WO2015093574A1 - エンジンユニット、及び車両 - Google Patents

エンジンユニット、及び車両 Download PDF

Info

Publication number
WO2015093574A1
WO2015093574A1 PCT/JP2014/083591 JP2014083591W WO2015093574A1 WO 2015093574 A1 WO2015093574 A1 WO 2015093574A1 JP 2014083591 W JP2014083591 W JP 2014083591W WO 2015093574 A1 WO2015093574 A1 WO 2015093574A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
battery
voltage
crankshaft
control
Prior art date
Application number
PCT/JP2014/083591
Other languages
English (en)
French (fr)
Inventor
貴裕 西川
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP14872071.7A priority Critical patent/EP3064748A4/en
Priority to CN201480070045.4A priority patent/CN105874189B/zh
Priority to EP20181163.5A priority patent/EP3767095A1/en
Priority to AP2016009306A priority patent/AP2016009306A0/en
Priority to TW103144929A priority patent/TWI528680B/zh
Publication of WO2015093574A1 publication Critical patent/WO2015093574A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • F02N11/06Starting of engines by means of electric motors the motors being associated with current generators and with ignition apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/021Engine crank angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/043Starter voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles

Definitions

  • the present invention relates to an engine unit and a vehicle equipped with the engine unit.
  • Patent Document 1 discloses an engine equipped with a power generation control device.
  • the power generation control device for an engine shown in Patent Literature 1 includes a three-phase mixed bridge circuit for changing a current from a power generator attached to the engine.
  • the three-phase mixed bridge circuit of the power generation control device in Patent Document 1 functions as a rectifier regulator.
  • Patent Document 1 the rotational speed when idling, that is, when the vehicle is stopped, is lowered to thereby improve fuel efficiency.
  • the rectifier regulator is controlled to control power generation when the vehicle is stopped.
  • An object of the present invention is to provide an engine unit that can secure a power generation amount with high efficiency even if the rotation speed of a crankshaft when the vehicle is stopped is reduced without increasing the size of the generator, and a vehicle equipped with the engine unit. It is.
  • the present invention employs the following configuration in order to solve the above-described problems.
  • An engine unit mounted on a vehicle equipped with a battery The engine unit is An engine body having a crankshaft; A generator that generates electricity by rotating in conjunction with rotation of the crankshaft; An inverter comprising a plurality of switching units for controlling the current supplied from the generator to the battery; A power generation control unit that controls a current supplied from the generator to the battery by controlling the plurality of switching units provided in the inverter; and a combustion control unit that controls a combustion operation of the engine body.
  • the control device performs vector control of the plurality of switching units provided in the inverter in at least a part of a period in which the vehicle stops and a voltage output from the generator is lower than a voltage of the battery.
  • the voltage lower than the voltage of the battery output from the generator is boosted to a voltage higher than the voltage of the battery, and the battery is charged.
  • the combustion control unit of the control device controls the combustion operation of the engine body.
  • the generator generates electricity by rotating in conjunction with the rotation of the crankshaft of the engine body.
  • the control device performs vector control of a plurality of switching units provided in the inverter during at least a part of a period when the vehicle stops and the voltage output from the generator is lower than the voltage of the battery.
  • a voltage lower than the battery voltage is boosted to a voltage higher than the battery voltage, and the battery is charged.
  • the current and voltage of the generator can be controlled by vector control so that the power factor is increased.
  • the battery can be charged with high efficiency even when the vehicle stops and the rotation speed of the crankshaft is the rotation speed at which the output voltage of the generator is lower than the battery voltage. . Therefore, according to the engine unit (1), the amount of power generation can be secured with high efficiency without increasing the size of the generator, even if the rotational speed of the crankshaft when the vehicle is stopped is reduced.
  • the engine unit (1) may be an engine unit set so that the output voltage of the generator when the vehicle is stopped is smaller than the voltage of the battery. According to the engine unit of (1), even when the rotational speed of the crankshaft in the stopped state of the vehicle is low, the power generation amount in the stopped state of the vehicle can be ensured with high power generation efficiency. Even in this case, there is no need to increase the size of the generator.
  • the engine unit (1) may include a generator having a size (size) such that the output voltage of the generator when the vehicle is stopped is smaller than the voltage of the battery.
  • an engine unit of (1) it is possible to secure a power generation amount when the vehicle is stopped with high power generation efficiency while avoiding an increase in size of the generator. Even in this case, it is not necessary to increase the rotational speed when the vehicle is stopped. Furthermore, according to the configuration of (1), it is possible to set the rotational speed in the stopped state of the vehicle low while securing the power generation amount in the stopped state of the vehicle with high power generation efficiency without increasing the size of the generator. is there.
  • “at least a part of the period in which the vehicle stops and the voltage output from the generator is lower than the voltage of the battery” is not particularly limited, and includes, for example, the following situations. “At least a part of the period when the vehicle stops and the voltage output from the generator is lower than the voltage of the battery” refers to the crankshaft of the crankshaft when the vehicle is stopped during warm-up operation and non-warm-up operation. It may be a period during non-warm-up operation in vehicles having different rotational speeds. Further, “at least a part of a period in which the vehicle stops and the voltage output from the generator is lower than the voltage of the battery” means that the remaining battery level is equal to or less than a predetermined amount in the period when the vehicle is stopped. It may be a period. "At least part of the period when the vehicle stops and the voltage output by the generator is lower than the voltage of the battery", the vehicle stops and the voltage output by the generator is lower than the voltage of the battery It may be the whole period.
  • the control device may perform the control according to the above (1) in at least a part of the entire period of the stopped state while the vehicle is traveling. That is, “at least a part of the period in which the vehicle stops and the voltage output from the generator is lower than the voltage of the battery” means at least a part of all the stopped periods during the traveling of the vehicle. Say.
  • the control device may perform the control according to (1) in a period other than “at least a part of a period in which the vehicle stops and the voltage output by the generator is lower than the voltage of the battery”. Good.
  • the control device performs phase control to advance or delay the energization timings of the plurality of switching units provided in the inverter in at least a part of a period in which the voltage output from the generator is higher than the voltage of the battery.
  • the battery is charged.
  • the voltage output from the generator increases.
  • the voltage output by the generator is higher than the battery voltage.
  • the phase control for advancing or delaying the energization timing of the plurality of switching units is performed, so that the crankshaft rotates at a higher rotational speed than the rotational speed in the stationary state of the vehicle, and the generator Even in a situation where a higher voltage is output, the power generation amount can be secured with high efficiency.
  • At least part of the period during which the voltage output from the generator is higher than the voltage of the battery is not particularly limited, but includes, for example, the following situations. “At least a part of the period in which the voltage output from the generator is higher than the voltage of the battery” is, for example, the rotation speed of the crankshaft or the traveling speed of the vehicle exceeds a predetermined value during the period in which the engine operates. It may be a period.
  • the control device performs the control according to the above (2) during a period in which the rotational speed of the crankshaft or the traveling speed of the vehicle exceeds a predetermined value.
  • the control device may perform the control according to (1) in a period in which the rotation speed of the crankshaft or the traveling speed of the vehicle is equal to or less than a predetermined value.
  • the control device does not necessarily have to perform the control according to the above (2).
  • the control device may perform the control according to the above (2) in at least a part of the entire period of the non-stop state during the traveling of the vehicle. That is, “at least a part of a period in which the voltage output from the generator is higher than the voltage of the battery” means at least a part of the entire period of the non-stop state while the vehicle is running.
  • the control device may perform the control according to (2) in a period other than “at least a part of a period in which the voltage output from the generator is higher than the voltage of the battery”.
  • the engine unit of (1) or (2) The generator functions as a motor that drives the crankshaft with electric power of the battery,
  • the control device controls the plurality of switching units provided in the inverter so that electric power is supplied from the battery to the generator in a state where rotation of the crankshaft is stopped. Start.
  • the generator that functions as a motor starts the engine body by driving the crankshaft with the power of the battery.
  • a method for securing the generated voltage from the generator at a low rotational speed while avoiding an increase in the size of the generator for example, it is conceivable to increase the number of turns while thinning the wire of the winding.
  • the drive torque decreases when the generator is caused to function as a motor and the crankshaft is rotated by the power of the battery.
  • the battery can be charged with high efficiency even when the rotational speed of the crankshaft is lowered so that the output voltage of the generator is lower than the voltage of the battery when the vehicle is stopped. Therefore, in the case of power generation, the amount of power generation can be ensured with high efficiency even when the rotation speed of the crankshaft when the vehicle is stopped is reduced, while suppressing a decrease in driving torque when the crankshaft is driven by battery power.
  • the engine unit of (3) The control device controls the plurality of switching units provided in the inverter so that electric power is supplied from the battery to the generator for a predetermined period after the engine body is started.
  • the generator is caused to accelerate the rotation of the crankshaft.
  • the control device boosts a voltage lower than the battery voltage output from the generator to a voltage higher than the battery voltage by performing vector control of the plurality of switching units provided in the inverter, By controlling the battery to be charged and by performing vector control of the plurality of switching units provided in the inverter so that electric power is supplied from the battery to the generator, the rotation of the crankshaft is controlled.
  • the control mode is shifted between the control mode to be accelerated.
  • the transition of the control mode between the control mode for charging the battery by performing vector control and the control mode for accelerating the rotation of the crankshaft by performing vector control is not accompanied by a change in the type of control, For example, it can be quickly executed by changing a parameter such as a command value. Therefore, according to the configuration of (5), the transition between the state of charge of the battery, that is, the power generation state, and the state of acceleration of the rotation of the crankshaft, that is, the power running state can be performed quickly.
  • the voltage lower than the battery voltage output from the generator is boosted to a voltage higher than the battery voltage by performing vector control of a plurality of switching units provided in the inverter, and the battery is charged.
  • the rotation of the crankshaft is controlled by performing vector control of a plurality of switching units provided in the inverter so that power is supplied from the battery to the generator.
  • Control to charge the battery by boosting the voltage lower than the battery voltage output by the generator to a voltage higher than the battery voltage by performing vector control of the plurality of switching units provided in the inverter from the acceleration control mode
  • a transition to an aspect is included.
  • the engine unit according to any one of (1) to (5), The engine body has a high load region where a load for rotating the crankshaft is large during four strokes, and a low load region where the load for rotating the crankshaft is smaller than the load in the high load region. It is.
  • a 4-stroke engine having a high load area and a low load area has a larger fluctuation in rotational speed depending on the area than other types of engines. If the fluctuation of the rotation speed according to the region is large, the stability of the rotation when the rotation speed of the crankshaft is lowered tends to be lowered.
  • the rotation speed of the crankshaft when the vehicle is stopped is low, and the battery can be charged even if a voltage lower than the voltage of the battery is output from the generator.
  • the electric power generated by the generator when charging the battery that is, the load applied to the engine body is large in a region where the rotational speed is relatively high and small in a region where the rotational speed is relatively low. That is, the load fluctuates so that the rotation speed is stabilized. Therefore, even when the rotation speed of the crankshaft is low when the vehicle is stopped and a voltage lower than the voltage of the battery is output from the generator, the amount of power generation can be secured with high efficiency while stabilizing the rotation speed of the crankshaft.
  • the engine unit according to any one of (1) to (6),
  • the engine body has a plurality of cylinders.
  • ⁇ An engine having a plurality of multi-cylinders has a high rotational stability because the load fluctuation is small. Therefore, it is possible to further reduce the rotational speed of the crankshaft when the vehicle is stopped. Even if the rotational speed of the crankshaft is further reduced when the vehicle is stopped, it is possible to secure a power generation amount with high power generation efficiency.
  • a vehicle The vehicle is The engine unit according to any one of (1) to (7) is provided.
  • the vehicle of (8) can ensure the power generation amount at the rotational speed when the vehicle is stopped with high efficiency without increasing the size of the generator.
  • an engine unit that can secure a power generation amount with high efficiency even if the rotation speed of the crankshaft when the vehicle is stopped is reduced without increasing the size of the generator, and a vehicle equipped with the engine unit.
  • FIG. 6 is a state transition diagram showing an outline of the state of the engine unit shown in FIG. 5. It is a figure which shows the example of the waveform of the electric current and voltage in vector control.
  • (A) is a graph schematically showing the relationship between the rotational speed of the crankshaft and the generated current in one embodiment
  • (b) is a graph schematically showing the relationship between the rotational speed of the crankshaft and the power generation efficiency. is there.
  • FIG. 1 is a partial cross-sectional view schematically showing a schematic configuration of an engine unit EU according to an embodiment of the present invention.
  • the engine unit EU is provided in a motorcycle (see FIG. 10) which is an example of a vehicle.
  • the engine unit EU includes a four-stroke engine main body E and a generator SG.
  • the 4-stroke engine body E is a single-cylinder 4-stroke engine.
  • the 4-stroke engine body E has a relationship between the crank angle position and the required torque shown in FIG.
  • FIG. 2 is an explanatory diagram schematically showing the relationship between the crank angle position at the time of engine start and the required torque.
  • the 4-stroke engine body E has a high load region TH in which the load for rotating the crankshaft 5 is large and a low load region TL in which the load for rotating the crankshaft 5 is smaller than the load in the high load region TH during the four strokes.
  • the low load region TL is wider than the high load region TH. More specifically, the low load region TL is wider than the high load region TH. In other words, the rotation angle region corresponding to the low load region TL is wider than the rotation angle region corresponding to the high load region TH.
  • the four-stroke engine body E rotates while repeating four steps of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. As shown in FIG.
  • the compression stroke is included in the high load region TH and is not included in the low load region TL.
  • the high load region TH is a region that substantially overlaps the compression stroke
  • the low load region TL is a region that substantially overlaps the intake stroke, the expansion stroke, and the exhaust stroke.
  • each boundary between the high load region TH and the low load region TL does not need to coincide with the boundary of each stroke.
  • the engine unit EU includes a generator SG.
  • Generator SG is a three-phase brushless generator.
  • the generator SG functions as a starter motor that starts the four-stroke engine body E by rotating the crankshaft 5 when the engine is started.
  • the generator SG is a starter generator.
  • the starter generator is simply referred to as a generator SG.
  • the generator SG is rotated by the crankshaft 5 to function as a generator during at least a part of the period after the start of the 4-stroke engine main body E. That is, it is not always necessary to function as a generator after the start of combustion of the engine.
  • the generator SG may not function as a generator immediately after combustion of the engine is started, and may function as a generator when a predetermined condition is satisfied.
  • predetermined conditions include that the rotational speed of the crankshaft 5 has reached a predetermined speed, and that a predetermined time has elapsed since the start of engine combustion.
  • a period in which the generator SG functions as a generator and a period in which the generator SG functions as a motor may be included.
  • the generator SG is attached to the crankshaft 5 of the 4-stroke engine body E.
  • the generator SG is attached to the crankshaft 5 without a power transmission mechanism (for example, a belt, a chain, a gear, a speed reducer, a speed increaser, etc.).
  • the generator SG may be configured to rotate the crankshaft 5 by the rotation of the generator SG. Therefore, the generator SG may be attached to the crankshaft 5 via a power transmission mechanism.
  • the generator SG is attached to the crankshaft 5 without using a power transmission mechanism as in the present embodiment.
  • the 4-stroke engine body E includes a crankcase 1 (engine case 1), a cylinder 2, a piston 3, a connecting rod 4, and a crankshaft 5.
  • the cylinder 2 is provided in a manner protruding from the crankcase 1 in a predetermined direction (for example, obliquely upward).
  • the piston 3 is provided in the cylinder 2 so as to be reciprocally movable.
  • the crankshaft 5 is rotatably provided in the crankcase 1.
  • One end (for example, the upper end) of the connecting rod 4 is connected to the piston 3.
  • the other end (for example, the lower end) of the connecting rod 4 is connected to the crankshaft 5.
  • a cylinder head 6 is attached to an end portion (for example, an upper end portion) of the cylinder 2.
  • crankshaft 5 is supported on the crankcase 1 through a pair of bearings 7 in a rotatable manner.
  • One end portion 5 a (for example, right end portion) of the crankshaft 5 protrudes outward from the crankcase 1.
  • a generator SG is attached to one end portion 5 a of the crankshaft 5.
  • the other end 5b (for example, the left end) of the crankshaft 5 protrudes outward from the crankcase 1.
  • a primary pulley 20 of a continuously variable transmission CVT is attached to the other end portion 5 b of the crankshaft 5.
  • the primary pulley 20 has a fixed sheave 21 and a movable sheave 22.
  • the fixed sheave 21 is fixed to the distal end portion of the other end portion 5 b of the crankshaft 5 so as to rotate together with the crankshaft 5.
  • the movable sheave 22 is splined to the other end 5 b of the crankshaft 5.
  • the movable sheave 22 is movable along the axial direction X, and rotates with the crankshaft 5 in such a manner that the distance from the fixed sheave 21 is changed.
  • a belt B is hung on the primary pulley 20 and a secondary pulley (not shown). The rotational force of the crankshaft 5 is transmitted to the drive wheels of the motorcycle (see FIG. 8).
  • FIG. 3 is an enlarged cross-sectional view showing the generator SG and its vicinity in FIG. 1 in an enlarged manner.
  • FIG. 4 is a cross-sectional view showing a cross section perpendicular to the rotation axis J of the generator SG shown in FIG.
  • the generator SG has an outer rotor 30 and an inner stator 40.
  • the outer rotor 30 has an outer rotor main body 31.
  • the outer rotor main body 31 is made of, for example, a ferromagnetic material.
  • the outer rotor main body 31 has a bottomed cylindrical shape.
  • the outer rotor main body 31 includes a cylindrical boss portion 32, a disk-shaped bottom wall portion 33, and a cylindrical back yoke portion 34.
  • the cylindrical boss portion 32 is fixed to the crankshaft 5 while being inserted into the one end portion 5 a of the crankshaft 5.
  • the bottom wall portion 33 is fixed to the cylindrical boss portion 32 and has a disk shape that extends in the radial direction Y of the crankshaft 5.
  • the back yoke portion 34 has a cylindrical shape that extends in the axial direction X of the crankshaft 5 from the outer peripheral edge of the bottom wall portion 33. The back yoke portion 34 extends in a direction approaching the crankcase 1.
  • the bottom wall portion 33 and the back yoke portion 34 are integrally formed, for example, by press molding a metal plate.
  • the bottom wall portion 33 and the back yoke portion 34 may be configured separately. That is, in the outer rotor main body 31, the back yoke portion 34 may be formed integrally with other parts constituting the outer rotor main body 31, and is separate from other parts constituting the outer rotor main body 31. It may be configured on the body. In the case where the back yoke portion 34 and other portions are configured separately, the back yoke portion 34 may be made of a ferromagnetic material, and the other portion may be made of a material other than the ferromagnetic material. .
  • a tapered insertion hole 32 a for inserting one end portion 5 a of the crankshaft 5 is formed along the axial direction X of the crankshaft 5.
  • the tapered insertion hole 32 a has a taper angle corresponding to the outer peripheral surface of the one end portion 5 a of the crankshaft 5.
  • the cylindrical boss portion 32 has a large-diameter portion 32b at the proximal end portion of the cylindrical boss portion 32 (the right portion of the cylindrical boss portion 32 in the drawing).
  • the cylindrical boss portion 32 has a flange portion 32c extending outward in the radial direction on the outer peripheral surface of the large diameter portion 32b.
  • a large-diameter portion 32b of the cylindrical boss portion 32 is inserted into a hole portion 33a formed in the center portion of the bottom wall portion 33 of the outer rotor main body portion 31. In this state, the flange portion 32c is in contact with the outer peripheral surface (right side surface in the figure) of the bottom wall portion 33.
  • the generator SG is a permanent magnet type generator.
  • the back yoke portion 34 of the outer rotor main body 31 is provided with a plurality of permanent magnet portions 37 on the inner peripheral surface of the back yoke portion 34.
  • Each permanent magnet portion 37 is provided such that the S pole and the N pole are aligned in the radial direction of the generator SG.
  • the plurality of permanent magnet portions 37 are provided so that N poles and S poles are alternately arranged in the circumferential direction of the generator SG.
  • the number of magnetic poles of the outer rotor 30 facing the inner stator 40 is 24.
  • the number of magnetic poles of the outer rotor 30 refers to the number of magnetic poles facing the inner stator 40.
  • the number of magnetic pole surfaces of the permanent magnet portion 37 facing the tooth portion 43 of the stator core ST corresponds to the number of magnetic poles of the outer rotor 30.
  • the magnetic pole surface per magnetic pole included in the outer rotor 30 corresponds to the magnetic pole surface of the permanent magnet portion 37 facing the inner stator 40.
  • the magnetic pole surface of the permanent magnet part 37 is covered with a nonmagnetic material (not shown) provided between the permanent magnet part 37 and the inner stator 40. No magnetic material is provided between the permanent magnet portion 37 and the inner stator 40. It does not specifically limit as a nonmagnetic material, For example, a stainless steel material is mentioned.
  • the permanent magnet portion 37 is a ferrite magnet.
  • conventionally known magnets such as neodymium bond magnets, samarium cobalt magnets and neodymium magnets can be employed as the permanent magnets.
  • the shape of the permanent magnet part 37 is not particularly limited.
  • the outer rotor 30 may be an embedded magnet type (IPM type) in which the permanent magnet part 37 is embedded in a magnetic material, but the permanent magnet part 37 is exposed from the magnetic material as in the present embodiment.
  • a surface magnet type (SPM type) is preferred.
  • the outer rotor 30 attached to the crankshaft 5 and attached to rotate together with the crankshaft 5 is a rotating body for increasing the inertia of the crankshaft 5.
  • a cooling fan F having a plurality of blade portions Fa is provided on the outer peripheral surface (the right side surface in FIGS. 1 and 3) of the bottom wall portion 33 constituting the outer rotor 30.
  • the cooling fan F is fixed to the outer peripheral surface of the bottom wall portion 33 with a fixture (a plurality of bolts Fb).
  • the inner stator 40 has a stator core ST and a plurality of stator windings W.
  • the stator core ST is formed, for example, by laminating thin silicon steel plates along the axial direction.
  • the stator core ST has a hole 41 having an inner diameter larger than the outer diameter of the cylindrical boss portion 32 of the outer rotor 30 at the center of the stator core ST.
  • the stator core ST has a plurality of tooth portions 43 that integrally extend outward in the radial direction (see FIG. 4).
  • a total of 18 tooth portions 43 are provided at intervals in the circumferential direction.
  • the stator core ST has a total of 18 slots SL (see FIG. 4) formed at intervals in the circumferential direction.
  • the tooth portions 43 are arranged at equal intervals in the circumferential direction.
  • Generator SG is a three-phase generator.
  • a stator winding W is wound around each tooth portion 43.
  • the multi-phase stator winding W is provided so as to pass through the slot SL.
  • Each of the multi-phase stator windings W belongs to one of the U phase, the V phase, and the W phase.
  • the stator windings W are arranged in the order of the U phase, the V phase, and the W phase.
  • the inner stator 40 has a hole 41 formed in the central portion in the radial direction of the generator SG.
  • the crankshaft 5 and the cylindrical boss portion 32 of the outer rotor 30 are disposed at a distance from the wall surface (inner stator 40) of the hole portion 41.
  • the inner stator 40 is attached to the crankcase 1 of the four-stroke engine main body E.
  • the end portion (tip surface) of the tooth portion 43 of the inner stator 40 is disposed at a distance from the magnetic pole surface (inner peripheral surface) of the permanent magnet portion 37 constituting the outer rotor 30.
  • the outer rotor 30 rotates in conjunction with the rotation of the crankshaft 5.
  • the outer rotor 30 rotates integrally with the crankshaft 5. In other words, the rotational speed of the outer rotor 30 is the same as the rotational speed of the crankshaft 5.
  • the outer rotor 30 will be further described with reference to FIG.
  • the permanent magnet portion 37 is provided outside the inner stator 40 in the radial direction of the generator SG.
  • the back yoke portion 34 is provided outside the permanent magnet portion 37 in the radial direction.
  • the permanent magnet portion 37 includes a plurality of magnetic pole surfaces 37 a on the surface facing the inner stator 40.
  • the magnetic pole surface 37a is arranged in the circumferential direction of the generator SG.
  • Each of the magnetic pole surfaces 37a is an N pole or an S pole.
  • the N pole and the S pole are alternately arranged in the circumferential direction of the generator SG.
  • the magnetic pole surface 37 a of the permanent magnet portion 37 faces the inner stator 40.
  • a plurality of magnets are arranged in the circumferential direction of the generator SG, and each of the plurality of magnets is arranged in a posture in which the S pole and the N pole are aligned in the radial direction of the generator SG.
  • a pair of magnetic pole faces 37p is constituted by one S pole and one N pole adjacent in the circumferential direction.
  • the number of pairs of magnetic pole faces 37p is 1 ⁇ 2 of the number of magnetic pole faces 37a.
  • the outer rotor 30 is provided with 24 magnetic pole surfaces 37a facing the inner stator 40, and the number of pairs 37p of the magnetic pole surfaces of the outer rotor 30 is twelve. In the drawing, 12 magnetic pole face pairs 37p corresponding to 12 magnet pairs are shown.
  • the reference numeral 37p indicates only one pair.
  • the generator SG has more magnetic pole surfaces 37 a than 2/3 of the number of tooth portions 43.
  • the generator SG has the number of magnetic pole surfaces 37 a that is 4/3 or more of the number of teeth 43.
  • a plurality of detected portions 38 for detecting the rotational position of the outer rotor 30 are provided on the outer surface of the outer rotor 30.
  • the plurality of detected parts 38 are detected by a magnetic action.
  • the plurality of detected portions 38 are provided on the outer surface of the outer rotor 30 at intervals in the circumferential direction.
  • the plurality of detected portions 38 are provided on the outer peripheral surface of the outer rotor 30 at intervals in the circumferential direction.
  • the plurality of detected portions 38 are disposed on the outer peripheral surface of the cylindrical back yoke portion 34. Each of the plurality of detected portions 38 protrudes outward in the radial direction Y of the generator SG from the outer peripheral surface of the back yoke portion 34.
  • the bottom wall portion 33, the back yoke portion 34, and the detected portion 38 are integrally formed, for example, by press-molding a metal plate such as iron. That is, the detected part 38 is made of a ferromagnetic material. Details of the arrangement of the detected parts 38 will be described later.
  • the rotor position detection device 50 is a device that detects the position of the outer rotor 30.
  • the rotor position detection device 50 also functions as a speed detection unit that detects the rotational speed of the crankshaft 5.
  • the rotor position detection device 50 is provided at a position facing the plurality of detected parts 38. That is, the rotor position detection device 50 is disposed at a position where the plurality of detected portions 38 sequentially face the rotor position detection device 50.
  • the rotor position detection device 50 faces a path through which the detected portion 38 passes as the outer rotor 30 rotates.
  • the rotor position detection device 50 is disposed at a position away from the inner stator 40.
  • the rotor position detection device 50 includes the back yoke portion 34 and the permanent magnet portion 37 of the outer rotor 30 between the rotor position detection device 50 and the inner stator 40 and the stator winding W in the radial direction of the crankshaft 5. Is arranged to be located.
  • the rotor position detection device 50 is disposed outside the outer rotor 30 in the radial direction of the generator SG, and faces the outer peripheral surface of the outer rotor 30.
  • the rotor position detection device 50 includes a detection winding 51, a detection magnet 52, and a core 53.
  • the detection winding 51 functions as a pickup coil that detects the detected portion 38.
  • the core 53 is a member extending in the shape of, for example, an iron bar.
  • the detection winding 51 magnetically detects the detected portion 38.
  • the rotor position detection device 50 starts detecting the rotational position of the outer rotor 30 after the crankshaft 5 starts rotating.
  • the rotor position detecting device 50 may employ a configuration other than the type in which the voltage generated by the electromotive force associated with the passage of the detected portion 38 changes.
  • the rotor position detection device 50 may employ a configuration in which the detection winding 51 is always energized and the energization current changes due to the change in inductance accompanying the passage of the detected portion 38.
  • the rotor position detection device 50 is not particularly limited, and may include a Hall element or an MR element.
  • the engine unit EU (see FIG. 1) of the present embodiment may include a Hall element or an MR element.
  • the plurality of detected portions 38 in the present embodiment are provided on the outer surface of the outer rotor 30.
  • Each of the plurality of detected portions 38 has the same relative positional relationship with respect to the pair of magnetic pole faces 37p to which each of the detected portions 38 corresponds.
  • the rotor position detection device 50 is provided at a position facing the plurality of detected portions 38.
  • the rotor position detection device 50 is provided at a position facing each of the plurality of detected portions 38 during rotation of the outer rotor 30.
  • the rotor position detection device 50 faces one of the plurality of detected portions 38 instead of the plurality of detected portions 38 at the same time (at a time).
  • a predetermined position in the circumferential direction in a pair 37p of magnetic pole faces formed by two magnetic poles (S pole and N pole) adjacent in the circumferential direction is indicated by a one-dot chain line.
  • the eleven detected portions 38 that are one less than the number of specified positions are provided in the outer rotor 30.
  • the eleven detected parts 38 are respectively provided at eleven of the twelve prescribed positions.
  • the plurality of detected parts 38 may be configured separately from the back yoke part 34, for example. Further, the plurality of detected portions 38 may be formed of, for example, one object having a plurality of portions that are alternately magnetized with opposite polarities in the circumferential direction.
  • FIG. 5 is a block diagram showing an electrical basic configuration of the engine unit EU shown in FIG.
  • the engine unit EU includes a four-stroke engine main body E, a generator SG, and a control device CT.
  • a generator SG, a spark plug 29, and a battery 14 are connected to the control device CT.
  • Control device CT is connected to a plurality of stator windings W, and supplies a current from battery 14 provided in the vehicle to the plurality of stator windings W.
  • the control device CT includes a starting power generation control unit 62, a combustion control unit 63, and a plurality of switching units 611 to 616.
  • the control device CT in the present embodiment has six switching units 611 to 616.
  • the switching units 611 to 616 constitute a three-phase bridge inverter 61.
  • the plurality of switching units 611 to 616 are connected to each phase of the stator winding W having a plurality of phases.
  • the plurality of switching units 611 to 616 control the current supplied from the generator SG to the battery 14.
  • the plurality of switching units 611 to 616 switches between current passing / blocking between the plurality of stator windings W and the battery 14. By sequentially switching on and off the switching units 611 to 616, rectification and voltage control of the three-phase AC output from the generator SG is performed.
  • Each of the switching units 611 to 616 has a switching element.
  • the switching element is, for example, a transistor, and more specifically, an FET (Field Effect Transistor).
  • FET Field Effect Transistor
  • thyristors and IGBTs Insulated Gate Bipolar Transistors
  • the starting power generation control unit 62 controls the operation of the generator SG by controlling the on / off operations of the switching units 611 to 616.
  • the startup power generation control unit 62 includes a phase control unit 621, a vector control unit 622, an on / off operation storage unit 623, and an initial operation unit 624.
  • the starting power generation control unit 62 including the phase control unit 621 and the vector control unit 622 and the combustion control unit 63 are realized by a computer (not shown) and control software executed by the computer. However, part or all of the starting power generation control unit 62 including the phase control unit 621 and the vector control unit 622 and the combustion control unit 63 can be realized by a hardware circuit that is an electronic circuit. Further, the starting power generation control unit 62 and the combustion control unit 63 may be configured as separate devices, for example, at positions separated from each other, or may be configured integrally.
  • the on / off operation storage unit 623 is constituted by a memory, for example.
  • the on / off operation storage unit 623 stores data related to the on / off operations of the plurality of switching units 611 to 616. More specifically, the on / off operation storage unit 623 stores a map used by the control device CT for controlling the generator SG and the 4-stroke engine main body E, and software in which information is described.
  • the initial operation unit 624 includes an electronic circuit (wired logic). The initial operation unit 624 generates an electrical signal for turning on / off the plurality of switching units 611 to 616. Note that the control device CT may operate both the on / off operation storage unit 623 and the initial operation unit 624, or may operate one of the on / off operation storage unit 623 and the initial operation unit 624.
  • the combustion control unit 63 controls the combustion operation of the 4-stroke engine body E by causing the ignition plug 29 to perform an ignition operation.
  • the combustion control unit 63 also controls the injection of the fuel injection device to thereby perform the combustion operation of the 4-stroke engine main body E. To control.
  • the starter switch 16 for starting the 4-stroke engine main body E is connected to the starting power generation control unit 62.
  • the starter switch 16 is operated by the driver when the four-stroke engine body E is started.
  • the starting power generation control unit 62 of the control device CT detects the state of charge of the battery 14 by detecting the voltage of the battery 14.
  • the detection of the state of charge of the battery 14 can employ, for example, a configuration for detecting the current flowing through the battery 14 in the state of charge, in addition to the configuration for detecting the voltage of the battery 14.
  • the control device CT controls the generator SG through the operations of the inverter 61, the starting power generation control unit 62, and the combustion control unit 63.
  • FIG. 6 is a state transition diagram schematically showing the state of the engine unit EU shown in FIG.
  • the control device CT moves to the start control state (S2).
  • the control device CT causes the generator SG to start the four-stroke engine body E by rotating the crankshaft 5 (S2).
  • the control device CT controls the plurality of switching units 611 to 616 provided in the inverter 61 so that electric power is supplied from the battery 14 to the generator SG while the rotation of the crankshaft 5 is stopped. That is, in the start control state (S2), the control device CT causes the generator SG to power.
  • the control device CT controls the current to be supplied from the positive electrode of the battery 14 to the generator SG.
  • the control device CT causes the generator SG to function as a motor.
  • the generator SG drives the crankshaft 5 with the electric power of the battery 14. Note that the control state in the present embodiment corresponds to an example of a control mode referred to in the present invention.
  • the start instruction is input from the starter switch 16 to the control device CT when the starter switch 16 is operated, for example. Further, when the engine unit EU has an idling stop function, the control device CT executes a restart instruction by determining a predetermined engine start condition. The achievement of the predetermined engine start condition is included in the input of the start instruction.
  • the predetermined engine start condition is, for example, an operation of an accelerator operator (not shown).
  • the predetermined engine start condition is, for example, that the electric power stored in the battery 14 falls below a specific threshold value.
  • the specific threshold is, for example, a lower limit value of electric power for starting the 4-stroke engine main body E.
  • the specific threshold value may be a lower limit value of electric power for operating a device mounted on the vehicle.
  • the control device CT causes the generator SG to rotate the crankshaft 5.
  • the control device CT starts the combustion operation of the 4-stroke engine main body E when the rotational speed of the crankshaft 5 exceeds a predetermined ignitable rotational speed.
  • the combustion control unit 63 of the control device CT controls the combustion operation of the four-stroke engine main body E by controlling the spark plug 29.
  • the combustion control unit 63 also controls the injection of the fuel injection device to thereby perform the combustion operation of the 4-stroke engine main body E. To control.
  • the start of the combustion operation of the four-stroke engine main body E includes an operation of confirming whether the combustion operation has been normally performed. Whether or not the combustion operation is normally performed is determined, for example, by measuring the rotational speed of the crankshaft 5 while the crankshaft 5 rotates a plurality of times, and the measured rotational speed is determined as a case of normal combustion operation. It is determined by whether or not the value exceeds the specified value.
  • the generator SG accelerates the rotation of the crankshaft 5 for a predetermined period after starting the four-stroke engine body E (S2). More specifically, the generator SG continues the acceleration of the rotation of the crankshaft 5 after starting the combustion operation of the four-stroke engine main body E including the operation for confirming whether the combustion operation is normally performed.
  • the control device CT supplies power to the generator SG from the battery 14 through the plurality of switching units 611 to 616 provided in the inverter 61 for a predetermined period. To control. That is, the control device CT causes the generator SG to power. Thereby, the rotation of the crankshaft 5 is accelerated as compared with the case where electric power is not supplied from the battery 14 to the generator SG.
  • the control device CT performs vector control of the plurality of switching units 611 to 616 provided in the inverter 61, thereby controlling power to be supplied from the battery 14 to the generator SG, thereby accelerating the rotation of the crankshaft 5.
  • Let Vector control is 180-degree energization.
  • the rotation stability of the crankshaft 5 may be low.
  • the rotation of the crankshaft 5 by the generator SG is continuously accelerated, whereby the rotation of the crankshaft 5 due to the combustion of the 4-stroke engine main body is stabilized.
  • the predetermined period is set to a period (time period) sufficient to stabilize the rotation of the crankshaft 5.
  • a predetermined period for example, a period sufficient for the rotation speed of the crankshaft 5 to reach the idle rotation speed is set.
  • the generator SG generates electric current for charging the battery 14 by rotating in conjunction with the rotation of the crankshaft 5 after a predetermined period has elapsed from the start of the combustion operation of the four-stroke engine body E.
  • the control device CT shifts to the power generation control state (S3).
  • the control device CT charges the battery 14 by the output of the generator SG.
  • the control device CT controls the current supplied from the generator SG to the battery 14 by controlling the plurality of switching units 611 to 616 provided in the inverter 61.
  • Control device CT controls current to flow from generator SG to the positive electrode of battery 14.
  • the control device CT shifts from the power generation control state (S3) to the stop state (S1).
  • the stop state (S1) is a stop state of the 4-stroke engine body E.
  • the control device CT shifts to the acceleration control state (S4). That is, after starting the 4-stroke engine main body E, the control device CT accelerates the rotation of the crankshaft 5 for a predetermined period. Specifically, the control device CT controls the plurality of switching units 611 to 616 included in the inverter 61 so that power is supplied from the battery 14 to the generator SG for a predetermined period. The rotation of the shaft 5 is accelerated. That is, the control device CT causes the generator SG to power.
  • the control device CT accelerates the forward rotation of the crankshaft 5 by switching the state of the generator SG from power generation to acceleration (powering), for example, when acceleration of the vehicle is required in a state where the generator SG is generating power. .
  • acceleration for example, when acceleration of the vehicle is required, acceleration of rotation of the crankshaft 5 by the combustion operation of the 4-stroke engine main body E is assisted by the generator SG.
  • the rotation of the crankshaft 5 is accelerated as compared with the case where electric power is not supplied from the battery 14 to the generator SG. That is, the rotation of the crankshaft 5 is accelerated more than the case where the crankshaft 5 is rotated only by the combustion operation of the 4-stroke engine main body E.
  • the control device CT performs vector control of the plurality of switching units 611 to 616 provided in the inverter 61, thereby controlling power to be supplied from the battery 14 to the generator SG, thereby accelerating the rotation of the crankshaft 5.
  • the vector control unit 622 of the control device CT performs vector control of the plurality of switching units 611 to 616.
  • the control device CT shifts to the power generation control state (S3).
  • the power generation control state (S3) in the control device CT of the present embodiment has a vector control state (S31) and a phase control state (S32).
  • the control device CT switches the power generation control between vector control and phase control. That is, the control device CT includes a switching unit that switches control between vector control and phase control.
  • the control device CT performs vector control in at least a part of a period in which the voltage output from the generator SG is lower than the voltage of the battery 14 (S31). More specifically, the vector control unit 622 of the control device CT performs vector control.
  • the control device CT performs phase control in at least a part of a period in which the voltage output from the generator SG is higher than the voltage of the battery 14 (S32).
  • the phase control unit 621 of the control device CT performs phase control.
  • the voltage output from the generator SG is the output voltage of the stator winding W.
  • the voltage output from the generator SG is the amplitude of the output AC voltage.
  • the voltage of the battery 14 is a voltage at the time when the control is switched.
  • the control device CT switches the power generation control state in accordance with the rotational speed of the crankshaft 5.
  • the control device CT shifts to a phase control state and performs phase control (S32).
  • the control device CT shifts to a vector control state and performs vector control (S31).
  • the first speed threshold is greater than the second speed threshold. If the first speed threshold is larger than the second speed threshold, the transition of the control state with respect to the speed change has hysteresis, and thus the state is likely to be stabilized. However, the same value can be set for the first speed threshold and the second speed threshold. During the period when the vehicle stops and the voltage output from the generator SG is lower than the voltage of the battery 14, the rotational speed of the crankshaft 5 is smaller than the second speed threshold.
  • the control device CT moves to the vector control state (S31) of the power generation control state (S3). Specifically, when the rotational speed of the crankshaft 5 is smaller than the second speed threshold, the control device CT shifts to the vector control state (S31) of the power generation control state (S3).
  • the control device CT sets a voltage lower than the voltage of the battery 14 output from the generator SG in at least a part of a period when the vehicle stops and the voltage output from the generator SG is lower than the voltage of the battery 14. The voltage is raised to a higher voltage, and the battery 14 is charged (S31).
  • the control device CT performs vector control of the plurality of switching units 611 to 616 provided in the inverter 61, thereby boosting the voltage output from the generator SG to a voltage higher than the voltage of the battery 14, and charging the battery 14.
  • Vector control is a method of controlling the current of the generator SG separately into a d-axis component corresponding to the magnetic flux direction of the magnet and a q-axis component perpendicular to the magnetic flux direction in electrical angle.
  • the q-axis component is a component that affects the torque load of the generator SG.
  • the vector control is a control for energizing each phase of the plurality of phases of the stator winding W without energization pause.
  • the vector control is a control in which energization is performed so that a sine wave current flows in each phase of the stator winding W of a plurality of phases.
  • a sine wave current flows in each of the plurality of stator windings W.
  • Power generation by vector control is realized, for example, by drawing a current in the direction of the induced electromotive voltage so as to synchronize with the sine wave of the induced electromotive voltage of the stator winding W.
  • the sinusoidal current and the sinusoidal voltage mean a sinusoidal current and current.
  • the sine wave current includes, for example, ripple and distortion associated with the on / off operation of the switching unit.
  • each of the plurality of switching units 611 to 616 is controlled by a signal subjected to pulse width modulation (PWM).
  • PWM pulse width modulation
  • the period of the pulse in the pulse width modulation is shorter than the period of the induced electromotive voltage of each phase of the stator winding W. That is, the control device CT controls on / off of the plurality of switching units 611 to 616 according to a pulse signal having a cycle shorter than the cycle of the induced electromotive voltage of the stator winding W of the generator SG.
  • the vector control unit 622 of the control device CT uses a d-axis component from the currents of the stator windings W of a plurality of phases detected by a sensor (not shown) and the position of the outer rotor 30 detected by the rotor position detection device 50. And q-axis component.
  • the control device CT controls the on / off timing of the plurality of switching units 611 to 616 based on the component corrected according to the target value.
  • a method of detecting only the current of the stator windings of some phases or a method of omitting the position detection by the rotor position detection device 50 can be adopted.
  • a method of controlling the plurality of switching units 611 to 616 without detecting the current of the stator winding of any phase can be employed.
  • the control device CT estimates a current that is synchronized with the sine wave of the induced electromotive voltage of the stator winding W from the position of the outer rotor 30 detected by the rotor position detection device 50, and causes the estimated current to flow.
  • the control device CT uses a map (setting table) indicating the correspondence between the position of the outer rotor 30 and the pulse period, and controls the switching units 611 to 616 based on the position of the outer rotor 30.
  • This map is set in advance by estimating a voltage for flowing a current that is synchronized with the sine wave of the induced electromotive voltage with respect to the position of the outer rotor 30.
  • the on / off timing control includes, for example, a method of calculating an expression using input information, or a method of reading and referring to a map (setting table) stored in the on / off operation storage unit 623. It can be adopted. Expressions or maps may be included in the program.
  • the control device CT may perform control using the initial operation unit 624 configured by an electronic circuit (wired logic).
  • FIG. 7 is a diagram illustrating an example of current and voltage waveforms in vector control.
  • Vu represents an induced electromotive voltage of the U-phase stator winding W among the multiple-phase stator windings W of the generator SG.
  • Iu represents the current of the U-phase stator winding W.
  • a positive value for Iu indicates that a current flows from the switching units 611 and 612 to the stator winding W.
  • a negative value in Iu represents that a current flows from the stator winding W to the switching units 611 and 612.
  • Vsup and Vsun represent control signals of two switching units 611 and 612 connected to the U-phase stator winding W among the plurality of switching units 611 to 616.
  • Vsup is a control signal for the switching unit 611 on the positive side arranged between the U-phase stator winding W and the positive electrode of the battery 14.
  • Vsup is a control signal for the negative-side switching unit 612 disposed between the U-phase stator winding W and the negative electrode of the battery 14.
  • the H level in Vsup and Vsun represents the ON state of the switching units 611 and 612.
  • the L level represents an off state.
  • Idc is a current flowing through the battery 14. A negative value in Idc, that is, a value lower than “0” in the figure indicates that generator SG generates power and battery 14 is charged.
  • the positive side switching unit 611 and the negative side switching unit 612 are in opposite states in the on state and the off state.
  • the control device CT controls the on / off duty ratios of the switching units 611 and 612 so that a sine wave current flows in each phase of the stator winding W.
  • the control device CT controls the switching units 611 and 612 such that the cycle of the change in the duty ratio of the switching units 611 and 612 becomes the cycle of the induced electromotive voltage of the stator winding W.
  • the induced electromotive voltage of the stator winding W is a sine wave and has a median value “0” (timing t1, t5), a positive maximum value (timing t2), a median value “0” (timing t3), and a negative maximum value.
  • the value (timing t4) is repeated.
  • the control device CT controls the switching units 611 and 612 as follows. That is, the duty ratio of the positive-side switching unit 611 and the negative-side switching unit 612 at the timing (t2, t4) when the induced electromotive voltage Vu of the stator winding W becomes the maximum positive value and the maximum negative value.
  • the duty ratio of the positive-side switching unit 611 and the negative-side switching unit 612 Both of the duty ratios are close to 50%, for example, compared with the timing (t2, t4). Therefore, the difference between the duty ratio of the positive switching unit 611 and the duty ratio of the negative switching unit 612 is small.
  • the current of the U-phase stator winding W becomes small.
  • the duty ratios of the switching units 611 and 612 directly affect the voltage supplied from the battery 14 to the stator winding W. There is a delay between the voltage and current due to the inductance component of the stator winding W. Therefore, there is a slight deviation between changes in the duty ratio and current.
  • the vector control can increase the power factor for the current Iu flowing through the stator winding W and the induced electromotive voltage Vu.
  • the above description for the U phase also applies to the V phase and the W phase.
  • the V phase and the W phase have a time difference corresponding to 120 degrees in electrical angle with the U phase.
  • the switching units 611 to 616 are turned on and off by PWM pulses having a frequency higher than the frequency of the induced electromotive voltage, a strong chopping action is generated for the current flowing through the stator winding W. For this reason, the voltage output from the generator SG is boosted to a voltage higher than the voltage of the battery 14, and the battery 14 is charged.
  • the vector control for example, as shown in FIG. 7, the current flowing through the stator winding W can be controlled to increase the power factor with respect to the induced electromotive voltage Vu. For this reason, even if the voltage output from the generator SG is lower than the voltage of the battery, the amount of power generation can be secured with high efficiency.
  • the number of the magnetic pole surfaces 37a which the outer rotor 30 of the generator SG has is larger than 2/3 of the tooth portion 43, the angular velocity in electrical angle is high. For this reason, the amount of power generation can be secured with higher efficiency.
  • the 4-stroke engine body E of the present embodiment is a 4-stroke engine and has a high load region and a low load region.
  • the rotational speed of the crankshaft 5 is higher in the low load region than in the high load region.
  • the four-stroke engine body E has a large variation in rotational speed according to the region. If the fluctuation of the rotation speed according to the region is large, the stability of the rotation when the rotation speed of the crankshaft 5 is lowered tends to be lowered.
  • the battery 14 can be charged even if the rotational speed of the crankshaft 5 is low when the vehicle is stopped and a voltage lower than the voltage of the battery 14 is output from the generator SG.
  • the electric power generated by the generator SG when charging the battery 14 corresponds to the load applied to the engine body.
  • This load is large in a region where the rotational speed is relatively high and small in a region where the rotational speed is relatively low. That is, the load fluctuates so that the rotation speed is stabilized. Therefore, even when the rotational speed of the crankshaft 5 is low when the vehicle is stopped and a voltage lower than the voltage of the battery 14 is output from the generator SG, the rotational speed of the crankshaft 5 is stabilized and the amount of power generation is secured with high efficiency. it can.
  • the control device CT performs phase control.
  • the phase control is control for advancing or delaying the energization timing of the plurality of switching units 611 to 616 provided in the inverter 61.
  • the phase control is a control different from the vector control described above.
  • the control device CT causes each of the plurality of switching units 611 to 616 to perform an on / off operation with a period equal to the period of the induced electromotive voltage of the stator winding W.
  • the control device CT turns on / off each of the plurality of switching units 611 to 616 once in a cycle equal to the cycle of the induced electromotive voltage of the stator winding W.
  • the control device CT controls the phase of the on / off operation of each of the plurality of switching units 611 to 616 with respect to the induced electromotive voltage of the stator winding W.
  • FIG. 8 is a diagram illustrating an example of current and voltage waveforms in phase control.
  • Vu, Iu, Vsup, Vsun, and Idc in FIG. 8 are the same as those in FIG. However, the vertical scales of Vu, Iu, and Idc in FIG. 8 are different from the scale in FIG. In the example shown in FIG. 8, the rotational speed of the crankshaft 5 is higher than that shown in FIG. Therefore, the period of the induced electromotive voltage Vu is shorter than that shown in FIG.
  • the control device CT controls on / off of the plurality of switching units 611 to 616 according to signals Vsup and Vsun having a period equal to the period of the induced electromotive voltage of the stator winding W of the generator SG.
  • the on / off duty ratios of the plurality of switching units 611 to 616 are fixed.
  • the ON / OFF duty ratio of the positive side switching unit 611 and the ON / OFF duty ratio of the negative side switching unit 612 are equal.
  • the on / off duty ratio of each of the plurality of switching units 611 to 616 is 50%.
  • the control device CT controls the current flowing from the stator winding W to the battery 14 by advancing or delaying the energization timing of the plurality of switching units 611 to 616 in the phase control.
  • the control device CT reduces the current flowing through the battery 14 by advancing the on / off phase of the switching units 611 to 616 with respect to the induced electromotive voltage Vu.
  • the control device CT increases the current flowing through the battery 14 by delaying the on / off phase of the switching units 611 to 616 with respect to the induced electromotive voltage Vu.
  • the path of the current output from a certain one-phase stator winding W is switched between the other-phase stator winding W and the battery 14 by turning on / off the switching units 611 to 616.
  • the voltage output from the generator SG increases.
  • the voltage output from the generator is higher than the voltage of the battery 14.
  • Phase control is performed during a period in which the generator outputs a voltage higher than the voltage of the battery.
  • the on / off cycle of the switching units 611 to 616 in the phase control is longer than that in the vector control. That is, the on / off frequencies of the switching units 611 to 616 in the phase control are lower than in the vector control. Accordingly, since switching loss of the switching units 611 to 616 is suppressed, high efficiency can be obtained.
  • the engine unit EU of the present embodiment even when the crankshaft 5 rotates at a rotational speed higher than the rotational speed in the stationary state of the vehicle and the generator SG outputs a voltage higher than the voltage of the battery 14, it is highly efficient. Thus, the amount of power generation can be secured.
  • FIG. 9A is a graph schematically showing the relationship between the rotational speed of the crankshaft and the generated current.
  • FIG. 9B is a graph schematically showing the relationship between the rotational speed of the crankshaft and the power generation efficiency.
  • the thick line (P1) indicates the characteristics of the engine unit of the present embodiment.
  • the thin line (R1) shows the characteristic when a generator having the same configuration as the generator SG of the present embodiment is connected to a rectifier regulator formed of a diode as a first comparative example.
  • the broken line (R2) has shown the characteristic at the time of connecting to the rectifier regulator comprised with the diode to the generator larger than the generator SG in this embodiment as a 2nd comparative example.
  • the permanent magnet is enlarged, a thick wire is used for the stator winding, and the number of turns is increased. For this reason, the generator of the second comparative example is larger than the generator SG in the present embodiment.
  • the control device CT in the present embodiment uses a vector control method when the crankshaft 5 rotates at a rotation speed at the time of stopping, and a phase control method when the crankshaft 5 rotates at a rotation speed higher than the rotation speed at the time of stopping.
  • Is used. 9A and 9B show the range of the rotational speed of the crankshaft 5 when the vehicle is stopped. For example, the idle rotation speed of the crankshaft 5 is set within this range.
  • the generator SG in the present embodiment outputs a voltage lower than the voltage of the battery 14 when the crankshaft 5 rotates at the rotational speed when the vehicle is stopped.
  • a generator having the same configuration as the generator SG in the present embodiment is connected to a rectifier regulator formed of a diode.
  • the control device CT boosts the voltage output from the generator SG to a voltage higher than the voltage of the battery 14 by performing vector control of the plurality of switching units 611 to 616. Therefore, as shown by the thick line in FIG. 9A, current flows from the generator SG to the battery 14 at the rotational speed when the vehicle is stopped. That is, the battery 14 is charged even when the generator SG outputs a voltage lower than the voltage of the battery 14 when the vehicle stops.
  • the generator in the second comparative example outputs a voltage lower than the battery voltage when the crankshaft 5 rotates at the rotation speed at the time of stopping. Therefore, as indicated by a broken line R2 in FIG. 9A, current flows from the generator to the battery at the rotational speed when the vehicle is stopped.
  • the permanent magnet is increased in size, a thick wire is used for the stator winding, and the number of turns is increased as compared with the generator SG in the present embodiment. For this reason, the generator of the second comparative example is larger than the generator SG in the present embodiment.
  • the control device CT performs vector control on the plurality of switching units 611 to 616 to boost the voltage output from the generator SG to a voltage higher than the voltage of the battery 14. Therefore, the battery 14 can be charged when the vehicle is stopped without increasing the size of the generator SG.
  • the control device CT can control the current and voltage of the generator SG so that the power factor is increased by vector-controlling the plurality of switching units 611 to 616. For this reason, as shown by the thick line P1 in FIG. 9B, even when a voltage lower than the voltage of the battery 14 is output from the generator SG when the vehicle is stopped, the battery 14 is charged with high efficiency.
  • the rotation of the crankshaft 5 is performed so that a voltage lower than the voltage of the battery 14 is output from the generator SG while charging the battery 14 without stopping the generator SG.
  • the speed can be reduced. Therefore, noise and fuel consumption when the vehicle is stopped can be suppressed.
  • the battery 14 can be charged with high efficiency even if the rotational speed of the crankshaft 5 is reduced so that the output voltage of the generator SG is lower than the voltage of the battery 14.
  • the amount of power generation can be ensured with high efficiency even if the rotational speed of the crankshaft 5 is lowered when the vehicle is stopped without increasing the size of the generator SG. .
  • the voltage output from the generator SG increases.
  • the voltage output from the generator SG is higher than the battery voltage.
  • the current output from the generator increases as the rotational speed increases.
  • an excessive current other than the current for charging the battery is consumed as heat in the rectifier regulator.
  • the control device CT performs phase control to advance or delay the energization timings of the plurality of switching units 611 to 616. Thereby, the current output from the generator SG is suppressed.
  • the control device CT causes the generator SG to start the four-stroke engine body E by rotating the crankshaft 5. Further, the control device CT causes the generator SG to accelerate the rotation of the crankshaft 5 for a predetermined period after the combustion operation of the four-stroke engine main body E is started.
  • the control device CT performs vector control of the plurality of switching units 611 to 616 provided in the inverter 61 so that power is supplied from the battery 14 to the generator. The rotation of the crankshaft 5 is accelerated. After a predetermined period has elapsed from the start of the combustion operation of the 4-stroke engine body E, the control device CT shifts to a power generation control state (S3).
  • the control device CT shifts to the vector control state (S31) in the power generation control state (S3). That is, the control device CT shifts from the start control state (S2) in which the rotation of the crankshaft 5 is accelerated by vector control to the vector control state (S31) in the power generation control state (S3).
  • the control device CT performs vector control of the plurality of switching units 611 to 616 provided in the inverter 61, so that a voltage lower than the voltage of the battery 14 output from the generator SG is supplied.
  • the battery 14 is charged by raising the voltage to a voltage higher than the voltage.
  • the transition of the control state from the control state in which the rotation of the crankshaft 5 is accelerated by performing vector control to the control state in which the battery 14 is charged by performing vector control does not involve a change in the type of control.
  • the transition of the control state can be quickly executed by changing a parameter such as a command value, for example.
  • the transition of the control state is executed, for example, by changing the phase of the current of the plurality of phases of the stator winding W with respect to the phase of the induced electromotive voltage.
  • the transition of the control state is executed by changing the q-axis component current that contributes to the torque among the control values in the vector control from a positive value to a negative value. Therefore, the state of acceleration of the rotation of the crankshaft 5, that is, the power running state can be quickly changed to the state of charging the battery 14, that is, the power generation state.
  • the control device CT performs the vector control of the plurality of switching units 611 to 616 provided in the inverter 61, so that a voltage lower than the voltage of the battery 14 output from the generator SG is obtained.
  • the battery 14 is charged by raising the voltage to a voltage higher than the voltage.
  • the control device CT shifts to the acceleration control state (S4).
  • the acceleration control state (S4) the control device CT performs vector control of the plurality of switching units 611 to 616 provided in the inverter 61, thereby controlling power to be supplied from the battery 14 to the generator. The rotation of the crankshaft 5 is accelerated.
  • the transition of the control state from the control state in which the battery 14 is charged by performing vector control to the control state in which the rotation of the crankshaft 5 is accelerated by performing vector control is not accompanied by a change in the type of control.
  • the transition of the control state can be quickly executed by changing a parameter such as a command value, for example. Accordingly, the state of charge of the battery 14, that is, the power generation state, can be quickly changed to the state of acceleration of the rotation of the crankshaft 5, that is, the power running state.
  • FIG. 10 is an external view showing a vehicle on which the engine unit EU shown in FIG. 1 is mounted.
  • a vehicle A shown in FIG. 10 includes an engine unit EU, a vehicle body 101, wheels 102 and 103, and a battery 14.
  • the engine unit EU mounted on the vehicle A drives the wheel 103 that is a driving wheel via a clutch (not shown) and rotates the wheel 103 to cause the vehicle A to travel.
  • the clutch blocks transmission of rotational force from the crankshaft 5 to the wheels 103 when the vehicle A is stopped.
  • the power generation amount at the rotational speed of the crankshaft 5 is ensured with high efficiency without increasing the size of the generator SG. can do.
  • a vehicle A shown in FIG. 10 is a motorcycle.
  • the vehicle of the present invention is not limited to a motorcycle.
  • Examples of the vehicle of the present invention include scooter type, moped type, off-road type, and on-road type motorcycles.
  • the straddle-type vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Train Vehicle).
  • the vehicle according to the present invention is not limited to a saddle-ride type vehicle, and may be a four-wheel vehicle having a passenger compartment.
  • the vehicle of the present invention is not limited to a vehicle that drives the drive wheels by the mechanical output of the engine.
  • the vehicle of the present invention may be, for example, a vehicle that drives a generator by a mechanical output of an engine and drives a driving wheel by a motor different from the generator by electric power of the generator.
  • the 4-stroke engine body E having a high load region and a low load region has been described.
  • the case where the four-stroke engine body E is a single cylinder engine has been described.
  • the engine body of the present invention is not particularly limited.
  • the engine body of the present invention may be an engine that does not have a low load region.
  • the engine of the present invention may be an engine having a plurality of cylinders.
  • the engine of the present invention may be an engine having three or more cylinders, for example.
  • An engine having a plurality of cylinders has high rotational stability because the fluctuation in load is small. Therefore, it is possible to further reduce the rotational speed of the crankshaft when the vehicle is stopped. Even if the rotational speed of the crankshaft is further reduced when the vehicle is stopped, it is possible to secure a power generation amount with high power generation efficiency.
  • the control device of the present invention may perform vector control in a part of a period in which the voltage output from the generator is lower than the battery voltage. Further, the control device of the present invention may perform vector control even during a period in which the voltage output from the generator is higher than the voltage of the battery. Further, the control device of the present invention may perform vector control even during a period in which the vehicle is traveling.
  • the stoppage of the vehicle in the present invention may be determined by, for example, the rotation state of the wheels.
  • the fact that the voltage output from the generator is lower than the voltage of the battery may be determined by directly or indirectly measuring the voltage output from the generator and the voltage of the battery.
  • the control device of the present invention may not perform phase control.
  • the control device may maintain the transistor of the switching unit in an off state and perform rectification by a diode associated with the transistor.
  • the control device CT accelerates the rotation of the crankshaft 5 for a predetermined period in the start control state (S2) and the acceleration control state (S4).
  • S2 start control state
  • S4 acceleration control state
  • the control device of the present invention does not have to accelerate the rotation of the crankshaft.
  • the acceleration of the rotation of the crankshaft may be performed in either the start control state or the acceleration control state.
  • the control device performs vector control.
  • the vector control may not be performed.
  • the generator may be powered by a 120-degree energization method.
  • a vehicle CT control device E 4-stroke engine main body EU engine unit SG generator 5 crankshaft 62 starting power generation control unit 63 combustion control unit 61 inverters 611 to 616 switching unit 621 phase control unit 622 vector control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明は、ジェネレータを大型化することなく、車両停車時のクランクシャフトの回転速度を低下させても高効率で発電量を確保できるエンジンユニット等を提供する。エンジンユニットは、4ストロークエンジン本体と、クランクシャフトがアイドル回転の回転速度で回転する場合に車両が備えるバッテリの電圧より低い電圧を出力するジェネレータと、複数のスイッチング部を備えたインバータと、制御装置とを備え、制御装置は、車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部において、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、前記ジェネレータが出力する前記バッテリの電圧より低い電圧を、前記バッテリの電圧より高い電圧に昇圧させ、前記バッテリを充電する。

Description

エンジンユニット、及び車両
 本発明は、エンジンユニット及びそのエンジンユニットを搭載した車両に関する。
 情報通信端末に代表される携帯機器の普及に伴い、例えば携帯機器を車両に接続し、車両の電力を利用して携帯機器を使用又は充電したいという要求がある。携帯機器を車両に接続すると、車両における電力の消費量が増加する。また、車両には、昼間点灯の要求もある。これらのような要求によって、車両における電力の消費量は増加する傾向にある。
 車両が停車状態であり、且つエンジンが停止している場合には、バッテリに蓄えられた電力が消費される。バッテリに蓄えられた電力が減少してくると、車両の停車時であっても、エンジンを動作させて、バッテリに充電することが求められる。
 車両の停車時におけるエンジンの動作は、車両の走行に寄与しない。従って、車両の停車時におけるエンジンのクランクシャフトの回転速度は、騒音及び燃費を抑える観点から、低下させることが望ましい。
 特許文献1には、発電制御装置を備えたエンジンが示されている。特許文献1に示すエンジンの発電制御装置は、エンジンに取付けられた発電体からの電流を変更するための三相混合ブリッジ回路を備えている。特許文献1における発電制御装置の三相混合ブリッジ回路は、レクチファイアレギュレータとして機能している。
 特許文献1では、アイドリング時つまり車両の停車時の回転速度を低くし、それによって燃費を向上させようとしている。また、レクチファイアレギュレータを制御して、車両停車時の発電を制御している。
特開2009-261084号公報
 特許文献1に示すようなエンジンユニットにおいて、クランクシャフトの回転速度を低下させつつ、発電体からの充電電圧を確保するには、例えば発電体の磁石の量の増大、又は巻線の線材を太くすることが求められる。この場合、発電体が大型化し、車両への搭載性が低下する。また、高い回転速度における過剰な発電電圧を調整するため、全体的な発電効率が低下する。
 本発明の課題は、ジェネレータを大型化することなく、車両停車時のクランクシャフトの回転速度を低下させても高効率で発電量を確保できるエンジンユニット及びそのエンジンユニットを搭載した車両を提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 (1) バッテリを備えた車両に搭載されるエンジンユニットであって、
 前記エンジンユニットは、
クランクシャフトを有するエンジン本体と、
前記クランクシャフトの回転と連動して回転することで発電するジェネレータと、
前記ジェネレータから前記バッテリに供給する電流を制御する複数のスイッチング部を備えたインバータと、
前記インバータに備えられた前記複数のスイッチング部を制御することによって、前記ジェネレータから前記バッテリに供給される電流を制御する発電制御部と、前記エンジン本体の燃焼動作を制御する燃焼制御部とを含む制御装置と
を備え、
 前記制御装置は、前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部において、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、前記ジェネレータが出力する前記バッテリの電圧より低い電圧を、前記バッテリの電圧より高い電圧に昇圧させ、前記バッテリを充電する。
 (1)のエンジンユニットにおいて、制御装置の燃焼制御部は、エンジン本体の燃焼動作を制御する。ジェネレータは、エンジン本体のクランクシャフトの回転と連動して回転することで発電する。制御装置は、車両が停車し、且つ前記ジェネレータが出力する電圧がバッテリの電圧より低くなる期間の少なくとも一部において、インバータに備えられた複数のスイッチング部のベクトル制御を行うことによって、ジェネレータが出力するバッテリの電圧より低い電圧を、バッテリの電圧より高い電圧に昇圧させ、バッテリを充電する。
 ベクトル制御によるスイッチング部のオン・オフ状態の切換えによって、ジェネレータが出力するバッテリの電圧より低い電圧が、バッテリの電圧より高い電圧に昇圧される。また、ベクトル制御によって、ジェネレータの電流と電圧を、力率が高まるように制御することができる。このため、バッテリの電圧より低い電圧がジェネレータから出力されても、バッテリが高効率で充電される。
 従って、(1)のエンジンユニットでは、車両が停車し、且つクランクシャフトの回転速度が、ジェネレータの出力電圧がバッテリ電圧より低くなる回転速度であっても、高効率でバッテリを充電することができる。従って、(1)のエンジンユニットによれば、ジェネレータを大型化することなく、車両停車時のクランクシャフトの回転速度を低下させても高効率で発電量を確保できる。
 車両が停車し、且つジェネレータの出力電圧がバッテリの電圧よりも低い期間を有するエンジンユニットとしては、例えば、以下の例が挙げられる。即ち(1)のエンジンユニットは、車両の停車状態におけるジェネレータの出力電圧がバッテリの電圧よりも小さくなるように設定されているエンジンユニットであってもよい。(1)のエンジンユニットによれば、車両の停車状態におけるクランクシャフトの回転速度が低くても、高い発電効率で車両の停車状態における発電量を確保できる。この場合であっても、ジェネレータを大型化する必要は無い。また、(1)のエンジンユニットは、車両の停車状態におけるジェネレータの出力電圧がバッテリの電圧よりも小さくなる程度の大きさ(サイズ)を有するジェネレータを備えていてもよい。このような(1)のエンジンユニットによれば、ジェネレータの大型化を避けつつ、高い発電効率で車両の停車状態における発電量を確保できる。この場合であっても、車両の停車状態における回転速度を高くする必要は無い。さらに、(1)の構成によれば、ジェネレータを大型化することなく、高い発電効率で車両の停車状態における発電量を確保しつつ、車両の停車状態における回転速度を低く設定することが可能である。
 また、「前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部」は、特に限定されないが、例えば、以下の状況を含む。「前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部」は、暖機運転時と非暖機運転時とで車両の停車状態におけるクランクシャフトの回転速度が異なる車両における非暖機運転中の期間であってもよい。また、「前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部」は、車両の停車状態における期間のうち、バッテリ残量が所定量以下である期間であってもよい。「前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部」は、車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の全部であってもよい。
 また、車両の走行中には、走行と停車とが繰り返されることにより、停車状態の期間が複数生じる。しかし、複数の停車状態の期間の各々において、必ずしも、制御装置が、上記(1)に係る制御を行う必要はない。車両の走行中における停車状態の全期間の少なくとも一部において、制御装置が、上記(1)に係る制御を行えばよい。即ち、「前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部」とは、車両の走行中における停車状態の期間の全部の中の少なくとも一部をいう。なお、制御装置は、「前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部」以外の期間において、上記(1)に係る制御を行ってもよい。
 (2) (1)のエンジンユニットであって、
 前記制御装置は、前記ジェネレータが出力する電圧が前記バッテリの電圧より高くなる期間の少なくとも一部において、前記インバータに備えられた前記複数のスイッチング部の通電タイミングを進み又は遅らせる位相制御を行うことによって、前記バッテリを充電する。
 クランクシャフトが、車両の停車状態における回転速度より高い回転速度で回転すると、ジェネレータが出力する電圧が増大する。ジェネレータが出力する電圧は、バッテリの電圧より高くなる。(2)の構成によれば、複数のスイッチング部の通電タイミングを進み又は遅らせる位相制御が行われるので、クランクシャフトが車両の停車状態における回転速度より高い回転速度で回転し、ジェネレータがバッテリの電圧より高い電圧を出力する状況でも、高効率で、発電量を確保することができる。
 なお、「前記ジェネレータが出力する電圧が前記バッテリの電圧より高くなる期間の少なくとも一部」は、特に限定されないが、例えば、以下の状況を含む。「前記ジェネレータが出力する電圧が前記バッテリの電圧より高くなる期間の少なくとも一部」は、例えば、エンジンが動作する期間のうち、クランクシャフトの回転速度又は車両の走行速度が予め定めた値を超える期間であってもよい。この場合、制御装置は、クランクシャフトの回転速度又は車両の走行速度が予め定めた値を超える期間において、上記(2)に係る制御を行う。この場合、制御装置は、クランクシャフトの回転速度又は車両の走行速度が予め定めた値以下の期間において、上記(1)に係る制御を行ってもよい。
 また、車両の走行中には、走行と停車状態とが繰り返されることにより、複数の非停車の状態、すなわち、クランクシャフトが車両の停車状態における回転速度より高い回転速度で回転する状態が生じる。しかし、複数の非停車の状態の各々において、必ずしも、制御装置が、上記(2)に係る制御を行う必要はない。車両の走行中における非停車の状態の全期間の少なくとも一部において、制御装置が、上記(2)に係る制御を行えばよい。即ち、「前記ジェネレータが出力する電圧が前記バッテリの電圧より高くなる期間の少なくとも一部」とは、車両の走行中における非停車の状態の期間の全部の中の少なくとも一部をいう。なお、制御装置は、「前記ジェネレータが出力する電圧が前記バッテリの電圧より高くなる期間の少なくとも一部」以外の期間において、上記(2)に係る制御を行ってもよい。
 (3) (1)又は(2)のエンジンユニットであって、
 前記ジェネレータは、前記バッテリの電力で前記クランクシャフトを駆動するモータとして機能し、
 前記制御装置は、前記クランクシャフトの回転が停止した状態で、前記インバータに備えられた前記複数のスイッチング部を、前記バッテリから前記ジェネレータに電力が供給されるように制御することによって、前記エンジン本体を始動させる。
 (3)の構成によれば、モータとして機能するジェネレータが、バッテリの電力でクランクシャフトを駆動することによって、エンジン本体を始動させる。
 ジェネレータの大型化を避けつつ、低い回転速度でジェネレータからの発電電圧を確保する方法として、例えば、巻線の線材を細くしつつ巻数を増大することが考えられる。しかし、巻線の線材を細くしつつ巻数を増大すると、ジェネレータをモータとして機能させ、バッテリの電力でクランクシャフトを回転させるときに駆動トルクが低下する。
 (3)のエンジンユニットでは、車両の停車状態において、ジェネレータの出力電圧がバッテリの電圧より低くなるようにクランクシャフトの回転速度を低下させても、高効率でバッテリを充電することができる。従って、バッテリの電力でクランクシャフトを駆動する場合における駆動トルクの低下を抑えつつ、発電の場合に、車両停車時のクランクシャフトの回転速度を低下させても高効率で発電量を確保できる。
 (4) (3)のエンジンユニットであって、
 前記制御装置は、前記エンジン本体を始動させた後、予め定められた期間、前記インバータに備えられた前記複数のスイッチング部を、前記バッテリから前記ジェネレータに電力が供給されるように制御することによって、前記ジェネレータに前記クランクシャフトの回転を加速させる。
 (4)の構成によれば、エンジン本体の始動後、モータとして機能するジェネレータによってクランクシャフトの正回転が加速される。従って、エンジン本体の燃焼によるクランクシャフトの正回転を安定化することができる。また、車両の加速時に、エンジン本体の燃焼によるクランクシャフトの正回転の加速をより迅速に行うことができる。
 (5) (4)のエンジンユニットであって、
 前記制御装置は、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、前記ジェネレータが出力する前記バッテリの電圧より低い電圧を、前記バッテリの電圧より高い電圧に昇圧させ、前記バッテリを充電する制御態様と、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、バッテリから前記ジェネレータに電力が供給されるように制御することによって、前記クランクシャフトの回転を加速させる制御態様との間で、制御態様を移行する。
 ベクトル制御を行うことによってバッテリを充電する制御態様と、ベクトル制御を行うことによってクランクシャフトの回転を加速させる制御態様との間での、制御態様の移行は、制御の種類の変更を伴わず、例えば、指令値等のパラメータの変更により速やかに実行され得る。そのため、(5)の構成によれば、バッテリの充電の状態、即ち発電状態と、クランクシャフトの回転の加速の状態、即ち力行状態との間での移行が迅速にできる。
 制御態様の移行には、インバータに備えられた複数のスイッチング部のベクトル制御を行うことによって、ジェネレータが出力するバッテリの電圧より低い電圧を、バッテリの電圧より高い電圧に昇圧させ、バッテリを充電する制御態様から、インバータに備えられた複数のスイッチング部のベクトル制御を行うことによって、バッテリからジェネレータに電力が供給されるように制御することによって、クランクシャフトの回転を加速させる制御態様への移行が含まれる。またこの逆に、制御態様の移行には、インバータに備えられた複数のスイッチング部のベクトル制御を行うことによって、バッテリからジェネレータに電力が供給されるように制御することによって、クランクシャフトの回転を加速させる制御態様から、インバータに備えられた複数のスイッチング部のベクトル制御を行うことによって、ジェネレータが出力するバッテリの電圧より低い電圧を、バッテリの電圧より高い電圧に昇圧させ、バッテリを充電する制御態様への移行が含まれる。
 (6) (1)~(5)のいずれか1のエンジンユニットであって、
 前記エンジン本体は、4ストロークの間に、前記クランクシャフトを回転させる負荷が大きい高負荷領域と、前記クランクシャフトを回転させる負荷が前記高負荷領域の負荷より小さい低負荷領域とを有する4ストロークエンジンである。
 高負荷領域と低負荷領域とを有する4ストロークエンジンは、その他のタイプのエンジンと比べて、領域に応じた回転速度の変動が大きい。領域に応じた回転速度の変動が大きいと、クランクシャフトの回転速度を低下させた場合の回転の安定性が低下しやすい。(4)のエンジンユニットでは、車両の停車状態におけるクランクシャフトの回転速度が低く、バッテリの電圧より低い電圧がジェネレータから出力されても、バッテリを充電することができる。バッテリを充電するときにジェネレータが発電する電力、すなわちエンジン本体にかかる負荷は、回転速度が相対的に高い領域で大きく、回転速度が相対的に低い領域で小さい。つまり、回転速度が安定するように負荷が変動する。従って、車両の停車状態におけるクランクシャフトの回転速度が低く、バッテリの電圧より低い電圧がジェネレータから出力されても、クランクシャフトの回転速度を安定化しつつ、高効率で発電量を確保できる。
 (7) (1)~(6)のいずれか1のエンジンユニットであって、
 前記エンジン本体は、複数の気筒を有する。
 複数の多気筒を有するエンジンは、負荷の変動が小さいので、回転の安定性が高い。従って、車両の停車時におけるクランクシャフトの回転速度をさらに低下させることが可能である。車両の停車時におけるクランクシャフトの回転速度がさらに低下しても、高い発電効率で発電量を確保することが可能である。
 (8) 車両であって、
 前記車両は、
 (1)~(7)のいずれか1のエンジンユニットを備える。
 (8)の車両は、ジェネレータを大型化することなく、高効率で、車両の停車状態における回転速度での発電量を確保することができる。
 本発明によれば、ジェネレータを大型化することなく、車両停車時のクランクシャフトの回転速度を低下させても高効率で発電量を確保できるエンジンユニット及びそのエンジンユニットを搭載した車両を提供できる。
本発明の一実施形態に係るエンジンユニットの概略構成を模式的に示す部分断面図である。 エンジン始動時のクランク角度位置と必要トルクとの関係を模式的に示す説明図である。 図1におけるジェネレータ及びその近傍部分を拡大して示した拡大断面図である。 図3に示すジェネレータの回転軸線Jに垂直な断面を示す断面図である。 図1に示すエンジンユニットに係る電気的な基本構成を示すブロック図である。 図5に示すエンジンユニットの状態の概略を示す状態遷移図である。 ベクトル制御における電流及び電圧の波形の例を示す図である。 位相制御における電流及び電圧の波形の例を示す図である。 (a)は、一実施形態におけるクランクシャフトの回転速度と発電電流の関係を模式的に示すグラフであり、(b)は、クランクシャフトの回転速度と発電効率の関係を模式的に示すグラフである。 エンジンユニットが搭載される車両を示す外観図である。
 以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係るエンジンユニットEUの概略構成を模式的に示す部分断面図である。
 エンジンユニットEUは、車両の一例である自動二輪車(図10参照)に設けられている。エンジンユニットEUは、4ストロークエンジン本体Eと、ジェネレータSGとを備える。4ストロークエンジン本体Eは、単気筒の4ストロークエンジンである。4ストロークエンジン本体Eは、図2に示すクランク角度位置と必要トルクとの関係を有している。
 図2は、エンジン始動時のクランク角度位置と必要トルクとの関係を模式的に示す説明図である。
 4ストロークエンジン本体Eは、4ストロークの間に、クランクシャフト5を回転させる負荷が大きい高負荷領域THと、クランクシャフト5を回転させる負荷が高負荷領域THの負荷より小さい低負荷領域TLとを有する。クランクシャフト5の回転角度を基準として見ると、低負荷領域TLは高負荷領域TH以上に広い。より詳細には、低負荷領域TLは高負荷領域THよりも広い。言い換えると、低負荷領域TLに相当する回転角度領域は、高負荷領域THに相当する回転角度領域よりも広い。より詳細には、4ストロークエンジン本体Eは、吸気行程、圧縮行程、膨張行程、及び排気行程の4工程を繰り返しながら回転する。図2に示すように、圧縮行程は、高負荷領域THに含まれ、低負荷領域TLに含まれない。本実施形態の4ストロークエンジン本体Eにおいて、高負荷領域THは圧縮行程と略重なる領域であり、低負荷領域TLは、吸気行程、膨張行程、及び排気行程と略重なる領域である。ただし、高負荷領域TH及び低負荷領域TLのそれぞれの境界は、上記の各行程の境界と一致している必要はない。
 図1に示すように、エンジンユニットEUは、ジェネレータSGを備えている。ジェネレータSGは、三相ブラシレスジェネレータである。ジェネレータSGは、エンジン始動時には、クランクシャフト5を回転させて4ストロークエンジン本体Eを始動させるスタータモータとして機能する。ジェネレータSGは、スタータ・ジェネレータである。以降、スタータ・ジェネレータを単にジェネレータSGと称する。
 また、ジェネレータSGは、4ストロークエンジン本体Eの始動後の期間の少なくとも一部には、クランクシャフト5により回転されてジェネレータとして機能する。即ち、エンジンの燃焼開始後、必ずしも、常にジェネレータとして機能する必要はない。例えば、エンジンの燃焼が開始した後、ジェネレータSGが直ちにジェネレータとして機能せず、所定の条件が満たされた場合に、ジェネレータとして機能してもよい。そのような所定の条件としては、例えば、クランクシャフト5の回転速度が所定速度に到達したこと、エンジンの燃焼が開始してから所定時間が経過したこと等が挙げられる。また、エンジンの燃焼開始後に、ジェネレータSGがジェネレータとして機能する期間とジェネレータSGがモータ(例えば、車両駆動用モータ)として機能する期間とが含まれていてもよい。
 ジェネレータSGは、4ストロークエンジン本体Eのクランクシャフト5に取り付けられている。本実施形態では、ジェネレータSGが、クランクシャフト5に、動力伝達機構(例えば、ベルト、チェーン、ギア、減速機、増速機等)を介さずに取り付けられている。但し、本発明においては、ジェネレータSGが、ジェネレータSGの回転によりクランクシャフト5を回転させるように構成されていればよい。従って、ジェネレータSGが、クランクシャフト5に、動力伝達機構を介して取り付けられていてもよい。なお、本発明においては、ジェネレータSGの回転軸線と、クランクシャフト5の回転軸線とが略一致していることが好ましい。また、本実施形態のように、ジェネレータSGが動力伝達機構を介さずにクランクシャフト5に取り付けられていることが好ましい。
 4ストロークエンジン本体Eは、クランクケース1(エンジンケース1)と、シリンダ2と、ピストン3と、コネクティングロッド4と、クランクシャフト5とを備えている。シリンダ2は、クランクケース1から所定方向(例えば斜め上方)に突出する態様で設けられている。ピストン3は、シリンダ2内に往復移動自在に設けられている。クランクシャフト5は、クランクケース1内に回転可能に設けられている。コネクティングロッド4の一端部(例えば上端部)は、ピストン3に連結されている。コネクティングロッド4の他端部(例えば下端部)は、クランクシャフト5に連結されている。シリンダ2の端部(例えば上端部)には、シリンダヘッド6が取り付けられている。クランクシャフト5は、クランクケース1に、一対のベアリング7を介して、回転自在な態様で支持されている。クランクシャフト5の一端部5a(例えば右端部)は、クランクケース1から外方に突出している。クランクシャフト5の一端部5aには、ジェネレータSGが取り付けられている。
 クランクシャフト5の他端部5b(例えば左端部)は、クランクケース1から外方に突出している。クランクシャフト5の他端部5bには、無段変速機CVTのプライマリプーリ20が取り付けられている。プライマリプーリ20は、固定シーブ21と可動シーブ22とを有する。固定シーブ21は、クランクシャフト5の他端部5bの先端部分に、クランクシャフト5と共に回転するように固定されている。可動シーブ22は、クランクシャフト5の他端部5bにスプライン結合されている。従って、可動シーブ22は、軸線方向Xに沿って移動可能であり、固定シーブ21との間隔が変更される態様で、クランクシャフト5と共に回転する。プライマリプーリ20とセカンダリプーリ(図示せず)とには、ベルトBが掛けられている。クランクシャフト5の回転力が自動二輪車(図8参照)の駆動輪に伝達される。
 図3は、図1におけるジェネレータSG及びその近傍部分を拡大して示した拡大断面図である。また、図4は、図3に示すジェネレータSGの回転軸線Jに垂直な断面を示す断面図である。
 ジェネレータSGは、アウターロータ30と、インナーステータ40とを有する。アウターロータ30は、アウターロータ本体部31を有する。アウターロータ本体部31は、例えば強磁性材料からなる。アウターロータ本体部31は、有底筒状を有する。アウターロータ本体部31は、筒状ボス部32と、円板状の底壁部33と、筒状のバックヨーク部34とを有する。筒状ボス部32は、クランクシャフト5の一端部5aに挿入された状態で、クランクシャフト5に固定されている。底壁部33は、筒状ボス部32に固定されており、クランクシャフト5の径方向Yに広がる円板形状を有する。バックヨーク部34は、底壁部33の外周縁からクランクシャフト5の軸線方向Xに延びる筒形状を有する。バックヨーク部34は、クランクケース1に近づく方向に延びている。
 底壁部33及びバックヨーク部34は、例えば金属板をプレス成形することにより一体的に形成されている。なお、本発明では、底壁部33とバックヨーク部34とは別体に構成されていてもよい。即ち、アウターロータ本体部31において、バックヨーク部34は、アウターロータ本体部31を構成する他の部分と一体的に構成されていてもよく、アウターロータ本体部31を構成する他の部分と別体に構成されていてもよい。バックヨーク部34と他の部分とが別体に構成されている場合、バックヨーク部34が、強磁性材料からなればよく、他の部分は、強磁性材料以外の材料からなっていてもよい。
 筒状ボス部32には、クランクシャフト5の一端部5aを挿入するためのテーパ状挿入孔32aが、クランクシャフト5の軸線方向Xに沿って形成されている。テーパ状挿入孔32aは、クランクシャフト5の一端部5aの外周面に対応するテーパ角を有する。挿入孔32aにクランクシャフト5の一端部5aを挿入したときに、一端部5aの外周面が挿入孔32aの内周面に接触し、クランクシャフト5が挿入孔32aに固定される。これにより、ボス部32が、クランクシャフト5の軸線方向Xに対して位置決めされる。この状態で、クランクシャフト5の一端部5aの先端部分に形成された雄ねじ部5cに、ナット35がねじ込まれる。これにより、クランクシャフト5に筒状ボス部32が固定される。
 筒状ボス部32は、筒状ボス部32の基端部(図中では筒状ボス部32の右部)に径大部32bを有する。筒状ボス部32は、径大部32bの外周面に、径方向外側に向かって延びた鍔部32cを有する。アウターロータ本体部31の底壁部33の中央部に形成された孔部33aに、筒状ボス部32の径大部32bが挿入されている。この状態において、鍔部32cが底壁部33の外周面(図中、右側面)に接している。筒状ボス部32の鍔部32cとアウターロータ本体部31の底壁部33とが、アウターロータ本体部31の周方向の複数個所において、鍔部32cと底壁部33とを貫通するリベット36で一体的に固定されている。
 ジェネレータSGは、永久磁石式ジェネレータである。アウターロータ本体部31のバックヨーク部34には、バックヨーク部34の内周面に、複数の永久磁石部37が設けられている。各永久磁石部37は、S極とN極とがジェネレータSGの径方向に並ぶように設けられている。
 複数の永久磁石部37は、ジェネレータSGの周方向にN極とS極とが交互に配置されるように設けられている。本実施形態では、インナーステータ40と対向するアウターロータ30の磁極数が24個である。アウターロータ30の磁極数とは、インナーステータ40と対向する磁極数をいう。ステータコアSTの歯部43と対向する永久磁石部37の磁極面の数は、アウターロータ30の磁極数に相当する。アウターロータ30が有する磁極1つあたりの磁極面は、インナーステータ40と対向する永久磁石部37の磁極面に相当する。永久磁石部37の磁極面は、永久磁石部37とインナーステータ40との間に設けられた非磁性体(図示せず)により覆われている。永久磁石部37とインナーステータ40との間には磁性体が設けられていない。非磁性体としては、特に限定されず、例えば、ステンレス鋼材が挙げられる。本実施形態において、永久磁石部37は、フェライト磁石である。但し、本発明において、永久磁石としては、ネオジボンド磁石、サマリウムコバルト磁石、ネオジム磁石等の従来公知の磁石が採用され得る。永久磁石部37の形状は、特に限定されない。なお、アウターロータ30は、永久磁石部37が磁性材料に埋め込まれた埋込磁石型(IPM型)であってもよいが、本実施形態のように、永久磁石部37が磁性材料から露出した表面磁石型(SPM型)であることが好ましい。
 上述のように、クランクシャフト5に取り付けられ、クランクシャフト5と共に回転するように取り付けられたアウターロータ30は、クランクシャフト5のイナーシャを増加させるための回転体である。また、アウターロータ30を構成する底壁部33の外周面(図1及び図3における右側面)には、複数枚の羽根部Faを有する冷却ファンFが設けられている。冷却ファンFは、固定具(複数本のボルトFb)で、底壁部33の外周面に固定されている。
 インナーステータ40は、ステータコアSTと複数相のステータ巻線Wとを有する。ステータコアSTは、例えば薄板状のケイ素鋼板を軸線方向に沿って積層することにより形成される。ステータコアSTは、ステータコアSTの中心部に、アウターロータ30の筒状ボス部32の外径よりも大きな内径の孔部41を有する。また、ステータコアSTは、径方向外側に向かって一体的に延びた複数の歯部43を有する(図4参照)。本実施形態においては、合計18個の歯部43が周方向に間隔を空けて設けられている。換言すると、ステータコアSTは、周方向に間隔を空けて形成された合計18個のスロットSL(図4参照)を有する。歯部43は周方向に等間隔で配置されている。
 ジェネレータSGは、三相ジェネレータである。各歯部43の周囲には、ステータ巻線Wが巻き付けられている。複数相のステータ巻線Wは、スロットSLを通るように設けられている。複数相のステータ巻線Wのそれぞれは、U相、V相、W相の何れかに属する。ステータ巻線Wは、例えば、U相、V相、W相の順に並ぶように配置される。
 図3に示すように、インナーステータ40には、ジェネレータSGの径方向の中央部分に孔部41が形成されている。孔部41内には、クランクシャフト5及びアウターロータ30の筒状ボス部32が、孔部41の壁面(インナーステータ40)から間隔を空けて配置されている。この状態で、インナーステータ40は、4ストロークエンジン本体Eのクランクケース1に取り付けられている。インナーステータ40の歯部43の端部(先端面)は、アウターロータ30を構成する永久磁石部37の磁極面(内周面)から間隔を空けて配置されている。この状態で、アウターロータ30は、クランクシャフト5の回転と連動して回転する。アウターロータ30は、クランクシャフト5と一体で回転する。言い換えると、アウターロータ30の回転速度は、クランクシャフト5の回転速度と同じである。
 図4を参照して、アウターロータ30についてさらに説明する。永久磁石部37は、ジェネレータSGの径方向におけるインナーステータ40の外側に設けられている。バックヨーク部34は、径方向における永久磁石部37の外側に設けられている。永久磁石部37は、インナーステータ40に対向する面に、複数の磁極面37aを備えている。磁極面37aは、ジェネレータSGの周方向に並んでいる。磁極面37aのそれぞれは、N極又はS極である。N極とS極とは、ジェネレータSGの周方向に交互に配置されている。永久磁石部37の磁極面37aは、インナーステータ40と対向している。本実施形態では、複数の磁石がジェネレータSGの周方向に配置されており、複数の磁石のそれぞれは、S極とN極とがジェネレータSGの径方向に並んだ姿勢で配置されている。周方向に隣り合う1つのS極と1つのN極とによって磁極面の対37pが構成される。磁極面の対37pの数は、磁極面37aの数の1/2である。本実施形態では、アウターロータ30に、インナーステータ40と対向する24個の磁極面37aが設けられており、アウターロータ30の磁極面の対37pの数は12個である。なお、図には、12個の磁石対に対応した12個の磁極面の対37pが示されている。ただし、図の見やすさのため、37pの符号は、1つの対のみを指している。ジェネレータSGは、歯部43の数の2/3よりも多い磁極面37aを有している。ジェネレータSGは、歯部43の数の4/3以上の数の磁極面37aを有している。
 アウターロータ30の外面には、アウターロータ30の回転位置を検出させるための複数の被検出部38が備えられている。複数の被検出部38は、磁気作用によって検出される。複数の被検出部38は、周方向に間隔を空けてアウターロータ30の外面に設けられている。本実施形態において、複数の被検出部38は、周方向に間隔を空けてアウターロータ30の外周面に設けられている。複数の被検出部38は、筒状のバックヨーク部34の外周面に配置されている。複数の被検出部38のそれぞれは、バックヨーク部34の外周面からジェネレータSGの径方向Yにおける外向きに突出している。底壁部33、バックヨーク部34、及び被検出部38は、例えば鉄等の金属板をプレス成形することにより一体的に形成されている。つまり、被検出部38は、強磁性体で形成されている。被検出部38の配置の詳細については、後に説明する。
 ロータ位置検出装置50は、アウターロータ30の位置を検出する装置である。ロータ位置検出装置50は、クランクシャフト5の回転速度を検出する速度検出部としても機能する。ロータ位置検出装置50は、複数の被検出部38と対向する位置に設けられている。つまり、ロータ位置検出装置50は、複数の被検出部38がロータ位置検出装置50と順次対向するような位置に配置されている。ロータ位置検出装置50は、アウターロータ30の回転に伴い被検出部38が通過する経路に対向している。ロータ位置検出装置50は、インナーステータ40とは離れた位置に配置されている。本実施形態において、ロータ位置検出装置50は、クランクシャフト5の径方向においてロータ位置検出装置50とインナーステータ40及びステータ巻線Wとの間にアウターロータ30のバックヨーク部34及び永久磁石部37が位置するように配置されている。ロータ位置検出装置50は、ジェネレータSGの径方向における、アウターロータ30よりも外側に配置されており、アウターロータ30の外周面に向いている。
 ロータ位置検出装置50は、検出用巻線51、検出用磁石52及びコア53を有している。検出用巻線51は、被検出部38を検出するピックアップコイルとして機能する。コア53は、例えば鉄製の棒状に延びた部材である。検出用巻線51は、被検出部38を磁気的に検出する。ロータ位置検出装置50は、クランクシャフト5の回転の開始後に、アウターロータ30の回転位置の検出を開始する。なお、ロータ位置検出装置50には、上述した、被検出部38の通過に伴う起電力によって発生する電圧が変化するタイプ以外の構成も採用可能である。例えば、ロータ位置検出装置50には、検出用巻線51に常時通電を行い、被検出部38の通過に伴うインダクタンスの変化により通電電流が変化するタイプの構成も採用可能である。また、ロータ位置検出装置50は、特に限定されず、ホール素子又はMR素子を備えていてもよい。本実施形態のエンジンユニットEU(図1参照)は、ホール素子又はMR素子を備えていてもよい。
 ここで、図4を参照して、アウターロータ30における被検出部38の配置について説明する。本実施形態における複数の被検出部38は、アウターロータ30の外面に設けられている。複数の被検出部38の各々は、この各々が対応する磁極面の対37pに対して互いに同一の相対位置関係を有する。また、ロータ位置検出装置50は、複数の被検出部38と対向する位置に設けられている。ロータ位置検出装置50は、アウターロータ30の回転中に、複数の被検出部38のそれぞれに対向する位置に設けられている。ロータ位置検出装置50は、同時に(一度に)、複数の被検出部38ではなく、複数の被検出部38のうちの1つに対向する。図4には、周方向に隣り合う2つの磁極(S極及びN極)によって構成された磁極面の対37pにおける、予め定められた周方向の規定位置が、一点鎖線で示されている。なお、本実施形態では、アウターロータ30に、規定位置の数よりも1つ少ない11個の被検出部38が設けられている。11個の被検出部38は、12ヶ所の規定位置のうち11ヶ所にそれぞれ設けられている。なお、複数の被検出部38は、例えばバックヨーク部34とは別体で構成してもよい。また、複数の被検出部38は、例えば、周方向において逆極性に交互に磁化された複数の部分を有する1つの物体で形成されてもよい。
 [電気構成]
 図5は、図1に示すエンジンユニットEUに係る電気的な基本構成を示すブロック図である。
 エンジンユニットEUは、4ストロークエンジン本体E、ジェネレータSG、及び制御装置CTを備えている。制御装置CTには、ジェネレータSG、点火プラグ29、及びバッテリ14が接続されている。
 制御装置CTは、複数相のステータ巻線Wと接続され、車両が備えるバッテリ14から複数相のステータ巻線Wへの電流を供給する。
 制御装置CTは、始動発電制御部62と、燃焼制御部63と、複数のスイッチング部611~616とを備えている。本実施形態における制御装置CTは、6個のスイッチング部611~616を有する。スイッチング部611~616は、三相ブリッジインバータ61を構成している。複数のスイッチング部611~616は、複数相のステータ巻線Wの各相と接続されている。複数のスイッチング部611~616は、ジェネレータSGからバッテリ14に供給する電流を制御する。複数のスイッチング部611~616は、複数相のステータ巻線Wとバッテリ14との間の電流の通過/遮断を切替える。スイッチング部611~616のオン・オフが順次切替えられることによって、ジェネレータSGから出力される三相交流の整流及び電圧の制御が行われる。
 スイッチング部611~616のそれぞれは、スイッチング素子を有する。スイッチング素子は、例えばトランジスタであり、より詳細にはFET(Field Effect Transistor)である。ただし、スイッチング部611~616には、FET以外に、例えばサイリスタ及びIGBT(Insulated Gate Bipolar Transistor)も採用可能である。
 始動発電制御部62は、スイッチング部611~616のそれぞれのオン・オフ動作を制御することによって、ジェネレータSGの動作を制御する。始動発電制御部62は、位相制御部621、ベクトル制御部622、オン・オフ動作記憶部623、及び初期動作部624を含む。位相制御部621及びベクトル制御部622を含む始動発電制御部62と、燃焼制御部63とは、図示しないコンピュータとコンピュータで実行される制御ソフトウェアとによって実現される。ただし、位相制御部621及びベクトル制御部622を含む始動発電制御部62と、燃焼制御部63との一部又は全部は、電子回路であるハードウェア回路によって実現することも可能である。また、始動発電制御部62及び燃焼制御部63は、例えば互いに別の装置として互いに離れた位置に構成されてもよく、また、一体に構成されるものであってもよい。
 オン・オフ動作記憶部623は、例えばメモリで構成されている。オン・オフ動作記憶部623は、複数のスイッチング部611~616のオン・オフ動作に関わるデータを記憶している。オン・オフ動作記憶部623は、より詳細には、制御装置CTがジェネレータSG及び4ストロークエンジン本体Eを制御するために用いるマップ、並びに情報が記載されているソフトウェアを記憶している。
 また、初期動作部624は、電子回路(ワイヤードロジック)で構成されている。初期動作部624は、複数のスイッチング部611~616をオン・オフ動作させる電気信号を発生する。なお、制御装置CTは、オン・オフ動作記憶部623及び初期動作部624の双方を動作させてもよく、オン・オフ動作記憶部623及び初期動作部624の一方を動作させてもよい。
 燃焼制御部63は、点火プラグ29に点火動作を行わせることによって、4ストロークエンジン本体Eの燃焼動作を制御する。4ストロークエンジン本体Eが、燃料を噴射し混合気を生成する燃料噴射装置を備える場合には、燃焼制御部63は、燃料噴射装置の噴射も制御することによって、4ストロークエンジン本体Eの燃焼動作を制御する。
 始動発電制御部62には、4ストロークエンジン本体Eを始動させるためのスタータスイッチ16が接続されている。スタータスイッチ16は、4ストロークエンジン本体Eの始動の際、運転者によって操作される。また、制御装置CTの始動発電制御部62は、バッテリ14の電圧を検出することによって、バッテリ14の充電状態を検出する。ただし、バッテリ14の充電状態の検出には、バッテリ14の電圧を検出する構成以外にも、例えば、充電状態でバッテリ14に流れる電流を検出する構成が採用可能である。
 制御装置CTは、インバータ61、始動発電制御部62、及び燃焼制御部63の動作を通じて、ジェネレータSGを制御する。
 [エンジンユニットの動作]
 図6は、図5に示すエンジンユニットEUの状態の概略を示す状態遷移図である。
 本実施形態のエンジンユニットEUにおいて、クランクシャフト5の回転が停止した状態で(S1)、始動指示が入力されると、制御装置CTは、始動制御状態(S2)に移る。始動制御状態(S2)において、制御装置CTは、ジェネレータSGに、クランクシャフト5を回転させることによって4ストロークエンジン本体Eを始動させる(S2)。制御装置CTは、クランクシャフト5の回転が停止した状態で、インバータ61に備えられた複数のスイッチング部611~616を、バッテリ14からジェネレータSGに電力が供給されるように制御する。つまり、始動制御状態(S2)において、制御装置CTは、ジェネレータSGを力行させる。制御装置CTは、バッテリ14の正極からジェネレータSGに電流が供給されるように制御する。制御装置CTは、ジェネレータSGをモータとして機能させる。ジェネレータSGは、バッテリ14の電力でクランクシャフト5を駆動する。なお、本実施形態における制御状態は、本発明にいう制御態様の一例に相当する。
 始動指示は、例えば、スタータスイッチ16が操作された場合に、スタータスイッチ16から制御装置CTに入力される。また、エンジンユニットEUがアイドリングストップ機能を有する場合、制御装置CTは、予め定めたエンジン始動条件を判別することによって、自ら再始動の指示を実行する。予め定めたエンジン始動条件の達成は、始動指示の入力に含まれる。予め定めたエンジン始動条件は、例えば、図示しないアクセル操作子の操作である。また、予め定めたエンジン始動条件は、例えば、バッテリ14に蓄えられた電力が、特定の閾値を下回ることである。特定の閾値は、例えば、4ストロークエンジン本体Eを始動させるための電力の下限値である。特定の閾値は、車両に搭載された機器を動作させるための電力の下限値であってもよい。
 始動制御状態(S2)において、制御装置CTは、ジェネレータSGにクランクシャフト5を回転させる。制御装置CTは、クランクシャフト5の回転速度が所定の着火可能回転速度を超えている場合、4ストロークエンジン本体Eの燃焼動作を開始させる。より詳細には、制御装置CTの燃焼制御部63は、点火プラグ29を制御することによって、4ストロークエンジン本体Eの燃焼動作を制御する。4ストロークエンジン本体Eが、燃料を噴射し混合気を生成する燃料噴射装置を備える場合には、燃焼制御部63は、燃料噴射装置の噴射も制御することによって、4ストロークエンジン本体Eの燃焼動作を制御する。ここで、4ストロークエンジン本体Eの燃焼動作の開始には、燃焼動作が正常に行われたか確認する動作も含まれる。燃焼動作が正常に行われたか否かは、例えば、クランクシャフト5が複数回回転する間に、クランクシャフト5の回転速度を測定し、測定した回転速度が、正常な燃焼動作の場合として定まられた値を超えているか否かによって判別される。
 ジェネレータSGは、4ストロークエンジン本体Eを始動させた後、予め定められた期間、クランクシャフト5の回転を加速させる(S2)。より詳細には、ジェネレータSGは、燃焼動作が正常に行われたか確認する動作も含め4ストロークエンジン本体Eの燃焼動作を開始させた後、クランクシャフト5の回転の加速を継続する。具体的には、制御装置CTは、燃焼動作を開始させた後、予め定められた期間、インバータ61に備えられた複数のスイッチング部611~616を、バッテリ14からジェネレータSGに電力が供給されるように制御する。つまり、制御装置CTは、ジェネレータSGを力行させる。これによって、クランクシャフト5の回転は、バッテリ14からジェネレータSGに電力が供給されない場合よりも加速する。つまり、クランクシャフト5の回転は、4ストロークエンジン本体Eの燃焼動作のみによって回転する場合よりも加速する。制御装置CTは、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、バッテリ14からジェネレータSGに電力が供給されるように制御して、クランクシャフト5の回転を加速させる。ベクトル制御は、180度通電である。
 4ストロークエンジン本体Eが燃焼動作を開始した後は、クランクシャフト5の回転の安定性が低い場合がある。4ストロークエンジン本体の燃焼開始後、ジェネレータSGによるクランクシャフト5の回転の加速が継続されることによって、4ストロークエンジン本体の燃焼によるクランクシャフト5の回転が安定化する。予め定められた期間は、クランクシャフト5の回転が安定化するのに十分な期間(時間の期間)に設定される。予め定められた期間として、例えば、クランクシャフト5の回転速度がアイドル回転速度に達するために十分な期間が設定される。
 ジェネレータSGは、4ストロークエンジン本体Eの燃焼動作開始から予め定められた期間が経過した後、クランクシャフト5の回転と連動して回転することにより、バッテリ14を充電するための電流を発電するジェネレータとして機能する。制御装置CTは、発電制御状態に移る(S3)。
 発電制御状態(S3)において、制御装置CTは、ジェネレータSGの出力によって、バッテリ14を充電する。制御装置CTは、インバータ61に備えられた複数のスイッチング部611~616を制御することによって、ジェネレータSGからバッテリ14に供給される電流を制御する。制御装置CTは、ジェネレータSGからバッテリ14の正極に電流が流れるよう制御する。
 停止の指示が入力されると、制御装置CTは、発電制御の状態(S3)から停止の状態(S1)に移行する。停止の状態(S1)は、4ストロークエンジン本体Eの停止状態である。
 発電制御状態(S3)において、クランクシャフト5の回転の加速が要求されると、制御装置CTは、加速制御状態に移る(S4)。つまり、制御装置CTは、4ストロークエンジン本体Eを始動させた後、予め定められた期間、クランクシャフト5の回転を加速させる。具体的には、制御装置CTは、予め定められた期間、インバータ61に備えられた複数のスイッチング部611~616を、バッテリ14からジェネレータSGに電力が供給されるように制御することによって、クランクシャフト5の回転を加速させる。つまり、制御装置CTは、ジェネレータSGを力行させる。
 制御装置CTは、ジェネレータSGが発電している状態において、例えば車両の加速が要求される場合、ジェネレータSGの状態を発電から加速(力行)に切り換えることによって、クランクシャフト5の正回転を加速させる。例えば車両の加速が要求される場合に、4ストロークエンジン本体Eの燃焼動作によるクランクシャフト5の回転の加速が、ジェネレータSGによって補助される。これによって、クランクシャフト5の回転は、バッテリ14からジェネレータSGに電力が供給されない場合よりも加速する。つまり、クランクシャフト5の回転は、4ストロークエンジン本体Eの燃焼動作のみによって回転する場合よりも加速する。制御装置CTは、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、バッテリ14からジェネレータSGに電力が供給されるように制御して、クランクシャフト5の回転を加速させる。より詳細には、制御装置CTのベクトル制御部622が、複数のスイッチング部611~616のベクトル制御を行う。
 加速制御状態(S4)において予め定められた期間が経過すると、制御装置CTは、発電制御状態に移る(S3)。
 本実施形態の制御装置CTにおける発電制御状態(S3)は、ベクトル制御状態(S31)及び位相制御状態(S32)を有する。制御装置CTは、発電の制御を、ベクトル制御と位相制御との間で切換える。すなわち、制御装置CTは、ベクトル制御と位相制御との間で制御を切換える切換え部を有している。
 制御装置CTは、ジェネレータSGが出力する電圧がバッテリ14の電圧より低くなる期間の少なくとも一部において、ベクトル制御を行う(S31)。より詳細には、制御装置CTのベクトル制御部622が、ベクトル制御を行う。制御装置CTは、ジェネレータSGが出力する電圧がバッテリ14の電圧より高くなる期間の少なくとも一部において、位相制御を行う(S32)。より詳細には、制御装置CTの位相制御部621が、位相制御を行う。ジェネレータSGが出力する電圧は、ステータ巻線Wの出力電圧である。ジェネレータSGが出力する電圧は、出力される交流電圧の振幅である。バッテリ14の電圧は、制御が切換えられる時点での電圧である。
 より詳細には、制御装置CTは、クランクシャフト5の回転速度に応じて、発電の制御状態を切換える。制御装置CTは、クランクシャフト5の回転速度が、予め定められた第1速度閾値を超えると、位相制御状態に移り、位相制御を行う(S32)。制御装置CTは、クランクシャフト5の回転速度が、予め定められた第2速度閾値を下回ると、ベクトル制御状態に移り、ベクトル制御を行う(S31)。第1速度閾値は第2速度閾値より大きい。第1速度閾値が第2速度閾値より大きいと、速度の変化に対する制御状態の遷移がヒステリシスを有するので、状態が安定しやすい。ただし、第1速度閾値と第2速度閾値に同じ値を設定することも可能である。
 車両が停車し、且つジェネレータSGが出力する電圧がバッテリ14の電圧より低くなる期間は、クランクシャフト5の回転速度が第2速度閾値より小さい。
 発電制御状態(S3)において車両が停車状態である場合、ジェネレータSGが出力する電圧は、バッテリ14の電圧より低い。この場合、制御装置CTは、発電制御状態(S3)のベクトル制御状態(S31)に移る。詳細には、クランクシャフト5の回転速度が第2速度閾値より小さい場合、制御装置CTは、発電制御状態(S3)のベクトル制御状態(S31)に移る。
 制御装置CTは、車両が停車し、且つジェネレータSGが出力する電圧がバッテリ14の電圧より低くなる期間の少なくとも一部において、ジェネレータSGが出力するバッテリ14の電圧より低い電圧を、バッテリ14の電圧より高い電圧に昇圧させ、バッテリ14を充電する(S31)。制御装置CTは、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、ジェネレータSGが出力する電圧をバッテリ14の電圧より高い電圧に昇圧させ、バッテリ14を充電する。
 ベクトル制御は、ジェネレータSGの電流を、磁石の磁束方向に対応するd軸成分と、電気角において磁束方向と垂直なq軸成分に分離して制御する方法である。q軸成分は、ジェネレータSGのトルク負荷に影響する成分である。ベクトル制御は、複数相のステータ巻線Wの各相に対し、通電休止期間なしに通電を行う制御である。ベクトル制御は、複数相のステータ巻線Wの各相に正弦波の電流が流れるよう通電を行う制御である。複数のスイッチング部611~616がベクトル制御によるタイミングでオン・オフ動作することにより、複数相のステータ巻線Wのそれぞれに正弦波の電流が流れる。ベクトル制御による発電は、例えば、ステータ巻線Wの誘導起電圧の正弦波に同期するように、この誘導起電圧の向きに電流を引き出すことにより実現される。なお、正弦波の電流及び正弦波の電圧は、正弦波状の電流及び電流を意味する。正弦波の電流には、例えば、スイッチング部のオン・オフ動作に伴うリップル、及び歪みが含まれる。
 ベクトル制御では、複数のスイッチング部611~616のそれぞれがパルス幅変調(PWM)された信号で制御される。パルス幅変調におけるパルスの周期は、ステータ巻線Wの各相の誘導起電圧の周期よりも短い。つまり、制御装置CTは、ジェネレータSGのステータ巻線Wの誘導起電圧の周期よりも短い周期のパルス信号に応じて複数のスイッチング部611~616のオン・オフを制御する。
 制御装置CTのベクトル制御部622は、ベクトル制御において、図示しないセンサで検知した複数相のステータ巻線Wの電流と、ロータ位置検出装置50で検知したアウターロータ30の位置とから、d軸成分とq軸成分を得る。制御装置CTは、目標値に応じて補正した成分に基づいて、複数のスイッチング部611~616のオン・オフのタイミングを制御する。
 なお、制御においては、一部の相のステータ巻線の電流のみ検出する方法、又は、ロータ位置検出装置50による位置検出を省略する方法も採用可能である。また、制御においては、いずれの相のステータ巻線の電流も検知することなく複数のスイッチング部611~616を制御する方法も採用可能である。この場合、制御装置CTは、ロータ位置検出装置50で検知したアウターロータ30の位置から、ステータ巻線Wの誘導起電圧の正弦波に同期するような電流を推定し、推定した電流を流すための電圧をステータ巻線Wに印加する。例えば、制御装置CTは、アウターロータ30の位置とパルスの周期との対応関係を表わすマップ(設定表)を用い、アウターロータ30の位置に基づいて複数のスイッチング部611~616を制御する。このマップは、アウターロータ30の位置に対し、誘導起電圧の正弦波に同期するような電流を流すための電圧を推定することによって、予め設定される。
 オン・オフのタイミングの制御には、例えば、入力された情報を用いて式を算出する方法、又は、オン・オフ動作記憶部623に記憶されたマップ(設定表)を読出して参照する方法が採用可能である。式、又はマップは、プログラムに含まれていてもよい。また制御装置CTは、電子回路(ワイヤードロジック)で構成された初期動作部624を用いて制御を行ってもよい。
 図7は、ベクトル制御における電流及び電圧の波形の例を示す図である。
 図7において、Vuは、ジェネレータSGの複数相のステータ巻線Wのうち、U相のステータ巻線Wの誘導起電圧を表している。Iuは、U相のステータ巻線Wの電流を表している。図7において、Iuにおける正の値は、スイッチング部611,612からステータ巻線Wに電流が流れることを表している。Iuにおける負の値は、ステータ巻線Wからスイッチング部611,612に電流が流れることを表している。
 Vsup及びVsunは、複数のスイッチング部611~616のうち、U相のステータ巻線Wに接続される2つのスイッチング部611,612の制御信号を表している。Vsupは、U相のステータ巻線Wとバッテリ14の正極との間に配置された正側のスイッチング部611の制御信号である。Vsupは、U相のステータ巻線Wとバッテリ14の負極との間に配置された負側のスイッチング部612の制御信号である。Vsup及びVsunにおけるHレベルは、スイッチング部611,612のオン状態を表している。Lレベルは、オフ状態を表している。Idcはバッテリ14に流れる電流である。Idcにおける負の値、すなわち、図における「0」より下の値は、ジェネレータSGが発電し、バッテリ14が充電されることを表す。
 スイッチング部611,612の制御信号Vsup,Vsunに示されるように、正側のスイッチング部611と負側のスイッチング部612とは、オン状態とオフ状態において、互いに逆の状態になる。
 制御装置CTは、ステータ巻線Wの各相に正弦波の電流が流れるように、スイッチング部611,612のオン・オフのデューティ比を制御する。制御装置CTは、スイッチング部611,612のオン・オフのデューティ比の変化の周期が、ステータ巻線Wの誘導起電圧の周期になるように、スイッチング部611,612を制御する。ステータ巻線Wの誘導起電圧は、正弦波であり、中央値「0」(タイミングt1、t5)、正の最大値(タイミングt2)、中央値「0」(タイミングt3)、及び負の最大値(タイミングt4)を繰り返す。
 制御装置CTは、ベクトル制御において、スイッチング部611,612を次のように制御する。すなわち、ステータ巻線Wの誘導起電圧Vuが正の最大値及び負の最大値となるタイミング(t2,t4)における、正側のスイッチング部611のデューティ比と負側のスイッチング部612のデューティ比との差は、誘導起電圧Vuが中央値(「0」)となるタイミング(t1,t3,t5)における正側のスイッチング部611のデューティ比と負側のスイッチング部612のデューティ比との差よりも大きい。
 例えば、U相のステータ巻線Wの誘導起電圧Vuが中央値(「0」)となるタイミング(t1,t3,t5)において、正側のスイッチング部611のデューティ比及び負側のスイッチング部612のデューティ比の双方は、例えばタイミング(t2,t4)と比べて50%に近い。従って、正側のスイッチング部611のデューティ比と負側のスイッチング部612のデューティ比の差は小さい。この結果、U相のステータ巻線Wの電流は小さくなる。
 なお、スイッチング部611,612のデューティ比は、バッテリ14からステータ巻線Wに供給する電圧に直接影響する。電圧と電流との間には、ステータ巻線Wのインダクタンス成分による遅れが生じる。従って、デューティ比と電流の変化には若干のずれが生じている。しかし、ベクトル制御によって、ステータ巻線Wに流れる電流Iuと誘導起電圧Vuについての力率を高めることができる。
 U相についての上記の説明は、V相及びW相についても適用される。V相及びW相は、電気角で120度に相当する時間差をU相との間に有する。
 ベクトル制御では、誘導起電圧の周波数よりも高い周波数のPWMのパルスでスイッチング部611~616がオン及びオフするので、ステータ巻線Wを流れる電流について強いチョッピング作用を生じる。このため、ジェネレータSGが出力する電圧がバッテリ14の電圧より高い電圧に昇圧され、バッテリ14が充電される。ベクトル制御によれば、例えば図7に示すように、ステータ巻線Wに流れる電流を、誘導起電圧Vuに対し、力率が高まるように制御することができる。このため、ジェネレータSGが出力する電圧が、バッテリの電圧より低くとも、高効率で発電量を確保できる。
 また、ジェネレータSGのアウターロータ30が有する磁極面37aの数は、歯部43の2/3よりも多いので、電気角における角速度が高い。このため、より高効率で発電量を確保できる。
 また、本実施形態の4ストロークエンジン本体Eは4ストロークエンジンであり、高負荷領域と低負荷領域とを有する。クランクシャフト5の回転速度は、高負荷領域よりも低負荷領域で高い。4ストロークエンジン本体Eは、領域に応じた回転速度の変動が大きい。領域に応じた回転速度の変動が大きいと、クランクシャフト5の回転速度を低下させた場合の回転の安定性が低下しやすい。
 本実施形態のエンジンユニットEUでは、車両の停車状態におけるクランクシャフト5の回転速度が低く、バッテリ14の電圧より低い電圧がジェネレータSGから出力されても、バッテリ14を充電することができる。バッテリ14を充電するときにジェネレータSGが発電する電力は、エンジン本体にかかる負荷に相応する。この負荷は、回転速度が相対的に高い領域で大きく、回転速度が相対的に低い領域で小さい。つまり、負荷は、回転速度が安定するように変動する。従って、車両の停車状態におけるクランクシャフト5の回転速度が低く、バッテリ14の電圧より低い電圧がジェネレータSGから出力されても、クランクシャフト5の回転速度を安定化しつつ、高効率で発電量を確保できる。
 図6に示す位相制御状態(S32)において、制御装置CTは、位相制御を行う。
 位相制御は、インバータ61に備えられた複数のスイッチング部611~616の通電タイミングを進み又は遅らせる制御である。位相制御は、上述したベクトル制御とは別の制御である。制御装置CTは、位相制御において、複数のスイッチング部611~616のそれぞれを、ステータ巻線Wの誘導起電圧の周期に等しい周期でオン・オフ動作させる。制御装置CTは、位相制御において、複数のスイッチング部611~616のそれぞれを、ステータ巻線Wの誘導起電圧の周期と等しい周期で1回ずつオン・オフさせる。制御装置CTは、ステータ巻線Wの誘導起電圧に対し、複数のスイッチング部611~616それぞれのオン・オフ動作の位相を制御する。
 図8は、位相制御における電流及び電圧の波形の例を示す図である。
 図8におけるVu、Iu、Vsup、Vsun、及びIdcは、図7と同一である。ただし、図8におけるVu、Iu、及びIdcの縦軸のスケールは、図7におけるスケールと異なる。また、図8に示す例では、クランクシャフト5の回転速度が、図7に示す場合より高い。従って、誘導起電圧Vuの周期は、図7に示す場合より短い。
 位相制御において、制御装置CTは、ジェネレータSGのステータ巻線Wの誘導起電圧の周期と等しい周期の信号Vsup、Vsunに応じて複数のスイッチング部611~616のオン・オフを制御する。複数のスイッチング部611~616のオン・オフのデューティ比は固定されている。複数のスイッチング部611~616のうち、正側のスイッチング部611のオン・オフのデューティ比と負側のスイッチング部612のオン・オフのデューティ比は等しい。複数のスイッチング部611~616それぞれのオン・オフのデューティ比は50%である。
 制御装置CTは、位相制御において、複数のスイッチング部611~616の通電タイミングを進み又は遅らせることによって、ステータ巻線Wから、バッテリ14に流れる電流を制御する。制御装置CTは、誘導起電圧Vuに対し、スイッチング部611~616のオン・オフの位相を進めることによって、バッテリ14に流れる電流を減少させる。制御装置CTは、誘導起電圧Vuに対し、スイッチング部611~616のオン・オフの位相を遅らせることによって、バッテリ14に流れる電流を増大させる。位相制御では、スイッチング部611~616のオン・オフによって、ある一相のステータ巻線Wから出力される電流の経路が、他相のステータ巻線Wとバッテリ14との間で切換えられる。
 クランクシャフト5が、車両の停車状態における回転速度より高い回転速度で回転すると、ジェネレータSGが出力する電圧が増大する。ジェネレータが出力する電圧は、バッテリ14の電圧より高くなる。ジェネレータがバッテリの電圧より高い電圧を出力する期間において、位相制御が行われる。位相制御におけるスイッチング部611~616のオン・オフの周期は、ベクトル制御の場合と比べて長い。すなわち、位相制御におけるスイッチング部611~616のオン・オフの周波数は、ベクトル制御の場合と比べて低い。従って、スイッチング部611~616のスイッチング損失が抑制されるので、高い効率が得られる。
 従って、本実施形態のエンジンユニットEUによれば、クランクシャフト5が車両の停車状態における回転速度より高い回転速度で回転し、ジェネレータSGがバッテリ14の電圧より高い電圧を出力する状況でも、高効率で、発電量を確保することができる。
 図9(a)は、クランクシャフトの回転速度と発電電流の関係を模式的に示すグラフである。また、図9(b)は、クランクシャフトの回転速度と発電効率の関係を模式的に示すグラフである。図9(a)及び図9(b)において、太線(P1)は、本実施形態のエンジンユニットにおける特性を示している。
 また、細線(R1)は、第一の比較例として、本実施形態のジェネレータSGと同じ構成のジェネレータを、ダイオードで構成されたレクチファイアレギュレータに接続した場合の特性を示している。
 また、破線(R2)は、第二の比較例として、本実施形態におけるジェネレータSGよりも大型化したジェネレータにダイオードで構成されたレクチファイアレギュレータに接続した場合の特性を示している。第二の比較例のジェネレータでは、永久磁石が大型化し、ステータ巻線に太い線が使用され、そして巻数が増大している。このため、第二の比較例のジェネレータは、本実施形態におけるジェネレータSGよりも大型化している。
 本実施形態における制御装置CTは、クランクシャフト5が停車時の回転速度で回転する場合にベクトル制御方式を用い、クランクシャフト5が停車時の回転速度より高い回転速度で回転する場合に位相制御方式を用いる。図9(a)及び図9(b)には、停車時におけるクランクシャフト5の回転速度の範囲が示されている。例えば、クランクシャフト5のアイドル回転速度は、この範囲に設定されている。
 本実施形態におけるジェネレータSGは、停車時の回転速度でクランクシャフト5が回転する場合に、バッテリ14の電圧より低い電圧を出力する。
 第一の比較例では、本実施形態におけるジェネレータSGと同じ構成のジェネレータが、ダイオードで構成されたレクチファイアレギュレータに接続されている。この第一の比較例の場合、図9(a)の細線R1で示すように、停車時の回転速度において、ジェネレータからバッテリへ電流が流れない。つまり、バッテリが充電されない。
 これに対し、本実施形態では、制御装置CTが、複数のスイッチング部611~616をベクトル制御することによって、ジェネレータSGが出力する電圧を、バッテリ14の電圧より高い電圧に昇圧させる。従って、図9(a)の太線で示すように、停車時の回転速度において、ジェネレータSGからバッテリ14へ電流が流れる。つまり、停車時に、ジェネレータSGが、バッテリ14の電圧より低い電圧を出力しても、バッテリ14が充電される。
 第二の比較例におけるジェネレータは、停車時の回転速度でクランクシャフト5が回転する場合に、バッテリの電圧より低い電圧を出力する。従って、図9(a)の破線R2で示すように、停車時の回転速度において、ジェネレータからバッテリへ電流が流れる。しかし、第二の比較例のジェネレータでは、本実施形態におけるジェネレータSGと比べて、永久磁石が大型化し、ステータ巻線に太い線が使用され、そして巻数が増大している。このため、第二の比較例のジェネレータは、本実施形態におけるジェネレータSGより大型である。
 これに対し、本実施形態では、制御装置CTが、複数のスイッチング部611~616をベクトル制御することによって、ジェネレータSGが出力する電圧を、バッテリ14の電圧より高い電圧に昇圧させる。従って、ジェネレータSGを大型化することなく、停車時に、バッテリ14を充電できる。
 また、本実施形態では、制御装置CTが、複数のスイッチング部611~616をベクトル制御することによって、ジェネレータSGの電流と電圧を、力率が高まるように制御することができる。このため、図9(b)の太線P1に示すように、停車時に、バッテリ14の電圧より低い電圧がジェネレータSGから出力されても、バッテリ14が高効率で充電される。言い換えると、本実施形態によれば、ジェネレータSGを大型化することなく停車時にバッテリ14の充電を行いつつ、ジェネレータSGからバッテリ14の電圧より低い電圧が出力されるように、クランクシャフト5の回転速度を低下させることができる。従って、停車時における騒音及び燃費が抑えられる。
 ジェネレータの大型化を避けつつ、低い回転速度でジェネレータからの発電電圧を確保する方法として、例えば、ステータ巻線Wの線材を細くしつつ巻数を増大することが考えられる。しかし、ステータ巻線Wの線材を細くしつつ巻数を増大すると、バッテリ14の電力でクランクシャフト5を回転させるときの駆動トルクが低下する。
 本実施形態のエンジンユニットEUでは、ジェネレータSGの出力電圧がバッテリ14の電圧より低くなるようにクランクシャフト5の回転速度を低下させても、高効率でバッテリ14を充電することができる。従って、バッテリ14の電力でクランクシャフト5を駆動する場合における駆動トルクの低下を抑えつつ、発電の場合に、車両停車時のクランクシャフト5の回転速度を低下させても高効率で発電量を確保できる。
 このように、本実施形態のエンジンユニットEUによれば、ジェネレータSGを大型化することなく、車両停車時におけるクランクシャフト5の回転速度を低下させても高効率で発電量を確保することができる。
 クランクシャフト5が、車両の停車状態における回転速度より高い回転速度で回転すると、ジェネレータSGが出力する電圧が増大する。ジェネレータSGが出力する電圧は、バッテリの電圧より高くなる。
 本実施形態におけるジェネレータSGと同じ構成のジェネレータを有する第一の比較例では、ジェネレータから出力される電流が回転速度の増大に伴って増大する。ジェネレータから出力される電流のうち、バッテリを充電する電流以外の過大な電流は、レクチファイアレギュレータにおいて熱として消費される。
 これに対し、本実施形態では、制御装置CTが、複数のスイッチング部611~616の通電タイミングを進み又は遅らせる位相制御を行う。これによって、ジェネレータSGから出力される電流が抑制される。従って、ジェネレータSGから出力される電流を熱として消費する量が抑制される。このため、クランクシャフト5が車両の停車状態における回転速度より高い回転速度で回転し、ジェネレータSGがバッテリ14の電圧より高い電圧を出力する状況でも、図9(b)の太線P1に示すように、高効率で、発電量を確保することができる。
 また、本実施形態によれば、クランクシャフト5がアイドル回転速度で回転する場合及びアイドル回転速度より高い回転速度で回転する場合の双方において、高効率で、発電量を確保することができる。
 図6に示す始動制御状態(S2)において、制御装置CTは、ジェネレータSGに、クランクシャフト5を回転させることによって4ストロークエンジン本体Eを始動させる。また、制御装置CTは、4ストロークエンジン本体Eの燃焼動作が開始した後、予め定められた期間、ジェネレータSGにクランクシャフト5の回転を加速させる。始動制御状態(S2)では、制御装置CTが、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、バッテリ14からジェネレータに電力が供給されるように制御して、クランクシャフト5の回転を加速させる。
 4ストロークエンジン本体Eの燃焼動作開始から予め定められた期間が経過した後、制御装置CTは、発電制御状態に移る(S3)。ここで、車両が停車状態であり、ジェネレータSGの出力電圧がバッテリ14の電圧より低い場合、制御装置CTは、発電制御状態(S3)の中のベクトル制御状態(S31)に移る。つまり、制御装置CTは、ベクトル制御によってクランクシャフト5の回転を加速させる始動制御状態(S2)から、発電制御状態(S3)の中のベクトル制御状態(S31)に移る。ベクトル制御状態(S31)では、制御装置CTが、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、ジェネレータSGが出力するバッテリ14の電圧より低い電圧を、バッテリの電圧より高い電圧に昇圧させ、バッテリ14を充電する。
 ベクトル制御を行うことによってクランクシャフト5の回転を加速させる制御状態から、ベクトル制御を行うことによってバッテリ14を充電する制御状態への制御状態の移行は、制御の種類の変更を伴わない。制御状態の移行は、例えば、指令値等のパラメータの変更により速やかに実行され得る。制御状態の移行は、例えば、複数相のステータ巻線Wの電流の位相を誘導起電圧の位相に対して変更することによって実行される。例えば、制御状態の移行は、ベクトル制御における制御値のうち、トクルに寄与するq軸成分電流を正の値から負の値に変更することによって実行される。
 従って、クランクシャフト5の回転の加速の状態、即ち力行状態から、バッテリ14の充電の状態、即ち発電状態への移行が迅速にできる。
 ベクトル制御状態(S31)において、制御装置CTは、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、ジェネレータSGが出力するバッテリ14の電圧より低い電圧を、バッテリの電圧より高い電圧に昇圧させ、バッテリ14を充電する。
 発電制御状態(S3)のベクトル制御状態(S31)において、クランクシャフト5の回転の加速が要求されると、制御装置CTは、加速制御状態に移る(S4)。加速制御状態(S4)において、制御装置CTは、インバータ61に備えられた複数のスイッチング部611~616のベクトル制御を行うことによって、バッテリ14からジェネレータに電力が供給されるように制御することによって、クランクシャフト5の回転を加速させる。
 ベクトル制御を行うことによってバッテリ14を充電する制御状態から、ベクトル制御を行うことによってクランクシャフト5の回転を加速させる制御状態への制御状態の移行は、制御の種類の変更を伴わない。制御状態の移行は、例えば、指令値等のパラメータの変更により速やかに実行され得る。
 従って、バッテリ14の充電の状態、即ち発電状態から、クランクシャフト5の回転の加速の状態、即ち力行状態への移行が迅速にできる。
 [自動二輪車]
 図10は、図1に示すエンジンユニットEUが搭載される車両を示す外観図である。
 図10に示す車両Aは、エンジンユニットEUと、車体101と、車輪102,103と、バッテリ14とを備えている。車両Aに搭載されたエンジンユニットEUは、図示しないクラッチを介して、駆動輪である車輪103を駆動し、車輪103を回転させることによって、車両Aを走行させる。クラッチは、車両Aの停車時において、クランクシャフト5から車輪103への回転力の伝達を遮断する。
 図10に示す車両Aは、上述したエンジンユニットEUが搭載されているので、ジェネレータSGを大型化することなく、高効率で、車両の停車状態におけるクランクシャフト5の回転速度での発電量を確保することができる。
 図10に示す車両Aは、自動二輪車である。ただし、本発明の車両は、自動二輪車に限られない。本発明の車両は、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、ATV(All-Terrain Vehicle)等であってもよい。また、本発明に係る車両は、鞍乗型車両に限定されず、車室を有する4輪車両等であってもよい。
 また、本発明の車両は、エンジンの機械的出力によって、駆動輪を駆動する車両に限られない。本発明の車両は、例えば、エンジンの機械的出力によってジェネレータを駆動するとともに、ジェネレータの電力によって、ジェネレータとは別のモータに駆動輪を駆動させる車両でもよい。
 本実施形態では、高負荷領域と低負荷領域とを有する4ストロークエンジン本体Eを説明した。また、本実施形態では、4ストロークエンジン本体Eが単気筒エンジンである場合について説明した。しかし、本発明のエンジン本体は特に限定されない。本発明のエンジン本体は、低負荷領域を有していないエンジンであってもよい。例えば、本発明のエンジンは、複数の気筒を有するエンジンであってもよい。本発明のエンジンは、例えば3以上の気筒を有するエンジンであってもよい。
 複数の気筒を有するエンジンは、負荷の変動が小さいので、回転の安定性が高い。従って、車両の停車時におけるクランクシャフトの回転速度をさらに低下させることが可能である。車両の停車時におけるクランクシャフトの回転速度がさらに低下しても、高い発電効率で発電量を確保することが可能である。
 本実施形態では、車両が停車し、且つジェネレータSGが出力する電圧がバッテリ14の電圧より低くなる期間においてベクトル制御を行う例を説明した。しかし、本発明の制御装置は、ジェネレータが出力する電圧がバッテリの電圧より低くなる期間の一部においてベクトル制御を行ってもよい。また、本発明の制御装置は、ジェネレータが出力する電圧がバッテリの電圧より高い期間でも、ベクトル制御を行ってよい。また、本発明の制御装置は、車両が走行している期間でも、ベクトル制御を行ってよい。
 また、本実施形態では、車両が停車し、且つジェネレータが出力する電圧がバッテリの電圧より低くなる期間の例として、クランクシャフト5の回転速度が、予め定められた第2速度閾値より小さい場合を説明した。しかし、本発明における車両の停車は、例えば、車輪の回転状態によって判定してもよい。また、ジェネレータが出力する電圧がバッテリの電圧より低くなることは、ジェネレータが出力する電圧及びバッテリの電圧を直接的又は間接的に測定することによって判定してもよい。
 本実施形態では、ジェネレータSGが出力する電圧が前記バッテリ14の電圧より高くなる期間において、位相制御を行う例を説明した。しかし、本発明の制御装置は、位相制御を行わなくともよい。例えば、制御装置は、位相制御を行う代わりに、スイッチング部のトランジスタをオフ状態に維持し、トランジスタに付随したダイオードによって整流を行ってもよい。
 本実施形態では、制御装置CTは、4ストロークエンジン本体Eを始動させた後、始動制御状態(S2)及び加速制御状態(S4)において、予め定められた期間、クランクシャフト5の回転を加速させる例を説明した。しかし、本発明の制御装置は、クランクシャフトの回転を加速させなくともよい。また、クランクシャフトの回転の加速は、始動制御状態及び加速制御状態のいずれかで行ってもよい。
 また、始動制御状態(S2)及び加速制御状態(S4)において、制御装置はベクトル制御を行うことを説明した。しかし、例えば、クランクシャフト5の回転を開始する場合及び/又は回転を加速させる場合に、ベクトル制御を行わなくてもよい。例えば、120度通電方式により、ジェネレータを力行させてもよい。
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではない。ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、本発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。
 本発明は、多くの異なった形態で具現化され得るものである。この開示は本発明の原理の実施例を提供するものと見なされるべきである。それら実施例は、本発明をここに記載しかつ/又は図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。
 本発明の図示実施形態を幾つかここに記載した。本発明は、ここに記載した各種の好ましい実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではない。そのような実施例は非排他的であると解釈されるべきである。例えば、この開示において、「好ましくは」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。
A  車両
CT  制御装置
E  4ストロークエンジン本体
EU  エンジンユニット
SG  ジェネレータ
5  クランクシャフト
62  始動発電制御部
63  燃焼制御部
61  インバータ
611~616  スイッチング部
621  位相制御部
622  ベクトル制御部

Claims (8)

  1.  バッテリを備えた車両に搭載されるエンジンユニットであって、
     前記エンジンユニットは、
    クランクシャフトを有するエンジン本体と、
    前記クランクシャフトの回転と連動して回転することで発電するジェネレータと、
    前記ジェネレータから前記バッテリに供給する電流を制御する複数のスイッチング部を備えたインバータと、
    前記インバータに備えられた前記複数のスイッチング部を制御することによって、前記ジェネレータから前記バッテリに供給される電流を制御する発電制御部と、前記エンジン本体の燃焼動作を制御する燃焼制御部とを含む制御装置と
    を備え、
     前記制御装置は、前記車両が停車し、且つ前記ジェネレータが出力する電圧が前記バッテリの電圧より低くなる期間の少なくとも一部において、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、前記ジェネレータが出力する前記バッテリの電圧より低い電圧を、前記バッテリの電圧より高い電圧に昇圧させ、前記バッテリを充電する。
  2.  請求項1に記載のエンジンユニットであって、
     前記制御装置は、前記ジェネレータが出力する電圧が前記バッテリの電圧より高くなる期間の少なくとも一部において、前記インバータに備えられた前記複数のスイッチング部の通電タイミングを進み又は遅らせる位相制御を行うことによって、前記バッテリを充電する。
  3.  請求項1又は2に記載のエンジンユニットであって、
     前記ジェネレータは、前記バッテリの電力で前記クランクシャフトを駆動するモータとして機能し、
     前記制御装置は、前記クランクシャフトの回転が停止した状態で、前記インバータに備えられた前記複数のスイッチング部を、前記バッテリから前記ジェネレータに電力が供給されるように制御することによって、前記エンジン本体を始動させる。
  4.  請求項3に記載のエンジンユニットであって、
     前記制御装置は、前記エンジン本体を始動させた後、予め定められた期間、前記インバータに備えられた前記複数のスイッチング部を、前記バッテリから前記ジェネレータに電力が供給されるように制御することによって、前記クランクシャフトの回転を加速させる。
  5.  請求項4に記載のエンジンユニットであって、
     前記制御装置は、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、前記ジェネレータが出力する前記バッテリの電圧より低い電圧を、前記バッテリの電圧より高い電圧に昇圧させ、前記バッテリを充電する制御態様と、前記インバータに備えられた前記複数のスイッチング部のベクトル制御を行うことによって、前記バッテリから前記ジェネレータに電力が供給されるように制御して、前記クランクシャフトの回転を加速させる制御態様との間で、制御態様を移行する。
  6.  請求項1から5のいずれか1に記載のエンジンユニットであって、
     前記エンジン本体は、4ストロークの間に、前記クランクシャフトを回転させる負荷が大きい高負荷領域と、前記クランクシャフトを回転させる負荷が前記高負荷領域の負荷より小さい低負荷領域とを有する4ストロークエンジンである。
  7.  請求項1から6のいずれか1に記載のエンジンユニットであって、
     前記エンジン本体は、複数の気筒を有する。
  8.  車両であって、
     前記車両は、
     請求項1から7のいずれか1に記載のエンジンユニットを備える。
PCT/JP2014/083591 2013-12-20 2014-12-18 エンジンユニット、及び車両 WO2015093574A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14872071.7A EP3064748A4 (en) 2013-12-20 2014-12-18 Engine unit and vehicle
CN201480070045.4A CN105874189B (zh) 2013-12-20 2014-12-18 发动机单元及车辆
EP20181163.5A EP3767095A1 (en) 2013-12-20 2014-12-18 Engine unit and vehicle
AP2016009306A AP2016009306A0 (en) 2013-12-20 2014-12-18 Engine unit and vehicle
TW103144929A TWI528680B (zh) 2013-12-20 2014-12-19 Engine unit and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263304 2013-12-20
JP2013263304A JP2017031807A (ja) 2013-12-20 2013-12-20 エンジンユニット、及び車両

Publications (1)

Publication Number Publication Date
WO2015093574A1 true WO2015093574A1 (ja) 2015-06-25

Family

ID=53402916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083591 WO2015093574A1 (ja) 2013-12-20 2014-12-18 エンジンユニット、及び車両

Country Status (6)

Country Link
EP (2) EP3767095A1 (ja)
JP (1) JP2017031807A (ja)
CN (1) CN105874189B (ja)
AP (1) AP2016009306A0 (ja)
TW (1) TWI528680B (ja)
WO (1) WO2015093574A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053774A (ja) * 2016-09-28 2018-04-05 ヤマハ発動機株式会社 ビークル
JP2018053772A (ja) * 2016-09-28 2018-04-05 ヤマハ発動機株式会社 エンジンユニット及び鞍乗型車両
JP2018053775A (ja) * 2016-09-28 2018-04-05 ヤマハ発動機株式会社 鞍乗型車両
JP6503591B2 (ja) * 2016-12-28 2019-04-24 本田技研工業株式会社 電源制御システム、及び電源制御方法
CN110462184B (zh) * 2017-03-23 2022-07-05 本田技研工业株式会社 车辆发动机控制装置
EP3533995B1 (en) * 2018-03-02 2021-03-31 Yamaha Hatsudoki Kabushiki Kaisha Method for controlling an engine unit for a straddled vehicle, engine unit and straddled vehicle
CN108612591B (zh) * 2018-05-16 2020-05-01 苏州半唐电子有限公司 一种发动机点火器启动互锁控制系统及其控制方法
US11008993B2 (en) 2018-09-21 2021-05-18 Caterpillar Inc. Single solid state power supply for multiple engine systems
CN112739900B (zh) * 2018-09-25 2023-05-02 本田技研工业株式会社 鞍乘型车辆的动力单元
CN114655147B (zh) * 2022-05-05 2022-08-23 浙江春风动力股份有限公司 一种全地形车
US11685323B2 (en) 2021-08-31 2023-06-27 Zhejiang CFMOTO Power Co., Ltd. Off-road vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235299A (ja) * 2002-02-05 2003-08-22 Kokusan Denki Co Ltd 内燃機関用スタータジェネレータの制御装置
JP2006136122A (ja) * 2004-11-05 2006-05-25 Kokusan Denki Co Ltd 発電装置の出力制御装置
JP2007001325A (ja) * 2005-06-21 2007-01-11 Hitachi Ltd 車輌電動駆動装置
JP2009261084A (ja) 2008-04-15 2009-11-05 Yamaha Motor Electronics Co Ltd エンジンのアイドリング安定化装置
JP2011046224A (ja) * 2009-08-25 2011-03-10 Kubota Corp ハイブリッド車輌
JP2012095390A (ja) * 2010-10-25 2012-05-17 Toyota Motor Corp モータ制御システム
JP2013092097A (ja) * 2011-10-25 2013-05-16 Denso Corp 始動発電機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036099A1 (de) * 2000-07-25 2002-02-14 Bosch Gmbh Robert Verfahren zur Regelung einer elektrischen Maschine mit Pulswechselrichter
JP4978429B2 (ja) * 2007-11-01 2012-07-18 アイシン・エィ・ダブリュ株式会社 電動機制御装置,電気自動車およびハイブリッド電気自動車
JP4506889B2 (ja) * 2008-10-23 2010-07-21 トヨタ自動車株式会社 交流電動機の制御装置および制御方法
DE102011076999A1 (de) * 2011-05-26 2012-11-29 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Maschine in einem Kraftfahrzeug
CN103078578B (zh) * 2011-10-25 2016-03-02 株式会社电装 旋转电机的控制装置
FR3009345B1 (fr) * 2013-08-01 2015-09-04 Valeo Equip Electr Moteur Procede et dispositif de commande d'un alterno-demarreur de vehicule automobile, et alterno-demarreur correspondant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235299A (ja) * 2002-02-05 2003-08-22 Kokusan Denki Co Ltd 内燃機関用スタータジェネレータの制御装置
JP2006136122A (ja) * 2004-11-05 2006-05-25 Kokusan Denki Co Ltd 発電装置の出力制御装置
JP2007001325A (ja) * 2005-06-21 2007-01-11 Hitachi Ltd 車輌電動駆動装置
JP2009261084A (ja) 2008-04-15 2009-11-05 Yamaha Motor Electronics Co Ltd エンジンのアイドリング安定化装置
JP2011046224A (ja) * 2009-08-25 2011-03-10 Kubota Corp ハイブリッド車輌
JP2012095390A (ja) * 2010-10-25 2012-05-17 Toyota Motor Corp モータ制御システム
JP2013092097A (ja) * 2011-10-25 2013-05-16 Denso Corp 始動発電機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064748A4

Also Published As

Publication number Publication date
AP2016009306A0 (en) 2016-07-31
CN105874189A (zh) 2016-08-17
CN105874189B (zh) 2020-04-14
EP3064748A1 (en) 2016-09-07
EP3767095A1 (en) 2021-01-20
EP3064748A4 (en) 2017-03-15
JP2017031807A (ja) 2017-02-09
TW201534026A (zh) 2015-09-01
TWI528680B (zh) 2016-04-01

Similar Documents

Publication Publication Date Title
WO2015093574A1 (ja) エンジンユニット、及び車両
WO2015093576A1 (ja) エンジンユニット、及び車両
EP2959156B1 (en) Four-stroke engine unit for use in vehicle and vehicle
EP3051118B1 (en) Engine unit and vehicle
JP2018085904A (ja) スイッチトリラクタンスモータの制御装置
JP2017036666A (ja) エンジンユニット
TWI660118B (zh) vehicle
JP2017129065A (ja) ビークル
WO2018038062A1 (ja) 停止制御システム
JP2015117677A (ja) エンジンユニット、及び車両
JP2017036665A (ja) エンジンユニット
OA17801A (en) Engine unit and vehicle
OA17778A (en) Engine unit and vehicle
JP2023167603A (ja) 車両制御装置
OA17770A (en) Engine unit and vehicle
JP2017131041A (ja) ビークル
OA17779A (en) Engine unit and vehicle.
OA17492A (en) Four stroke engine unit for use in vehicle and vehicle.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872071

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014872071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872071

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604739

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: JP