WO2015093429A1 - 蛍光体、発光装置及びその製造方法 - Google Patents

蛍光体、発光装置及びその製造方法 Download PDF

Info

Publication number
WO2015093429A1
WO2015093429A1 PCT/JP2014/083113 JP2014083113W WO2015093429A1 WO 2015093429 A1 WO2015093429 A1 WO 2015093429A1 JP 2014083113 W JP2014083113 W JP 2014083113W WO 2015093429 A1 WO2015093429 A1 WO 2015093429A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
diffuse reflectance
light
wavelength
peak wavelength
Prior art date
Application number
PCT/JP2014/083113
Other languages
English (en)
French (fr)
Inventor
豪 竹田
良三 野々垣
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2015553522A priority Critical patent/JP6576246B2/ja
Publication of WO2015093429A1 publication Critical patent/WO2015093429A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a sialon (SiAlON) -based phosphor that is excited efficiently in the wavelength region from ultraviolet to near-ultraviolet and emits blue light, a method for producing the phosphor, and a light-emitting device using the phosphor.
  • SiAlON sialon
  • a nitride or oxynitride phosphor having a stable crystal structure has attracted attention.
  • sialon phosphors are widely used as representatives of nitrides and oxynitrides.
  • the inventors have set the composition ratio of elements constituting the phosphor within a specific range and have a wavelength of 700 to 800 nm.
  • the present inventors have found that the luminous efficiency can be remarkably improved by controlling the average diffuse reflectance and the diffuse reflectance at the fluorescence peak wavelength.
  • An object is to provide a phosphor having an average diffuse reflectance of 90% or more and a diffuse reflectance of 85% or more at a fluorescence peak wavelength.
  • the present invention is also a method for producing the phosphor, comprising a mixing step of mixing raw materials, a firing step of firing the raw materials after the mixing step, and an annealing step of annealing the fired product after the firing step. And it aims at providing the manufacturing method of fluorescent substance whose raw material which supplies Sr and / or Ba in a mixing process is these aluminates.
  • an object of the present invention is to provide a light emitting device including the above-described phosphor and a light emitting light source.
  • the phosphor of the present invention can achieve higher luminous efficiency than conventional sialon phosphors by controlling the composition ratio and diffuse reflectance of the phosphor. Moreover, according to the method for producing a phosphor of the present invention, a phosphor having excellent light emission characteristics as described above can be produced with good reproducibility. Furthermore, the light-emitting device of the present invention can realize a light-emitting device with excellent luminance by using a phosphor with high luminous efficiency as described above.
  • FIG. 3 is a graph showing diffuse reflectance (%) at excitation wavelengths of 450 nm to 800 nm of the phosphors described in Examples 1 and 2 and Comparative Examples 1 and 2.
  • composition The phosphor according to the present invention is represented by the general formula: Me a Eu b Al c S i d O e N f .
  • the general formula represents the composition formula of the phosphor, and a to f are element ratios.
  • the composition ratios a to f deviate from this range, the crystal structure of the phosphor becomes unstable, promotes the formation of the second phase, and causes a decrease in diffuse reflectance. As a result, non-luminescence absorption by the host crystal increases and the light emission efficiency decreases.
  • b which represents the ion concentration of Eu, which is a luminescent element
  • b which represents the ion concentration of Eu, which is a luminescent element
  • the number of atoms of the light-emitting element ions may be promoted or the number of atoms of the light-emitting element ions may be excessively increased.
  • concentration quenching which is an effect of reabsorbing excitation energy between adjacent light-emitting ions, may occur.
  • “B” representing the ion concentration of Eu is more preferably 0.015 ⁇ b ⁇ 0.15, and still more preferably 0.020 ⁇ b ⁇ 0.100.
  • Me in the above general formula is one or both of Sr and Ba.
  • the reason why Me is set to one or both of Sr and Ba is that, as Me element, Ba can be replaced by solid solution in the crystal structure at all ratios to Sr while maintaining the crystal structure. It is.
  • the phosphor of the present invention is characterized in that the diffuse reflectance in a specific wavelength region is in a predetermined numerical range. That is, the average diffuse reflectance at a wavelength of 700 to 800 nm is 90% or more, more preferably 94% or more, and the diffuse reflectance at the fluorescence peak wavelength is 85% or more, more preferably 87% or more.
  • the main reasons why the luminous efficiency is remarkably improved by controlling the diffuse reflectance within the above range are as follows. That is, since light emission of the phosphor is caused by electronic transition of Eu 2+ ions serving as a light emission center, generally, there is less absorption without light emission by the host crystal, and the light emission efficiency is improved as the light transmittance is higher. Since the diffuse reflectance decreases due to light absorption in the light diffusion process within the phosphor powder, a high diffuse reflectance means high light transmittance.
  • the phosphor represented by the general formula: Me a Eu b Al c S i d O e N f is excited by light in the range of 300 to 500 nm, and thus diffuse reflection in the light emitting region having a wavelength greater than 700 nm.
  • the rate indicates absorption other than Eu 2+ in the phosphor, that is, absorption without emission by the host crystal. For this reason, it is considered that the higher the average diffuse reflectance at a wavelength of 700 to 800 nm, the lower the absorption without light emission by the host crystal, and the better the light extraction efficiency.
  • the diffuse reflectance at the fluorescence peak wavelength also has a close relationship with the fluorescence characteristics.
  • the diffuse reflectance at the fluorescence peak wavelength is reduced by the presence of crystal defects in the vicinity of Eu 2+ in the crystal. Then, the presence of crystal defects around Eu 2+, excited electrons are trapped emission Eu 2+ is suppressed. For this reason, it is considered that as the diffuse reflectance at the fluorescence peak wavelength is higher, the light emission is not suppressed and the light emission efficiency is excellent.
  • the phosphor of the present invention has a luminous efficiency much higher than that of conventional phosphors by controlling both the average diffuse reflectance at a wavelength of 700 to 800 nm and the diffuse reflectance at the fluorescence peak wavelength within the predetermined range. Are better.
  • the diffuse reflectance is closely related to crystal defects in the phosphor, the second phase, and the presence of impurities that absorb visible light, and can be controlled within the above range by reducing them.
  • the content of carbon which is an impurity contained in the phosphor is controlled to 0.06 wt% or less, more preferably 0.04 wt% or less.
  • the carbon content exceeds 0.06 wt%, the average diffuse reflectance at a wavelength of 700 to 800 nm is remarkably lowered, non-luminescence absorption by the host crystal is increased, and the light emission efficiency tends to be lowered.
  • the carbon that may be present as an impurity in the phosphor of the present invention is considered to be contained in the phosphor raw material or mixed from a container used for firing.
  • the crystal defects are reduced by performing an annealing treatment or an acid treatment when manufacturing the phosphor, the diffuse reflectance can be improved.
  • the phosphor of the present invention is excited by ultraviolet to near-ultraviolet light having a wavelength of 300 nm to 420 nm and emits light in a blue wavelength of 450 nm to 485 nm. And a high luminous efficiency, specifically, a luminous efficiency of 58% or more can be realized.
  • the manufacturing method of the phosphor of the present invention includes a mixing step of mixing raw materials containing aluminate, a baking step of baking the raw materials after the mixing step, and an annealing step of annealing treatment after the baking step. Moreover, it is preferable to further include an acid treatment step after the annealing step.
  • strontium aluminate powder and / or barium aluminate powder silicon nitride powder and / or silicon oxide powder, aluminum oxide powder and / or aluminum nitride powder, and europium oxide powder can be used.
  • the mixing ratio of these raw materials can be appropriately designed based on the composition ratios a to f.
  • a dry mixing method In order to mix the raw materials, there are a dry mixing method and a method of removing the solvent after wet mixing in an inert solvent that does not substantially react with the raw material components.
  • the mixing device for example, a V-type mixer, a rocking mixer, a ball mill, or a vibration mill can be used.
  • the flux alkali metal halides, alkaline earth metal halides, Al halides, and the like can be used.
  • Firing step After drying the mixed powder, it is filled in a crucible or the like having at least the surface in contact with the mixed powder made of boron nitride, and in a firing furnace at 1 atm or higher in an atmosphere of air, argon, or nitrogen, 1450 to Bake at 1750 ° C.
  • the firing temperature is less than 1450 ° C., the compounds do not sufficiently react with each other, the second phase is generated and the crystallinity is lowered, and the average diffuse reflectance at a wavelength of 700 to 800 nm tends to be lowered.
  • the firing temperature is higher than 1750 ° C.
  • the fired product becomes a completely sintered body due to the reaction via the liquid phase, and the crystallinity tends to decrease due to mechanical pulverization or the like performed when powdered.
  • the holding time at the maximum temperature in the firing step varies depending on the firing temperature, but is usually 1 to 20 hours.
  • the annealing step is preferably performed using a firing furnace at 1 atmosphere or more and 1300 ° C. or more and 1650 ° C. or less in the firing furnace.
  • the atmosphere in the annealing step one or two or more mixed atmospheres of nitrogen, argon and hydrogen can be used.
  • Acid treatment step When the acid treatment step is performed, one or two or more mixed solutions of hydrochloric acid, sulfuric acid and nitric acid, or an acidic solution obtained by diluting the mixed solution with ion-exchanged water can be used. By performing the acid treatment step, impurities remaining on the surface of the phosphor can be vaporized and removed, and the luminous efficiency can be further improved.
  • the light emitting device of the present invention includes a light emitting element and the phosphor of the present invention.
  • a light-emitting device may be used in combination of one or more phosphors having an emission peak wavelength longer than that of the phosphor of the present invention.
  • the phosphor having an emission peak wavelength longer than that of the phosphor of the present invention is a phosphor having an emission peak in a wavelength region of 485 nm or more.
  • SrAlSi 4 N 7 Eu
  • (Ca, Sr) AlSiN 3 Eu
  • La 2 O 2 S Eu.
  • the phosphor that can be used in combination with the phosphor of the present invention is not particularly limited, and can be appropriately selected according to the luminance, color rendering, and the like required for the light emitting device.
  • the light-emitting element is preferably an inorganic light-emitting element or an organic light-emitting element having a light emission of 340 nm to 450 nm.
  • the light emitting element is preferably a laser diode element or an LED element.
  • the light-emitting device can be a backlight for a liquid crystal TV, a light source device for a projector, a lighting device, a traffic signal or a road sign.
  • Table 1 shows the composition ratio, diffuse reflectance, carbon content, and luminous efficiency of the phosphors of the examples and comparative examples.
  • Example 1 Production of phosphor
  • the phosphor of Example 1 was produced through the following mixing step, firing step, and annealing step.
  • ⁇ Mixing process> As a raw material of the phosphor, powders of SrAl 2 O 4 (strontium aluminate), Si 3 N 4 (silicon nitride), Al 2 O 3 (aluminum oxide), and Eu 2 O 3 (europium oxide) were used. These were weighed so as to have the composition ratios shown in Table 1, and mixed using a V-type mixer (S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.) to obtain a mixed powder.
  • V-type mixer S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.
  • the obtained mixed powder was filled into a cylindrical boron nitride container (N-1 grade manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid.
  • the boron nitride crucible filled with the mixed powder was set in an electric furnace using a graphite heater overheating method using a carbon fiber forming body as a heat insulating material, and the mixed powder was fired. Firing is performed by evacuating the superheated body of the electric furnace with a rotary pump and a diffusion pump, filling nitrogen gas from room temperature to 1 atm, raising the temperature from room temperature to 1650 ° C. at a rate of 500 ° C. per hour, and 1650 ° C. for 4 hours Retained. The fired product was pulverized to form a phosphor.
  • composition ratios a to f were obtained by analyzing the obtained phosphors by the following method.
  • the Me element, Eu element, Al and Si cation elements are analyzed by ICP emission spectroscopy
  • the O and N anions are analyzed using an oxygen nitrogen analyzer
  • the carbon content is analyzed simultaneously by C / S. It was determined using a total (CS-444LS type).
  • the average diffuse reflectance at 700 to 800 nm and the diffuse reflectance at the fluorescence peak wavelength were measured using an integrating sphere device (ISV-469) on an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Measured with the attached device. Baseline correction was performed with a standard reflector (Spectralon), a solid sample holder filled with a phosphor powder sample was set, and diffuse reflectance was measured in the wavelength range of 450 to 800 nm.
  • the average diffuse reflectance at 700 to 800 nm is an average value from 700 nm to 800 nm among the measurement results.
  • the diffuse reflectance at the fluorescence peak wavelength is a measurement result at the fluorescence peak wavelength (near 469 nm) among the measurement results.
  • the composition of the phosphor of Example 1 was Ba 0.93 Eu 0.07 Al 1.83 Si 2.75 O 3.28 N 3.12 .
  • the phosphor of Example 1 has a luminous efficiency of 60%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 95%, a diffuse reflectance at a fluorescence peak wavelength of 87%, and a carbon content. It was 0.04 wt%. Although not shown in Table 1, the emission peak wavelength was in the range of 469 nm ⁇ 8 nm.
  • Example 2 was produced in the same manner as Example 1 except that the phosphor obtained after the annealing step was added to an acidic solution diluted with nitric acid with ion-exchanged water for 30 to 60 minutes to perform the acid treatment step. did.
  • the dilution ratio of nitric acid was 12% by volume.
  • the composition of the phosphor of Example 2 was Ba 0.93 Eu 0.07 Al 1.89 Si 2.84 O 3.45 N 3.13 .
  • the phosphor of Example 2 has a luminous efficiency of 67%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 96%, a diffuse reflectance at a fluorescence peak wavelength of 93%, and a carbon content of 0. 0.04 wt%. Although not described in Table 1, the emission peak wavelength was in the range of 469 nm ⁇ 8 nm.
  • Example 3 was produced in the same manner as Example 2 except that BaAl 2 O 4 (barium aluminate) was further blended as a raw material.
  • the phosphor of Example 3 has a luminous efficiency of 62%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 94%, a diffuse reflectance at a fluorescence peak wavelength of 87%, and a carbon content. It was 0.02 wt%. Although not shown in Table 1, the emission peak wavelength was in the range of 469 nm ⁇ 8 nm.
  • Example 4 was produced in the same manner as Example 2 except that BaAl 2 O 4 (barium aluminate) was further blended as a raw material.
  • the phosphor of Example 4 has a luminous efficiency of 62%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 94%, a diffuse reflectance at a fluorescence peak wavelength of 88%, and a carbon content. It was 0.02 wt%. Although not shown in Table 1, the emission peak wavelength was in the range of 469 nm ⁇ 8 nm.
  • Example 5 was produced in the same manner as Example 2 except that BaAl 2 O 4 (barium aluminate) was used instead of SrAl 2 O 4 (strontium aluminate).
  • the composition of the phosphor of Example 5 was Ba 0.96 Eu 0.04 Al 1.93 Si 2.99 O 3.55 N 3.09 .
  • the phosphor of Example 5 has a luminous efficiency of 59%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 95%, a diffuse reflectance at a fluorescence peak wavelength of 93%, and a carbon content. It was 0.03 wt%. Although not shown in Table 1, the emission peak wavelength was in the range of 469 nm ⁇ 8 nm.
  • Comparative Example 1 was produced in the same manner as Example 1 except that the annealing treatment was not performed.
  • the composition of the phosphor of Comparative Example 1 was Ba 0.93 Eu 0.07 Al 1.85 Si 2.74 O 3.50 N 3.18 .
  • the phosphor of Comparative Example 1 had a luminous efficiency of 49%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 94%, and a diffuse reflectance at a fluorescence peak wavelength of 79%.
  • the emission peak wavelength of the phosphor of Comparative Example 1 was in the range of 469 nm ⁇ 8 nm.
  • Comparative Example 2 was produced in the same manner as Example 2 except that barium carbonate was used instead of SrAl 2 O 4 (strontium aluminate).
  • the composition of the phosphor of Comparative Example 2 was Ba 0.93 Eu 0.07 Al 1.90 Si 3.05 O 3.75 N 3.23 .
  • the phosphor of Comparative Example 2 has a luminous efficiency of 55%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 87%, a diffuse reflectance at a fluorescence peak wavelength of 84%, and a carbon content. It was 0.08 wt%.
  • Comparative Example 3 was produced in the same manner as Example 2 except that barium carbonate and strontium carbonate were used instead of SrAl 2 O 4 (strontium aluminate).
  • the phosphor of Comparative Example 3 has a luminous efficiency of 54%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 86%, a diffuse reflectance at a fluorescence peak wavelength of 84%, and a carbon content. It was 0.10 wt%.
  • Comparative Example 4 was produced in the same manner as Example 2 except that BaAl 2 O 4 (barium aluminate) was further blended as a raw material and that the Si composition ratio d was not included in the range defined in the present invention. did.
  • the phosphor of Comparative Example 4 had a luminous efficiency of 48%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 83%, and a diffuse reflectance at a fluorescence peak wavelength of 79%.
  • Comparative Example 5 In Comparative Example 5, except that BaAl 2 O 4 (barium aluminate) was further blended as a raw material, and the composition ratios b, c and e of Eu, Al and O were not included in the range defined in the present invention. This was produced in the same manner as in Example 2.
  • the composition of the phosphor of Comparative Example 5 is (Sr, Ba) 0.78 Eu 0.22 Al 2.52 Si 2.99 O 4.91 N 3.10.
  • the phosphor of Comparative Example 5 had a luminous efficiency of 43%, an average diffuse reflectance at a wavelength of 700 to 800 nm of 80%, and a diffuse reflectance at a fluorescence peak wavelength of 77%.
  • FIG. 1 shows diffuse reflection spectra of the phosphors of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Example 2 can confirm that the diffuse reflectance is higher than that of Example 1 due to the acid treatment. In Comparative Example 1, it was observed that the diffuse reflectance was lower than that in Example 1 due to the absence of the annealing treatment, and the diffuse reflectance particularly in the vicinity of the peak wavelength was significantly reduced. Further, Comparative Example 2 has a high carbon content due to the use of carbonate as a raw material, and a significant decrease in the average diffuse reflectance at wavelengths of 700 to 800 nm is observed.
  • Example 6 A light emitting member was manufactured using the phosphor of Example 1 mixed with a sealing material and a light emitting diode as a light emitting element. This light emitting member showed higher luminance than the light emitting member produced in the same manner using the phosphor of Comparative Example 1 or 2. Moreover, when a light-emitting device was manufactured using this light-emitting member, it was possible to achieve higher brightness than before.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明は、紫外から近紫外線の波長領域で効率よく励起され青色発光するサイアロン(SiAlON)蛍光体、当該蛍光体の製造方法、及び当該蛍光体を用いた発光装置に関する。 本発明の蛍光体は、一般式:MeEuAlSiで示され、組成比a、b、c、d、e及びfは、a+b=1、0.01<b<0.20、1.65<c<2.50、2.50<d<4.00、3.15<e<4.90、及び、2.80<f<4.30であり、MeはSrとBaのいずれか一方又は双方であり、近紫外又は紫色光で励起した場合に波長450~485nmの範囲にピークを持つ青色を発光する蛍光体であって、波長700~800nmでの平均拡散反射率が90%以上であり、蛍光ピーク波長での拡散反射率が85%以上であることを特徴とする。

Description

蛍光体、発光装置及びその製造方法
 本発明は、紫外から近紫外線の波長領域で効率よく励起され青色発光するサイアロン(SiAlON)系蛍光体、当該蛍光体の製造方法、及び当該蛍光体を用いた発光装置に関する。
 化学的安定性、耐熱性、耐久性に優れる蛍光体として、結晶構造が安定である窒化物や酸窒化物の蛍光体が注目されている。なかでも、窒化物、酸窒化物を代表するものとして、サイアロン蛍光体が広く用いられている。
 特許文献1には、発光効率に優れたEu付活β型サイアロン蛍光体として、電子スピン共鳴スペクトルによる計測における25℃でのg=2.00±0.02の吸収に対応するスピン密度を2.0×1017個/g以下に制御することが提案されている。スピン密度を制御することにより、母体結晶自体による発光を伴わない光吸収が低減され、発光効率が改善するとされている。特に実施例に具体的に開示されている蛍光体の発光効率は39~58%にまで改善されたことが示されている。
国際公開第2008/062781号パンフレット
 しかし、発光光源からの励起光を効率よく吸収し発光することは、LED用途に限らず、全ての蛍光体用途に要求される特性である。このため、発光効率のさらなる改善が求められている。
 本発明者らは、上記課題を解決すべく、サイアロン蛍光体の結晶構造及び光学特性について鋭意検討した結果、蛍光体を構成する元素の組成比を特定の範囲とし、なおかつ、波長700~800nmでの平均拡散反射率、及び蛍光ピーク波長での拡散反射率を制御することにより、発光効率を著しく改善できることを見出し、本発明に至った。
 すなわち、本発明は、一般式:MeEuAlSiで示され、組成比a、b、c、d、e及びfは、
a+b=1、
0.01<b<0.20、
1.65<c<2.50、
2.50<d<4.00、
3.15<e<4.90、及び、
2.80<f<4.30であり、
MeはSrとBaのいずれか一方又は双方であり、近紫外又は紫色光で励起した場合に波長450~485nmの範囲にピークを持つ青色を発光する蛍光体であって、波長700~800nmでの平均拡散反射率が90%以上であり、蛍光ピーク波長での拡散反射率が85%以上である蛍光体を提供することを目的とする。
 また本発明は、当該蛍光体の製造方法であって、原料を混合する混合工程と、混合工程後の原料を焼成する焼成工程と、焼成工程後の焼成物をアニール処理するアニール工程とを有し、混合工程におけるSr及び/又はBaを供給する原料がこれらのアルミン酸塩である、蛍光体の製造方法を提供することを目的とする。
 さらに本発明は、上述の蛍光体と発光光源とを備える発光装置を提供することを目的とする。
 本発明の蛍光体は、蛍光体の組成比及び拡散反射率を制御することにより、従前のサイアロン蛍光体よりも高い発光効率を実現することができる。また、本発明の蛍光体の製造方法によれば、上述のような発光特性に優れる蛍光体を再現性良く製造できる。さらに、本発明の発光装置は、上述のような高発光効率の蛍光体を用いることにより、輝度に優れた発光装置を実現できる。
実施例1~2及び比較例1~2に記載の蛍光体の励起波長450nm~800nmにおける拡散反射率(%)を示すグラフである。
<蛍光体>
1.組成
 本発明に係る蛍光体は、一般式:MeEuAlSiで表される。当該一般式は蛍光体の組成式を表しており、a~fは元素の比である。本明細書中、特に記載しない限り、組成比a、b、c、d、e及びfは、a+b=1となるように算出した場合の数値を表す。言うまでもないが、a~fに正の任意の数値を乗じた元素比も同じ組成式を与える。
 a+b=1となるように算出した場合の組成比a、b、c、d、e及びfは、a+b=1、0.01<b<0.20、1.65<c<2.50、2.50<d<4.00、3.15<e<4.90、及び、2.80<f<4.30である。
 組成比a~fが当該範囲を逸脱すると、蛍光体の結晶構造が不安定化し、第二相の形成を助長し、拡散反射率の低下を引き起こす。その結果、母体結晶による非発光吸収が増大し、発光効率が低下してしまう。
 なかでも、発光元素であるEuのイオン濃度を表すbは、0.01以下では発光元素イオンの原子数が少ないため十分な発光効率が得られず、0.20以上では第二相の形成が助長されたり、発光元素イオンの原子数が多くなりすぎて、隣接する発光イオン同士による励起エネルギーの再吸収効果である濃度消光と呼ばれる現象を生じる結果、発光強度が低下する場合がある。Euのイオン濃度を表すbは、より好ましくは0.015<b<0.15であり、さらに好ましくは、0.020<b<0.100の範囲である。
 また、上記一般式におけるMeは、SrとBaのいずれか一方又は双方である。MeをSrとBaのいずれか一方又は双方としたのは、Me元素として、Baは結晶構造を維持したままSrに対して全ての比率で結晶構造中に固溶置換させることが可能であるためである。
2.拡散反射率
 本発明の蛍光体は、上述の組成的特徴を満たすことのほかに、特定の波長領域における拡散反射率が所定の数値範囲にあることを特徴の一つとしている。すなわち、波長700~800nmでの平均拡散反射率が90%以上、より好ましくは94%以上であり、かつ、蛍光ピーク波長での拡散反射率が85%以上、より好ましくは87%以上である。
 拡散反射率を上記範囲に制御することにより発光効率が著しく向上する理由としては、主に以下のことが考えられる。
 すなわち、蛍光体の発光は発光中心となるEu2+イオンの電子遷移により生じることから、一般に、母体結晶による発光を伴わない吸収が少なく、光の透過性が高いほど発光効率は向上する。拡散反射率は蛍光体粉末内での光拡散過程における光の吸収により低下するため、拡散反射率が高いことは光の透過性が高いことを意味する。本発明のように一般式:MeEuAlSiで表される蛍光体は300~500nmの範囲の光により励起されるので、波長700nmより大きい発光領域での拡散反射率は、蛍光体中のEu2+以外の吸収、つまり母体結晶による発光を伴わない吸収を示す。このため、波長700~800nmでの平均拡散反射率が高いほど、母体結晶による発光を伴わない吸収が少なく、光取り出し効率に優れると考えられる。
 一方、波長700~800nmでの拡散反射率とは別に、蛍光ピーク波長での拡散反射率も蛍光特性と密接な関係を示す。蛍光ピーク波長での拡散反射率は、結晶内のEu2+近傍に結晶欠陥が存在することにより低減する。そして、Eu2+周囲に結晶欠陥が存在すると、Eu2+の励起した電子がトラップされ発光が抑制されてしまう。このため、蛍光ピーク波長での拡散反射率が高いほど、発光が抑制されず、発光効率が優れると考えられる。
 本発明の蛍光体は、波長700~800nmでの平均拡散反射率、及び蛍光ピーク波長での拡散反射率の両方を上記所定範囲に制御したことにより、従来の蛍光体よりも発光効率が格段に優れている。
 拡散反射率は、蛍光体における結晶欠陥、第二相、可視光を吸収する不純物の存在と密接に関係しており、これらを低減することによって上記範囲に制御できる。
 なかでも、蛍光体に含まれる不純物である炭素の含有量を0.06wt%以下、より好ましくは0.04wt%以下に制御する。炭素含有量が0.06wt%を超えると、波長700~800nmでの平均拡散反射率が著しく低下し、母体結晶による非発光吸収が増大し、発光効率が低下する傾向がある。本発明の蛍光体に不純物として存在し得る炭素は、蛍光体の原料に含まれるものや、焼成の際に使用する容器等から混入するものが考えられる。
 また、蛍光体を製造する際に、アニール処理や酸処理を行うことによっても結晶欠陥が低減されるため、拡散反射率を向上させることができる。
 以上のように組成比及び拡散反射率を制御することにより、本発明の蛍光体は、波長300nm以上420nm以下の紫外から近紫外線の光によって励起され、波長450nm以上485nm以下の青色に発光ピーク波長を有し、高い発光効率、具体的には58%以上の発光効率を実現することができる。
<蛍光体の製造方法>
 本発明の蛍光体の製造方法は、アルミン酸塩を含む原料を混合する混合工程と、混合工程後の原料を焼成する焼成工程と、焼成工程後にアニール処理するアニール工程とを含む。また、アニール工程後に、酸処理工程をさらに含むことが好ましい。
1.混合工程
 混合工程に用いる原料として炭酸ストロンチウムなどの炭素を含む原料を使用すると、原料粉由来の炭素の一部が炭素又は炭化物として蛍光体に含まれることにより、波長700~800nmにおける平均拡散反射率が低下してしまう傾向がある。このため、特に、Sr及び/又はBaを供給する原料をこれらのアルミン酸塩に限定することにより、蛍光体に含まれる不純物としての炭素の含有量を大幅に低減することができ、高い発光効率を実現することが可能である。
 好ましい原料の組合せとして、アルミン酸ストロンチウム粉末及び/又はアルミン酸バリウム粉末と、窒化ケイ素粉末及び/又は酸化シリコン粉末と、酸化アルミニウム粉末及び/又は窒化アルミニウム粉末と、酸化ユーロピウム粉末とを用いることができる。これらの原料の配合割合は、組成比a~fに基づいて適宜設計することができる。
 原料を混合するには、乾式混合する方法や、原料各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法がある。混合装置としては、例えば、V型混合機、ロッキングミキサー、ボールミル、振動ミルを用いることができる。また、必要に応じてフラックスを加えてもよい。フラックスとしては、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物、Alのハロゲン化物などが使用可能である。
2.焼成工程
 混合粉末を乾燥後、少なくとも混合粉末が接する面が窒化ホウ素からなる坩堝等の容器内に充填し、1気圧以上とした焼成炉内において、空気、アルゴン、又は窒素雰囲気中で、1450~1750℃で焼成する。焼成温度が1450℃未満であると化合物同士が十分に反応せず、第二相の生成や結晶性の低下を生じ、波長700~800nmでの平均拡散反射率が低下する傾向がある。一方、焼成温度が1750℃より高いと、液相を介した反応により焼成物が完全に焼結体となり、これを粉末化する際に行う機械的粉砕等によって結晶性が低下する傾向がある。
 焼成工程における最高温度での保持時間は、焼成温度によっても変わるが、通常は1~20時間である。
3.アニール工程
 アニール工程は、焼成炉を用い、焼成炉内を1気圧以上、1300℃以上1650℃以下で行うのが好ましい。アニール工程での雰囲気は、窒素、アルゴン及び水素のうちの一種もしくは二種以上の混合雰囲気を用いることができる。
4.酸処理工程
 酸処理工程を行う場合、塩酸、硫酸、硝酸のうちの一種若しくは二種以上の混合溶液又はその混合溶液をイオン交換水で希釈した酸性溶液を用いることができる。酸処理工程を行うことにより、蛍光体の表面に残存した不純物を気化除去することができ、発光効率をさらに向上することができる。
<発光装置>
 本発明の発光装置は、発光素子と本発明の蛍光体とを含む。かかる発光装置は、本発明の蛍光体の他に、本発明の蛍光体より長波長に発光ピーク波長を有する蛍光体1種以上を組み合わせて用いてもよい。
 本発明の蛍光体より長波長に発光ピーク波長を有する蛍光体とは、485nm以上の波長域に発光ピークを有する蛍光体であり、例えば、β-SiAlON:Eu、(Ba,Sr)SiO:Eu、Sr-SiAlON:Eu、α-SiAlON:Eu、(Li,Ca)(Al,Si)(N,O):Ce、(Ca,Sr,Ba)Si:Eu、SrAlSi:Eu、(Ca,Sr)AlSiN:Eu、LaS:Euがある。本発明の蛍光体と併用できる蛍光体は、特に限定されるものではなく、発光装置に要求される輝度や演色性等に応じて適宜選択できる。
 発光素子は、好ましくは、340nm以上450nm以下の発光を有する無機発光素子又は有機発光素子である。発光素子は、レーザーダイオード素子やLED素子が好ましい。
 発光装置は、液晶TV用バックライト、プロジェクタの光源装置、照明装置、交通信号機又は道路標識等とすることができる。
 本発明を以下に示す実施例によってさらに詳しく説明する。表1は、各実施例及び比較例の蛍光体の組成比、拡散反射率、炭素含有量、発光効率を示したものである。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
1.蛍光体の製造
 実施例1の蛍光体を、以下の混合工程、焼成工程、アニール工程を経て製造した。
<混合工程>
 蛍光体の原料として、SrAl(アルミン酸ストロンチウム)、Si(窒化珪素)、Al(酸化アルミニウム)、及びEu(酸化ユーロピウム)の粉末を用いた。これらを表1記載の組成比になるように秤量し、V型混合機(筒井理化学器械社製S-3)を用いて混合し、混合粉末とした。
<焼成工程>
 得られた混合粉末を、蓋付きの円筒型窒化ホウ素製容器(電気化学工業社製N-1グレード)に充填した。混合粉末を充填した窒化ホウ素製坩堝を、炭素繊維形成体を断熱材とした黒鉛ヒーター過熱方式を用いた電気炉にセットし、混合粉末を焼成した。焼成は、ロータリーポンプ及び拡散ポンプにより電気炉の過熱筺体内を真空として、室温から窒素ガスを1気圧まで充填し、室温から1650℃まで毎時500℃の速度で昇温し、1650℃で4時間保持した。焼成物を粉砕し、蛍光体を粉末状にした。
<アニール工程>
 得られた焼成物に、窒素雰囲気中(大気圧)、1500℃、8時間のアニール処理を行って実施例1の蛍光体を得た。
2.組成比の分析
 組成比a~fは、得られた蛍光体を以下の方法で分析することにより求めた。すなわち、Me元素、Eu元素、Al及びSiの陽イオン元素についてはICP発光分光分析法により、O及びNの陰イオンについては酸素窒素分析計を用いて、炭素含有量に関してはC/S同時分析計(CS-444LS型)を用いて求めた。
3.拡散反射率の測定
 700~800nmでの平均拡散反射率、及び蛍光ピーク波長での拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けた装置で測定した。標準反射板(スペクトラロン)でベースライン補正を行い、蛍光体粉末試料を充填した固体試料ホルダーをセットし、450~800nmの波長範囲で拡散反射率の測定を行った。
 700~800nmでの平均拡散反射率は、この測定結果のうちの700nmから800nmでの平均値である。蛍光ピーク波長での拡散反射率は、この測定結果のうちの蛍光ピーク波長(469nm付近)での測定結果である。
4.発光効率の測定
 蛍光体の発光効率は以下の方法で測定した。大塚電子株式会社製MCPD-7000を用い、その試料部に反射率が99%の標準反射板(Labsphere社製、スペクトラロン)をセットし、波長405nmの励起光のスペクトルを測定した。その際、400~415nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次いで、試料部に蛍光体をセットし、得られたスペクトルデータから蛍光フォトン数(Qem)を算出した。蛍光フォトン数は、415~800nmの範囲で算出した。得られたフォトン数から発光効率(=Qem/Qex×100)を求めた。
 実施例1の蛍光体の組成はBa0.93Eu0.07Al1.83Si2.753.283.12であった。実施例1の蛍光体は、発光効率が60%であり、波長700~800nmでの平均拡散反射率が95%であり、蛍光ピーク波長での拡散反射率が87%であり、炭素含有量が0.04wt%であった。表1には記載しなかったが、その発光ピーク波長は469nm±8nmの範囲内であった。
<実施例2>
 実施例2は、アニール工程後に得られた蛍光体を、イオン交換水にて硝酸を希釈した酸性溶液に30~60分投入して酸処理工程を行ったこと以外は実施例1と同様に製造した。硝酸の希釈率は容量比で12%とした。
 実施例2の蛍光体の組成は、Ba0.93Eu0.07Al1.89Si2.843.453.13であった。実施例2の蛍光体は発光効率が67%であり、波長700~800nmでの平均拡散反射率が96%であり、蛍光ピーク波長での拡散反射率が93%であり、炭素含有量は0.04wt%であった。表1には記載していないが、発光ピーク波長は469nm±8nmの範囲内であった。
<実施例3>
 実施例3は、さらにBaAl(アルミン酸バリウム)を原料として配合したこと以外は実施例2と同様に製造した。実施例3の蛍光体の組成は、(Sr,Ba)0.93Eu0.07Al1.83Si2.683.383.12であり、Sr、Baの組成比がSr:Ba=1.00:1.24であった。
 実施例3の蛍光体は、発光効率が62%であり、波長700~800nmでの平均拡散反射率が94%であり、蛍光ピーク波長での拡散反射率が87%であり、炭素含有量が0.02wt%であった。表1には記載しなかったが、その発光ピーク波長は469nm±8nmの範囲内であった。
<実施例4>
 実施例4は、さらにBaAl(アルミン酸バリウム)を原料として配合したこと以外は実施例2と同様に製造した。実施例4の蛍光体の組成は、(Sr,Ba)0.93Eu0.07Al2.10Si3.843.954.22であり、Sr、Baの組成比がSr:Ba=1.00:1.19であった。
 実施例4の蛍光体は、発光効率が62%であり、波長700~800nmでの平均拡散反射率が94%であり、蛍光ピーク波長での拡散反射率が88%であり、炭素含有量が0.02wt%であった。表1には記載しなかったが、その発光ピーク波長は469nm±8nmの範囲内であった。
<実施例5>
 実施例5は、SrAl(アルミン酸ストロンチウム)の代わりにBaAl(アルミン酸バリウム)を用いたこと以外は実施例2と同様に製造した。実施例5の蛍光体の組成は、Ba0.96Eu0.04Al1.93Si2.993.553.09であった。
 実施例5の蛍光体は、発光効率が59%であり、波長700~800nmでの平均拡散反射率が95%であり、蛍光ピーク波長での拡散反射率が93%であり、炭素含有量が0.03wt%であった。表1には記載しなかったが、その発光ピーク波長は469nm±8nmの範囲内であった。
<比較例1>
 比較例1は、アニール処理を行わなかったこと以外は、実施例1と同様に製造した。比較例1の蛍光体の組成は、Ba0.93Eu0.07Al1.85Si2.743.503.18であった。比較例1の蛍光体は、発光効率が49%であり、波長700~800nmでの平均拡散反射率が94%であり、蛍光ピーク波長での拡散反射率が79%であった。表1には記載しなかったが、比較例1の蛍光体の発光ピーク波長は469nm±8nmの範囲内であった。
<比較例2>
 比較例2は、SrAl(アルミン酸ストロンチウム)の代わりに炭酸バリウムを用いたこと以外は実施例2と同様に製造した。比較例2の蛍光体の組成はBa0.93Eu0.07Al1.90Si3.053.753.23であった。比較例2の蛍光体は、発光効率が55%であり、波長700~800nmでの平均拡散反射率が87%であり、蛍光ピーク波長での拡散反射率が84%であり、炭素含有量が0.08wt%であった。
<比較例3>
 比較例3は、SrAl(アルミン酸ストロンチウム)の代わりに炭酸バリウム及び炭酸ストロンチウムを用いたこと以外は、実施例2と同様に製造した。比較例3の蛍光体の組成は、(Sr,Ba)0.93Eu0.07Al1.91Si2.893.593.20であり、Sr、Baの組成比がSr:Ba=1.00:1.22であった。比較例3の蛍光体は、発光効率が54%であり、波長700~800nmでの平均拡散反射率が86%であり、蛍光ピーク波長での拡散反射率が84%であり、炭素含有量が0.10wt%であった。
<比較例4>
 比較例4は、さらにBaAl(アルミン酸バリウム)を原料として配合したこと、及びSiの組成比dが本発明に規定する範囲に含まれないこと以外は、実施例2と同様に製造した。比較例4の蛍光体の組成は、(Sr,Ba)0.93Eu0.07Al1.68Si2.493.602.77であり、Sr、Baの組成比がSr:Ba=1.00:2.55であった。比較例4の蛍光体は、発光効率が48%であり、波長700~800nmでの平均拡散反射率が83%であり、蛍光ピーク波長での拡散反射率が79%であった。
<比較例5>
 比較例5は、さらにBaAl(アルミン酸バリウム)を原料として配合したこと、及びEu、Al、Oの組成比b、c、eが本発明に規定する範囲に含まれないこと以外は、実施例2と同様に製造した。比較例5の蛍光体の組成は、(Sr,Ba)0.78Eu0.22Al2.52Si2.994.913.10であり、Sr、Baの組成比がSr:Ba=1.00:2.45であった。比較例5の蛍光体は、発光効率が43%であり、波長700~800nmでの平均拡散反射率が80%であり、蛍光ピーク波長での拡散反射率が77%であった。
 図1に、実施例1、2及び比較例1、2の蛍光体の拡散反射スペクトルを示す。実施例2は、酸処理を行ったことにより、実施例1よりも拡散反射率が高いことを確認できる。比較例1は、アニール処理を行わなかったことにより、実施例1よりも拡散反射率が低くなり、特にピーク波長付近での拡散反射率が著しく低下したことが認められる。また、比較例2は、原料に炭酸塩を用いたことにより炭素含有量が高く、特に波長700~800nmでの平均拡散反射率に著しい低下が認められる。
<実施例6>
 封止材に混合した実施例1の蛍光体と、発光素子としての発光ダイオードとを用いて発光部材を製造した。この発光部材は、比較例1又は2の蛍光体を用いて同様に製造した発光部材に比べて、高い輝度を示した。
 また、この発光部材を用いて発光装置を製造したところ、従来よりも高輝度を実現することができた。

Claims (5)

  1.  一般式:MeEuAlSiで示され、組成比a、b、c、d、e及びfは、
    a+b=1、
    0.01<b<0.20、
    1.65<c<2.50、
    2.50<d<4.00、
    3.15<e<4.90、及び、
    2.80<f<4.30であり、
    MeはSrとBaのいずれか一方又は双方であり、近紫外又は紫色光で励起した場合に波長450~485nmの範囲にピークを持つ青色を発光する蛍光体であって、波長700~800nmでの平均拡散反射率が90%以上であり、蛍光ピーク波長での拡散反射率が85%以上である蛍光体。
  2.  炭素含有量が0.06wt%以下である、請求項1に記載の蛍光体。
  3.  請求項1又は2に記載の蛍光体と、発光光源とを有する発光装置。
  4.  請求項1又は2に記載の蛍光体を製造する蛍光体の製造方法であって、原料を混合する混合工程と、混合工程後の原料を焼成する焼成工程と、焼成工程後の焼成物をアニール処理するアニール工程とを有し、混合工程におけるSr及び/又はBaを供給する原料がこれらのアルミン酸塩である、蛍光体の製造方法。
  5.  アニール工程後にさらに酸処理工程を有する請求項4記載の蛍光体の製造方法。
PCT/JP2014/083113 2013-12-17 2014-12-15 蛍光体、発光装置及びその製造方法 WO2015093429A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553522A JP6576246B2 (ja) 2013-12-17 2014-12-15 蛍光体、発光装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-260456 2013-12-17
JP2013260456 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015093429A1 true WO2015093429A1 (ja) 2015-06-25

Family

ID=53402775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083113 WO2015093429A1 (ja) 2013-12-17 2014-12-15 蛍光体、発光装置及びその製造方法

Country Status (3)

Country Link
JP (1) JP6576246B2 (ja)
TW (1) TWI651292B (ja)
WO (1) WO2015093429A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305084A (zh) * 2022-07-20 2022-11-08 北京科技大学 一种紫光激发的铝氧氮化合物蓝青色荧光粉及制备与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084151A (ja) * 2007-04-18 2010-04-15 Mitsubishi Chemicals Corp 蛍光体
JP2012162633A (ja) * 2011-02-06 2012-08-30 National Institute For Materials Science 蛍光体、その製造方法及び発光装置
WO2013069696A1 (ja) * 2011-11-07 2013-05-16 独立行政法人物質・材料研究機構 蛍光体および製造方法、蛍光体を用いる発光装置および画像表示装置
WO2013180216A1 (ja) * 2012-05-31 2013-12-05 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
WO2014091776A1 (ja) * 2012-12-14 2014-06-19 電気化学工業株式会社 蛍光体、その製造方法及び発光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183807A1 (en) * 2002-03-28 2003-10-02 Virendra Shankar Long decay luminescent powder and process for preparation thereof
JP2004292588A (ja) * 2003-03-26 2004-10-21 Kyocera Corp 残光性ジルコニアセラミックス及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084151A (ja) * 2007-04-18 2010-04-15 Mitsubishi Chemicals Corp 蛍光体
JP2012162633A (ja) * 2011-02-06 2012-08-30 National Institute For Materials Science 蛍光体、その製造方法及び発光装置
WO2013069696A1 (ja) * 2011-11-07 2013-05-16 独立行政法人物質・材料研究機構 蛍光体および製造方法、蛍光体を用いる発光装置および画像表示装置
WO2013069693A1 (ja) * 2011-11-07 2013-05-16 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
WO2013180216A1 (ja) * 2012-05-31 2013-12-05 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
WO2014091776A1 (ja) * 2012-12-14 2014-06-19 電気化学工業株式会社 蛍光体、その製造方法及び発光装置

Also Published As

Publication number Publication date
JPWO2015093429A1 (ja) 2017-03-16
JP6576246B2 (ja) 2019-09-18
TWI651292B (zh) 2019-02-21
TW201529527A (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
TWI375710B (ja)
JP4740379B1 (ja) β型サイアロン蛍光体、その用途及びβ型サイアロン蛍光体の製造方法
JP5885175B2 (ja) 蛍光体およびその製造方法、蛍光体を用いた発光装置、画像表示装置、顔料および紫外線吸収剤
US9068116B2 (en) Luminescent material
WO2005087896A1 (ja) 蛍光体とその製造方法、照明器具、および画像表示装置
WO2006101096A1 (ja) 蛍光体とその製造方法および発光器具
CN107851694B (zh) 发光器具和图像显示装置
WO2017155111A1 (ja) 蛍光体、発光素子及び発光装置
JP5187817B2 (ja) 蛍光体と発光器具
JP5787343B2 (ja) 蛍光体及び発光装置
JP5756540B2 (ja) 蛍光体及び発光装置
JP6406550B2 (ja) 蛍光体及び発光装置
JP6576246B2 (ja) 蛍光体、発光装置及びその製造方法
TWI521046B (zh) 螢光體、其製造方法及發光裝置
TWI450947B (zh) β型矽鋁氮氧化物之製造方法
JP6903455B2 (ja) 蛍光体の製造方法、蛍光体及び発光素子と発光装置
JP7282757B2 (ja) 赤色蛍光体及び発光装置
CN103881710A (zh) 荧光体与发光装置
JP2012001716A (ja) 蛍光体及びその製造方法と、その蛍光体を用いた発光装置
JP7010476B2 (ja) 波長変換部材、発光装置、および波長変換部材の製造方法
WO2012105687A1 (ja) 蛍光体、その製造方法及び発光装置
US9399731B2 (en) Phosphor, method for producing the same, and luminescent device using the same
JP2018109079A (ja) 緑色蛍光体、発光素子及び発光装置
JP2018109077A (ja) 緑色蛍光体、発光素子及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872142

Country of ref document: EP

Kind code of ref document: A1