WO2015091516A1 - Dispositif de stockage d'énergie électrique de grande capacité - Google Patents

Dispositif de stockage d'énergie électrique de grande capacité Download PDF

Info

Publication number
WO2015091516A1
WO2015091516A1 PCT/EP2014/078008 EP2014078008W WO2015091516A1 WO 2015091516 A1 WO2015091516 A1 WO 2015091516A1 EP 2014078008 W EP2014078008 W EP 2014078008W WO 2015091516 A1 WO2015091516 A1 WO 2015091516A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
positive electrode
electrolyte
cathode
compartment
Prior art date
Application number
PCT/EP2014/078008
Other languages
English (en)
Inventor
Gilbert CAZENOBE
Original Assignee
Areva Np
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva Np filed Critical Areva Np
Priority to CN201480071973.2A priority Critical patent/CN106415906A/zh
Priority to US15/105,335 priority patent/US20160329589A1/en
Priority to EP14812536.2A priority patent/EP3084871A1/fr
Publication of WO2015091516A1 publication Critical patent/WO2015091516A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention generally relates to electrical energy storage devices. More specifically, the invention relates to an electrical energy storage device comprising a plurality of electrolytic cells and an electric charger-inverter, each electrolytic cell comprising:
  • the inverter-charger being arranged to selectively charge the storage device by circulating an electric current in a first direction causing an iron deposit to the negative electrode, or unload the storage device by circulating the electric current in a second opposite direction to the first causing a dissolution of iron deposited at the negative electrode.
  • Such a device for storing energy is known, for example, from CA -1 079 350.
  • the invention aims to propose an energy storage device whose electrolyte can be used for a much greater number of cycles than in CA 1 079 350.
  • the invention relates to an energy storage device of the aforementioned type, characterized in that the positive electrode is porous, the storage device comprising a device for recycling the gaseous hydrogen released in the cathode compartment. , arranged to suck a gaseous phase filling a sky of the cathode compartment and to discharge said gaseous phase in the anode compartment so that the hydrogen gas is oxidized in contact with the positive electrode.
  • the composition of the cathode electrolyte and the anode electrolyte remains constant, in particular its pH.
  • the recycling of hydrogen makes it possible to use the same electrolyte during a large number of cycles and prolongs the life of the electrolyte before its exchange. It extends the life of the storage device.
  • the energy storage device may also have one or more of the features below, considered individually or in any technically feasible combination:
  • the positive electrode is porous for the anode and / or cathode electrolyte and defines the barrier between the anode compartment and the cathode compartment;
  • the electrolytic cell comprises a tank, the positive electrode dividing said tank into an upper zone forming the cathode compartment and a lower zone forming the anode compartment and situated below the upper zone;
  • the gaseous phase is discharged by the recycling device into a zone of the anode compartment located under the positive electrode;
  • the recycling device comprises a probe for measuring the concentration of hydrogen in the gas phase, and a programmed automation to control the recycling device according to the hydrogen concentration measured by the probe;
  • the positive electrode is made of titanium or of titanium sponge or of a titanium alloy
  • the positive electrode is covered with a coating of TiN;
  • the positive electrode is a fabric comprising at least one intertwined wire, made of titanium or of a titanium alloy;
  • the positive electrode is made of an electrically conductive material, covered with magnetite;
  • the electrolytic cell comprising a device for rotating the negative electrode relative to the positive electrode around an axis of rotation;
  • the negative electrode has a cylindrical outer surface, coaxial with the axis of rotation, on which the iron is deposited;
  • the positive electrode comprises a portion in the form of a sector of a cylinder, coaxial with the axis of rotation;
  • the electrolytic cell comprises:
  • an anode transfer device capable of transferring the anode electrolyte between the anode electrolyte reservoir and the anode compartment;
  • a cathode electrolyte reservoir a cathodic transfer device capable of transferring the cathode electrolyte between the cathode electrolyte reservoir and the anode compartment.
  • the anodic electrolyte reservoir is located at a higher elevation than that of the electrolytic cell, the anodic transfer device being provided for gravitarily transferring the anode electrolyte from the anode electrolyte reservoir to the anode compartment;
  • the device comprises a device designed to maintain the sky of the electrolytic cell under an atmosphere of neutral gas, for example under argon pressure.
  • FIG. 1 is a simplified schematic representation of an energy storage device comprising a large number of electrolytic cells, only certain cells being represented;
  • FIG. 2 is a simplified schematic representation of an electrolytic cell of the device of FIG. 1.
  • the device 1 shown in Figure 1 is for storing the electrical energy.
  • the device 1 is connected to a power distribution network 3 via a power transformer 4.
  • a number of electrical energy production systems (not shown) supply the grid 3 with electrical power.
  • Electrical consumers (not shown) are also connected to this network.
  • the energy storage device 1 comprises a large number of electrolytic cells 5, and an electric charger-inverter 7.
  • a system 9 for managing the network interface Grid Interface Management System, or GIMS.
  • the energy storage device 1, notified by the GIMS 9 When the electric power supplied by the power generation systems is greater than the power demand by the electric consumers, the energy storage device 1, notified by the GIMS 9, accumulates the energy in excess, by converting it under electrochemical form. Conversely, when the electrical power demanded by the consumers is greater than the power produced, the device 1, notified by the GIMS 9, converts the accumulated energy in electrochemical form into electrical energy, the latter supplying the network 3.
  • Each electrolytic cell 5 allows for example to store an electrical energy of about 200 kWh.
  • the electrolytic cells 5 are gathered in one or more sets, each set comprising for example 1300 cells series electrolytic devices, for an electrical energy storage capacity of approximately 300 MWh.
  • Each electrolytic cell has a nominal power of 20 kW.
  • a set therefore has a nominal electrical power of the order of 30 MW.
  • the electric charger-inverter 7 supplies all the electrolytic cells 5 of the same unit.
  • the electric charger / inverter 7 supplies only a part of the electrolytic cells 5, the device 1 thus comprising several electric charger-inverters 7 for one and the same set.
  • Each electric inverter-charger 7 is connected to the network through the GIMS 9 and the power transformer 4.
  • each electric charger-inverter 7 is of the so-called 4 quadrant type.
  • the charger-inverter 7 is reversible. Thus, it operates as an inverter when the electrolytic cells 5 discharge on the network 3, and it operates as a rectifier when, on the contrary, the electrolytic cells 5 are charged from the network 3.
  • the electrolytic cells 5 are all identical, and are of the type shown schematically in FIG.
  • Each electrolytic cell 5 comprises:
  • the electrochemical torque on the negative electrode side is Fe 2 7Fe.
  • the electrochemical torque on the positive electrode side is Fe 2 7Fe 3+ .
  • the electrolytic cell 5 accumulates energy in electrochemical form, storing this energy in the form of a solid deposit of iron on the negative electrode and a solution of Fe 3+ .
  • This deposit of iron dissolves and the Fe 3+ becomes Fe 2+ when the cell 5 is to restore electrical energy.
  • the charger-inverter 7 controls the flow of electric current.
  • the inverter-charger 7 maintains the negative electrode at a negative electric potential and the positive electrode at a positive potential greater in absolute value than that of the negative electrode. It therefore circulates the electric current in a first direction, causing in particular a deposit of iron to the negative electrode.
  • the charger-inverter 7 maintains the negative electrode 21 at a potential lower than that of the positive electrode 15.
  • the charger-inverter 7 thus circulates the current in a second direction opposite to the first direction, causing the dissolution of the iron deposited on the negative electrode and the formation of Fe 2+ at the positive electrode.
  • positive electrode and “negative electrode” are meant herein in accordance with IEC 600-50-482, IEC60050-482 of 1/4/2004.
  • the anode electrolyte 13 comprises among others Fe 3+ ions. It is an acidic pH of about 2 and therefore approximately 10 "H 2 M +. It also comprises at least one anion, preferably Cl". Alternatively, this anion is Br " , or any other suitable anion, that is to say not taking part in the reactions.
  • the cathode electrolyte 19 comprises Fe 2+ ions. It is at a pH of about 3 and therefore approximately 10 "3 M H +. It also comprises at least one anion, e.g., Cl". Alternatively, it is anion Br " , or any other suitable anion, that is to say not taking part in the reactions.
  • the anode electrolyte and the cathode electrolyte optionally comprise additives for increasing the electrical conductivity without having any action on the electrodes. These additives are conventional and will not be detailed here.
  • the negative electrode 21 and the positive electrode 15 are arranged facing each other, the electrolytic cell 5 comprising a device 23 (FIG. 1) for rotating the negative electrode 21 relative to the positive electrode 15 about an axis of rotation X.
  • the negative electrode 21 is therefore rotatable.
  • Negative electrode 21 and positive electrode 15 are coaxial.
  • the iron is deposited on the entire periphery of the negative electrode, as it passes opposite the the positive electrode.
  • the iron is deposited over a large area, evenly due to the rotational movement of the negative electrode. It is thus possible to increase the amount of iron deposited in each electrolytic cell, and to increase the storage capacity of the energy storage device.
  • the negative electrode 21 has a cylindrical outer surface 25 coaxial with the axis of rotation X on which the iron is deposited when the electrolytic cell 5 operates as an electrical receiver.
  • the negative electrode may have a non-cylindrical outer surface. This outer surface may be frustoconical, or may have the shape of another surface of revolution about the axis X.
  • the negative electrode 21 typically has a length of between 1.5m and 4m, and an outer diameter of between 20cm. and 1.5m. In the present description, the numerical values correspond to an exemplary embodiment in which the negative electrode has a length of 4 m and a diameter of 20 cm. According to another advantageous example, the negative electrode has a length of 1.5 m and an external diameter of 1.5 m.
  • the negative electrode is made of a good electrical conductor material, such as aluminum or steel.
  • the positive electrode comprises a part 27 in a sector of the cylinder, coaxial with the axis of rotation X.
  • the portion 27 extends for example about 180.degree. so a half-cylinder.
  • a gap 29 of small thickness therefore separates the outer surface 25 of the negative electrode and the portion 27 of the positive electrode.
  • the gap 29 has a thickness of between 0.1 and 20 mm, preferably between 1 and 15 mm, and is typically 1 1 mm.
  • a thickness of 1 1 mm makes it possible to obtain a storage capacity of 200 kWh per cell.
  • the cylinder sector portion 27 extends more than 180 ° or less than 180 ° about the axis of rotation X.
  • the electrolytic cell 5 comprises a tank 31, the positive electrode 15 dividing the internal volume of the tank between an upper zone and a lower zone.
  • the upper zone forms the cathode compartment 17.
  • the lower zone forms the anode compartment 1 1. This is located under the cathode compartment 17.
  • the tank 31 is gastight and liquid tight.
  • the positive electrode 15 has a porous structure for the anode electrolyte and the cathode electrolyte. It is also porous to gases.
  • the positive electrode 15 defines the porous barrier separating the anode compartment from the cathode compartment.
  • the positive electrode is made of titanium or a titanium alloy, and is for example a fabric or a foam.
  • the positive electrode is coated with a TiN coating, so as to increase the life of the positive electrode and to reduce the electrical losses.
  • the positive electrode is a fabric consisting of at least one intertwined wire, made of titanium or a titanium alloy. This fabric can be covered with TiN.
  • the positive electrode is a wire mesh sold by the company GANTOIS, under the reference 104613.
  • This mesh is made with a titanium wire T40, diameter before weaving 0.8 mm. It is characterized by a metric number of the mesh number being 4.57.
  • the nominal opening of the fabric is 4.75 mm, and the transparency of 73%.
  • the mass per unit area is 970 g / m 2 .
  • the fabric has a thickness of between 1.4 and 1.6 mm. This grid can be covered with TiN.
  • the positive electrode is a wire cloth sold by GANTOIS under the reference 104125.
  • This fabric is obtained from T40 titanium wire son, the warp wire having a diameter before weaving of 0, 36 mm and the weft yarn having a diameter before weaving of 0.265 mm.
  • the wire has a metric number of 22 for the warp thread and 230 for the weft thread.
  • the mass per unit area is 2400 g / m 2 and the fabric has a nominal opening of 0.180 mm.
  • This canvas can be covered with TiN.
  • the positive electrode is made of titanium sponge. Titanium sponge is an intermediate product in titanium metallurgy. It can be covered with TiN.
  • the positive electrode 15 is made of an electrically conductive material covered with magnetite. Fe 3 O 4 .
  • the positive electrode is made of copper steel, then partly electrolytically oxidized to Fe 3 O 4 .
  • the electrolytic cell 5 further comprises:
  • an anode transfer device 35 capable of transferring the anode electrolyte between the anode electrolyte reservoir 33 and the anode compartment 11;
  • a cathodic transfer device 39 capable of transferring the cathode electrolyte between the cathode electrolyte reservoir 37 and the cathode compartment 17.
  • the anode transfer device 35 typically comprises a transfer member
  • the anode electrolyte reservoir 33 is located at a higher elevation than that of the cell 5.
  • the anodic transfer device 35 comprises a bypass 41 ', placing the reservoir 33 in communication with the anode compartment by passing the transfer member 41 in parallel.
  • the bypass 41 ' is equipped with a controlled valve, for selectively closing or opening the bypass.
  • the transfer member 41 When the electrolytic cell is in charge, the transfer member 41 removes the anode electrolyte in the anode compartment 1 1 and discharges it into the tank 33.
  • the bypass 41 ' is closed.
  • the transfer member 41 when the electrolytic cell operates as an electric generator, the transfer member 41 is at a standstill.
  • the bypass 41 ' is open.
  • the anode electrolyte flows by gravity and / or siphon effect from the tank 33 into the anode compartment, through the bypass 41 '.
  • the cathodic transfer device 39 comprises a reversible transfer member 42, for example a pump, connected on one side to the reservoir 37 and on the other side to the cathode compartment 17.
  • a reversible transfer member 42 for example a pump
  • the cathode electrolyte reservoir 37 is located at a lower elevation than that of the cell 5.
  • the cathodic transfer device 39 comprises a bypass 42 ', placing the reservoir 37 in communication with the compartment cathodic bypassing the transfer member 42.
  • the bypass 42 ' is equipped with a controlled valve, for selectively closing or opening the bypass.
  • the transfer member 42 When the electrolytic cell is in charge, the transfer member 42 removes the cathode electrolyte in the reservoir 37 and delivers it to the cathode compartment 17.
  • the bypass 42 ' is closed.
  • the transfer member 42 is at a standstill.
  • the bypass 42 ' is open.
  • the cathodic electrolyte flows by gravity and / or siphon effect from the cathode compartment 17 into the reservoir 37.
  • the transfer members 41 and 42 are reversible.
  • the anodic and cathodic transfer devices 35 and 39 do not include bypasses 41 ', 42'.
  • the pump 41 is used to transfer the anode electrolyte from the tank 33 into the anode compartment 13.
  • the pump 42 is used to transfer the cathode electrolyte from the cathode compartment 15 into the tank 37.
  • the rotating negative electrode has a substantially horizontal axis of rotation X.
  • the negative electrode 21 is only partially immersed in the cathode electrolyte filling the compartment 17.
  • the cathodic transfer device in this case comprises a distribution ramp 43 located above the negative electrode 21.
  • the distribution manifold 43 extends along the generatrix located at the highest point of the outer surface 25 of the negative electrode.
  • the distribution manifold 43 is pierced with a plurality of orifices through which the cathode electrolyte discharged by the transfer member 41 flows, and falls on the outer surface 25.
  • the fresh cathode electrolyte supplied by the transfer device 39 is distributed uniformly over the entire external surface 25.
  • the transfer device 39 comprises a plunging plumbing pipe 45, one end of which plunges continuously into the cathode electrolyte filling the chamber 17.
  • the ramp 43 is used when the transfer device discharges the cathode electrolyte from the reservoir 37 to the cathode chamber 17.
  • the plunging piping 45 is used when the cathodic electrolyte circulates in the opposite direction, from the chamber 17 to the cathodic electrolyte reservoir 37.
  • the negative electrode 21 is fully immersed in the cathode electrolyte.
  • the distribution ramp 43 is also immersed in the cathodic electrolyte and extends along the generatrix located at the highest point of the outer surface 25. In this case, the ramp 43 is used to suck up the cathode electrolyte when it flows from the chamber 17 to the cathode electrolyte reservoir 37.
  • the transfer device 39 does not include plunging pipe 45 plunging.
  • the axis of rotation X of the negative electrode is vertical. This variant is advantageous because it considerably reduces the footprint of each electrolytic cell.
  • the electrolytic cell 5 further comprises a device 47 provided to maintain the sky 49 of the electrolytic cell under a neutral gas atmosphere.
  • neutral gas is meant here a gas which does not intervene in the chemical and electrochemical reactions taking place in the device, and does not modify the composition of the constituent materials of the device.
  • the neutral gas is preferably argon.
  • the neutral gas is nitrogen, or another neutral gas, or a mixture of neutral gases.
  • the device 47 comprises for example a reserve of pressurized gas connected to the sky 49 of the electrolytic cell via a line equipped with a pressure reducer.
  • the device 47 comprises a reserve of neutral gas and a compressor discharging the neutral gas from the reserve into the sky 49 of the electrolytic cell.
  • the sky 49 of the electrolytic cell is maintained at a pressure slightly greater than the pressure around the electrolytic cell, so as to prevent oxygen from entering the interior of the electrolytic cell.
  • the sky 49 is maintained at a pressure slightly greater than atmospheric pressure, from 1 to 10 relative daPa.
  • the anode compartment 1 1 is completely filled with anode electrolyte
  • the cathode compartment 17, which is situated above the anode compartment 1 1 is only partially filled with 'electrolyte.
  • the sky 49 corresponds to the fraction of the cathode compartment which is not filled by the cathode electrolyte 19 and which is filled with the neutral gas or gases.
  • the electrolytic cell 5 also comprises a device 51 for recycling the gaseous hydrogen evolved in the cathode compartment 17.
  • the device 51 comprises a circulation member 53, for example a pump for the gases, the suction of which communicates with the sky 49, and the discharge communicates with the anode compartment 11.
  • the circulation member 53 displaces the gaseous phase occupying the sky 49 towards a zone of the anode compartment 1 1 located beneath the positive electrode, as can be seen in FIG. 2. Preferably, said zone is located in immediate contact with the electrode. positive.
  • the gaseous phase discharged by the member 53 will form bubbles that will rise towards the sky 49 by passing through the positive electrode 15.
  • the gaseous hydrogen molecules are oxidized in H + according to the half-reaction H 2 ⁇ 2 H + + 2 e " .
  • the recirculation rate imposed by the device 51 is adjusted as a function of the evolution of hydrogen gas observed, so as to guarantee the absence of hydrogen gas in the sky 49 during periods between the charge and the discharge of the electrolytic cell. 5.
  • the recirculation rate is between 50 and 500 l / h, preferably between 100 and 200 l / h, typically about 160 l / h. During the discharge period, recirculation is generally not necessary.
  • the device 51 comprises one or more ramps distributed under the positive electrode 15, in the anode compartment 11.
  • the member 53 delivers the gas to the ramps 55.
  • the ramps 55 have orifices dividing the gas into very fine bubbles.
  • the recycled gas is thus uniformly distributed within the anode compartment in order to completely oxidize it.
  • the device 1 further comprises a control automatism 57 (FIG. 1), intended to drive both the device 23 for rotating the negative electrode, the anodic transfer device 35, the cathodic transfer device 39, the 47 device for maintaining the sky of the electrolytic cell under a neutral gas atmosphere, and the device 51 for recycling hydrogen gas.
  • the control automation 57 also controls the electric charger-inverter 7 and exchanges data with the GIMS 9.
  • the recycling device 51 comprises a probe 59 for measuring the concentration of hydrogen in the gas phase filling the sky 49 of the electrolytic cell.
  • This sensor informs the automation 57.
  • This automation is programmed to control the recycling device 51 according to the hydrogen concentration measured by the probe.
  • the inverter-charger 7 maintains the negative electrode 21 at a negative polarity and the positive electrode 15 at a polarity positive.
  • the device 39 supplies the cathode compartment 17 with cathode electrolyte from the tank 37.
  • the cathode electrolyte is discharged by the member 42 towards the ramp 43 and flows on the generator located at the top of the outer surface 25 of the negative electrode 21.
  • the anodic transfer device 35 withdraws the electrolyte from the anode compartment 11 to transfer it to the anode tank 33.
  • the device 47 maintains the sky 49 under a neutral gas pressure.
  • the negative electrode 21 is rotated by the drive device 23.
  • the cathode electrolyte 19 Part of the Fe 2+ ions of the cathode electrolyte 19 are reduced to Fe and are deposited on the outer surface 25 of the negative rotating electrode 21. Furthermore, under the effect of the withdrawal exerted by the transfer device 35, the cathode electrolyte passes through the porous positive electrode 15 to the anode compartment 1 1. By passing through the porous positive electrode 15, the rest of the Fe 2+ ions are oxidized to Fe 3+ ions. The addition of fresh cathode electrolyte and the withdrawal of the anode electrolyte make it possible to maintain the composition of the cathode electrolyte and the composition of the anode electrolyte substantially constant over time, in spite of the deposition of iron on the electrode negative.
  • the probe 59 constantly scans the concentration of hydrogen in the gas phase.
  • the control automatism 57 depending on the concentration measured hydrogen control the device 51 for recycling the hydrogen gas to take a portion of the gas phase in the sky 49.
  • the device 51 reinjects it under the positive electrode 15 in the anode compartment.
  • This gaseous phase essentially comprises the neutral gas, and traces of hydrogen.
  • This reinjected gaseous phase forms bubbles that go up through the anode compartment 1 1 to the porous positive electrode 15.
  • the hydrogen gas H 2 is oxidized to H + ions.
  • the inverter-charger 7 is controlled to periodically reverse, temporarily, the flow direction of the current. This causes redissolution of a small fraction of the iron deposited on the negative electrode, and prevents the creation of large size crystals on the negative electrode. During the flow of the current in opposite direction, the flow of anode electrolyte and cathode is interrupted.
  • the inverter-charger 7 is controlled to circulate an alternating current for this purpose.
  • the ratio between the amount of cathodic current and the amount of anode current is between 5 and 10.
  • the negative electrode 21 When the electrolytic cell operates as an energy generator, the negative electrode 21 has a negative polarity and the positive electrode 15 has a positive polarity.
  • the device 47 maintains the sky 49 of the electrolytic cell under a neutral gas pressure.
  • the cell 5 supplies the inverter-charger 7.
  • the device 51 for recycling the hydrogen during this phase is generally kept at a standstill by the control automation 57, since there is normally no hydrogen evolution. gaseous..
  • the transfer device 35 takes the anode electrolyte into the tank 33 and transfers it to the anode compartment 11.
  • the transfer device 39 takes cathode electrolyte from the cathode compartment 17, for example via the plunging pipe 45, and transfers the latter into the cathode tank 37.
  • the driving device 23 causes the negative electrode 21 to rotate at a speed that is a function of the called current.
  • the electrolyte passes through the porous positive electrode 15. In passing, the Fe 3+ ions are reduced to Fe 2+ . At the negative electrode 21, the previously deposited iron is oxidized to Fe 2+ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Le dispositif de stockage d'énergie comprenant une pluralité de cellules électrolytiques (5) et un chargeur-ondulateur 4 quadrants électrique (7). Chaque cellule électrolytique (5), comprend un dispositif (51) de recyclage de l'hydrogène gazeux dégagé dans le compartiment cathodique, vers le compartiment anodique.

Description

Dispositif de stockage d'énergie électrique de grande capacité
L'invention concerne en général les dispositifs de stockage d'énergie électrique. Plus précisément, l'invention concerne un dispositif de stockage d'énergie électrique comprenant une pluralité de cellules électrolytiques et un chargeur-onduleur électrique, chaque cellule électrolytique comprenant :
- un compartiment anodique rempli par un électrolyte anodique comprenant au moins des ions Fe3+ ;
- une électrode positive plongée dans l'électrolyte anodique et raccordée électriquement à une première borne du chargeur-onduleur ;
- un compartiment cathodique rempli par un électrolyte cathodique comprenant au moins des ions Fe2+ , le compartiment cathodique étant séparé du compartiment anodique par une barrière poreuse ;
- une électrode négative plongée dans l'électrolyte cathodique et raccordée électriquement à une seconde borne du chargeur-onduleur ;
le chargeur-onduleur étant agencé pour sélectivement soit charger le dispositif de stockage en faisant circuler un courant électrique dans un premier sens provoquant un dépôt de fer à l'électrode négative, soit décharger le dispositif de stockage en laissant circuler le courant électrique dans un second sens opposé au premier provoquant une dissolution du fer déposé à l'électrode négative.
Un tel dispositif de stockage d'énergie est connu par exemple de CA -1 079 350. La composition chimique de l'électrolyte cathodique, notamment son pH, se modifie au cours du temps. Après un certain nombre de cycles de chargement et de déchargement, l'électrolyte n'est plus utilisable.
Dans ce contexte, l'invention vise à proposer un dispositif de stockage d'énergie dont l'électrolyte peut être utilisé pendant un nombre de cycles beaucoup plus grand que dans CA 1 079 350.
A cette fin, l'invention porte sur un dispositif de stockage d'énergie du type précité, caractérisé en ce que l'électrode positive est poreuse, le dispositif de stockage comprenant un dispositif de recyclage de l'hydrogène gazeux dégagé dans le compartiment cathodique, agencé pour aspirer une phase gazeuse remplissant un ciel du compartiment cathodique et refouler ladite phase gazeuse dans le compartiment anodique de telle sorte que l'hydrogène gazeux soit oxydé au contact de l'électrode positive.
Ainsi, la composition de l'électrolyte cathodique et de l'électrolyte anodique reste constante, notamment son pH. Le recyclage de l'hydrogène permet d'utiliser le même électrolyte pendant un grand nombre de cycles et prolonge la durée de vie de l'électrolyte avant son échange. Il prolonge la vie du dispositif de stockage.
Le dispositif de stockage d'énergie peut également présenter un ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- l'électrode positive est poreuse pour l'électrolyte anodique et/ou cathodique, et définit la barrière entre le compartiment anodique et le compartiment cathodique ;
- la cellule électrolytique comprend une cuve, l'électrode positive divisant ladite cuve en une zone supérieure formant le compartiment cathodique et une zone inférieure formant le compartiment anodique et située sous la zone supérieure ;
- la phase gazeuse est refoulée par le dispositif de recyclage dans une zone du compartiment anodique située sous l'électrode positive ;
- le dispositif de recyclage comprend une sonde de mesure de la concentration d'hydrogène dans la phase gazeuse, et un automatisme programmé pour piloter le dispositif de recyclage en fonction de la concentration en hydrogène mesurée par la sonde ;
- l'électrode positive est en titane ou en éponge de titane ou en un alliage de titane ;
- l'électrode positive est recouverte d'un revêtement de TiN ;
- l'électrode positive est un tissu comprenant au moins un fil entrelacé, en titane ou en un alliage de titane ;
- l'électrode positive est en un matériau électriquement conducteur, recouvert de magnétite ;
- l'électrode négative et l'électrode positive sont disposées en vis-à-vis, la cellule électrolytique comprenant un dispositif d'entraînement en rotation de l'électrode négative par rapport à l'électrode positive autour d'un axe de rotation ;
- l'électrode négative présente une surface externe cylindrique, coaxiale à l'axe de rotation, sur laquelle se dépose le fer ;
- l'électrode positive comporte une partie en forme de secteur de cylindre, coaxiale à l'axe de rotation ;
- la cellule électrolytique comprend :
. un réservoir d'électrolyte anodique ;
. un dispositif de transfert anodique susceptible de transférer l'électrolyte anodique entre le réservoir d'électrolyte anodique et le compartiment anodique ;
. un réservoir d'électrolyte cathodique ; . un dispositif de transfert cathodique susceptible de transférer l'électrolyte cathodique entre le réservoir d'électrolyte cathodique et le compartiment anodique .
- le réservoir d'électrolyte anodique est situé à une élévation supérieure à celle de la cellule électrolytique, le dispositif de transfert anodique étant prévu pour transférer gravitairement l'électrolyte anodique depuis le réservoir d'électrolyte anodique jusqu'au compartiment anodique ; et
- le dispositif comprend un dispositif prévu pour maintenir le ciel de la cellule électrolytique sous une atmosphère de gaz neutre, par exemple sous pression d'argon.
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :
- la figure 1 est une représentation schématique simplifiée d'un dispositif de stockage d'énergie comprenant un grand nombre de cellules électrolytiques, seules certaines cellules étant représentées ; et
- la figure 2 est une représentation schématique simplifiée d'une cellule électrolytique du dispositif de la figure 1 .
Le dispositif 1 représenté sur la figure 1 est destiné au stockage de l'énergie électrique. Le dispositif 1 est raccordé à un réseau 3 de distribution d'énergie électrique par l'intermédiaire d'un transformateur de puissance 4. Un certain nombre de systèmes de production d'énergie électrique (non représentés) alimentent le réseau 3 en courant électrique. Des consommateurs électriques (non représentés) sont également raccordés à ce réseau.
Le dispositif de stockage d'énergie 1 comprend un grand nombre de cellules électrolytiques 5, et un chargeur-onduleur électrique 7. Avantageusement, il comporte également un système 9 de gestion de l'interface réseau (Grid Interface Management System, ou GIMS).
Quand la puissance électrique fournie par les systèmes de production d'énergie est supérieure à la puissance appelée par les consommateurs électriques, le dispositif de stockage d'énergie 1 , averti par le GIMS 9, accumule l'énergie en excès, en la convertissant sous forme électrochimique. Inversement, quand la puissance électrique appelée par les consommateurs est supérieure à la puissance produite, le dispositif 1 , averti par le GIMS 9, convertit l'énergie accumulée sous forme électrochimique en énergie électrique, celle-ci alimentant le réseau 3.
Chaque cellule électrolytique 5 permet par exemple de stocker une énergie électrique d'environ 200 kWh. Les cellules électrolytiques 5 sont rassemblées en un ou plusieurs ensembles, chaque ensemble comportant par exemple 1300 cellules électrolytiques montées en série, pour une capacité de stockage d'énergie électrique d'environ 300 MWh. Chaque cellule électrolytique possède une puissance nominale de 20 kW. Un ensemble possède donc une puissance électrique nominale de l'ordre de 30 MW.
Le chargeur-onduleur électrique 7 alimente toutes les cellules électrolytiques 5 d'un même ensemble. En variante, le chargeur-onduleur électrique 7 n'alimente qu'une partie des cellules électrolytiques 5, le dispositif 1 comportant ainsi plusieurs chargeurs- onduleurs électriques 7 pour un même ensemble.
Chaque chargeur-onduleur électrique 7 est raccordé au réseau à travers le GIMS 9 et le transformateur de puissance 4. De préférence, chaque chargeur-onduleur électrique 7 est du type dit à 4 quadrants.
Le chargeur-onduleur 7 est réversible. Ainsi, il fonctionne en onduleur quand les cellules électrolytiques 5 se déchargent sur le réseau 3, et il fonctionne en redresseur quand, au contraire, les cellules électrolytiques 5 sont chargées à partir du réseau 3.
Les cellules électrolytiques 5 sont toutes identiques, et sont du type représenté schématiquement sur la figure 2.
En variante, certaines cellules électrolytiques ne sont pas du type représenté sur la figure 2.
Chaque cellule électrolytique 5 comprend :
- un compartiment anodique 1 1 rempli par un électrolyte anodique 13 ;
- une électrode positive 15 plongée dans l'électrolyte anodique et raccordée électriquement à une première borne du chargeur 7 ;
- un compartiment cathodique 17 rempli par un électrolyte cathodique 19, le compartiment cathodique 17 étant séparé du compartiment anodique 1 1 par une barrière poreuse ;
- une électrode négative 21 plongée dans l'électrolyte cathodique 19 et raccordée électriquement à une seconde borne du chargeur 7.
Le couple électrochimique côté électrode négative est Fe27Fe. Le couple électrochimique côté électrode positive est Fe27Fe3+.
Plus précisément, quand la cellule électrolytique 5 accumule l'énergie électrique, la réaction suivante se produit à l'électrode négative :
Fe2+ + 2e → Fe
La réaction suivante se produit à l'électrode positive :
2Fe2+→ 2Fe3+ +2e"
Quand la cellule électrolytique 5 fonctionne en générateur électrique, la réaction chimique suivante se produit à l'électrode négative :
Fe→ Fe2+ + 2e La réaction suivante se produit à l'électrode positive :
2Fe3+ + 2e"→ 2Fe 2+
En d'autres termes, la cellule électrolytique 5 accumule l'énergie sous forme électrochimique, en stockant cette énergie sous la forme d'un dépôt solide de fer sur l'électrode négative et d'une solution de Fe3+. Ce dépôt de fer se dissout et le Fe3+ redevient du Fe2+ quand la cellule 5 doit restituer de l'énergie électrique.
Le chargeur-onduleur 7 pilote la circulation du courant électrique. Quand la cellule électrolytique est en charge, le chargeur-onduleur 7 maintient l'électrode négative à un potentiel électrique négatif et l'électrode positive à un potentiel positif plus grand en valeur absolue que celui de l'électrode négative. Il fait donc circuler le courant électrique dans un premier sens, provoquant notamment un dépôt de fer à l'électrode négative.
Inversement, quand la cellule électrolytique 5 fonctionne en générateur électrique, le chargeur-onduleur 7 maintient l'électrode négative 21 à un potentiel inférieur à celui de l'électrode positive 15 . Le chargeur-onduleur 7 laisse donc circuler le courant dans un second sens inverse du premier sens, provoquant la dissolution du fer déposé sur l'électrode négative et la formation de Fe2+ à l'électrode positive.
Les termes « électrode positive » et « électrode négative » sont entendus ici conformément à la norme IEC 600-50-482, CEI60050-482 du 1/4/2004.
L'électrolyte anodique 13 comporte entre autre des ions Fe3+. Il est à un pH acide, de 2 environ et compte donc environ 10"2 M de H+. Il comporte également au moins un anion, de préférence du CI". En variante, cet anion est le Br", ou tout autre anion adapté, c'est-à-dire ne prenant pas part aux réactions.
L'électrolyte cathodique 19 comprend des ions Fe2+. Il est à un pH de 3 environ et compte donc environ 10"3 M de H+. Il comporte également au moins un anion, par exemple du CI". En variante, c'est anion est le Br", ou tout autre anion adapté, c'est-à-dire ne prenant pas part aux réactions.
L'électrolyte anodique et l'électrolyte cathodique comportent éventuellement des additifs permettant d'augmenter la conductivité électrique sans avoir d'action aux électrodes. Ces additifs sont classiques et ne seront pas détaillés ici.
Comme visible sur la figure 2, l'électrode négative 21 et l'électrode positive 15 sont disposées en vis-à-vis, la cellule électrolytique 5 comportant un dispositif 23 (figure 1 ) d'entraînement en rotation de l'électrode négative 21 par rapport à l'électrode positive 15 autour d'un axe de rotation X. L'électrode négative 21 est donc rotative.
L'électrode négative 21 et l'électrode positive 15 sont coaxiales.
Ainsi, pendant le chargement du dispositif de stockage, le fer se dépose sur toute la périphérie de l'électrode négative, au fur et à mesure que celle-ci passe en vis-à-vis de l'électrode positive. Le fer est déposé sur une grande surface, de manière régulière du fait du mouvement de rotation de l'électrode négative. Il est ainsi possible d'augmenter la quantité de fer déposée dans chaque cellule électrolytique, et d'augmenter la capacité de stockage du dispositif de stockage d'énergie.
Typiquement, l'électrode négative 21 présente une surface externe 25 cylindrique, coaxiale à l'axe de rotation X, sur laquelle se dépose le fer quand la cellule électrolytique 5 fonctionne en récepteur électrique. En variante, l'électrode négative peut présenter une surface externe non cylindrique. Cette surface externe peut être tronconique, ou encore avoir la forme d'une autre surface de révolution autour de l'axe X. L'électrode négative 21 présente typiquement une longueur comprise entre 1 ,5m et 4m, et un diamètre externe compris entre 20cm et 1 ,5m. Dans la présente description les valeurs numériques correspondent à un exemple de réalisation dans lequel l'électrode négative présente une longueur de 4m et un diamètre de 20cm. Selon un autre exemple avantageux, l'électrode négative présente une longueur de 1 ,5m et un diamètre externe de 1 ,5m.
L'électrode négative est réalisée en un matériau bon conducteur électrique, comme l'aluminium ou l'acier.
Comme visible sur la figure 2, l'électrode positive comporte une partie 27 en secteur de cylindre, coaxiale à l'axe de rotation X. La partie 27 s'étend par exemple sur environ 180° autour de l'axe X, et forme donc un demi-cylindre. Un interstice 29 de faible épaisseur sépare donc la surface externe 25 de l'électrode négative et la partie 27 de l'électrode positive. Par exemple, l'interstice 29 présente une épaisseur comprise entre 0,1 et 20 mm, de préférence entre 1 et 15 mm, et valant typiquement 1 1 mm. Une épaisseur de 1 1 mm permet d'obtenir une capacité de stockage de 200 kWh par cellule.
En variante, la partie 27 en secteur de cylindre s'étend sur plus de 180° ou moins de 180° autour de l'axe de rotation X.
Comme visible également sur la figure 2, la cellule électrolytique 5 comporte une cuve 31 , l'électrode positive 15 divisant le volume interne de la cuve entre une zone supérieure et une zone inférieure. La zone supérieure forme le compartiment cathodique 17. La zone inférieure forme le compartiment anodique 1 1 . Celui-ci est situé sous le compartiment cathodique 17. La cuve 31 est étanche aux gaz et aux liquides.
L'électrode positive 15 a une structure poreuse pour l'électrolyte anodique et l'électrolyte cathodique. Elle est également poreuse aux gaz.
L'électrode positive 15 définit la barrière poreuse séparant le compartiment anodique du compartiment cathodique.
Typiquement, l'électrode positive est en titane ou en un alliage de titane, et est par exemple une toile ou une mousse. Selon une variante de réalisation, l'électrode positive est recouverte d'un revêtement de TiN, de manière à augmenter la durée de vie de l'électrode positive et à diminuer les pertes électriques.
Dans un exemple de réalisation, l'électrode positive est un tissu constitué d'au moins un fil entrelacé, en titane ou en un alliage de titane. Ce tissu peut être recouvert de TiN.
Par exemple, l'électrode positive est un grillage métallique vendu par la société GANTOIS, sous la référence 104613. Ce grillage est réalisé avec un fil titane T40, de diamètre avant tissage 0,8 mm. Il est caractérisé par un numéro métrique de 5 le numéro mesh étant de 4.57. L'ouverture nominale du tissu est de 4.75 mm, et la transparence de 73%. La masse par unité de surface est de 970 g/m2. Le tissu présente une épaisseur comprise entre 1 ,4 et 1 ,6 mm. Ce grillage peut être recouvert de TiN.
Selon un autre exemple de réalisation, l'électrode positive est une toile métallique vendue par la société GANTOIS sous la référence 104125. Ce tissu est obtenu à partir de fils métalliques de titane T40, le fil de chaîne ayant un diamètre avant tissage de 0,36 mm et le fil de trame ayant un diamètre avant tissage de 0,265 mm. Le fil porte un numéro métrique de 22 pour le fil de chaîne et de 230 pour le fil de trame. La masse par unité de surface est 2400 g/m2 et le tissu présente une ouverture nominale de 0.180 mm. Cette toile peut être recouverte de TiN.
Selon une autre variante de réalisation, l'électrode positive est en éponge de titane. L'éponge de titane est un produit intermédiaire en métallurgie du titane. Elle peut être recouverte de TiN.
Dans une variante de réalisation très économique, l'électrode positive 15 est en un matériau électriquement conducteur, recouvert de magnétite. Fe304. Par exemple, l'électrode positive est en cuivre aciéré, puis en partie oxydé électrolytiquement en Fe304.
La cellule électrolytique 5 comporte encore :
- un réservoir d'électrolyte anodique 33,
- un dispositif 35 de transfert anodique susceptible de transférer l'électrolyte anodique entre le réservoir d'électrolyte anodique 33 et le compartiment anodique 1 1 ;
- un réservoir d'électrolyte cathodique 37 ;
- un dispositif 39 de transfert cathodique susceptible de transférer l'électrolyte cathodique entre le réservoir d'électrolyte cathodique 37 et le compartiment cathodique 17.
Le dispositif de transfert anodique 35 comporte typiquement un organe de transfert
41 , par exemple une pompe, raccordée d'un côté au réservoir 33 et de l'autre côté au compartiment anodique 1 1 .
Dans l'exemple représenté sur les figures, le réservoir d'électrolyte anodique 33 est situé à une élévation supérieure à celle de la cellule 5. Le dispositif de transfert anodique 35 comporte un bipasse 41 ', mettant en communication le réservoir 33 avec le compartiment anodique en bipassant l'organe de transfert 41 . Le bipasse 41 ' est équipé d'une vanne commandée, permettant de sélectivement obturer ou ouvrir le bipasse.
Quand la cellule électrolytique est en charge, l'organe de transfert 41 prélève l'électrolyte anodique dans le compartiment anodique 1 1 et le refoule dans le réservoir 33. Le bipasse 41 ' est obturé.
Inversement, quand la cellule électrolytique fonctionne en générateur électrique, l'organe de transfert 41 est à l'arrêt. Le bipasse 41 ' est ouvert. L'électrolyte anodique s'écoule par gravité et/ou par effet siphon depuis le réservoir 33 jusque dans le compartiment anodique, à travers le bipasse 41 '.
De même, le dispositif 39 de transfert cathodique comporte un organe de transfert réversible 42, par exemple une pompe, raccordée d'un côté au réservoir 37 et de l'autre côté au compartiment cathodique 17.
Dans l'exemple représenté sur les figures, le réservoir d'électrolyte cathodique 37 est situé à une élévation inférieure à celle de la cellule 5. Le dispositif de transfert cathodique 39 comporte un bipasse 42', mettant en communication le réservoir 37 avec le compartiment cathodique en bipassant l'organe de transfert 42. Le bipasse 42' est équipé d'une vanne commandée, permettant de sélectivement obturer ou ouvrir le bipasse.
Quand la cellule électrolytique est en charge, l'organe de transfert 42 prélève l'électrolyte cathodique dans le réservoir 37 et le refoule dans le compartiment cathodique 17. Le bipasse 42' est obturé.
Inversement, quand la cellule électrolytique fonctionne en générateur électrique, l'organe de transfert 42 est à l'arrêt. Le bipasse 42' est ouvert. L'électrolyte cathodique s'écoule par gravité et/ou par effet siphon depuis le compartiment cathodique 17 jusque dans le réservoir 37.
En variante, les organes de transfert 41 et 42 sont réversibles. Les dispositifs de transfert anodique et cathodique 35 et 39 ne comportent pas de bipasses 41 ', 42'. La pompe 41 est utilisée pour transférer l'électrolyte anodique depuis le réservoir 33 dans le compartiment anodique 13. La pompe 42 est utilisée pour transférer l'électrolyte cathodique depuis le compartiment cathodique 15 dans le réservoir 37.
Comme illustré dans la figure 2, dans un mode de réalisation particulièrement avantageux, l'électrode négative tournante présente un axe de rotation X sensiblement horizontal. L'électrode négative 21 n'est que partiellement immergée dans l'électrolyte cathodique remplissant le compartiment 17. Le dispositif de transfert cathodique dans ce cas comporte une rampe de distribution 43 située au dessus de l'électrode négative 21 . Typiquement, la rampe de distribution 43 s'étend le long de la génératrice située au point le plus élevé de la surface externe 25 de Γ électrode négative.
La rampe de distribution 43 est percée d'une pluralité d'orifices à travers lesquels l'électrolyte cathodique refoulé par l'organe de transfert 41 s'écoule, et tombe sur la surface externe 25. Ainsi, l'électrolyte cathodique frais amené par le dispositif de transfert 39 est reparti uniformément sur toute la surface externe 25.
Dans ce mode de réalisation, le dispositif de transfert 39 comporte une tuyauterie de prélèvement 45 plongeante, dont une extrémité plonge en permanence dans l'électrolyte cathodique remplissant la chambre 17. La rampe 43 est utilisée quand le dispositif de transfert refoule l'électrolyte cathodique depuis le réservoir 37 jusque dans la chambre cathodique 17. La tuyauterie plongeante 45 est utilisée quand l'électrolyte cathodique circule en sens inverse, depuis la chambre 17 vers le réservoir d'électrolyte cathodique 37.
Dans un mode de réalisation non représenté, l'électrode négative 21 est entièrement immergée dans l'électrolyte cathodique. La rampe de distribution 43 est elle aussi immergée dans l'électrolyte cathodique et s'étend le long de la génératrice située au point le plus élevé de la surface externe 25. Dans ce cas, la rampe 43 est utilisée pour aspirer l'électrolyte cathodique quand celui-ci circule depuis la chambre 17 vers le réservoir d'électrolyte cathodique 37. Le dispositif de transfert 39 ne comporte pas de tuyauterie de prélèvement 45 plongeante.
En variante, l'axe de rotation X de l'électrode négative est vertical. Cette variante est avantageuse car elle réduit considérablement l'encombrement au sol de chaque cellule électrolytique.
Par ailleurs, la cellule électrolytique 5 comporte encore un dispositif 47 prévu pour maintenir le ciel 49 de la cellule électrolytique sous une atmosphère de gaz neutre. On entend ici par gaz neutre un gaz qui n'intervient pas dans les réactions chimiques et électrochimiques qui se déroulent dans le dispositif, et ne modifient pas la composition des matériaux constitutifs du dispositif.
Le gaz neutre est préférentiellement de l'argon. En variante, le gaz neutre est de l'azote, ou un autre gaz neutre, ou un mélange de gaz neutres.
Le dispositif 47 comporte par exemple une réserve de gaz sous pression raccordée au ciel 49 de la cellule électrolytique par le biais d'une ligne équipée d'un détendeur.
Selon un autre exemple de réalisation, le dispositif 47 comporte une réserve de gaz neutre et un compresseur refoulant le gaz neutre depuis la réserve jusque dans le ciel 49 de la cellule électrolytique. Le ciel 49 de la cellule électrolytique est maintenu à une pression légèrement supérieure à la pression autour de la cellule électrolytique, de manière à empêcher l'oxygène de l'air de pénétrer à l'intérieur de la cellule électrolytique. Par exemple, le ciel 49 est maintenu à une pression légèrement supérieure à la pression atmosphérique, de 1 à 10 daPa relatifs.
Dans l'exemple de réalisation représenté sur la figure 2, le compartiment anodique 1 1 est entièrement rempli d'électrolyte anodique, alors que le compartiment cathodique 17, qui est situé au dessus du compartiment anodique 1 1 , n'est que partiellement rempli d'électrolyte. Le ciel 49 correspond à la fraction du compartiment cathodique qui n'est pas rempli par l'électrolyte cathodique 19 et qui est rempli par le ou les gaz neutres.
La cellule électrolytique 5 comporte encore un dispositif 51 de recyclage de l'hydrogène gazeux dégagé dans le compartiment cathodique 17.
En effet, il se produit un dégagement d'hydrogène dans le compartiment cathodique, essentiellement pendant la charge. L'hydrogène gazeux aboutit dans le ciel 49 de la cellule électrolytique.
Le dispositif 51 comprend un organe de circulation 53, par exemple une pompe pour les gaz, dont l'aspiration communique avec le ciel 49, et le refoulement communique avec le compartiment anodique 1 1 . L'organe de circulation 53 refoule la phase gazeuse occupant le ciel 49 vers une zone du compartiment anodique 1 1 située sous l'électrode positive, comme visible sur la figure 2. De préférence, ladite zone est située au contact immédiat de l'électrode positive. Ainsi, la phase gazeuse refoulée par l'organe 53 va former des bulles qui remonteront vers le ciel 49 en traversant l'électrode positive 15. En passant à travers l'électrode positive poreuse 15, les molécules d'hydrogène gazeux sont oxydées en H+ selon la demi-réaction H2 ^ 2 H+ + 2 e".
Le taux de recirculation imposé par le dispositif 51 est ajusté en fonction du dégagement d'hydrogène gazeux observé, de manière à garantir l'absence d'hydrogène gazeux dans le ciel 49 lors des périodes situées entre la charge et la décharge de la cellule électrolytique 5. Par exemple, le taux de recirculation est compris entre 50 et 500 l/h, de préférence entre 100 et 200 l/h, typiquement environ 160 l/h. Pendant la période de décharge, la recirculation n'est généralement pas nécessaire.
Typiquement, le dispositif 51 comprend une ou plusieurs rampes réparties sous l'électrode positive 15, dans le compartiment anodique 1 1 . L'organe 53 refoule le gaz vers les rampes 55. Les rampes 55 présentent des orifices divisant le gaz en très fines bulles. On répartit ainsi de manière uniforme le gaz recyclé à l'intérieur du compartiment anodique afin de l'oxyder complètement. Le dispositif 1 comporte encore un automatisme de pilotage 57 (figure 1 ), prévu pour piloter à la fois le dispositif 23 d'entraînement en rotation de l'électrode négative, le dispositif de transfert anodique 35, le dispositif de transfert cathodique 39, le dispositif 47 de maintien du ciel de la cellule électrolytique sous une atmosphère de gaz neutre, et le dispositif 51 de recyclage de l'hydrogène gazeux. L'automatisme de pilotage 57 pilote également le chargeur-onduleur électrique 7 et échange des données avec le GIMS 9.
Avantageusement, le dispositif 51 de recyclage comprend une sonde 59 de mesure de la concentration d'hydrogène dans la phase gazeuse remplissant le ciel 49 de la cellule électrolytique. Cette sonde renseigne l'automatisme 57. Cet automatisme est programmé pour piloter le dispositif de recyclage 51 en fonction de la concentration en hydrogène mesurée par la sonde.
Le fonctionnement du dispositif de stockage d'énergie va maintenant être détaillé.
On suppose ici que toutes les cellules électrolytiques 5 sont pilotées de la même façon. Seul le fonctionnement d'une cellule sera décrit ci-dessous.
Comme indiqué plus haut, quand la cellule électrolytique est en charge, c'est-à-dire accumule l'énergie électrique, le chargeur-onduleur 7 maintient l'électrode négative 21 à une polarité négative et l'électrode positive 15 à une polarité positive.
Le dispositif 39 alimente le compartiment cathodique 17 en électrolyte cathodique à partir du réservoir 37. Dans l'exemple de la figure 2, l'électrolyte cathodique est refoulé par l'organe 42 vers la rampe 43 et s'écoule sur la génératrice située au sommet de la surface externe 25 de l'électrode négative 21 .
Le dispositif de transfert anodique 35 soutire l'électrolyte dans le compartiment anodique 1 1 pour le transférer vers le réservoir anodique 33.
Le dispositif 47 maintient le ciel 49 sous pression de gaz neutre. L'électrode négative 21 est entraînée en rotation par le dispositif d'entraînement 23.
Une partie des ions Fe2+ de l'électrolyte cathodique 19 sont réduits en Fe et se dépose sur la surface externe 25 de l'électrode négative tournante 21 . Par ailleurs, sous l'effet du soutirage exercé par le dispositif de transfert 35, l'électrolyte cathodique traverse l'électrode positive poreuse 15 jusqu'au compartiment anodique 1 1 . En traversant l'électrode positive poreuse 15, le reste des ions Fe2+ sont oxydés en ions Fe3+. L'ajout d'électrolyte cathodique frais et le soutirage de l'électrolyte anodique permettent de maintenir la composition de l'électrolyte cathodique et la composition de l'électrolyte anodique sensiblement constantes dans le temps, en dépit du dépôt de fer sur l'électrode négative.
Par ailleurs, la sonde 59 scrute en permanence la concentration d'hydrogène dans la phase gazeuse. L'automatisme de pilotage 57, en fonction de la concentration d'hydrogène mesurée, commande au dispositif 51 de recyclage de l'hydrogène gazeux de prélever une partie de la phase gazeuse dans le ciel 49. Le dispositif 51 la réinjecte sous l'électrode positive 15, dans le compartiment anodique. Cette phase gazeuse comprend essentiellement le gaz neutre, et des traces d'hydrogène. Cette phase gazeuse réinjectée forme des bulles qui remontent à travers le compartiment anodique 1 1 jusqu'à l'électrode positive poreuse 15. Au contact de l'électrode positive poreuse, l'hydrogène gazeux H2 est oxydé en ions H+.
De manière avantageuse, le chargeur-onduleur 7 est piloté pour inverser périodiquement, de manière temporaire, le sens de circulation du courant. Ceci provoque une redissolution d'une petite fraction du fer déposé sur l'électrode négative, et empêche la création de cristaux de tailles importantes sur l'électrode négative. Pendant la circulation du courant en sens inverse, la circulation d'électrolyte anodique et cathodique est interrompue.
Ces cristaux en effet pourraient en effet constituer des reliefs à la surface de l'électrode négative, qui pourraient venir en contact avec l'électrode positive, interrompre la charge de la cellule électrolytique, et donc diminuer sa capacité.
Par exemple, le chargeur-onduleur 7 est piloté pour faire circuler un courant alterné dans ce but. Typiquement, le rapport entre la quantité de courant cathodique et la quantité de courant anodique est compris entre 5 et 10.
Quand la cellule électrolytique fonctionne en générateur d'énergie, l'électrode négative 21 a une polarité négative et l'électrode positive 15 a une polarité positive. Le dispositif 47 maintient le ciel 49 de la cellule électrolytique sous pression de gaz neutre. La cellule 5 alimente le chargeur-onduleur 7. Le dispositif 51 de recyclage de l'hydrogène pendant cette phase est généralement maintenu à l'arrêt par l'automatisme de pilotage 57, car il n'y a normalement pas de dégagement d'hydrogène gazeux..
Le dispositif de transfert 35 prélève l'électrolyte anodique dans le réservoir 33 et le transfère jusqu'au compartiment anodique 1 1 . Le dispositif de transfert 39 prélève de l'électrolyte cathodique dans le compartiment cathodique 17, par exemple via la tuyauterie plongeante 45, et transfère celui-ci jusque dans le réservoir cathodique 37.
Le dispositif d'entraînement 23 entraine l'électrode négative 21 en rotation à une vitesse fonction du courant appelé.
Sous l'effet de l'injection d'électrolyte anodique dans le compartiment anodique 1 1 , l'électrolyte traverse l'électrode positive poreuse 15. Au passage, les ions Fe3+ sont réduits en Fe2+. Au niveau de Γ électrode négative 21 , le fer préalablement déposé est oxydé en Fe2+.

Claims

REVENDICATIONS
1 . - Dispositif de stockage d'énergie électrique comprenant une pluralité de cellules électrolytiques (5) et un chargeur-onduleur électrique (7), chaque cellule électrolytique (5) comprenant :
- un compartiment anodique (1 1 ) rempli par un électrolyte anodique (13) comprenant au moins des ions Fe3+ ;
- une électrode positive (15) plongée dans l'électrolyte anodique (13) et raccordée électriquement à une première borne du chargeur-onduleur (7);
- un compartiment cathodique (17) rempli par un électrolyte cathodique (19) comprenant au moins des ions Fe2+ , le compartiment cathodique (17) étant séparé du compartiment anodique (1 1 ) par une barrière poreuse;
- une électrode négative (21 ) plongée dans l'électrolyte cathodique (19) et raccordée électriquement à une seconde borne du chargeur-onduleur (7);
le chargeur-onduleur (7) étant agencé pour sélectivement soit charger le dispositif de stockage (1 ) en faisant circuler un courant électrique dans un premier sens provoquant un dépôt de fer à l'électrode négative (21 ), soit décharger le dispositif de stockage (1 ) en laissant circuler le courant électrique dans un second sens opposé au premier provoquant une dissolution du fer déposé à l'électrode négative (21 );
caractérisé en ce que l'électrode positive (15) est poreuse, le dispositif de stockage (1 ) comprenant un dispositif (51 ) de recyclage de l'hydrogène gazeux dégagé dans le compartiment cathodique (17), agencé pour aspirer une phase gazeuse remplissant un ciel (49) du compartiment cathodique (17) et refouler ladite phase gazeuse dans le compartiment anodique (1 1 ) de telle sorte que l'hydrogène gazeux soit oxydé au contact de l'électrode positive (15).
2. - Dispositif selon la revendication 1 , caractérisé en ce que l'électrode positive (15) est poreuse pour l'électrolyte anodique et/ou cathodique, et définit la barrière entre le compartiment anodique (1 1 ) et le compartiment cathodique (17).
3. - Dispositif selon la revendication 2, caractérisé en ce que la cellule électrolytique (5) comprend une cuve (31 ), l'électrode positive (15) divisant ladite cuve (31 ) en une zone supérieure formant le compartiment cathodique (17) et une zone inférieure formant le compartiment anodique (1 1 ) et située sous la zone supérieure.
4. - Dispositif selon la revendication 3, caractérisé en ce que la phase gazeuse est refoulée par le dispositif de recyclage (51 ) dans une zone du compartiment anodique (1 1 ) située sous l'électrode positive (15).
5. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de recyclage (51 ) comprend une sonde de mesure de la concentration d'hydrogène dans la phase gazeuse, et un automatisme programmé pour piloter le dispositif de recyclage (51 ) en fonction de la concentration en hydrogène mesurée par la sonde.
6. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrode positive (15) est en titane ou en éponge de titane ou en un alliage de titane.
7. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrode positive (15) est recouverte d'un revêtement de TiN.
8. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrode positive (15) est un tissu comprenant au moins un fil entrelacé, en titane ou en un alliage de titane.
9. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrode positive (15) est en un matériau électriquement conducteur, recouvert de magnétite.
10. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrode négative (21 ) et l'électrode positive (15) sont disposées en vis-à-vis, la cellule électrolytique (5) comprenant un dispositif (23) d'entraînement en rotation de l'électrode négative (21 ) par rapport à l'électrode positive (15) autour d'un axe de rotation (X).
1 1 . - Dispositif selon la revendication 10, caractérisé en ce que l'électrode négative (21 ) présente une surface externe (25) cylindrique, coaxiale à l'axe de rotation (X), sur laquelle se dépose le fer.
12.- Dispositif selon la revendication 10 ou 1 1 , caractérisé en ce que l'électrode positive (15) comporte une partie (27) en forme de secteur de cylindre, coaxiale à l'axe de rotation (X).
13.- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la cellule électrolytique (5) comprend :
- un réservoir (33) d'électrolyte anodique ;
- un dispositif (35) de transfert anodique susceptible de transférer l'électrolyte anodique entre le réservoir d'électrolyte anodique (33) et le compartiment anodique (1 1 );
- un réservoir (37) d'électrolyte cathodique ;
- un dispositif (39) de transfert cathodique susceptible de transférer l'électrolyte cathodique entre le réservoir d'électrolyte cathodique (37) et le compartiment anodique (17).
14. - Dispositif selon la revendication 13, caractérisé en ce que le réservoir (33) d'électrolyte anodique est situé à une élévation supérieure à celle de la cellule électrolytique (5), le dispositif (35) de transfert anodique étant prévu pour transférer gravitairement l'électrolyte anodique depuis le réservoir d'électrolyte anodique (33) jusqu'au compartiment anodique (1 1 ).
15. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un dispositif (47) prévu pour maintenir le ciel (49) de la cellule électrolytique (5) sous une atmosphère de gaz neutre, par exemple sous pression d'argon.
PCT/EP2014/078008 2013-12-16 2014-12-16 Dispositif de stockage d'énergie électrique de grande capacité WO2015091516A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480071973.2A CN106415906A (zh) 2013-12-16 2014-12-16 大容量的电能储存装置
US15/105,335 US20160329589A1 (en) 2013-12-16 2014-12-16 Large-capacity electrical energy storage device
EP14812536.2A EP3084871A1 (fr) 2013-12-16 2014-12-16 Dispositif de stockage d'énergie électrique de grande capacité

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362728 2013-12-16
FR1362728A FR3015122B1 (fr) 2013-12-16 2013-12-16 Dispositif de stockage d'energie electrique de grande capacite

Publications (1)

Publication Number Publication Date
WO2015091516A1 true WO2015091516A1 (fr) 2015-06-25

Family

ID=50069227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/078008 WO2015091516A1 (fr) 2013-12-16 2014-12-16 Dispositif de stockage d'énergie électrique de grande capacité

Country Status (5)

Country Link
US (1) US20160329589A1 (fr)
EP (1) EP3084871A1 (fr)
CN (1) CN106415906A (fr)
FR (1) FR3015122B1 (fr)
WO (1) WO2015091516A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817606B2 (en) * 2017-04-28 2023-11-14 Ess Tech, Inc. Methods and systems for rebalancing electrolytes for a redox flow battery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1513119A (en) * 1919-08-15 1924-10-28 Madsenell Corp Electrodeposited article and method of making the same
US4159366A (en) * 1978-06-09 1979-06-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrochemical cell for rebalancing redox flow system
US20120183816A1 (en) * 2011-01-13 2012-07-19 Deeya Energy, Incorporated Quenching system
WO2012167057A2 (fr) * 2011-06-01 2012-12-06 Case Western Reserve University Batteries à circulation à base de fer
US20130045399A1 (en) * 2011-08-16 2013-02-21 Primus Power Corporation Flow Battery with Reactant Separation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996064A (en) * 1975-08-22 1976-12-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically rechargeable REDOX flow cell
IT1212303B (it) * 1978-07-10 1989-11-22 Elche Ltd Accumulatore redox.
JP4214761B2 (ja) * 2002-01-31 2009-01-28 株式会社デンソー 燃料電池システム
US9786944B2 (en) * 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
CN102237541A (zh) * 2010-04-23 2011-11-09 比亚迪股份有限公司 一种全铁液流电池电解液及单电解液全铁液流电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1513119A (en) * 1919-08-15 1924-10-28 Madsenell Corp Electrodeposited article and method of making the same
US4159366A (en) * 1978-06-09 1979-06-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrochemical cell for rebalancing redox flow system
US20120183816A1 (en) * 2011-01-13 2012-07-19 Deeya Energy, Incorporated Quenching system
WO2012167057A2 (fr) * 2011-06-01 2012-12-06 Case Western Reserve University Batteries à circulation à base de fer
US20130045399A1 (en) * 2011-08-16 2013-02-21 Primus Power Corporation Flow Battery with Reactant Separation

Also Published As

Publication number Publication date
US20160329589A1 (en) 2016-11-10
FR3015122B1 (fr) 2016-01-15
FR3015122A1 (fr) 2015-06-19
EP3084871A1 (fr) 2016-10-26
CN106415906A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Lai et al. Constructing Ionic Gradient and Lithiophilic Interphase for High‐Rate Li‐Metal Anode
CH646817A5 (fr) Pile solide.
CA2723608C (fr) Accumulateur fer-air a mediateur lithium
CH635759A5 (fr) Dispositif electrochimique a separateur et electrolyte solide.
EP3494608B1 (fr) Systeme de regulation de temperature et de pression d'un electrolyseur a haute temperature (soec) fonctionnant de maniere reversible en pile a combustible (sofc)
Dutta et al. Establishing the criteria and strategies to achieve high power during discharge of a Li–air battery
EP2695231A1 (fr) Precurseur d'accumulateur lithium-ion a electrode sacrificielle de lithium et electrode textile positive a conversion
EP0108002A1 (fr) Dispositif de fonctionnement d'un générateur électrochimique à électrode négative de zinc
WO2008129182A2 (fr) Procede et unite de stockage d'hydrogene
FR2947841A1 (fr) Systemes de conversion de l'energie a champ electrique augmente.
WO2019096594A1 (fr) Cellule électrochimique, ainsi que procédé et appareil de fabrication de celle-ci
EP3084871A1 (fr) Dispositif de stockage d'énergie électrique de grande capacité
FR3109669A1 (fr) Procede de fabrication d’une electrode poreuse, et batterie contenant une telle electrode
EP3084045B1 (fr) Dispositif de stockage d'énergie électrique de grande capacité
EP3326228A1 (fr) Systeme et procede de stockage et de restitution d'energie electrochimique a flux de particules redox
EP2334846A1 (fr) Methode et installation d'etamage electrolytique d'une bande d'acier en defilement continu dans une unite d'electrodeposition
FR2464568A1 (fr) Procede de charge d'un dispositif d'accumulation d'energie electrique
FR2550015A1 (fr) Generateur electrochimique en couche mince comportant une electrode positive electrodeposee
CH617537A5 (fr)
FR2769407A1 (fr) Generateurs electrochimiques produisant de l'electricite par oxydation d'un metal et reduction d'un gaz oxydant
CH644899A5 (fr) Procede pour revetir des elements de petite dimension d'un depot metallique et dispositif pour sa mise en oeuvre.
WO2022002906A1 (fr) Dispositif d'électrolyse de l'eau pour la production d'hydrogène
FR3085161A1 (fr) Procede de croissance de nanotubes de carbone en surface et dans le volume d'un substrat carbone poreux et utilisation pour preparer une electrode
EP4128388A1 (fr) Electrode nanoporeuse
LU85669A1 (fr) Dispositif secondaire d'accumulation d'energie electrique et electrode pour ce dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014812536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15105335

Country of ref document: US

Ref document number: 2014812536

Country of ref document: EP