining pot 501 to obtain a yellow phosphorus product, and at the same time, almost no mud phosphorus is generated, and in the exhaust gas The dust content is extremely low.
  • the yield of yellow phosphorus was calculated to be 97%.
  • Embodiment 3 is continued directly using its equipment.
  • the third batch of 50 tons of the mixture was continuously fed to the electric furnace 1 for reaction, and at the same time, switched to another refining pot 501.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removal system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 300 ° C on the inlet pipe of the filter gas of the filter 301.
  • the inert gas is injected into the filter 301 through the gas supply device 303, the heater 304 and the second output pipe 306, and the inorganic inorganic membrane filter element is inertly replaced. No paste contamination occurs under the protection of gas.
  • the vessel 301 is thereby preheated the sintered inorganic porous material membrane cartridge (using the FeAl intermetallic porous membrane cartridge) in the filter 301 to 400 ° C, and then closes the valve on the second outlet pipe 306.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removing system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 390 ° C on the gas inlet pipe of the filter to be filtered.
  • the filter 301 initiates an online backflushing every 400 s.
  • the inert backflush gas output from the gas supply device 303 is heated to 400 ° C by the heater 304, and then acts on the sintered inorganic porous material membrane filter element, inert backflush gas. 8MPa ⁇ The pressure is 0. 8MPa.
  • the dust content of the cleaned furnace gas after filtration is about 6 mg/m 3 .
  • the condensation recovery system 4 the crude phosphorus enters the corresponding refining pot 501 to obtain a yellow phosphorus product, and at the same time, almost no mud phosphorus is generated, and in the exhaust gas The dust content is extremely low. 5% ⁇ The yield of yellow phosphorus was 97.5%.
  • the embodiment 6 is directly carried out using its equipment.
  • the third batch of 100 tons of the mixture was continuously fed to the electric furnace 1 for reaction, and at the same time, switched to another refining pot 501.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removal system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter. Secondary dust removal and purification in 301.
  • the temperature of the furnace gas to be filtered is kept at about 500 ° C on the inlet pipe of the filter gas to be filtered of the filter 301.
  • the filter 301 initiates an online backflushing every 400 s.
  • the inert backflush gas output from the gas supply device 303 is heated to 400 ° C by the heater 304, and then acts on the sintered inorganic porous material membrane filter element, inert backflush gas.
  • 8MPa ⁇ The pressure is 0. 8MPa.
  • the dust content of the cleaned furnace gas after filtration is about 6 mg/m 3 .
  • the condensation recovery system 4 the crude phosphorus enters the corresponding refining pot 501 to obtain a yellow phosphorus product, and at the same time, almost no mud phosphorus is generated, and in the exhaust gas The dust content is extremely low. 5% ⁇ The yield of yellow phosphorus was 98.5%.
  • Embodiment 7 After the end of Embodiment 6, the embodiment 7 is continued directly using its equipment.
  • the fourth batch of 100 tons of the mixture was continuously fed to the electric furnace 1 for reaction, and at the same time, switched to another refining pot 501.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removal system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 550 ° C on the inlet pipe of the filter gas of the filter 301.
  • the filter 301 initiates an online backflushing every 400 s.
  • the inert backflush gas output from the gas supply device 303 is heated to 400 ° C by the heater 304, and then acts on the sintered inorganic porous material membrane filter element, inert backflush gas.
  • 8MPa ⁇ The pressure is 0. 8MPa.
  • the dust content of the cleaned furnace gas after filtration is about 6 mg/m 3 .
  • the condensation recovery system 4 the crude phosphorus enters the corresponding refining pot 501 to obtain a yellow phosphorus product, and at the same time, almost no mud phosphorus is generated, and in the exhaust gas The dust content is extremely low.
  • the yield of yellow phosphorus was calculated to be 98%.
  • the filter 301 initiates an online backflushing every 400 s.
  • the inert backflush gas output from the gas supply device 303 is heated to 400 ° C by the heater 304, and then acts on the sintered inorganic porous material membrane filter element, inert backflush gas.
  • 8MPa ⁇ The pressure is 0. 8MPa.
  • the dust content of the cleaned furnace gas after filtration is about 6 mg/m 3 .
  • the condensation recovery system 4 the crude phosphorus enters the corresponding refining pot 501 to obtain a yellow phosphorus product, and at the same time, almost no mud phosphorus is generated, and in the exhaust gas The dust content is extremely low.
  • the yield of yellow phosphorus was calculated to be 90%.
  • the condensate recovery system 4 of Figure 1 is now replaced with a dedicated phosphorus collection device.
  • the phosphorus collection device 7 has a heat exchange chamber 705 formed by a housing 701 and is disposed in the heat exchange chamber.
  • a partition heat exchanger 702 in the chamber 705 is provided with a tail gas outlet and a furnace gas inlet communicating with the output end of the dry dust removal system, and the internal flow paths of the partition heat exchanger 702 are respectively connected by the switchable device 704 Low temperature medium source and high temperature medium source.
  • the low temperature medium source will be chilled brine (temperature 10-20 ° C) and the high temperature medium will be water vapor (temperature 120-150 ° C).
  • the partition wall heat exchanger 702 of the phosphorus collecting device 7 of the present invention may specifically adopt a warp tube heat exchanger. The direction of the slab in the slab tube heat exchanger is set vertically.
  • the furnace gas at the output of the dry dedusting system can be selectively entered into a portion of the phosphorus collecting device 7, and the phosphorus collecting device 7 that passes into the furnace gas passes through the switchable device 704 (for example, a two-position three-way valve) Switching to an operation mode in which the low-temperature medium enters the internal flow path of the partition heat exchanger 702, thereby condensing the furnace gas in the phosphorus collection device 7; and other phosphorus collection devices 7 not passing through the furnace gas pass through the switchable device 704
  • the operation mode in which the high-temperature medium enters the internal flow path of the partition heat exchanger 702 is switched, thereby heating and melting the precipitated yellow phosphorus.
  • the furnace gas at the output end of the dry dust removal system is passed to these to switch the low temperature medium source into the partition heat exchanger 702.
  • a multi-electrode phosphorus electric furnace with a transformer capacity of 15000 KVA is used.
  • the 50 tons of the mixture (mine grade, ratio, treatment process is the same as in the first embodiment) is continuously added to the electric furnace 1 for reaction, and at the same time, the gas supply device 303, the heater 304, and the high temperature inert preheating gas are passed through the second output pipe 306. 5°C, preheating the sintered inorganic porous material membrane filter element (using FeAl intermetallic compound membrane membrane filter element) in the filter 301 to the 187. 5 ° C, The valve on the second output tube 306 is then closed.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removing system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 200 ° C on the gas inlet pipe of the filter to be filtered.
  • the filter 301 initiates an online backflushing every 600 s. When backflushing, the inert backflush gas output from the gas supply device 303 is heated to 187.
  • the phosphorus collecting devices 7 in Fig. 4 is entered at about 180 °C.
  • the phosphorus collection device 7 is switched by the switchable device 704 into an operation mode in which the low temperature medium (the chilled brine) enters the internal flow path of the partition heat exchanger 702, thereby condensing the furnace gas entering the phosphorus collection device 7 to be collected.
  • the exhaust gas outlet temperature of the phosphorus device 7 is 10-20 °C.
  • the valve before the furnace gas inlet of the phosphorus collecting device 7 is closed, the valve before the furnace gas inlet of the other phosphorus collecting device 7 is opened, and the clean furnace gas of about 180 ° C is passed into another a phosphorus collecting device 7 continues to condense the furnace gas, and the phosphorus collecting device 7 originally used to condense the furnace gas is switched by the switchable device 704 to cause the high temperature medium (the water vapor) to enter the partition heat exchanger 702
  • the working mode of the flow path causes the yellow phosphorus to melt and drip into the phosphorus collecting tank 703 at the bottom of the phosphorus collecting device 7.
  • the furnace gas discharged from the electric furnace 1 is introduced into the dry dust removing system 3 through the exhaust duct 2, during which the furnace gas is heated by the heat exchange device 6.
  • the heated furnace gas discharged from the electric furnace 1 is first introduced into the mechanical dust collector 302 by the exhaust pipe 2 to perform primary dust removal and purification, and then enters the filter 301 for secondary dust removal and purification.
  • the temperature of the furnace gas to be filtered is kept at about 390 ° C on the gas inlet pipe of the filter to be filtered.
  • the filter 301 initiates an online backflushing every 400 s.
  • the inert backflush gas output from the gas supply device 303 is heated to 400 ° C by the heater 304, and then acts on the sintered inorganic porous material membrane filter element, and the inert backflush gas 8MPa ⁇
  • the pressure is 0. 8MPa.
  • the dust content of the cleaned furnace gas after filtration was about 6 mg/m 3 , and then entered into the waste heat boiler 8 shown in Fig. 3 to recover the heat in the furnace gas.
  • the temperature of the output of the waste heat boiler 8 is about 180 ° C to enter one of the phosphorus collecting devices 7 in FIG.
  • the phosphorus collecting device 7 is switched by the switchable device 704 into an operation mode in which the low temperature medium (the chilled brine) enters the internal flow path of the partition heat exchanger 702, thereby condensing the furnace gas entering the phosphorus collecting device 7 and collecting
  • the exhaust gas outlet temperature of the phosphorus device 7 is 10-20 °C.
  • the crude phosphorus obtained from the phosphorus collecting tank 703 of each of the above phosphorus collecting devices 7 is introduced into the refining pot 501 to obtain a yellow phosphorus product, and at the same time No mud phosphorus is produced, and the dust content in the exhaust gas is extremely low. 6% ⁇ The yield of yellow phosphorus reached 98.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种对电炉制磷炉气进行冷凝时不采用喷淋冷却方式的电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置。该方法包括的步骤有:1)使用干式除尘系统对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的固含量达到10-50mg/m3以下;2)将净化后的炉气送至一收磷装置,该收磷装置具有由壳体所构成的换热室及设置在该换热室内的间壁换热器;3)向间壁换热器的内部流路中通入低温介质,该低温介质与所述炉气在间壁换热器的隔离下非混合传热,从而使黄磷冷凝析出并大量附着于间壁换热器表面,换热后的尾气排出收磷装置;4)向间壁换热器的内部流路中通入替换低温介质的高温介质。

Description

从电炉制磷炉气中回收黄磷的方法、 设备及专用收磷装置 技术领域
本发明涉及从电炉制磷炉气中回收黄磷的方法、 设备及专用收磷装置。
背景技术
工业化应用的电炉法黄磷生产工艺分为使用大型自焙电极制磷电炉的生产工艺和使 用多电极制磷电炉生产工艺。 这两种工艺虽在电炉炉型及规模、 入炉原料处理要求、 炉气 除尘措施等方面存在差异, 但主要流程基本相同, 即都是将由磷矿石、 硅石和焦炭按比例 配成的混合料送入电炉,在电炉内的混合料发生还原反应生成炉气,炉气从反应熔区逸出, 经过炉内上部由连续补充的混合料所形成的炉气过滤层后携带一部分混合料中的杂质从 电炉中排出, 再经除尘、 冷凝洗涤、 精制分离得到黄磷产品, 尾气则回收利用或排放。
其中, 在使用大型自焙电极制磷电炉的生产工艺中, 电炉变压器容量一般为 50000— 90000KVA, 产量一般在 30000吨 /年以上, 采用自焙电炉; 对入炉原料要求非常严格 (如 入炉焦炭水分、 粒度等), 通常采用烧结法、 球团法进行预处理后才能入炉, 不能直接使 用块矿入炉, 且产生的炉气温度一般高于 350 °C ; 从电炉排出的炉气进入静电除尘器 (即 干法除尘), 除尘净化后的炉气(含尘量一般在 50mg/m3左右)进入冷凝回收系统后得到粗 磷, 然后将粗磷导入粗磷精制系统中进行精制, 得到黄磷产品。
使用多电极制磷电炉的生产工艺中, 电炉变压器容量及产量均比大型自焙电极制磷电 炉工艺小的多, 一般为 28000 KVA以下, 产量一般为 7000— 10000吨 /年, 采用成型石墨 电极, 布置形式一般为三相 6根或三相 7根直径 500mm或直径 600mm石墨电极; 入炉原料 不需烧结料或球团料, 采用烘干预处理, 块矿入炉, 炉气温度一般 100— 170 °C ; 从电炉 排出的炉气直接进入冷凝回收系统(即湿法除尘), 冷凝后的黄磷进入收集槽中即为粗磷, 然后将粗磷导入粗磷精制系统中进行精制, 得到黄磷产品和大量泥磷。
上述使用大型自焙电极制磷电炉的生产工艺虽能够产生较少的泥磷和废水,但静电除 尘器配套设施建设费用巨大、 运行和维修费用高、 人员技术要求高, 并且对炉气中的粉尘 净化处理并不充分, 不能理想解决尾气中 PM2. 5的排放问题。而使用多电极制磷电炉的生 产工艺会有大量难分离的泥磷产生, 且尾气中的含尘量更高。
本发明专利申请的申请人曾在申请号为 2013104546439、 2013104548326号的中国专 利申请文件中分别提供了一种使用多电极制磷电炉的黄磷生产方法及设备和使用大型自 焙电极制磷电炉的黄磷生产方法, 由于这两种方法都采用干式除尘系统对电炉制磷炉气进 行除尘净化,并且干式除尘系统中又使用了安装多孔材料膜滤芯的过滤器对电炉制磷炉气 进行高温精密过滤, 因此, 通过这两种方法生产黄磷过程中基本不产生泥磷并能降低尾气 含尘量。但是,由于这两种方法在对除尘净化后的炉气进行冷凝时仍采用喷淋冷却的方式, 还是可能产生一定量泥磷, 同时会消耗大量的冷却水, 从而在后续产生大量废水, 不仅极 大增加粗磷精制时的蒸汽消耗量, 同时也会带来废水处理问题。 目前为此, 电炉法黄磷生 产均是通过这样的喷淋冷却方式生产粗磷, 这种方式已写入黄磷生产规范中。
发明内容
本发明所要解决的技术问题首先是提供一种对电炉制磷炉气进行冷凝时不采用喷淋 冷却方式的电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置, 解决目前喷淋冷却方 式所带来的普遍问题。本发明其次还将提供一种使用大型自焙电极制磷电炉生产黄磷的方 法及设备, 其对电炉制磷炉气进行冷凝时也不采用喷淋冷却方式。
本发明所提供的从电炉制磷炉气中回收黄磷的方法, 包括的步骤有:
1 )在确保电炉制磷炉气的温度处于该电炉制磷炉气中磷蒸汽露点温度以上的条件下, 使用干式除尘系统对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的固含量达 到 10— 50mg/m3以下;
2 ) 将净化后的炉气送至一收磷装置, 该收磷装置具有由壳体所构成的换热室及设置 在该换热室内的间壁换热器, 所述炉气进入换热室从而与间壁换热器充分接触;
3 ) 向间壁换热器的内部流路中通入低温介质, 该低温介质与所述炉气在间壁换热器 的隔离下非混合传热, 从而使黄磷冷凝析出并大量附着于间壁换热器表面, 换热后的尾气 排出收磷装置;
4 ) 向间壁换热器的内部流路中通入替换低温介质的高温介质, 该高温介质与附着于 间壁换热器表面的黄磷非混合传热, 从而使黄磷熔化并滴入收磷装置底部的收磷槽中, 然 后再通过收磷槽获取黄磷。
本发明的上述方法不采用喷淋冷却方式对电炉制磷炉气进行冷凝来回收黄磷,而是使 用间壁换热器, 以先通低温介质使黄磷冷凝析出并大量附着于间壁换热器表面, 再通高温 介质将附着于间壁换热器表面的黄磷熔化并滴入收磷装置底部的收磷槽中最后收取黄磷, 解决泥磷和废水问题, 降低粗磷精制的时间和蒸汽消耗。
为上述方法中上述方法中, 将收磷装置的炉气入口温度控制为 180— 220 °C, 将收磷 装置的尾气出口温度控制为 10— 30 °C为宜。 当收磷装置的炉气入口温度低于 180 °C时, 将 导致炉气中的磷蒸汽过早冷凝, 从而降低收磷装置的黄磷回收率; 当收磷装置的炉气入口 温度低于 220°C时, 不便于收磷装置对磷蒸汽快速冷凝。 将收磷装置的尾气出口温度控制 为 10°C以下, 会增加制冷难度, 且无太大必要; 收磷装置的尾气出口温度为 30°C以上时, 对磷蒸汽的冷凝不充分, 会降低黄磷回收率。
所述低温介质、 高温介质可以从适合本发明的多种冷媒、 热媒中分别进行选用。 实际 验证证明, 低温介质选用冷冻盐水, 高温介质选用水蒸气能够达到较好的效果。
当所述的电炉制磷炉气是通过将由磷矿石、硅石和焦炭按比例配成的混合料送入多电 极制磷电炉, 多电极制磷电炉内的混合料发生还原反应生成炉气, 炉气从反应熔区逸出, 经过炉内上部由连续补充的混合料所形成的炉气过滤层后携带一部分混合料中的杂质从 多电极制磷电炉中排出而产生时,可通过在连接电炉与干式除尘系统的烟道上安装换热装 置或 /和调整电炉中所述的炉气过滤层厚度或 /和在严格进行混合料处理的前提下调整电 极功率从而将干式除尘系统中的炉气温度保持在所述磷蒸汽露点温度以上。
上述将干式除尘系统中的炉气温度保持在所述磷蒸汽露点温度以上的技术手段,一是 利用换热装置对炉气的温度进行控制, 二是调整电炉中所述的炉气过滤层厚度, 三是在严 格进行混合料处理的前提下调整电极功率。 这三种手段可以结合使用, 也可以单独使用。 其中, 由于多电极制磷电炉通常所产生的炉气温度较低, 要通过换热装置使通入过滤器的 待过滤炉气温度保持在所述磷蒸汽露点温度以上, 一般应通过换热装置对炉气进行加热。
炉气过滤层的主要作用是减少炉气中夹带的粉尘。 以往, 为了减少泥磷的产量, 往往 要求炉气过滤层较厚。 由于使用的是多电极制磷电炉, 通常其产生的炉气温度本身较低, 这时,要通过调整炉气过滤层厚度使通入过滤器的待过滤炉气温度保持在所述磷蒸汽露点 温度以上, 应采取降低炉气过滤层厚度, 这样可以减少炉气通过炉气过滤层的热量损失, 从而使通入过滤器的待过滤炉气温度提高。
使用多电极制磷电炉时, 以往对入炉原料的处理要求并不高(如入炉焦炭水分、 粒度 等), 若使用过高的电极功率, 恐导致副反应增多, 降低黄磷产量。 因此, 如要通过调整 电极功率使通入过滤器的待过滤炉气温度保持在所述磷蒸汽露点温度以上,其前提是应对 原料进行严格处理, 如采用烧结法、 球团法对原料进行预处理后再入炉, 这种情况下, 就 可以通过增大电压、 电流来提高电极功率。
进一步的是, 所述干式除尘系统中至少包含用于电炉制磷炉气过滤的过滤器, 该过滤 器具有符合下述工作条件的多孔材料膜滤芯, 针对该过滤器应执行的操作包括-
①开车时执行的操作: 向过滤器中注入惰性预热气体, 从而将过滤器中的多孔材料膜 滤芯预热至所述磷蒸汽露点温度以上; ②正常运行时执行的操作: 向过滤器中输入温度保持为所述磷蒸汽露点温度以上的待 过滤炉气, 且过滤后的干净炉气的含尘量为 10— 20mg/m3以下;
③反吹时执行的操作:启动反吹装置向过滤器中注入温度为所述磷蒸汽露点温度以上 的惰性反吹气体, 惰性反吹气体的压力控制为 0. 2 - 1. 0MPa;
④停车时执行的操作: 向过滤器中注入温度为所述磷蒸汽露点温度以上的惰性置换气 体, 使多孔材料膜滤芯在惰性置换气体的保护下不发生糊膜污染。
当通入过滤器的待过滤炉气温度低于所述磷蒸汽露点温度时,将导致炉气中的磷蒸汽 冷凝, 造成过滤器无法正常工作, 因此, 上述方法需要向过滤器中输入温度保持为所述磷 蒸汽露点温度以上的待过滤炉气。 此外, 对于上述的过滤器而言, 将其应用到磷炉气过滤 环境中还需要克服过滤器开车、反吹以及停车期间, 由于烧结无机多孔材料膜滤芯表面温 度骤变而引起磷蒸汽冷凝致使滤芯糊膜污染, 孔道堵塞的技术困难。 为此, 采取上述注入 一定温度的惰性预热气体、 惰性反吹气体和惰性置换气体的手段。
采用具有多孔材料膜滤芯的过滤器的显著优势还在于收尘精度高。上述方法中对过滤 器的收尘精度要求为过滤后的干净炉气含尘量在 10— 20mg/m3以下。 为达到该要求, 可以 选择相应孔径的多孔材料膜滤芯。 测试发现, 在磷炉气过滤环境中, 当过滤器过滤后的干 净炉气含尘量在 20mg/m3以下时, 将惰性反吹气体压力控制应该在 0. 2 - 1. OMPa最能保证 多孔材料膜滤芯长时间稳定工作。
此外,在使用上述过滤器的情况下,最好将通入过滤器的待过滤炉气温度保持为 187. 5 一 280 °C。 通入过滤器的待过滤炉气温度低于 187. 5 °C时, 易导致炉气中的磷蒸汽冷凝, 造成过滤器无法正常工作; 当通入过滤器的待过滤炉气温度高于 280 °C时, 则会降低黄磷 的收率。 通入过滤器的待过滤炉气温度进一步优选为 187. 5— 220 °C, 这时黄磷的收率较 高。
本发明所提供的从电炉制磷炉气中回收黄磷的设备,包括干式除尘系统和与干式除尘 系统连接的收磷装置,所述干式除尘系统在电炉制磷炉气的温度处于该电炉制磷炉气中磷 蒸汽露点温度以上的条件下对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的 固含量达到 10— 50mg/m3以下, 所述收磷装置具有由壳体所构成的换热室及设置在该换热 室内的间壁换热器, 换热室上设有尾气出口和与干式除尘系统的输出端连通的炉气入口, 间壁换热器的内部流路通过可切换装置分别连接低温介质源和高温介质源。
进一步的是, 所述干式除尘系统中包括用于电炉制磷炉气过滤的过滤器, 该过滤器具 有符合下述工作条件的多孔材料膜滤芯, 针对该过滤器应执行的操作包括: ①开车时执行的操作: 向过滤器中注入惰性预热气体, 从而将过滤器中的多孔材料膜 滤芯预热至电炉制磷炉气中磷蒸汽露点温度以上;
②正常运行时执行的操作: 向过滤器中输入温度保持为所述磷蒸汽露点温度以上的待 过滤炉气, 且过滤后的干净炉气的含尘量为 10— 20mg/m3以下;
③反吹时执行的操作:启动反吹装置向过滤器中注入温度为所述磷蒸汽露点温度以上 的惰性反吹气体, 惰性反吹气体的压力控制为 0. 2- 1. 0MPa;
④停车时执行的操作: 向过滤器中注入温度为所述磷蒸汽露点温度以上的惰性置换气 体, 使多孔材料膜滤芯在惰性置换气体的保护下不发生糊膜污染。
本发明上述从电炉制磷炉气中回收黄磷的方法的专用收磷装置,该收磷装置具有由壳 体所构成的换热室及设置在该换热室内的间壁换热器,换热室上设有尾气出口和与干式除 尘系统的输出端连通的炉气入口, 间壁换热器的内部流路通过可切换装置分别连接低温介 质源和高温介质源。 具体的, 所述间壁换热器可选用翘片管换热器。 翘片管换热器中翘片 的方向最好是竖直设置的, 这样更便于黄磷熔化后滴入收磷槽。
本发明使用大型自焙电极制磷电炉生产黄磷的方法, 包括的步骤有:
1 )在确保电炉制磷炉气的温度处于该电炉制磷炉气中磷蒸汽露点温度以上的条件下, 使用干式除尘系统对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的固含量达 到 10— 50mg/m3以下;
2 ) 将净化后的炉气送至一收磷装置, 该收磷装置具有由壳体所构成的换热室及设置 在该换热室内的间壁换热器, 所述炉气进入换热室从而与间壁换热器充分接触;
3 ) 向间壁换热器的内部流路中通入低温介质, 该低温介质与所述炉气在间壁换热器 的隔离下非混合传热, 从而使黄磷冷凝析出并大量附着于间壁换热器表面, 换热后的尾气 排出收磷装置;
4) 向间壁换热器的内部流路中通入替换低温介质的高温介质, 该高温介质与附着于 间壁换热器表面的黄磷非混合传热, 从而使黄磷熔化并滴入收磷装置底部的收磷槽中, 然 后再通过收磷槽获取黄磷;
其中, 所述的电炉制磷炉气, 是通过将由磷矿石、 硅石和焦炭按比例配成的混合料送 入大型自焙电极制磷电炉, 大型自焙电极制磷电炉内的混合料发生还原反应生成炉气, 炉 气从反应熔区逸出,经过炉内上部由连续补充的混合料所形成的炉气过滤层后携带一部分 混合料中的杂质从大型自焙电极制磷电炉中排出而产生的高温炉气。
本发明的上述方法不采用喷淋冷却方式对电炉制磷炉气进行冷凝来回收黄磷,而是使 用间壁换热器, 以先通低温介质使黄磷冷凝析出并大量附着于间壁换热器表面, 再通高温 介质将附着于间壁换热器表面的黄磷熔化并滴入收磷装置底部的收磷槽中最后收取黄磷, 解决泥磷和废水问题, 降低粗磷精制的时间和蒸汽消耗。
该方法中, 将收磷装置的炉气入口温度控制为 180— 220 °C, 将收磷装置的尾气出口 温度控制为 10— 30 °C为宜。 当收磷装置的炉气入口温度低于 180 °C时, 将导致炉气中的磷 蒸汽过早冷凝, 从而降低收磷装置的黄磷回收率; 当收磷装置的炉气入口温度低于 220 °C 时, 不便于收磷装置对磷蒸汽快速冷凝。 将收磷装置的尾气出口温度控制为 10 °C以下, 会增加制冷难度, 且无太大必要; 收磷装置的尾气出口温度为 30 °C以上时, 对磷蒸汽的 冷凝不充分, 会降低黄磷回收率。
所述低温介质、 高温介质可以从适合本发明的多种冷媒、 热媒中分别进行选用。 实际 验证证明, 低温介质选用冷冻盐水, 高温介质选用水蒸气能够达到较好的效果。
进一步的是, 所述干式除尘系统中包括用于电炉制磷炉气过滤的过滤器, 该过滤器具 有符合下述工作条件的多孔材料膜滤芯, 针对该过滤器应执行的操作包括:
①开车时执行的操作: 向过滤器中注入惰性预热气体, 从而将过滤器中的多孔材料膜 滤芯预热至所述磷蒸汽露点温度以上;
②正常运行时执行的操作: 向过滤器中输入温度保持为所述磷蒸汽露点温度以上的待 过滤炉气, 且过滤后的干净炉气的含尘量为 10— 20mg/m3以下;
③反吹时执行的操作:启动反吹装置向过滤器中注入温度为所述磷蒸汽露点温度以上 的惰性反吹气体, 惰性反吹气体的压力控制为 0. 2 - 1. 0MPa;
④停车时执行的操作: 向过滤器中注入温度为所述磷蒸汽露点温度以上的惰性置换气 体, 使多孔材料膜滤芯在惰性置换气体的保护下不发生糊膜污染。
当通入过滤器的待过滤炉气温度低于所述磷蒸汽露点温度时,将导致炉气中的磷蒸汽 冷凝, 造成过滤器无法正常工作, 因此, 上述方法需要向过滤器中输入温度保持为所述磷 蒸汽露点温度以上的待过滤炉气。 此外, 对于上述的过滤器而言, 将其应用到磷炉气过滤 环境中还需要克服过滤器开车、反吹以及停车期间, 由于烧结无机多孔材料膜滤芯表面温 度骤变而引起磷蒸汽冷凝致使滤芯糊膜污染, 孔道堵塞的技术困难。 为此, 采取上述注入 一定温度的惰性预热气体、 惰性反吹气体和惰性置换气体的手段。
通常, 将惰性预热气体、惰性反吹气体和惰性置换气体的温度控制在所述磷蒸汽露点 温度以上就能够滤芯糊膜污染, 但是, 最好可将惰性预热气体、 惰性反吹气体和惰性置换 气体的温度控制为与通入过滤器的待过滤炉气温度基本一致(当通入过滤器的待过滤炉气 温度高于所述磷蒸汽露点温度时), 这样可以稳定滤芯温度, 提高滤芯的使用寿命。
采用具有多孔材料膜滤芯的过滤器的显著优势还在于收尘精度高。上述方法中对过滤 器的收尘精度要求为过滤后的干净炉气含尘量在 10— 20mg/m3以下。 为达到该要求, 可以 选择相应孔径的多孔材料膜滤芯。 测试发现, 在磷炉气过滤环境中, 当过滤器过滤后的干 净炉气含尘量在 20mg/m3以下时, 将惰性反吹气体压力控制应该在 0. 2— 1. OMPa最能保证 多孔材料膜滤芯长时间稳定工作。
由于大型自焙电极制磷电炉通常所产生的电炉制磷炉气温度本就较高, 因此完全能够 满足通入过滤器的待过滤炉气温度在磷蒸汽露点温度以上的要求。 当然, 还可进一步的通 过在连接电炉与干式除尘系统的烟道上安装换热装置或 /和调整电炉中所述的炉气过滤层 厚度或 /和在严格进行混合料处理的前提下调整电极功率从而将通入过滤器的待过滤炉气 温度保持为 420— 590 °C。
一般而言, 通过换热装置对炉气进行适当加热、 略微减少炉气过滤层厚度或小幅增大 电压、 电流来提高电极功率就能够将通入过滤器的待过滤炉气温度保持为 420— 590 °C。 通入过滤器的待过滤炉气温度为 420— 590 °C, 远高于将导致炉气中的磷蒸汽冷凝的露点, 因此, 完全可以保证过滤器的正常工作。 同时, 当过滤温度为 420— 590 °C时, 发现黄磷 的收率较高。 在此基础上, 通入过滤器的待过滤炉气温度进一步优选为 420— 530 °C, 这 时黄磷的收率更高。
当通入过滤器的待过滤炉气温度为 420— 530 °C时, 从过滤器排放的干净炉气温度仍 然较高, 此时, 可将过滤器输出的炉气通入余热锅炉降温至 180— 220 °C再进入收磷装置。 余热锅炉的主要作用就是对炉气进行降温 (当然, 余热锅炉还能回收热量), 因此, 无论 采用其他何种降温设备, 就要其作用就是对炉气进行降温, 那么就是与余热锅炉等同的技 术手段。
用于上述使用大型自焙电极制磷电炉生产黄磷的方法的设备,括干式除尘系统和与干 式除尘系统连接的收磷装置,所述干式除尘系统在电炉制磷炉气的温度处于该电炉制磷炉 气中磷蒸汽露点温度以上的条件下对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷 炉气的固含量达到 10— 50mg/m3 以下,所述收磷装置具有由壳体所构成的换热室及设置在 该换热室内的间壁换热器,换热室上设有尾气出口和与干式除尘系统的输出端连通的炉气 入口, 间壁换热器的内部流路通过可切换装置分别连接低温介质源和高温介质源。
进一步的是, 所述干式除尘系统中包括用于电炉制磷炉气过滤的过滤器, 该过滤器具 有符合下述工作条件的多孔材料膜滤芯, 针对该过滤器应执行的操作包括: ①开车时执行的操作: 向过滤器中注入惰性预热气体, 从而将过滤器中的多孔材料膜 滤芯预热至电炉制磷炉气中磷蒸汽露点温度以上;
②正常运行时执行的操作: 向过滤器中输入温度保持为所述磷蒸汽露点温度以上的待 过滤炉气, 且过滤后的干净炉气的含尘量为 10— 20mg/m3以下;
③反吹时执行的操作:启动反吹装置向过滤器中注入温度为所述磷蒸汽露点温度以上 的惰性反吹气体, 惰性反吹气体的压力控制为 0. 2- 1. 0MPa;
④停车时执行的操作: 向过滤器中注入温度为所述磷蒸汽露点温度以上的惰性置换气 体, 使多孔材料膜滤芯在惰性置换气体的保护下不发生糊膜污染。
进一步的是, 通入过滤器的待过滤炉气温度保持为 420— 590°C ; 过滤器与收磷装置 之间设置有将过滤器输出的炉气降温至 180— 220°C再进入收磷装置的余热锅炉。
此外, 所述间壁换热器选用翘片管换热器。
下面结合附图和具体实施方式对本发明做进一步的说明、本发明附加的方面和优点将 在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。 附图说明
图 1为申请人在 2013104546439号的中国专利申请文件中提供的黄磷工艺流程图。 图 2为本发明一种实施方式的工艺流程示意图。
图 3为本发明另一种实施方式的工艺流程示意图。
图 4为本发明多台收磷装置的布置示意图。
具体实施方式
图 1为申请人在 2013104546439号的中国专利申请文件中提供的黄磷工艺流程图,本 发明在该专利申请的技术方案上进行了改进。 为便于对本发明的准确理解, 现对 2013104546439号中国专利申请进行说明。
如图 1所示的黄磷工艺流程, 电炉 1通过排烟管道 2 (排烟管道 2上设有换热装置 6 ) 与干式除尘系统 3连接,干式除尘系统 3的除尘设备由过滤器 301以及位于过滤器 301与 电炉 1之间的机械收尘器 302所构成, 电炉 1排出的炉气先由排烟管道 2进入机械收尘器 302中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化; 过滤器 301排出 的干净炉气导入冷凝回收系统 4, 冷凝回收系统 4包括喷淋塔 401和收集槽 402, 经喷淋 塔 401喷淋冷凝后的黄磷进入收集槽 402中即为粗磷,粗磷再进入粗磷精制系统 5中进行 精制, 粗磷精制系统 5包括精制锅 501, 粗磷在精制锅 501中用蒸汽加热、搅拌、澄清后, 在锅底沉积纯磷, 喷淋塔 401排出的尾气 (CO等气体) 经总水封分成两路, 一路是经过 进一步净化后作为燃料, 一路是在不用时放空; 此外, 过滤器 301还连接有一用于向过滤 器 301提供其所需的惰性预热气体、 惰性反吹气体和惰性置换气体的供气装置 303, 该供 气装置 303经加热器 304后分别连接第一输出管 305和第二输出管 306, 第一输出管 305 的输出端连接过滤器 301的反吹装置,第二输出管 306的输出端连接于过滤器 301的待过 滤炉气进气管道上, 第一输出管 305和第二输出管 306上分别设置有阀门。 其中, 机械收 尘器 302也可以采用重力除尘器、旋风除尘器等。过滤器 301中通过孔板排列安装有数根 烧结无机多孔材料膜滤芯,每一组烧结无机多孔材料膜滤芯的上方安装有一部用于反吹的 文氏管,进入各文氏管的反吹惰性气体分别由一个脉冲阀来控制,各脉冲阀即通过气包(图 中未示) 连接图 1中的第一输出管。
2013104546439号中国专利申请还通过多个实施例对其黄磷工艺流程进行具体说明。 其实施例共分为两组, 第一组实施例涉及使用多电极制磷电炉的方法一, 第二组实施例使 用大型自焙电极制磷电炉的方法二。 为了便于比较, 每一组实施例中, 各实施例均使用同 一套设备, 且它们的原料也是从矿品位、 配比、 处理工艺完全相同的同一批料(采用现有 技术处理) 中均分出来的。 为了准确比较每一组实施例中各实施例所得到的黄磷收率, 设 计在粗磷精制系统 5中布置与实施例数量一致的精制锅 501 (每一个实施例对应一个精制 锅 501 ), 冷凝回收系统 4的出口可在这些精制锅 501之间进行切换; 当一个实施例的原 料完全反应且收磷结束后, 在加入下一批次的原料(即另一实施例的原料) 时, 切换至相 应的精制锅 501, 这样, 通过计算每一个精制锅 501获得的黄磷量, 就可得到这些实施的 黄磷收率。
第一组实施例
实施例 1
采用变压器容量为 15000 KVA的多电极制磷电炉。 将 50吨混合料连续加入电炉 1进 行反应, 同时, 启动供气装置 303、 加热器 304, 高温惰性预热气体通过第二输出管 306, 从过滤器 301的待过滤炉气进气管道进入过滤器 301, 从而将过滤器 301中的烧结无机多 孔材料膜滤芯 (采用 FeAl 金属间化合物多孔材料膜滤芯) 预热至 187. 5 °C, 然后关闭第 二输出管 306上的阀门。此后, 通过排烟管道 2将从电炉 1排出的炉气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热后的炉气先由排烟管 道 2进入机械收尘器 302中进行一级除尘净化,然后再进入过滤器 301中进行二级除尘净 化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保持在 200 °C左右。 过滤 器 301每 600s启动一次在线反吹, 反吹时, 供气装置 303输出的惰性反吹气体经过加热 器 304 加热至 187. 5 °C, 然后作用于烧结无机多孔材料膜滤芯, 惰性反吹气体的压力为 0. 6MPa。过滤后的干净炉气的含尘量为 5mg/m3左右, 经过冷凝回收系统 4后, 粗磷进入对 应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中的含尘量极低。 计算 黄磷收率为 98. 5%, 远高于目前 72— 87%的收率水平。
实施例 2
实施例 1结束后, 直接采用其设备继续进行实施例 2。 将第二批 50吨混合料连续加 入电炉 1进行反应, 同时, 切换至另一精制锅 501。 通过排烟管道 2将从电炉 1排出的炉 气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热 后的炉气先由排烟管道 2进入机械收尘器 302 中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保 持在 250 °C左右。 过滤器 301每 600s启动一次在线反吹, 反吹时, 供气装置 303输出的 惰性反吹气体经过加热器 304加热至 187. 5 °C, 然作用于烧结无机多孔材料膜滤芯, 惰性 反吹气体的压力为 0. 6MPa。 过滤后的干净炉气的含尘量为 5mg/m3左右, 经过冷凝回收系 统 4后, 粗磷进入对应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中 的含尘量极低。 计算黄磷收率为 97%。
实施例 3
实施例 2结束后, 直接采用其设备继续进行实施例 3。 将第三批 50吨混合料连续加 入电炉 1进行反应, 同时, 切换至另一精制锅 501。 通过排烟管道 2将从电炉 1排出的炉 气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热 后的炉气先由排烟管道 2进入机械收尘器 302 中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保 持在 300 °C左右。 过滤器 301每 600s启动一次在线反吹, 反吹时, 供气装置 303输出的 惰性反吹气体经过加热器 304加热至 187. 5 °C, 然后作用于烧结无机多孔材料膜滤芯, 惰 性反吹气体的压力为 0. 6MPa。 过滤后的干净炉气的含尘量为 5mg/m3左右, 经过冷凝回收 系统 4后, 粗磷进入对应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气 中的含尘量极低。 计算黄磷收率为 89%。
实施例 3结束后, 仍然通过供气装置 303、 加热器 304以及第二输出管 306向过滤器 301 中注入温度为 187. 5 °C的惰性置换气体, 使烧结无机多孔材料膜滤芯在惰性置换气体 的保护下不发生糊膜污染。
第二组实施例 (采用另一套设备) 实施例 4
采用变压器容量为 74750KVA的大型自焙电极制磷电炉。 将 100吨混合料连续加入电 炉 1进行反应, 同时, 启动供气装置 303、 加热器 304, 高温惰性预热气体通过第二输出 管 306, 从过滤器 301的待过滤炉气进气管道进入过滤器 301, 从而将过滤器 301中的烧 结无机多孔材料膜滤芯 (采用 FeAl 金属间化合物多孔材料膜滤芯) 预热至 400°C, 然后 关闭第二输出管 306上的阀门。此后, 通过排烟管道 2将从电炉 1排出的炉气导入干式除 尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热后的炉气先由 排烟管道 2进入机械收尘器 302中进行一级除尘净化,然后再进入过滤器 301中进行二级 除尘净化。在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保持在 390°C左右。 过滤器 301每 400s启动一次在线反吹, 反吹时, 供气装置 303输出的惰性反吹气体经过 加热器 304加热至 400°C, 然后作用于烧结无机多孔材料膜滤芯, 惰性反吹气体的压力为 0. 8MPa。过滤后的干净炉气的含尘量为 6mg/m3左右, 经过冷凝回收系统 4后, 粗磷进入对 应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中的含尘量极低。 计算 黄磷收率为 97. 5%。
实施例 5
实施例 4结束后, 直接采用其设备继续进行实施例 5。 将第二批 100吨混合料连续加 入电炉 1进行反应, 同时, 切换至另一精制锅 501。 通过排烟管道 2将从电炉 1排出的炉 气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热 后的炉气先由排烟管道 2进入机械收尘器 302 中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保 持在 430°C左右。 过滤器 301每 400s启动一次在线反吹, 反吹时, 供气装置 303输出的 惰性反吹气体经过加热器 304加热至 400°C, 然后作用于烧结无机多孔材料膜滤芯, 惰性 反吹气体的压力为 0. 8MPa。 过滤后的干净炉气的含尘量为 6mg/m3左右, 经过冷凝回收系 统 4后, 粗磷进入对应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中 的含尘量极低。 计算黄磷收率为 98%。
实施例 6
实施例 5结束后, 直接采用其设备继续进行实施例 6。 将第三批 100吨混合料连续加 入电炉 1进行反应, 同时, 切换至另一精制锅 501。 通过排烟管道 2将从电炉 1排出的炉 气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热 后的炉气先由排烟管道 2进入机械收尘器 302 中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保 持在 500 °C左右。 过滤器 301每 400s启动一次在线反吹, 反吹时, 供气装置 303输出的 惰性反吹气体经过加热器 304加热至 400 °C, 然后作用于烧结无机多孔材料膜滤芯, 惰性 反吹气体的压力为 0. 8MPa。 过滤后的干净炉气的含尘量为 6mg/m3左右, 经过冷凝回收系 统 4后, 粗磷进入对应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中 的含尘量极低。 计算黄磷收率为 98. 5%。
实施例 Ί
实施例 6结束后, 直接采用其设备继续进行实施例 7。 将第四批 100吨混合料连续加 入电炉 1进行反应, 同时, 切换至另一精制锅 501。 通过排烟管道 2将从电炉 1排出的炉 气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热 后的炉气先由排烟管道 2进入机械收尘器 302 中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保 持在 550 °C左右。 过滤器 301每 400s启动一次在线反吹, 反吹时, 供气装置 303输出的 惰性反吹气体经过加热器 304加热至 400 °C, 然后作用于烧结无机多孔材料膜滤芯, 惰性 反吹气体的压力为 0. 8MPa。 过滤后的干净炉气的含尘量为 6mg/m3左右, 经过冷凝回收系 统 4后, 粗磷进入对应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中 的含尘量极低。 计算黄磷收率为 98%。
实施例 8
实施例 7结束后, 直接采用其设备继续进行实施例 8。 将第五批 100吨混合料连续加 入电炉 1进行反应, 同时, 切换至另一精制锅 501。 通过排烟管道 2将从电炉 1排出的炉 气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电炉 1排出的被加热 后的炉气先由排烟管道 2进入机械收尘器 302 中进行一级除尘净化, 然后再进入过滤器 301中进行二级除尘净化。 在过滤器 301的待过滤炉气进气管道上检测待过滤炉气温度保 持在 620 °C左右。 过滤器 301每 400s启动一次在线反吹, 反吹时, 供气装置 303输出的 惰性反吹气体经过加热器 304加热至 400 °C, 然后作用于烧结无机多孔材料膜滤芯, 惰性 反吹气体的压力为 0. 8MPa。 过滤后的干净炉气的含尘量为 6mg/m3左右, 经过冷凝回收系 统 4后, 粗磷进入对应的精制锅 501中, 得到黄磷产品, 同时几乎未产生泥磷, 且尾气中 的含尘量极低。 计算黄磷收率为 90%。
为实施本发明的黄磷回收工艺, 现将图 1中的冷凝回收系统 4用专用收磷装置代替。 如图 2、 3和 4所示, 该收磷装置 7具有由壳体 701所构成的换热室 705及设置在该换热 室 705内的间壁换热器 702, 换热室 705上设有尾气出口和与干式除尘系统的输出端连通 的炉气入口, 间壁换热器 702的内部流路通过可切换装置 704分别连接低温介质源和高温 介质源。 在下面的实施例中, 低温介质源将采用冷冻盐水 (温度 10— 20°C ), 高温介质将 采用水蒸气 (温度 120— 150°C )。 本发明收磷装置 7的间壁换热器 702具体可选用翘片管 换热器。 翘片管换热器中翘片的方向是竖直设置。
实际生产时, 为了持续对炉气进行处理, 如图 4, 需要在生产线中布置多台收磷装置 7。 通过对阀门的控制, 干式除尘系统输出端的炉气可选择的进入部分的收磷装置 7中, 这些通入炉气的收磷装置 7通过可切换装置 704 (例如一个二位三通阀) 切换为使低温介 质进入间壁换热器 702内部流路的工作模式, 从而对收磷装置 7中的炉气进行冷凝; 而其 他未通入炉气的收磷装置 7,则通过可切换装置 704切换为使高温介质进入间壁换热器 702 内部流路的工作模式, 从而对已析出的黄磷进行加热熔化。 当那些切换为使低温介质进入 间壁换热器 702内部流路的收磷装置 7工作一段时间从而附着较多的黄磷后(可以根据收 磷装置 7尾气温度来判断, 当尾气温度升高时, 说明换热效率降下), 再将这些收磷装置 7通过可切换装置 704切换为使高温介质源进入间壁换热器 702内部流路的工作模式, 将 原来未通入炉气的收磷装置 7切换为使低温介质源进入间壁换热器 702内部流路的工作模 式, 此时, 再将干式除尘系统输出端的炉气通入到这些已切换为使低温介质源进入间壁换 热器 702内部流路的工作模式的收磷装置 7。 这样, 就可以持续的通过收磷装置 7对炉气 冷凝处理。
实施例 9
采用变压器容量为 15000 KVA的多电极制磷电炉。 将 50吨混合料 (矿品位、 配比、 处理工艺同实施例 1 ) 连续加入电炉 1进行反应, 同时, 启动供气装置 303、 加热器 304, 高温惰性预热气体通过第二输出管 306, 从过滤器 301的待过滤炉气进气管道进入过滤器 301, 从而将过滤器 301中的烧结无机多孔材料膜滤芯(采用 FeAl金属间化合物多孔材料 膜滤芯) 预热至 187. 5°C, 然后关闭第二输出管 306上的阀门。 此后, 通过排烟管道 2将 从电炉 1排出的炉气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加热。 从电 炉 1排出的被加热后的炉气先由排烟管道 2进入机械收尘器 302中进行一级除尘净化,然 后再进入过滤器 301中进行二级除尘净化。在过滤器 301的待过滤炉气进气管道上检测待 过滤炉气温度保持在 200°C左右。 过滤器 301每 600s启动一次在线反吹, 反吹时, 供气 装置 303输出的惰性反吹气体经过加热器 304加热至 187. 5°C, 然后作用于烧结无机多孔 材料膜滤芯, 惰性反吹气体的压力为 0. 6MPa。 过滤后的干净炉气的含尘量为 5mg/m3左右, 以 180°C左右进入图 4中的其中一个收磷装置 7。 该收磷装置 7通过可切换装置 704切换 为使低温介质 (所述冷冻盐水)进入间壁换热器 702内部流路的工作模式, 从而对进入该 收磷装置 7中的炉气进行冷凝, 收磷装置 7的尾气出口温度为 10— 20°C。 当该收磷装置 7 工作一段时间后, 关闭该收磷装置 7炉气入口前的阀门, 打开另一收磷装置 7炉气入口前 的阀门, 将 180°C左右的干净炉气通入另一收磷装置 7, 并继续对炉气进行冷凝, 而原先 用来冷凝炉气的收磷装置 7则通过可切换装置 704切换为使高温介质(所述水蒸气)进入 间壁换热器 702内部流路的工作模式,使黄磷熔化并滴入收磷装置 7底部的收磷槽 703中。 将从以上各收磷装置 7的收磷槽 703获得的粗磷导入精制锅 501中, 得到黄磷产品, 同时 未产生泥磷, 且尾气中的含尘量极低。 计算黄磷收率达到 99%。
实施例 10
采用变压器容量为 74750KVA的大型自焙电极制磷电炉。 将 100吨混合料 (矿品位、 配比、 处理工艺同实施例 4) 连续加入电炉 1进行反应, 同时, 启动供气装置 303、 加热 器 304, 高温惰性预热气体通过第二输出管 306, 从过滤器 301的待过滤炉气进气管道进 入过滤器 301, 从而将过滤器 301 中的烧结无机多孔材料膜滤芯 (采用 FeAl金属间化合 物多孔材料膜滤芯) 预热至 400°C, 然后关闭第二输出管 306上的阀门。 此后, 通过排烟 管道 2将从电炉 1排出的炉气导入干式除尘系统 3, 其间, 通过换热装置 6对炉气进行加 热。从电炉 1排出的被加热后的炉气先由排烟管道 2进入机械收尘器 302中进行一级除尘 净化, 然后再进入过滤器 301中进行二级除尘净化。在过滤器 301的待过滤炉气进气管道 上检测待过滤炉气温度保持在 390°C左右。 过滤器 301每 400s启动一次在线反吹, 反吹 时, 供气装置 303输出的惰性反吹气体经过加热器 304加热至 400°C, 然后作用于烧结无 机多孔材料膜滤芯,惰性反吹气体的压力为 0. 8MPa。过滤后的干净炉气的含尘量为 6mg/m3 左右, 然后进入图 3所示的余热锅炉 8中, 回收炉气中的热量。 余热锅炉 8输出的温度为 180°C左右进入图 4中的其中一个收磷装置 7。 该收磷装置 7通过可切换装置 704切换为 使低温介质 (所述冷冻盐水)进入间壁换热器 702内部流路的工作模式, 从而对进入该收 磷装置 7 中的炉气进行冷凝, 收磷装置 7的尾气出口温度为 10— 20°C。 当该收磷装置 7 工作一段时间后, 关闭该收磷装置 7炉气入口前的阀门, 打开另一收磷装置 7炉气入口前 的阀门, 将 180°C左右的干净炉气通入另一收磷装置 7, 并继续对炉气进行冷凝, 而原先 用来冷凝炉气的收磷装置 7则通过可切换装置 704切换为使高温介质(所述水蒸气)进入 间壁换热器 702内部流路的工作模式,使黄磷熔化并滴入收磷装置 7底部的收磷槽 703中。 将从以上各收磷装置 7的收磷槽 703获得的粗磷导入精制锅 501中, 得到黄磷产品, 同时 未产生泥磷, 且尾气中的含尘量极低。 计算黄磷收率达到 98. 6%。

Claims

权利要求书
1、 从电炉制磷炉气中回收黄磷的方法, 包括的步骤有:
1)在确保电炉制磷炉气的温度处于该电炉制磷炉气中磷蒸汽露点温度以上的条件下, 使用干式除尘系统对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的固含量达 到 10— 50mg/m3以下;
2) 将净化后的炉气送至一收磷装置 (7), 该收磷装置 (7) 具有由壳体 (701) 所构 成的换热室 (705)及设置在该换热室 (705) 内的间壁换热器 (702), 所述炉气进入换热 室 (705) 从而与间壁换热器 (702) 充分接触;
3) 向间壁换热器(702) 的内部流路中通入低温介质, 该低温介质与所述炉气在间壁 换热器(702) 的隔离下非混合传热, 从而使黄磷冷凝析出并附着于间壁换热器(702)表 面, 换热后的尾气排出收磷装置 (7);
4) 向间壁换热器(702) 的内部流路中通入替换低温介质的高温介质, 该高温介质与 附着于间壁换热器 (702) 表面的黄磷非混合传热, 从而使黄磷熔化并滴入收磷装置 (7) 底部的收磷槽 (703) 中, 然后再通过收磷槽 (703) 获取黄磷。
2、 如权利要求 1所述的从电炉制磷炉气中回收黄磷的方法, 其特征在于: 将收磷装 置 (7) 的炉气入口温度控制为 180— 220°C; 将收磷装置 (7) 的尾气出口温度控制为 10 一 30°C。
3、 如权利要求 1所述的从电炉制磷炉气中回收黄磷的方法, 其特征在于: 所述低温 介质选用冷冻盐水; 所述高温介质选用水蒸气。
4、 如权利要求 1所述的从电炉制磷炉气中回收黄磷的方法, 其特征在于: 所述干式 除尘系统中包括用于电炉制磷炉气过滤的过滤器 (301), 该过滤器 (301) 具有符合下述 工作条件的多孔材料膜滤芯 (307), 针对该过滤器 (301) 应执行的操作包括:
①开车时执行的操作: 向过滤器 (301) 中注入惰性预热气体, 从而将过滤器 (301) 中的多孔材料膜滤芯预热至所述磷蒸汽露点温度以上;
②正常运行时执行的操作: 向过滤器 (301) 中输入温度保持为所述磷蒸汽露点温度 以上的待过滤炉气, 且过滤后的干净炉气的含尘量为 10— 20mg/m3以下;
③反吹时执行的操作: 启动反吹装置向过滤器 (301) 中注入温度为所述磷蒸汽露点 温度以上的惰性反吹气体, 惰性反吹气体的压力控制为 0.2-1.0MPa;
④停车时执行的操作: 向过滤器 (301) 中注入温度为所述磷蒸汽露点温度以上的惰 性置换气体, 使多孔材料膜滤芯在惰性置换气体的保护下不发生糊膜污染。
5、 如权利要求 1一 4中任意一项权利要求所述的从电炉制磷炉气中回收黄磷的方法, 其特征在于: 所述的电炉制磷炉气, 是通过将由磷矿石、 硅石和焦炭按比例配成的混合料 送入多电极制磷电炉, 多电极制磷电炉内的混合料发生还原反应生成炉气, 炉气从反应熔 区逸出,经过炉内上部由连续补充的混合料所形成的炉气过滤层后携带一部分混合料中的 杂质从多电极制磷电炉中排出而产生; 贝 1」, 通过在连接电炉与干式除尘系统的排烟管道上 安装换热装置或 /和调整电炉中所述的炉气过滤层厚度或 /和在严格进行混合料处理的前 提下调整电极功率从而将干式除尘系统中的炉气温度保持在所述磷蒸汽露点温度以上。
6、 如权利要要求 5所述的从电炉制磷炉气中回收黄磷的方法, 其特征在于: 将通入 过滤器 (301 ) 的待过滤炉气温度保持为 187. 5— 280°C。
7、 从电炉制磷炉气中回收黄磷的设备, 包括干式除尘系统和与干式除尘系统连接的 收磷装置,所述干式除尘系统在电炉制磷炉气的温度处于该电炉制磷炉气中磷蒸汽露点温 度以上的条件下对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的固含量达到 10— 50mg/m3以下, 其特征在于: 所述收磷装置 (7 ) 具有由壳体 (701 ) 所构成的换热室 ( 705 ) 及设置在该换热室 (705 ) 内的间壁换热器 (702 ), 换热室 (705 ) 上设有尾气出 口和与干式除尘系统的输出端连通的炉气入口, 间壁换热器 (702 ) 的内部流路通过可切 换装置 (704) 分别连接低温介质源和高温介质源。
8、 如权利要求 7所述的从电炉制磷炉气中回收黄磷的设备, 其特征在于: 所述干式 除尘系统中包括用于电炉制磷炉气过滤的过滤器 (301 ), 该过滤器 (301 ) 具有符合下述 工作条件的多孔材料膜滤芯, 针对该过滤器 (307 ) 应执行的操作包括:
①开车时执行的操作: 向过滤器 (301 ) 中注入惰性预热气体, 从而将过滤器 (301 ) 中的多孔材料膜滤芯预热至电炉制磷炉气中磷蒸汽露点温度以上;
②正常运行时执行的操作: 向过滤器 (301 ) 中输入温度保持为所述磷蒸汽露点温度 以上的待过滤炉气, 且过滤后的干净炉气的含尘量为 10— 20mg/m3以下;
③反吹时执行的操作: 启动反吹装置向过滤器 (301 ) 中注入温度为所述磷蒸汽露点 温度以上的惰性反吹气体, 惰性反吹气体的压力控制为 0. 2- 1. 0MPa;
④停车时执行的操作: 向过滤器 (301 ) 中注入温度为所述磷蒸汽露点温度以上的惰 性置换气体, 使多孔材料膜滤芯在惰性置换气体的保护下不发生糊膜污染。
9、 如权利要求 1所述从电炉制磷炉气中回收黄磷的方法的专用收磷装置, 其特征在 于: 该收磷装置具有由壳体 (701 ) 所构成的换热室 (705 ) 及设置在该换热室 (705 ) 内 的间壁换热器 (702), 换热室 (705) 上设有尾气出口和与干式除尘系统的输出端连通的 炉气入口, 间壁换热器(702) 的内部流路通过可切换装置(704)分别连接低温介质源和 高温介质源。
10、 如权利要求 9所述的收磷装置, 其特征在于: 所述间壁换热器 (702) 选用翘片 管换热器。
11、 使用大型自焙电极制磷电炉生产黄磷的方法, 包括的步骤有:
1)在确保电炉制磷炉气的温度处于该电炉制磷炉气中磷蒸汽露点温度以上的条件下, 使用干式除尘系统对所述电炉制磷炉气进行除尘净化,从而使该电炉制磷炉气的固含量达 到 10— 50mg/m3以下;
2) 将净化后的炉气送至一收磷装置 (7), 该收磷装置 (7) 具有由壳体 (701) 所构 成的换热室 (705)及设置在该换热室 (705) 内的间壁换热器 (702), 所述炉气进入换热 室 (705) 从而与间壁换热器 (702) 充分接触;
3) 向间壁换热器(702) 的内部流路中通入低温介质, 该低温介质与所述炉气在间壁 换热器(702) 的隔离下非混合传热, 从而使黄磷冷凝析出并附着于间壁换热器(702)表 面, 换热后的尾气排出收磷装置 (7);
4) 向间壁换热器(702) 的内部流路中通入替换低温介质的高温介质, 该高温介质与 附着于间壁换热器 (702) 表面的黄磷非混合传热, 从而使黄磷熔化并滴入收磷装置 (7) 底部的收磷槽 (703) 中, 然后再通过收磷槽 (703) 获取黄磷;
其中, 所述的电炉制磷炉气, 是通过将由磷矿石、 硅石和焦炭按比例配成的混合料送 入大型自焙电极制磷电炉, 大型自焙电极制磷电炉内的混合料发生还原反应生成炉气, 炉 气从反应熔区逸出,经过炉内上部由连续补充的混合料所形成的炉气过滤层后携带一部分 混合料中的杂质从大型自焙电极制磷电炉中排出而产生的高温炉气。
12、 用于权利要求 11所述的使用大型自焙电极制磷电炉生产黄磷的方法的设备, 括 干式除尘系统和与干式除尘系统连接的收磷装置,所述干式除尘系统在电炉制磷炉气的温 度处于该电炉制磷炉气中磷蒸汽露点温度以上的条件下对所述电炉制磷炉气进行除尘净 化, 从而使该电炉制磷炉气的固含量达到 10— 50mg/m3以下, 其特征在于: 所述收磷装置 (7) 具有由壳体 (701)所构成的换热室 (705)及设置在该换热室 (705) 内的间壁换热 器 (702), 换热室 (705) 上设有尾气出口和与干式除尘系统的输出端连通的炉气入口, 间壁换热器(702)的内部流路通过可切换装置(704)分别连接低温介质源和高温介质源。
PCT/CN2013/090983 2013-12-27 2013-12-30 从电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置 WO2015096177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/107,829 US10246331B2 (en) 2013-12-27 2013-12-30 Method, apparatus and special phosphorus recovery device for recovering yellow phosphorus from electric furnace phosphorus-producing furnace gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310740690.X 2013-12-27
CN201310740690.XA CN103708432B (zh) 2013-12-27 2013-12-27 从电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置

Publications (1)

Publication Number Publication Date
WO2015096177A1 true WO2015096177A1 (zh) 2015-07-02

Family

ID=50401835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090983 WO2015096177A1 (zh) 2013-12-27 2013-12-30 从电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置

Country Status (3)

Country Link
US (1) US10246331B2 (zh)
CN (1) CN103708432B (zh)
WO (1) WO2015096177A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686099A (zh) * 2017-09-18 2018-02-13 北京迈未科技有限公司 一种利用中低品位磷矿石生产黄磷的设备及方法
CN112524962A (zh) * 2020-08-20 2021-03-19 云南江磷集团股份有限公司 一种黄磷电炉尾气回收净化工艺
CN114314536A (zh) * 2021-12-07 2022-04-12 成都易态科技有限公司 泥磷蒸发装置
CN115448270A (zh) * 2022-02-17 2022-12-09 云南澄江华业磷化工有限责任公司 一种高效低排放的泥磷回收处理工艺及对应的处理系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738930B (zh) * 2013-12-27 2016-06-15 成都易态科技有限公司 使用大型自焙电极制磷电炉生产黄磷的方法及设备
CN104645812B (zh) * 2015-03-11 2016-08-17 北京化工大学常州先进材料研究院 一种电石炉尾气的净化方法
CN104707462B (zh) * 2015-03-11 2016-09-14 北京化工大学常州先进材料研究院 一种从制备肥料时产生的废气中去除氨和粉尘的方法
CN105271245B (zh) * 2015-10-19 2018-04-24 黄钰雪 一种黄磷生产装置磷炉气冷凝乏蒸汽治理和四氟化硅回收利用的方法
CN107904397B (zh) * 2016-11-28 2019-05-28 华北理工大学 一种基于烧结气化脱磷回收装置的脱磷方法
CN108404557A (zh) * 2018-02-13 2018-08-17 宁波大学 一种配置有预热置换冷却系统的颗粒床除尘系统
CN109573971B (zh) * 2018-12-25 2024-04-12 石家庄新华能源环保科技股份有限公司 一种生产黄磷的装置
CN109911871B (zh) * 2019-03-18 2021-10-29 昆明理工大学 一种含磷尾气中单质磷变温相变分离方法及系统
CN110615415B (zh) * 2019-09-27 2022-09-09 成都易态科技有限公司 泥磷处理系统及工艺
CN111306948A (zh) * 2020-03-12 2020-06-19 成都易态科技有限公司 黄磷电炉炉气控温装置、系统及方法
CN112569768A (zh) * 2020-12-06 2021-03-30 贵州福泉川东化工有限公司 一种黄磷尾气净化吸收方法
CN112506158A (zh) * 2020-12-14 2021-03-16 云南煜锜环保科技有限公司 泥磷蒸馏温度自动化控制系统
CN112717570B (zh) * 2020-12-15 2023-04-07 中建研科技股份有限公司 一种空气过滤器反吹复原性能检测系统及检测方法
CN114644323B (zh) * 2020-12-17 2023-11-28 中节能工业节能有限公司 一种除尘收磷系统及除尘收磷方法
CN113797582B (zh) * 2021-09-13 2023-04-07 昆明理工大学 一种含磷气体干法冷却回收磷单质的方法及系统
CN114367124B (zh) * 2021-12-31 2023-02-10 云南澄江志成磷业化工有限责任公司 黄磷炉气处理设备及方法
CN115090107B (zh) * 2022-06-02 2024-02-06 青岛华世洁环保科技有限公司 一种沸石转轮吸附浓缩与rco耦合节能系统
CN115371445B (zh) * 2022-06-14 2024-08-02 成都易态科技有限公司 黄磷烟气净化系统及工业窑炉烟气净化装置
CN115143794B (zh) * 2022-06-14 2024-08-02 成都易态科技有限公司 烟气过滤除尘设备及烟气过滤除尘设备的滤芯再生方法
CN115371444B (zh) * 2022-06-14 2024-08-02 成都易态科技有限公司 黄磷烟气净化系统及烟气过滤除尘装置
CN115164605B (zh) * 2022-06-14 2024-08-02 成都易态科技有限公司 黄磷烟气净化系统及工业窑炉烟气净化装置
CN115164604B (zh) * 2022-06-14 2024-08-02 成都易态科技有限公司 黄磷烟气净化系统及烟气预处理装置
CN114931812A (zh) * 2022-06-22 2022-08-23 科林环保技术有限责任公司 黄磷生产系统及其工作方法
CN115193178B (zh) * 2022-06-29 2023-07-04 成都易态科技有限公司 烟气过滤除尘装置及黄磷烟气净化系统
CN115818595B (zh) * 2022-11-10 2024-03-19 云南澄江志成磷业化工有限责任公司 一种封闭式防堵塞泥磷回收系统
CN115974082B (zh) * 2023-02-23 2024-05-03 会东金川磷化工有限责任公司 一种回收黄磷尾气制备电石的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462973A (en) * 1983-06-27 1984-07-31 Fmc Corporation Phosphorus purification
CN101343050A (zh) * 2008-09-03 2009-01-14 湖北三新磷酸有限公司 一种用立式密闭隔烟窑炉生产黄磷或磷酸的方法及设备
CN201665530U (zh) * 2010-03-25 2010-12-08 安徽临泉化工股份有限公司 固化再生硫磺分离器
CN102721030A (zh) * 2012-06-29 2012-10-10 邹岳明 黄磷炉热能综合回收利用系统及其工作方法
CN103738930A (zh) * 2013-12-27 2014-04-23 成都易态科技有限公司 使用大型自焙电极制磷电炉生产黄磷的方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2509228A (en) * 1949-02-26 1950-05-30 Tennessee Valley Authority Electric furnace for phosphate reduction
DE2014014A1 (de) * 1970-03-24 1971-10-07 Knapsack Ag Verfahren zur Herstellung von Phosphor
US5588969A (en) * 1995-03-29 1996-12-31 Lucent Technologies Inc. Method for supplying phosphorous vapor
CN1092138C (zh) * 1999-12-14 2002-10-09 昆明理工大学 中温真空法处理泥磷提取黄磷
CN101372323A (zh) * 2008-09-28 2009-02-25 云南澄江冶钢集团有限公司 电炉法制备元素磷中炉气的冷凝装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462973A (en) * 1983-06-27 1984-07-31 Fmc Corporation Phosphorus purification
CN101343050A (zh) * 2008-09-03 2009-01-14 湖北三新磷酸有限公司 一种用立式密闭隔烟窑炉生产黄磷或磷酸的方法及设备
CN201665530U (zh) * 2010-03-25 2010-12-08 安徽临泉化工股份有限公司 固化再生硫磺分离器
CN102721030A (zh) * 2012-06-29 2012-10-10 邹岳明 黄磷炉热能综合回收利用系统及其工作方法
CN103738930A (zh) * 2013-12-27 2014-04-23 成都易态科技有限公司 使用大型自焙电极制磷电炉生产黄磷的方法及设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686099A (zh) * 2017-09-18 2018-02-13 北京迈未科技有限公司 一种利用中低品位磷矿石生产黄磷的设备及方法
CN112524962A (zh) * 2020-08-20 2021-03-19 云南江磷集团股份有限公司 一种黄磷电炉尾气回收净化工艺
CN112524962B (zh) * 2020-08-20 2022-08-02 云南江磷集团股份有限公司 一种黄磷电炉尾气回收净化工艺
CN114314536A (zh) * 2021-12-07 2022-04-12 成都易态科技有限公司 泥磷蒸发装置
CN114314536B (zh) * 2021-12-07 2024-02-02 成都易态科技有限公司 泥磷蒸发装置
CN115448270A (zh) * 2022-02-17 2022-12-09 云南澄江华业磷化工有限责任公司 一种高效低排放的泥磷回收处理工艺及对应的处理系统
CN115448270B (zh) * 2022-02-17 2023-07-25 云南澄江华业磷化工有限责任公司 一种高效低排放的泥磷回收处理工艺及对应的处理系统

Also Published As

Publication number Publication date
CN103708432A (zh) 2014-04-09
US20170217773A1 (en) 2017-08-03
CN103708432B (zh) 2015-11-18
US10246331B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2015096177A1 (zh) 从电炉制磷炉气中回收黄磷的方法、设备及专用收磷装置
CN103508429B (zh) 黄磷制备方法及设备
CN110559783B (zh) 低温干法净化黄磷炉气的装置及方法
JP5829342B2 (ja) 油製造のための負圧下でのバイオマス合成ガス精製方法およびそのシステム構造
CN103468323B (zh) 一种荒煤气除尘装置及除尘方法
CN102491272B (zh) 一种高纯氢净化工艺及其装置
CN112066745A (zh) 一种黄磷炉气精准控温及电滤干式除尘的装置及使用方法
CN103738930B (zh) 使用大型自焙电极制磷电炉生产黄磷的方法及设备
US9309115B2 (en) Method of purification of biomass syngas under positive pressure
CN103523762B (zh) 黄磷生产方法及设备
CN102851048B (zh) 一种可实现渣热利用的气体净化系统
CN203043784U (zh) 高温滤筒除尘器
CN101314098B (zh) 一种多晶硅尾气的净化方法
CN109573971B (zh) 一种生产黄磷的装置
CN203513281U (zh) 输送待除尘气体的装置
CN203916393U (zh) 一种双级一体式高温气体净化器
CN104215095A (zh) 一种废水热能回收系统
CN211141972U (zh) 全自动过滤器
CN108211623B (zh) 一种微波辅助加热黄磷炉气干法净化的方法和装置
CN210711431U (zh) 一种控制再生气中萘含量的装置
CN219752379U (zh) 一种汽车板簧淬火油回收装置
CN103789045B (zh) 干馏煤气干法净化回收工艺及混合式气冷装置
CN104629815A (zh) 一种煤炭转化炉炉气净化系统
BR112012021585B1 (pt) Método de tratamento de gás de exaustão
CN217297967U (zh) 一种旋风分离金属镁系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15107829

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE112(1) EPC ( EPO FORM 1205A DATED 16-11-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 13900559

Country of ref document: EP

Kind code of ref document: A1