WO2015093589A1 - 繊維、当該繊維の製造用組成物、および当該繊維を含む生体適合材料 - Google Patents
繊維、当該繊維の製造用組成物、および当該繊維を含む生体適合材料 Download PDFInfo
- Publication number
- WO2015093589A1 WO2015093589A1 PCT/JP2014/083658 JP2014083658W WO2015093589A1 WO 2015093589 A1 WO2015093589 A1 WO 2015093589A1 JP 2014083658 W JP2014083658 W JP 2014083658W WO 2015093589 A1 WO2015093589 A1 WO 2015093589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- fiber
- condensation product
- composition
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/74—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/084—Heating filaments, threads or the like, leaving the spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/76—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
Definitions
- the present invention relates to a composition for producing a fiber containing a condensation product obtained by condensing a specific triazine compound and an acid compound, a fiber produced by spinning the composition, and a biocompatible material containing the fiber. .
- ultrafine fibers with a diameter of nanometer order to micrometer order have attracted attention, and are used in various fields such as batteries / information, environment / energy, medical treatment (eg, biocompatible materials) / welfare. It is expected that.
- materials for forming the ultrafine fibers various materials such as organic polymers such as nylon, inorganic substances such as TiO 2 and SiO 2 , and polymers derived from living organisms such as cellulose and collagen have been studied.
- biocompatible materials such as cell culture scaffolds have recently been evaded from the use of biological materials (especially bovine gelatin) due to safety issues. , Synthetic polymers, etc.).
- biocompatible materials such as cell culture scaffold materials use an organic solvent such as ethanol as a sterilization treatment. Therefore, when applying the above ultrafine fibers to biocompatible materials, resistance to organic solvents is also necessary.
- a method of cross-linking polymers with a cross-linking agent, etc. is used as a means for improving the durability of the fiber. In some cases, complicated processing such as hydrogen chloride gas processing is required (for example, Patent Documents 3 and 7 and Non-Patent Document 1). Therefore, there is a demand for a method capable of producing a fiber having resistance to organic solvents only by simple treatment (for example, only heat treatment, preferably only low-temperature and short-time heat treatment).
- An object of the present invention is to provide a fiber that is excellent in safety, can be easily manufactured, and has resistance to organic solvents, a raw material composition for manufacturing the fiber (a composition for manufacturing a fiber), and a biocompatible material including the fiber Is to provide.
- a fiber produced by spinning a composition containing a condensation product obtained by condensing a specific triazine compound and an acid compound has sufficient organic solvent resistance, and Has been found to be useful as a biocompatible material because it has excellent biocompatibility and, as a specific example, a function as a cell culture scaffold, has led to the completion of the present invention. Further, the present inventors have found that the fiber of the present invention expresses better organic solvent resistance and the production efficiency is improved by performing heat treatment.
- the present invention is as follows.
- R 1 represents an amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a carbon atom.
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- R 1 is an amino group, a vinyl group, a propenyl group, a butenyl group, a phenyl group or a naphthyl group which may be substituted with a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group or a hydroxymethyl group.
- Chosen from the group, R 2 , R 3 , R 4 and R 5 are the same or different and are a hydrogen atom, a hydroxymethyl group, a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, a vinyl group, a propenyl group, or a butenyl group.
- R 1A represents an amino group which may be substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- R 1B represents an aryl group having 6 to 14 carbon atoms
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- [5] The fiber according to any one of [1] to [4], wherein the condensation product (A) has a weight average molecular weight of 1,000 to 1,000,000.
- a composition for fiber production containing (A) a condensation product obtained by condensing one or more compounds represented by formula (1), and (B) an acid compound.
- R 1 represents an amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a carbon atom.
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- the condensation product (A) is represented by the general formula (1A):
- R 1A represents an amino group which may be substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- R 1B represents an aryl group having 6 to 14 carbon atoms
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- the composition of [8] or [9] which is a condensation product obtained by condensing the compound represented by this.
- [11] The composition according to any one of [8] to [10], wherein the condensation product (A) has a weight average molecular weight of 1,000 to 1,000,000.
- R 1 represents an amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a carbon atom.
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- the present invention it is possible to provide a fiber that is excellent in safety, can be easily produced, and has resistance to organic solvents, a raw material composition for producing the fiber, and a biocompatible material containing the fiber.
- the fiber of the present invention comprises (A) a condensation product obtained by condensing one or more compounds represented by the general formula (1) (hereinafter referred to as “condensation product of component A” or simply “component”). A “), and (B) an acid compound (hereinafter also referred to as” component B acid compound “or simply” component B “). Is the main feature.
- the diameter of the fiber of the present invention can be appropriately adjusted according to the use of the fiber and the like, and is not particularly limited. However, from the viewpoint of application to a substrate serving as a cell scaffold, medical material, cosmetic material, etc.
- the fibers of the invention are preferably fibers (nanofibers) having a diameter on the order of nanometers (eg, 1 to 1000 nm) and / or fibers (microfibers) on the order of micrometers (eg, 1 to 1000 ⁇ m). In the present invention, the diameter of the fiber is measured with a scanning electron microscope (SEM).
- Component A has the general formula (1):
- R 1 represents an amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a carbon atom.
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom.
- R 1 represents an amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a carbon atom.
- An aryl group represented by formulas 6 to 14 is shown.
- alkoxymethyl group having 2 to 6 carbon atoms in the “amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group” represented by R 1 is linear or branched Specific examples of the chain may include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, an isopropoxymethyl group, a butoxymethyl group, an isobutoxymethyl group, a sec-butoxymethyl group, and a tert-butoxymethyl group. Pentoxymethyl group, isopentoxymethyl group, neopentoxymethyl group, tert-pentoxymethyl group, 1-ethylpropoxymethyl group, 2-methylbutoxymethyl group and the like.
- the number of carbon atoms of the alkoxymethyl group is preferably 2 to 5, and more preferably 2 to 4.
- alkyl group having 1 to 6 carbon atoms represented by R 1 may be either linear or branched, and specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
- the number of carbon atoms of the alkyl group is preferably 1 to 5, more preferably 1 to 4.
- the “alkenyl group having 2 to 6 carbon atoms” represented by R 1 may be linear or branched, and specific examples thereof include a vinyl group, an allyl group, a propenyl group, a butenyl group, and a pentenyl group. Hexenyl group and the like.
- the number of carbon atoms of the alkenyl group is preferably 2-5, more preferably 2-4.
- the “aryl group having 6 to 14 carbon atoms” represented by R 1 may be monocyclic or condensed polycyclic, and specific examples thereof include phenyl group, naphthyl group, azulenyl group, indenyl group, indanyl. Group, anthryl group, phenanthryl group, acenaphthylenyl group and the like.
- the number of carbon atoms of the aryl group is preferably 6 to 12, and more preferably 6 to 10.
- R 1 is preferably an amino group optionally substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group, an alkenyl group having 2 to 6 carbon atoms, or An aryl group having 6 to 14 carbon atoms, more preferably an amino group, a vinyl group, a propenyl group, which may be substituted with a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group or a hydroxymethyl group, A butenyl group, a phenyl group or a naphthyl group, particularly preferably an amino group or a phenyl group which may be substituted with a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group or a hydroxymethyl group.
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 carbon atom. Represents an alkyl group of ⁇ 6.
- Alkoxymethyl group having 2 to 6 carbon atoms “alkenyl group having 2 to 6 carbon atoms” and “alkyl group having 1 to 6 carbon atoms” represented by R 2 , R 3 , R 4 or R 5 it is "alkoxymethyl group having 2 to 6 carbon atoms" in the above R 1, respectively, is synonymous with “alkenyl group having 2 to 6 carbon atoms” and the “alkyl group having 1 to 6 carbon atoms.”
- R 2 , R 3 , R 4 and R 5 are the same or different from the viewpoint of reactivity with an alkoxymethyl group or a hydroxymethyl group for performing a condensation reaction, preferably a hydrogen atom, a hydroxymethyl group or a methoxymethyl group.
- R 1 is an amino group, vinyl group, propenyl group, butenyl group, phenyl group and naphthyl group (more preferably) which may be substituted with a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group or a hydroxymethyl group.
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, a vinyl group, a propenyl group, a butenyl group, It is selected from a methyl group, an ethyl group, a propyl group and a butyl group (more preferably a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group and a hydroxymethyl group, particularly preferably a methoxymethyl group, a butoxymethyl group and a hydroxymethyl group). Is preferred.
- the compound represented by the general formula (1) can be produced by a method known per se or a method analogous thereto. Moreover, you may use a commercial item.
- the condensation product of component A may be a product obtained by condensing one type of compound represented by the general formula (1), or a product obtained by condensing two or more types of compounds represented by the general formula (1). However, it is preferable to condense 4 or less of the compound represented by the general formula (1), more preferable to condense 3 or less of the compound represented by the general formula (1). What condensed 2 or less types of compounds represented by Formula (1) is especially preferable.
- R 1A represents an amino group which may be substituted with an alkoxymethyl group having 2 to 6 carbon atoms or a hydroxymethyl group
- R 2 , R 3 , R 4 and R 5 are as defined above.
- R 1B represents an aryl group having 6 to 14 carbon atoms; R 2 , R 3 , R 4 and R 5 are as defined above. ]
- the condensation product obtained by condensing the compound represented by this, etc. are mentioned.
- the “aryl group having 6 to 14 carbon atoms” has the same meaning as the “alkoxymethyl group having 2 to 6 carbon atoms” and the “aryl group having 6 to 14 carbon atoms” in R 1 .
- R 1A is an amino group which may be substituted with a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group or a hydroxymethyl group (more preferably, a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group or a hydroxymethyl group).
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, a vinyl group, a propenyl group, a butenyl group, It is selected from a methyl group, an ethyl group, a propyl group and a butyl group (more preferably a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group and a hydroxymethyl group, particularly preferably a methoxymethyl group, a butoxymethyl group and a hydroxymethyl group). Is preferred.
- R 1B is selected from a phenyl group and a naphthyl group (more preferably a phenyl group);
- R 2 , R 3 , R 4 and R 5 are the same or different and each represents a hydrogen atom, a hydroxymethyl group, a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, a vinyl group, a propenyl group, a butenyl group, It is selected from a methyl group, an ethyl group, a propyl group and a butyl group (more preferably a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group and a hydroxymethyl group, particularly preferably a methoxymethyl group, a butoxymethyl group and a hydroxymethyl group). Is preferred.
- the weight ratio (1A: 1B) of each compound used is not particularly limited. 10: 1.
- Component A can be produced by a method known per se or a method analogous thereto.
- one or more of the compounds represented by the general formula (1) are mixed with an appropriate condensation initiator (eg, p-toluenesulfonic acid) in an appropriate solvent (eg, ethyl lactate).
- an appropriate condensation initiator eg, p-toluenesulfonic acid
- an appropriate solvent eg, ethyl lactate
- the compound represented by the general formula (1) and other polymerizable compounds are combined together unless the purpose of the present invention is impaired. May be polymerized.
- the other compounds include, but are not limited to, known acrylic compounds and known methacrylic compounds.
- the other compounds may be used alone or in combination of two or more.
- the ratio of the compound represented by the general formula (1) to all the compounds to be polymerized is usually 10 mol% or more, preferably 30 mol% or more, particularly preferably 50 mol% or more.
- R 6 and R 7 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- the compound represented by this is preferable.
- the “alkyl group having 1 to 6 carbon atoms” represented by R 6 and R 7 has the same meaning as described above.
- the weight average molecular weight of component A is preferably in the range of 1,000 to 1,000,000, more preferably in the range of 5,000 to 500,000, and particularly preferably in the range of spinnability.
- the range is from 000 to 200,000, and most preferably from 10,000 to 100,000.
- “weight average molecular weight” means a molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
- Component A may be used alone or in combination of two or more, but is preferably 4 or less, more preferably 3 or less, and particularly preferably 2 or less.
- Component B is an acid compound, and the components A are reacted with each other as long as the condensation products of compounds other than the compound represented by the general formula (1) are further condensed unless the object of the present invention is impaired. It acts as a catalyst for Even if the fiber containing the said component B is a case where heat processing is performed, it can maintain a favorable fiber shape, and has the favorable organic solvent tolerance.
- Component B may be in the form of a salt, that is, the term “acid compound” in the present invention is a concept including a salt.
- Examples of the acid compound of component B include organic acid compounds such as sulfonic acid compounds, carboxylic acid compounds, and phosphoric acid compounds; inorganic acid compounds such as hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, and hydrobromic acid.
- organic acid compounds such as sulfonic acid compounds, carboxylic acid compounds, and phosphoric acid compounds
- inorganic acid compounds such as hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, and hydrobromic acid.
- Component B is preferably an organic acid compound, and more preferably a sulfonic acid compound.
- the sulfonic acid compound include p-toluenesulfonic acid, pyridinium-p-toluenesulfonate, trifluoromethanesulfonic acid and the like, and p-toluenesulfonic acid or pyridinium-p-toluenesulfonate is preferable.
- Component B acid compounds may be used alone or in combination of two or more.
- the acid compound of component B can be produced by a method known per se or a method analogous thereto. Moreover, you may use a commercial item.
- the fiber of the present invention preferably contains (C) a solvent (hereinafter also referred to as “solvent of component C” or simply “component C”) in addition to the condensation product of component A and the acid compound of component B.
- a composition that is, a composition for producing a fiber of the present invention (hereinafter also simply referred to as “the composition of the present invention”)) is prepared, and the composition is spun to produce.
- the fiber of the present invention comprises: (First step) (A) A step of obtaining a condensation product solution by condensing a monomer composition containing one or more compounds represented by general formula (1), (Second step) (A) A step of adding an acid compound and (C) solvent to the condensation product solution to obtain a composition for fiber production, and (Third step) a composition for fiber production. It is preferably produced by a production method including a spinning step.
- the solvent of component C is not particularly limited as long as it can uniformly dissolve or disperse component A and component B and does not react with each component, but from the viewpoint of solubility of components A and B, a polar solvent is used.
- a polar solvent is used.
- the polar solvent include water, methanol, ethanol, 2-propanol, propylene glycol monomethyl ether, acetone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethyl lactate and the like. From this viewpoint, ethyl lactate is preferable.
- Component C may be used alone or in combination of two or more.
- the solid content of component A in the composition of the present invention is preferably 1 to 90% by weight, more preferably 1 to 70% by weight from the viewpoint of spinnability.
- the solid content of component A is measured by using a halogen moisture meter (HR83) manufactured by METTLER TOLEDO Co., Ltd. as shown in the examples described later.
- the content of component B in the composition of the present invention is preferably 1 to 10% by weight, more preferably 1 to 5% by weight, from the viewpoint of reaction efficiency during the crosslinking reaction.
- the weight ratio of the solid content of component A to component B contained in the composition of the present invention is preferably 5 to 40 from the viewpoint of reaction efficiency during the crosslinking reaction. 10 to 30 is more preferable.
- the content of component C in the composition of the present invention is preferably 5 to 80% by weight, more preferably 10 to 50% by weight, from the viewpoint of spinnability of the composition for fiber production.
- composition of the present invention may contain, in addition to components A to C, additives conventionally used in the field of fiber production, if necessary, as long as the object of the present invention is not impaired.
- additives include a crosslinking agent, a surfactant, a rheology modifier, a drug, fine particles, a condensation product other than Component A, and the like.
- the composition of the present invention is prepared by mixing Component A with Component B and Component C, or further mixing the above additives.
- the mixing method is not particularly limited, and may be mixed by a method known per se or a method analogous thereto.
- the method for spinning the composition of the present invention is not particularly limited as long as it can form fibers, and examples thereof include a melt blow method, a composite melt spinning method, an electrospinning method, and the like. From the viewpoint of the ability to form ultrafine fibers (nanofibers and microfibers), the electrospinning method is preferred.
- the electrospinning method is a known spinning method and can be performed using a known electrospinning apparatus.
- Speed discharge speed
- the discharge rate is usually from 0.1 to 100 ⁇ l / min, preferably from 0.5 to 50 ⁇ l / min, more preferably from 1 to 20 ⁇ l / min.
- the applied voltage is usually 0.5 to 80 kV, preferably 1 to 60 kV, more preferably 3 to 40 kV.
- the discharge distance is usually 1 to 60 cm, preferably 2 to 40 cm, more preferably 3 to 30 cm.
- the electrospinning method may be performed using a drum collector or the like.
- a drum collector or the like By using a drum collector or the like, the orientation of the fibers can be controlled. For example, a nonwoven fabric or the like can be obtained when the drum is rotated at a low speed, and an oriented fiber sheet or the like can be obtained when the drum is rotated at a high speed.
- the diameter of the fiber of the present invention produced by the electrospinning method can be made smaller than that produced by other conventional spinning methods, and is usually 1 nm to 3 ⁇ m, preferably 1 nm to 1 ⁇ m.
- the fiber manufacturing method of the present invention may further include a step of heating the spun fiber at a specific temperature in addition to the above-described spinning step.
- the temperature at which the spun fiber is heated is usually in the range of 50 to 300 ° C., preferably from 80 to 250 ° C., more preferably from 90 to 220 ° C. from the viewpoint of the heat resistance of Component A.
- the temperature is less than 50 ° C., the crosslinking reaction between the components A becomes insufficient, and the resistance of the produced fiber to the organic solvent tends to be low.
- the temperature exceeds 300 ° C., the component A is decomposed or dissolved by heat. In some cases, fibers cannot be formed.
- the method for heating the spun fiber is not particularly limited as long as it can be heated at the above heating temperature, and can be appropriately heated by a method known per se or a method analogous thereto.
- Specific examples of the heating method include a method using a hot plate or an oven in the atmosphere.
- the time for heating the spun fiber can be appropriately set according to the heating temperature and the like, but from the viewpoint of the crosslinking reaction rate and production efficiency, it is preferably 1 minute to 48 hours, more preferably 5 minutes to 36 hours, and more preferably 5 minutes. ⁇ 24 hours is particularly preferred.
- the fiber of the present invention has excellent organic solvent resistance and is a non-biological material, Excellent safety and suitable for biocompatible materials. Moreover, since the fiber of the present invention has a sufficient function as a cell culture scaffold, it is also suitable as a cell culture scaffold material. Accordingly, the present invention also provides a biocompatible material comprising the fiber of the present invention (hereinafter also simply referred to as “the biocompatible material of the present invention”).
- the “biocompatible material” refers to a material that does not adversely affect a living body and can be used as a medical material, a cosmetic material, or the like.
- the type of the biocompatible material of the present invention is not particularly limited, and examples thereof include a cell culture scaffold material, a wound covering material, and a face mask (for cosmetics and hygiene management). Especially, since the fiber of this invention has sufficient function as a cell culture scaffold, it is preferable to be used as a cell culture scaffold material.
- the biocompatible material of the present invention can be produced by a method known per se or a method analogous thereto, using the fiber of the present invention as one of the raw materials.
- condensation product solution > 10.0 g of hexamethoxymethyl melamine compound (trade name “Cymel 303” manufactured by Mitsui Cytec Co., Ltd.) and 10.0 g of tetramethoxymethyl benzoguanamine compound (trade name “Cymel 1123” manufactured by Mitsui Cytec Co., Ltd.) Then, 0.5 g of p-toluenesulfonic acid was added and reacted at 120 ° C. for 24 hours to obtain a condensation product solution 1 containing a condensation product (condensation product 1) of these triazine compounds. . Thereafter, the solvent was appropriately distilled off from the condensation product solution 1 using a 50 ° C.
- the solid content of the condensation product 1 in the condensation product solution 1 after distilling off the solvent was 79% by weight. Moreover, the weight average molecular weight of the condensation product 1 was 16,000 in terms of polystyrene.
- the measurement of the content rate of the solid content of the condensation product 1 in the condensation product solution 1 and the measurement of the weight average molecular weight of the condensation product 1 were performed as follows.
- the solid content of the condensation product 1 in the condensation product solution 1 was measured by the following procedure using a halogen moisture meter (HR83) manufactured by METTLER TOLEDO Co., Ltd. as a measuring device.
- HR83 halogen moisture meter
- a Whatman (registered trademark) glass fiber filter paper (GF / D, diameter 70 mm) is stacked on an aluminum sample pan (HA-D90) manufactured by METTLER TOLEDO Co., Ltd. and placed in the apparatus.
- 1.0 g of the condensation product solution 1 is weighed and heated at 120 ° C.
- the measurement is automatically terminated, and the solid content (unit: wt%) of the condensation product 1 is indicated.
- Example 1 Condensation product solution 1 2.5 g (condensation product 1 solid content: 2.0 g), p-toluenesulfonic acid 0.10 g and ethyl lactate 0.44 g were mixed, and then mixed rotor VMR-5 (As One Corporation) The composition for fiber production of Example 1 was obtained by stirring at 80 rpm until dissolved. The content rate of the solid content of the condensation product 1 in the composition for producing fibers of Example 1 is about 65% by weight.
- Example 1 Heat treatment and solvent resistance test>
- the fiber production compositions of Example 1 and Comparative Example 1 were each spun onto an aluminum foil by an electrospinning method, and then the resulting fibers were subjected to heat treatment (heating temperatures: 80 ° C., 160 ° C., 205 ° C., Heating time: 10 minutes each), and the fiber shape after the heat treatment was confirmed. Moreover, after the fiber which heat-processed was immersed in acetone for 10 second, the fiber shape was confirmed again and the diameter of the fiber was measured. Production of the fiber by electrospinning, confirmation of the fiber shape, and measurement of the fiber diameter were performed as follows.
- the fiber diameter was measured using an attached length measuring tool after storing an image with a magnification of 10,000 times using a scanning electron microscope (SEM).
- Table 1 shape after heat treatment
- Table 2 shape after immersion in acetone and fiber diameter
- FIGS. 1 to 14 SEM photographs before heat treatment, after heat treatment, and after acetone immersion.
- the fiber obtained by electrospinning the composition for producing a fiber of Example 1 had a good shape at any heating temperature of 80 ° C. to 205 ° C.
- the fiber obtained by electrospinning the fiber production composition of Comparative Example 1 barely retained its shape at a heating temperature of 80 ° C. and became a network solidified product, but did not have a shape at 160 ° C. and 205 ° C. It could not be maintained and dissolved to form a film-like membrane (Table 1). Further, the fiber obtained by electrospinning the fiber production composition of Example 1 maintained good organic solvent (acetone) resistance under any heating temperature conditions, but the fiber production of Comparative Example 1 After the electrospinning, the network solidified product obtained by heat treatment at 80 ° C. was dissolved in acetone and disappeared from the aluminum foil (Table 2).
- Example 2 Cell culture evaluation> After spinning the composition for producing fibers of Example 1 by electrospinning, cell culture evaluation was performed on the obtained fibers. In the following, the concentration (%) of CO 2 in the CO 2 incubator is indicated by volume% of CO 2 in the atmosphere.
- PBS phosphate buffered saline (manufactured by Sigma Aldrich Japan)
- FBS fetal bovine serum (manufactured by Biological Industries).
- a human fetal kidney cell line Hek293 (manufactured by DS Pharma Biomedical) was used.
- the medium used for cell culture was EMEM medium (Wako Pure Chemical Industries, Ltd.) containing 10% (v / v) FBS and 1% (v / v) NEAA (GIBCO).
- the cells were statically cultured for 2 days or more using a 10 cm diameter petri dish (medium 10 mL) in a state where 5% carbon dioxide concentration was maintained in a 37 ° C. CO 2 incubator.
- the cells were washed with 10 mL of PBS, 1 mL of trypsin-EDTA solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to peel the cells, and the cells were suspended in 10 mL of the above medium.
- This suspension was centrifuged (Tomy Seiko Co., Ltd., LC-200, 1000 rpm / 3 minutes, room temperature), the supernatant was removed, and the above medium was added to prepare a cell suspension.
- the peeled cells were transferred to a 1.5 mL micro test tube (Eppendorf), the same amount of trypan blue staining solution (GIBCO) was added to a part of the culture solution, and then a cell counter (Bio-Rad, TC20). The number of viable cells was counted.
- the present invention it is possible to provide a fiber that is excellent in safety, can be easily produced, and has resistance to organic solvents, a raw material composition for producing the fiber, and a biocompatible material containing the fiber.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Artificial Filaments (AREA)
- Materials For Medical Uses (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
また、本発明者らは、本発明の繊維は、加熱処理を施すことより、より優れた有機溶剤耐性を発現すること、また生産効率が向上することを見出した。
(B)酸化合物
を含有する組成物を紡糸して製造される繊維。
R1は、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕
[2]上記組成物がさらに(C)溶剤を含む、[1]記載の繊維。
[3]上記R1が、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、ビニル基、プロペニル基、ブテニル基、フェニル基及びナフチル基から選ばれ、
上記R2、R3、R4およびR5が、同一又は異なって、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ビニル基、プロペニル基、ブテニル基、メチル基、エチル基、プロピル基及びブチル基から選ばれる、[1]又は[2]記載の繊維。
[4](A)縮合生成物が、一般式(1A):
R1Aは、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物、及び/又は
一般式(1B):
R1Bは、炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物を縮合して得られる縮合生成物である、[1]又は[2]記載の繊維。
[5](A)縮合生成物の重量平均分子量が、1,000~1,000,000である、[1]~[4]のいずれか1つに記載の繊維。
[6]上記紡糸が、電界紡糸である、[1]~[5]のいずれか1つに記載の繊維。
[7]ナノ繊維及び/又はマイクロ繊維である、[1]~[6]のいずれか1つに記載の繊維。
[8](A)一般式(1)で表される化合物の1種又は2種以上を縮合して得られる縮合生成物、および
(B)酸化合物
を含有する繊維製造用組成物。
R1は、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕
[9]さらに(C)溶剤を含む、[8]記載の組成物。
[10](A)縮合生成物が、一般式(1A):
R1Aは、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物、及び/又は
一般式(1B):
R1Bは、炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物を縮合して得られる縮合生成物である、[8]又は[9]記載の組成物。
[11](A)縮合生成物の重量平均分子量が、1,000~1,000,000である、[8]~[10]のいずれか1つに記載の組成物。
[12](A)縮合生成物の固形分の含有割合が、1~90重量%である、[8]~[11]のいずれか1つに記載の組成物。
[13](第一工程)一般式(1)で表される化合物を1種又は2種以上含む単量体組成物を縮合して(A)縮合生成物溶液を得る工程、
(第二工程)前記(A)縮合生成物溶液に(B)酸化合物及び(C)溶剤を添加して繊維製造用組成物を得る工程、および
(第三工程)前記繊維製造用組成物を紡糸する工程
を含む、繊維の製造方法。
R1は、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕
[14]紡糸した繊維を、50~300℃の範囲で加熱する工程をさらに含む、[13]記載の方法。
[15]上記紡糸が、電界紡糸である、[13]又は[14]記載の方法。
[16][1]~[7]のいずれか1つに記載の繊維を含む、生体適合材料。
成分Aは、一般式(1):
R1は、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕
で表される化合物の1種又は2種以上を縮合して得られる縮合生成物である。
R1が、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、ビニル基、プロペニル基、ブテニル基、フェニル基及びナフチル基(より好ましくはメトキシメチル基、エトキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基及びフェニル基、特に好ましくはメトキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基及びフェニル基)から選ばれ;
R2、R3、R4およびR5が、同一又は異なって、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ビニル基、プロペニル基、ブテニル基、メチル基、エチル基、プロピル基及びブチル基(より好ましくはメトキシメチル基、エトキシメチル基、ブトキシメチル基及びヒドロキシメチル基、特に好ましくはメトキシメチル基、ブトキシメチル基及びヒドロキシメチル基)から選ばれることが好ましい。
R1Aは、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基を示し;
R2、R3、R4およびR5は、上記と同義である。〕で表される化合物、及び/又は
一般式(1B):
R1Bは、炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、上記と同義である。〕で表される化合物を縮合して得られる縮合生成物等が挙げられる。
R1Aが、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基(より好ましくはメトキシメチル基、エトキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、特に好ましくはメトキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基)から選ばれ;
R2、R3、R4およびR5が、同一又は異なって、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ビニル基、プロペニル基、ブテニル基、メチル基、エチル基、プロピル基及びブチル基(より好ましくはメトキシメチル基、エトキシメチル基、ブトキシメチル基及びヒドロキシメチル基、特に好ましくはメトキシメチル基、ブトキシメチル基及びヒドロキシメチル基)から選ばれることが好ましい。
R1Bが、フェニル基及びナフチル基(より好ましくはフェニル基)から選ばれ;
R2、R3、R4およびR5が、同一又は異なって、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ビニル基、プロペニル基、ブテニル基、メチル基、エチル基、プロピル基及びブチル基(より好ましくはメトキシメチル基、エトキシメチル基、ブトキシメチル基及びヒドロキシメチル基、特に好ましくはメトキシメチル基、ブトキシメチル基及びヒドロキシメチル基)から選ばれることが好ましい。
R6及びR7は、同一又は異なって、水素原子又は炭素原子数1~6のアルキル基を示す。〕で表される化合物が好ましい。
R6及びR7で示される「炭素原子数1~6のアルキル基」は上記と同義である。
成分Bは酸化合物であり、成分A同士、さらに本発明の目的を損なわない限り、一般式(1)で表される化合物以外の他の化合物の縮合生成物がさらに縮合した成分A同士が反応するための触媒として作用する。当該成分Bを含む繊維は、加熱処理を施した場合であっても良好な繊維形状を維持でき、また良好な有機溶剤耐性を有する。成分Bは塩の態様であってもよく、即ち、本発明における「酸化合物」なる用語は、塩をも包含する概念である。
(第一工程)一般式(1)で表される化合物を1種又は2種以上含む単量体組成物を縮合して(A)縮合生成物溶液を得る工程、
(第二工程)前記(A)縮合生成物溶液に(B)酸化合物及び(C)溶剤を添加して繊維製造用組成物を得る工程、および
(第三工程)前記繊維製造用組成物を紡糸する工程
を含む製造方法により製造されることが好ましい。
当該極性溶剤としては、例えば、水、メタノール、エタノール、2-プロパノール、プロピレングリコールモノメチルエーテル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、乳酸エチル等が挙げられ、成分A及びBの溶解性の観点から、好ましくは乳酸エチルである。
また電界紡糸法は、ドラムコレクター等を用いて行ってもよい。ドラムコレクター等を用いることにより、繊維の配向性を制御することができる。例えば、ドラムを低速回転した場合は不織布等を得ることができ、高速回転した場合は配向性繊維シート等を得ることができる。
従って、本発明は、本発明の繊維を含む生体適合材料(以下、単に「本発明の生体適合材料」とも称する)も提供する。本発明において「生体適合材料」とは、生体に対して悪影響を及ぼさず、医療用材料、化粧用材料等として利用可能な材料をいう。
ヘキサメトキシメチルメラミン化合物(三井サイテック株式会社製、商品名「Cymel303」)10.0gと、テトラメトキシメチルベンゾグアナミン化合物(三井サイテック株式会社製、商品名「Cymel1123」)10.0gとを、乳酸エチル100gに溶解させた後、p-トルエンスルホン酸0.5gを添加し、120℃で24時間反応させ、これらのトリアジン化合物の縮合生成物(縮合生成物1)を含む縮合生成物溶液1を得た。
その後、50℃の湯浴を用いて縮合生成物溶液1から溶媒を適宜留去し、更に自体公知のカチオン系イオン交換樹脂によるイオン交換により縮合生成物溶液1中の酸、イオンを除去した。溶媒留去後の縮合生成物溶液1における縮合生成物1の固形分の含有割合は、79重量%であった。また、縮合生成物1の重量平均分子量は、ポリスチレン換算で16,000であった。
縮合生成物溶液1における縮合生成物1の固形分の含有割合の測定、及び縮合生成物1の重量平均分子量の測定は、それぞれ以下の通りに行った。
縮合生成物溶液1における縮合生成物1の固形分の含有割合は、測定装置としてメトラー・トレド株式会社製ハロゲン水分計(HR83)を用いて、以下の手順により測定した。
(1)メトラー・トレド株式会社製アルミニウムサンプル皿(HA-D90)上にワットマン(登録商標)ガラス繊維ろ紙(GF/D、直径70mm)を重ね、装置内に設置する。
(2)装置をゼログラムに校正した後、縮合生成物溶液1を1.0g秤量し、120℃で加熱する。
(3)縮合生成物溶液1に含まれている溶媒が全て留去されると、測定は自動的に終了し、縮合生成物1の固形分の含有割合(単位:重量%)が示される。
縮合生成物1の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。測定に用いた装置、測定条件は次の通りである。
装置:TOSOH HLC-8320GPC system
カラム:Shodex(登録商標)KF-803L、KF-802及びKF-801
カラム温度:40℃
溶離液:DMF
流量:0.6ml/分
検出器:RI
標準試料:ポリスチレン
(実施例1)
縮合生成物溶液1 2.5g(縮合生成物1の固形分:2.0g)、p-トルエンスルホン酸 0.10g及び乳酸エチル 0.44gを混合した後、ミックスローターVMR-5(アズワン株式会社製)にて溶解するまで80rpmで攪拌し、実施例1の繊維製造用組成物を得た。実施例1の繊維製造用組成物における縮合生成物1の固形分の含有割合は、約65重量%である。
縮合生成物溶液1 2.5g(縮合生成物1の固形分:2.0g)及び乳酸エチル 0.54gを混合した後、ミックスローターVMR-5(アズワン株式会社製)にて溶解するまで80rpmで攪拌し、比較例1の繊維製造用組成物を得た。比較例1の繊維製造用組成物における縮合生成物1の固形分の含有割合は、約65重量%である。
実施例1及び比較例1の繊維製造用組成物を、それぞれ電界紡糸法により、アルミ箔上に紡糸した後、得られた各繊維に加熱処理(加熱温度:80℃、160℃、205℃、加熱時間:各10分)を施し、当該加熱処理後の繊維形状を確認した。
また加熱処理を施した繊維をアセトンに10秒間浸漬した後、再び繊維形状を確認し、繊維の直径を測定した。
電界紡糸法による繊維の製造、繊維形状の確認及び繊維の直径の測定は、それぞれ以下の通りに行った。
電界紡糸法による繊維の製造は、エスプレイヤーES-2000(株式会社フューエンス製)を用いて実施した。繊維製造用組成物は、1mlのロック式ガラス注射筒(アズワン株式会社製)に注入し、針長13mmのロック式金属製ニードル22G(武蔵エンジニアリング株式会社製)を取り付けた。ニードル先端から繊維を受け取る基板までの距離(吐出距離)は20cmとした。印加電圧は25kVとし、吐出速度は10μl/minとした。
繊維形状の確認は、イオンスパッター(E-1030、株式会社日立ハイテクノロジーズ製)にてPt-Pdを繊維に1分間蒸着した後、走査型電子顕微鏡(SEM)(S-4800、株式会社日立ハイテクノロジーズ製)を使用して、拡大倍率10,000倍で観察することにより行った。
繊維径(繊維の太さ)の測定は、走査型電子顕微鏡(SEM)を使用して、拡大倍率10,000倍の画像を保存した後、付属の測長ツールにより行った。
更に、実施例1の繊維製造用組成物を電界紡糸して得られた繊維は、いずれの加熱温度条件においても良好な有機溶剤(アセトン)耐性を保持していたが、比較例1の繊維製造用組成物を電界紡糸後、80℃で加熱処理して得られた網目状の固化物はアセトンに溶解し、アルミ箔上から消失した(表2)。
実施例1の繊維製造用組成物を電界紡糸法により紡糸した後、得られた繊維上にて細胞培養評価を行った。なお、以下において、CO2インキュベーターにおけるCO2の濃度(%)は、雰囲気中のCO2の体積%で示した。また、PBSはリン酸緩衝生理食塩水(シグマアルドリッチジャパン社製)を意味し、FBSは牛胎児血清(Biological Industries社製)を意味する。
細胞は、ヒト胎児腎細胞株Hek293(DSファーマバイオメディカル社製)を用いた。細胞の培養に用いた培地は、10%(v/v)FBS及び1%(v/v)NEAA(GIBCO社製)を含むEMEM培地(和光純薬工業株式会社製)を用いた。細胞は、37℃CO2インキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS10mLで洗浄した後、トリプシン-EDTA溶液(和光純薬工業株式会社製)1mLを添加して細胞を剥がし、上記の培地10mLにて懸濁した。本懸濁液を遠心分離(トミー精工社製、LC-200、1000rpm/3分、室温)後、上清を除き、上記の培地を添加して細胞懸濁液を調製した。
実施例1の繊維製造用組成物を、試験例1と同様に電界紡糸法により紡糸し、ガラス基板上に10分間吹付けた後、205℃10分間加熱処理した。ガラス基板には、TEMPAX Float(登録商標)(Φ12mm、厚さ1mm)を使用した。得られた繊維をエタノールで洗浄して風乾した後、繊維形状を走査型電子顕微鏡(SEM)で確認した。実施例1の繊維製造用組成物から得られた繊維の直径は約1μmであった。
尚、以下において、実施例1の繊維製造用組成物を紡糸して繊維を形成したガラス基板を、便宜上「実施例1の繊維基板」と称する。
24穴平底マイクロプレート(コーニング社製)に、実施例1の繊維基板、及び対照として未処理のガラス基板を配置し、1%(v/v)ペニシリン/ストレプトマイシン溶液(GIBCO社製)を含むEMEM培地(和光純薬工業株式会社製)に15分浸漬した。この培地を除いた後、1.0×105cells/wellに調製したHek293(ヒト胎児腎細胞)の細胞懸濁液を各1mL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で24時間CO2インキュベーター内にて静置した。
24時間の細胞培養の後、細胞培養を行った実施例1の繊維基板、及びガラス基板の上清を除き、PBS2mLで洗浄した。PBSを除いた後、トリプシン-EDTA溶液(和光純薬工業株式会社製)300μLを添加した。37℃で5分間CO2インキュベーター内にて静置した後、10%(v/v)FBSを含むEMEM培地を1mL添加し、ピペッティングにて細胞を剥がした。剥がした細胞を1.5mLマイクロテストチューブ(エッペンドルフ社製)に移し、培養液の一部にトリパンブルー染色液(GIBCO社製)を同量添加後、セルカウンター(Bio-Rad社製、TC20)にて生細胞数を計測した。
24時間の細胞培養の後、細胞培養を行った実施例1の繊維基板、及びガラス基板の上清を除き、PBS2mLで洗浄した。PBSを除いた後、10%(v/v)FBS及び1%(v/v)NEAA(GIBCO社製)を含むEMEM培地を1mL添加し、さらに100μLのWST-8試薬(キシダ化学社製)を添加した。37℃で100分間CO2インキュベーター内にて静置した後、反応溶液100μLを96穴平底マイクロプレートに移し、吸光度計(モレキュラーデバイス社製、SpectraMax)にて450nmの吸光度を測定した。
Claims (16)
- 上記組成物がさらに(C)溶剤を含む、請求項1記載の繊維。
- 上記R1が、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、ビニル基、プロペニル基、ブテニル基、フェニル基及びナフチル基から選ばれ、
上記R2、R3、R4およびR5が、同一又は異なって、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ビニル基、プロペニル基、ブテニル基、メチル基、エチル基、プロピル基及びブチル基から選ばれる、請求項1又は2記載の繊維。 - (A)縮合生成物が、一般式(1A):
R1Aは、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物、及び/又は
一般式(1B):
R1Bは、炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物を縮合して得られる縮合生成物である、請求項1又は2記載の繊維。 - (A)縮合生成物の重量平均分子量が、1,000~1,000,000である、請求項1~4のいずれか1項に記載の繊維。
- 上記紡糸が、電界紡糸である、請求項1~5のいずれか1項に記載の繊維。
- ナノ繊維及び/又はマイクロ繊維である、請求項1~6のいずれか1項に記載の繊維。
- さらに(C)溶剤を含む、請求項8記載の組成物。
- (A)縮合生成物が、一般式(1A):
R1Aは、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物、及び/又は
一般式(1B):
R1Bは、炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕で表される化合物を縮合して得られる縮合生成物である、請求項8又は9記載の組成物。 - (A)縮合生成物の重量平均分子量が、1,000~1,000,000である、請求項8~10のいずれか1項に記載の組成物。
- (A)縮合生成物の固形分の含有割合が、1~90重量%である、請求項8~11のいずれか1項に記載の組成物。
- (第一工程)一般式(1)で表される化合物を1種又は2種以上含む単量体組成物を縮合して(A)縮合生成物溶液を得る工程、
(第二工程)前記(A)縮合生成物溶液に(B)酸化合物及び(C)溶剤を添加して繊維製造用組成物を得る工程、および
(第三工程)前記繊維製造用組成物を紡糸する工程
を含む、繊維の製造方法。
R1は、炭素原子数2~6のアルコキシメチル基若しくはヒドロキシメチル基で置換されていてもよいアミノ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基又は炭素原子数6~14のアリール基を示し;
R2、R3、R4およびR5は、同一又は異なって、水素原子、ヒドロキシメチル基、炭素原子数2~6のアルコキシメチル基、炭素原子数2~6のアルケニル基又は炭素原子数1~6のアルキル基を示す。〕 - 紡糸した繊維を、50~300℃の範囲で加熱する工程をさらに含む、請求項13記載の方法。
- 上記紡糸が、電界紡糸である、請求項13又は14記載の方法。
- 請求項1~7のいずれか1項に記載の繊維を含む、生体適合材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201605038QA SG11201605038QA (en) | 2013-12-20 | 2014-12-19 | Fibers, composition for producing fibers, and biomaterial containing fibers |
EP14870890.2A EP3085817A4 (en) | 2013-12-20 | 2014-12-19 | Fibers, composition for producing fibers, and biomaterial containing fibers |
CN201480069424.1A CN105829590A (zh) | 2013-12-20 | 2014-12-19 | 纤维、用于制造该纤维的组合物及包含该纤维的生物相容性材料 |
JP2015553616A JP6701733B2 (ja) | 2013-12-20 | 2014-12-19 | 繊維、当該繊維の製造用組成物、および当該繊維を含む生体適合材料 |
US15/106,463 US20160305044A1 (en) | 2013-12-20 | 2014-12-19 | Fibers, composition for producing fibers, and biomaterial containing fibers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013264435 | 2013-12-20 | ||
JP2013-264435 | 2013-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093589A1 true WO2015093589A1 (ja) | 2015-06-25 |
Family
ID=53402928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083658 WO2015093589A1 (ja) | 2013-12-20 | 2014-12-19 | 繊維、当該繊維の製造用組成物、および当該繊維を含む生体適合材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160305044A1 (ja) |
EP (1) | EP3085817A4 (ja) |
JP (1) | JP6701733B2 (ja) |
CN (1) | CN105829590A (ja) |
SG (1) | SG11201605038QA (ja) |
TW (1) | TW201529620A (ja) |
WO (1) | WO2015093589A1 (ja) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4987819A (ja) * | 1972-12-29 | 1974-08-22 | ||
JPS5319425A (en) * | 1976-08-09 | 1978-02-22 | Asahi Chem Ind Co Ltd | Production of alcohol-modified melamine resin fibers |
JPH03231957A (ja) * | 1989-07-11 | 1991-10-15 | Basf Ag | 高弾性のメラミン樹脂成形体 |
JPH11504084A (ja) * | 1995-04-26 | 1999-04-06 | ビーエーエスエフ アクチェンゲゼルシャフト | メラミン/ホルムアルデヒド縮合生成物から連続フィラメントファイバーを製造する方法 |
US20020192468A1 (en) | 2001-06-19 | 2002-12-19 | Kyung-Ju Choi | Method, apparatus and product for manufacturing nanofiber media |
JP2005534730A (ja) * | 2002-06-14 | 2005-11-17 | アーエムイー−アグロリンツ・メラミン・インテルナチオナール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | アミノ樹脂製品を製造するための組成物及びこの組成物から製品を製造する方法 |
WO2007102606A1 (ja) | 2006-03-06 | 2007-09-13 | Teijin Limited | 足場材料 |
JP2008514341A (ja) | 2004-09-29 | 2008-05-08 | ナショナル ユニバーシティ オブ シンガポール | 複合物、複合物の製造方法、およびその使用方法 |
JP2009000100A (ja) | 2007-05-23 | 2009-01-08 | Mitsubishi Rayon Co Ltd | 細胞培養用足場材料、その製造方法、細胞培養用モジュール |
CN101718004A (zh) | 2009-08-13 | 2010-06-02 | 上海大学 | 静电纺丝法制备交联聚丙烯酰胺超细纤维的方法 |
JP2011030487A (ja) * | 2009-07-31 | 2011-02-17 | Nisshin Pharma Inc | キノン類の製造方法 |
US20110275154A1 (en) | 2009-05-21 | 2011-11-10 | Martin Arthur W | Derivatized peptide-conjugated (meth) acrylate cell culture surface and methods of making |
JP2012067432A (ja) | 2010-08-24 | 2012-04-05 | Jfe Chemical Corp | 炭素繊維の製造方法 |
CN102800490A (zh) * | 2012-08-16 | 2012-11-28 | 黑龙江大学 | 三聚氰胺甲醛树脂/聚乙烯醇水溶液通过高压静电纺丝技术直接制备含氮碳纤维电极的方法 |
JP2013049927A (ja) | 2011-08-30 | 2013-03-14 | Shinshu Univ | 生体適合性を有するナノ繊維及びその製造方法並びに創傷被覆材 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556731B2 (ja) * | 1973-01-29 | 1980-02-19 | ||
AU6368973A (en) * | 1972-12-28 | 1975-06-19 | Kuraray Co | Flame-retardant melamine resin |
JPS5345421A (en) * | 1976-10-01 | 1978-04-24 | Toray Ind Inc | Flame-retardant fibers |
GB2068984B (en) * | 1980-02-09 | 1984-05-31 | Amfu Ltd | Fibre and method of making the fibre |
JPS61136533A (ja) * | 1984-12-03 | 1986-06-24 | フイリツプス ペトロリユーム コンパニー | 組成物 |
DE19607978A1 (de) * | 1996-03-01 | 1997-09-04 | Basf Ag | Kondensationsprodukte auf der Basis von Triazinen und Formaldehyd |
CN106929933B (zh) * | 2011-09-21 | 2019-09-03 | 唐纳森公司 | 由可溶性聚合物制成的纤维 |
-
2014
- 2014-12-19 EP EP14870890.2A patent/EP3085817A4/en not_active Withdrawn
- 2014-12-19 US US15/106,463 patent/US20160305044A1/en not_active Abandoned
- 2014-12-19 WO PCT/JP2014/083658 patent/WO2015093589A1/ja active Application Filing
- 2014-12-19 JP JP2015553616A patent/JP6701733B2/ja not_active Expired - Fee Related
- 2014-12-19 SG SG11201605038QA patent/SG11201605038QA/en unknown
- 2014-12-19 CN CN201480069424.1A patent/CN105829590A/zh active Pending
- 2014-12-19 TW TW103144639A patent/TW201529620A/zh unknown
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4987819A (ja) * | 1972-12-29 | 1974-08-22 | ||
JPS5319425A (en) * | 1976-08-09 | 1978-02-22 | Asahi Chem Ind Co Ltd | Production of alcohol-modified melamine resin fibers |
JPH03231957A (ja) * | 1989-07-11 | 1991-10-15 | Basf Ag | 高弾性のメラミン樹脂成形体 |
JPH11504084A (ja) * | 1995-04-26 | 1999-04-06 | ビーエーエスエフ アクチェンゲゼルシャフト | メラミン/ホルムアルデヒド縮合生成物から連続フィラメントファイバーを製造する方法 |
US20020192468A1 (en) | 2001-06-19 | 2002-12-19 | Kyung-Ju Choi | Method, apparatus and product for manufacturing nanofiber media |
JP2005534730A (ja) * | 2002-06-14 | 2005-11-17 | アーエムイー−アグロリンツ・メラミン・インテルナチオナール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | アミノ樹脂製品を製造するための組成物及びこの組成物から製品を製造する方法 |
JP2008514341A (ja) | 2004-09-29 | 2008-05-08 | ナショナル ユニバーシティ オブ シンガポール | 複合物、複合物の製造方法、およびその使用方法 |
WO2007102606A1 (ja) | 2006-03-06 | 2007-09-13 | Teijin Limited | 足場材料 |
JP2009000100A (ja) | 2007-05-23 | 2009-01-08 | Mitsubishi Rayon Co Ltd | 細胞培養用足場材料、その製造方法、細胞培養用モジュール |
US20110275154A1 (en) | 2009-05-21 | 2011-11-10 | Martin Arthur W | Derivatized peptide-conjugated (meth) acrylate cell culture surface and methods of making |
JP2011030487A (ja) * | 2009-07-31 | 2011-02-17 | Nisshin Pharma Inc | キノン類の製造方法 |
CN101718004A (zh) | 2009-08-13 | 2010-06-02 | 上海大学 | 静电纺丝法制备交联聚丙烯酰胺超细纤维的方法 |
JP2012067432A (ja) | 2010-08-24 | 2012-04-05 | Jfe Chemical Corp | 炭素繊維の製造方法 |
JP2013049927A (ja) | 2011-08-30 | 2013-03-14 | Shinshu Univ | 生体適合性を有するナノ繊維及びその製造方法並びに創傷被覆材 |
CN102800490A (zh) * | 2012-08-16 | 2012-11-28 | 黑龙江大学 | 三聚氰胺甲醛树脂/聚乙烯醇水溶液通过高压静电纺丝技术直接制备含氮碳纤维电极的方法 |
Non-Patent Citations (2)
Title |
---|
MACROMOLECULAR RESEARCH, vol. 18, no. 2, 2010, pages 137 - 143 |
See also references of EP3085817A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3085817A1 (en) | 2016-10-26 |
JPWO2015093589A1 (ja) | 2017-03-23 |
JP6701733B2 (ja) | 2020-05-27 |
EP3085817A4 (en) | 2017-08-02 |
CN105829590A (zh) | 2016-08-03 |
SG11201605038QA (en) | 2016-07-28 |
US20160305044A1 (en) | 2016-10-20 |
TW201529620A (zh) | 2015-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0902067B1 (en) | Method for coating an article with a ladder siloxane polymer | |
Geltmeyer et al. | Optimum sol viscosity for stable electrospinning of silica nanofibres | |
Ma et al. | Organic‐soluble chitosan/polyhydroxybutyrate ultrafine fibers as skin regeneration prepared by electrospinning | |
Lin et al. | Effect of solvent on surface wettability of electrospun polyphosphazene nanofibers | |
Huang et al. | Comparatively thermal and crystalline study of poly (methyl‐methacrylate)/polyacrylonitrile hybrids: core–shell hollow fibers, porous fibers, and thin films | |
Cetiner et al. | Acrylonitrile/vinyl acetate copolymer nanofibers with different vinylacetate content | |
Wu et al. | Synthesis, characterization and biocompatibility of novel biodegradable poly [((R)‐3‐hydroxybutyrate)‐block‐(d, l‐lactide)‐block‐(ε‐caprolactone)] triblock copolymers | |
CN101875728A (zh) | 聚膦腈微球及其制备方法、用途及其实现方法 | |
Zhu et al. | Antifouling ultrafiltration membrane fabricated from poly (arylene ether ketone) bearing hydrophilic hydroxyl groups | |
Yi et al. | Mimetics of eggshell membrane protein fibers by electrospinning | |
Xu et al. | Electrospun nanoscale bent fibrous membrane with controllable porous structure and hydrophilic modification for high-efficiency oil-water separation, particle/bacterial filtration and antibacterial applications | |
Hamada et al. | Robust and transparent antifogging polysilsesquioxane film containing a hydroxy group | |
WO2015093589A1 (ja) | 繊維、当該繊維の製造用組成物、および当該繊維を含む生体適合材料 | |
JP6477475B2 (ja) | 繊維形成用組成物及びその繊維を用いた生体適合材料 | |
Ho et al. | Mesoporous carbons from poly (acrylonitrile)-b-poly (ε-caprolactone) block copolymers | |
Jalali et al. | Silica Nanofibers with Enhanced Wettability and Mechanical Strength for Bone Tissue Engineering: Electrospinning without Polymer Carrier and Subsequent Heat Treatment | |
JP4943355B2 (ja) | ゾル状液の紡糸方法 | |
Loriot et al. | Syntheses, characterization, and hydrolytic degradation of P (ε‐caprolactone‐co‐δ‐valerolactone) copolymers: Influence of molecular weight | |
Cui et al. | Preparation of superhydrophobic surfaces by cauliflower‐like polyaniline | |
JP2011068829A (ja) | 耐熱膜の製造方法 | |
RU2427673C1 (ru) | Прядильный раствор для электроформования, способ получения волокон электроформованием и волокна карбида кремния | |
Fatarella et al. | Sulfonated polyetheretherketone/polypropylene polymer blends for the production of photoactive materials | |
US9624397B2 (en) | Methods for the production of poly(cyanoacrylate) fibers | |
Ramalingam et al. | Development and Characterization of Electrospun Poly (2‐hydroxy ethyl methacrylate) for Tissue Engineering Applications | |
JP6637228B2 (ja) | 構造化された有機膜を調製するための溶融配合プロセス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14870890 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015553616 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15106463 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014870890 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014870890 Country of ref document: EP |