EP4128388A1 - Electrode nanoporeuse - Google Patents

Electrode nanoporeuse

Info

Publication number
EP4128388A1
EP4128388A1 EP21714905.3A EP21714905A EP4128388A1 EP 4128388 A1 EP4128388 A1 EP 4128388A1 EP 21714905 A EP21714905 A EP 21714905A EP 4128388 A1 EP4128388 A1 EP 4128388A1
Authority
EP
European Patent Office
Prior art keywords
negative electrode
layer
lithium
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21714905.3A
Other languages
German (de)
English (en)
Inventor
Vincent PELE
Christian Jordy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAFT Societe des Accumulateurs Fixes et de Traction SA
Original Assignee
SAFT Societe des Accumulateurs Fixes et de Traction SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAFT Societe des Accumulateurs Fixes et de Traction SA filed Critical SAFT Societe des Accumulateurs Fixes et de Traction SA
Publication of EP4128388A1 publication Critical patent/EP4128388A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of energy storage, and more specifically to accumulators, in particular of the lithium type.
  • Rechargeable lithium-ion batteries indeed offer excellent energy and volume densities and today occupy a prominent place in the market for portable electronics, electric and hybrid vehicles and stationary energy storage systems.
  • Solid electrolytes also offer a significant improvement in terms of safety as they present a much lower risk of flammability than liquid electrolytes.
  • lithium batteries The operation of lithium batteries is based on the reversible exchange of lithium ion between a positive electrode and a negative electrode, separated by an electrolyte, the lithium being deposited at the negative electrode during operation under charge.
  • Capacitor electrodes comprising aluminum current collectors on which carbon nanotubes (CNTs) are deposited have been described by Arcila-Velez et al Nano Energy 2014, 8, 9-16.
  • KR101746927 describes an electrode comprising a protective layer containing a lithium salt, in order to prevent corrosion of lithium by the liquid electrolyte.
  • the protective layer can also include CNTs.
  • CNTs due to its very high nucleation energy, lithium dendrites will form on the carbon surface. This structure therefore does not allow homogeneous deposition of lithium.
  • US 2019/088981 describes a cell for a battery, such that the negative electrode comprises conductive elements: here again, the deposition of lithium or of lithiated alloy will greatly increase the thickness of the electrode, which leads to weakening the structure during charge and discharge cycles.
  • US2017 / 133662 describes a lithium battery comprising a composite type anode in which the lithium metal is inserted within the porous matrix.
  • lithium is present here initially and this type of solution does not allow lithium to be kept in the porosity of the carbon during cycling, which causes a significant variation in the thickness of the negative electrode. It was actually observed that after several cycles, lithium no longer fits into the porous carbon structure but between the porous carbon layer and the current collector (YG Lee et al, Nat Energy (2020). https://doi.org /10.1038/s41560-020-0575-z). This phenomenon is explained by the migration of particles of the material forming alloys with lithium towards the surface of the current collector under the layer of carbon particles. This solution does not allow lithium to be stored in the porosity of the carbon and therefore will generate significant variations in thickness of the negative electrode causing a degradation of the service life and moreover, it requires '' apply high mechanical pressures to the accumulator during operation.
  • the invention therefore aims in particular to provide a nanoporous negative electrode comprising conductor pillars arranged on the current collector, said electrode being characterized in that the surface of said pillars is at least partially covered with a layer of a material consisting of '' at least one element forming alloys with lithium
  • the pillars are such that they consist of electronically conductive particles which are in direct contact with the current collector.
  • the electrode structure according to the invention thus allows the deposit of lithium in a homogeneous manner within the nanoporous structure while greatly limiting the volume variations of the electrode.
  • nanoporous means a pore size of less than 300 nm.
  • the pore size corresponds to the structure of the material having an organized network of channels of very small variable pore size (typically less than 300 nanometers), which gives them a particularly large active area per unit electrode area.
  • negative electrode designates when the accumulator is discharging, the electrode operating as an anode and when the accumulator is charging, the electrode operating as a cathode, the anode being defined as the electrode where a reaction takes place. electrochemical reaction of oxidation (emission of electrons), while the cathode is the seat of the reduction.
  • the term "conductor pillars” particularly refers to pillars as described by Wei et al (Microelectronic Engineering, Vol. 158, 2016, 22-25).
  • this term illustrates the arrangement of several elements made of a conductive material, such that said elements are generally parallel to each other, and such that they are arranged on a surface at an angle varying between approximately 70 and 90 ° with the surface, for example at a right angle.
  • the pillars form the porous structure and serve as a support for the alloy forming compound.
  • said pillars are arranged in a comb shape, such that the spaces located between said pillars form channels of length which may vary from 1 ⁇ m to 1 mm, typically from a few micrometers to several hundred micrometers.
  • Said pillars can have sizes and spacings of a few nanometers to several hundred nanometers, preferably from 10 to 10Onm.
  • the conductor pillars are chosen from copper pillars, carbon nanotubes or microporous carbons.
  • the carbon nanotubes are vertically aligned carbon nanotubes (VACNT).
  • VACNT vertically aligned carbon nanotubes
  • the electrode according to the invention does not contain lithium metal before it is put into operation.
  • the lithiophilic element is chosen from silver, zinc and magnesium.
  • the alloys formed by these elements with lithium include Li x Zn y , Li x Mg y and Li x Ag y type alloys, with variable x / y atomic ratios.
  • a second nanometric conductive layer of lithium is deposited on at least part of the surface of the first layer.
  • nanoscale layer refers to the thickness of the second layer, which can vary from a few nanometers to less than 10Onm, typically about less than 50nm.
  • the second layer comprises a polymer, ceramic or gel.
  • the second layer conducts lithium, in that it allows the transit of Li + ions from the electrolyte layer to the first layer. It can also allow homogenization of the lithium deposit by allowing the formation of local batteries: in fact during charging, a potential difference is created in the thickness of the electrode; this difference in potentials can then allow an electrochemical rebalancing on the thickness of the electrode by oxidation of lithium in the areas of the most positive potentials and a reduction of Li + in the areas of the most negative potentials.
  • the porosity of the electrode is between 45 and 98% to make it possible, on the one hand, to accommodate the lithium metal in the porosity and at the same time to maintain mechanical strength of the electrode.
  • the negative electrode according to the invention further comprises a third layer comprising an electrolyte.
  • the surface density of CNT is between 10 9 and 2.10 11 CNT / cm 2 .
  • the porosity of the electrode is such that:
  • said electrode has a thickness in the charged state (Ec) and a thickness in the discharged state (Ed), and such that:
  • area capacitance refers to the amount of electricity that the electrode can deliver per unit area.
  • the present invention also relates to a method for preparing a negative electrode according to the invention, said method comprising the step of successively depositing the first layer then the second layer, each of the deposition steps being carried out. by physical or chemical vapor route (PVD or CVD, respectively), or liquid.
  • PVD physical or chemical vapor route
  • CVD chemical vapor route
  • CVD chemical vapor deposition
  • PVD atomic layer deposition
  • ALD atomic layer deposition
  • the present invention also relates to an electrochemical element comprising a negative electrode according to the invention, characterized in that it is a battery of the all-solid or hybrid type (containing at least one inorganic electrolyte and one electrolyte organic polymer), for example a Li free type battery.
  • the present invention also relates to an electrochemical element comprising a negative electrode according to the invention, characterized in that it is a battery of the "lithium free” type.
  • lithium free defines the fact that the battery does not contain lithium metal during assembly of the accumulator, but that lithium is deposited in metallic form and then consumed in a controlled and reversible manner in situ during battery operation. Typically, lithium is deposited within the negative electrode during charging and consumed during discharge.
  • electrochemical element an elementary electrochemical cell made up of the positive electrode / electrolyte / negative electrode assembly, allowing the electrical energy supplied by a chemical reaction to be stored and returned in the form of current.
  • the present invention also relates to an electrochemical module comprising the stack of at least two elements according to the invention, each element being electrically connected with one or more other element (s).
  • module therefore designates here the assembly of several electrochemical elements, said assemblies being able to be in series and / or parallel.
  • Another object of the invention is still a battery comprising one or more modules according to the invention.
  • battery or accumulator is understood to mean the assembly of several modules according to the invention.
  • the batteries according to the invention are accumulators whose capacity is greater than 100 mAh, typically 1 to 100Ah.
  • FIG 1 shows a schematic representation of the structure of an electrode according to the invention.
  • the current collector (1) such as a metal strip has a flat surface, on which stand pillars of conductive material (2), such as copper pillars or carbon nanotubes.
  • These pillars (2) are covered with at least one layer:
  • a first layer (3) made of a material capable of forming alloys with lithium
  • the Li + ions arrive from the solid electrolyte layer separating the 2 positive and negative electrodes, and react at the ends of the pillar.
  • the pillar is made of carbon
  • the latter forms a lithiated compound of varying formula (for example, in the case of graphite, its composition is CL10 .17 )
  • the potential of the negative electrode reaches potentials below 0V
  • a deposit of lithium should form; nevertheless the formation of lithium metal requires a nucleation energy which can be relatively high on the carbon corresponding to an overvoltage.
  • a supersaturation of carbon with lithium can thus take place and the lithium will thus diffuse in the pillar; adding a material forming alloys with lithium to the surface of the CNT will reduce the lithium metal formation overvoltage.
  • the lithium in the structure of the supersaturated lithiated carbon will thus be able to transform into lithium metal on the layer deposited on the surface of the CNT. It should be noted in passing that the material forming alloys will have already lithiated before the precipitation of lithium metal because its formation potential is greater than that of lithium metal. In parallel with this process, the lithium ions can also pass through said possible second layer to be deposited, in the form of Li metal under this layer.
  • FIG 2 is a schematic representation of the structure of an electrode according to Figure 1 above, in the charged state, where Li (5) is present around the pillars.
  • the deposition of VACNT can be carried out as described in the article by Arcila-Velez et al., Nano Energy, Volume 8, 2014, 9-16: the VACNT tubes are made in a quartz tube with a diameter of 5cm; the 2 ends of the tube are partially closed with stainless steel. The tube is placed in an oven with 2 hot zones, the first zone serving as preheating and in the second the reaction takes place.
  • a pump makes it possible to inject the precursor (solution of ferrocene in xylene, containing for example 0.5 at% iron) in the center of the preheating zone.
  • Acetone-cleaned copper sheets, a few cm wide and long, are placed in the center of the reaction zone in the furnace.
  • the system is brought to 600 ° C. under a flow of argon and hydrogen (17% by volume of H2).
  • the precursor is injected at 600 ° C with a low flow rate, for example from 0.1 to 1 5ml / h, in a flow of C2H2 with a flow rate of 30cm 3 / min.
  • the duration of treatment varies from 5 to 50 min depending on the length of the CNTs desired.
  • Deposits of the first and second layer can be carried out according to the following 5 methodologies:
  • the preparation of the electrolyte layer and of the positive electrode is carried out under an argon atmosphere ( ⁇ 1 ppm H2O). 0
  • the electrolyte membrane is obtained in several stages.
  • a first step of mixing sulfide electrolyte of U6PS5CI argyrodite type with 2% by mass of a copolymer binder based on polyvinylidene fluoride is carried out in a planetary mill. This mixing is carried out at a speed of 1000 rpm for 10 min with several solvents: xylene and isobutyl isobutyrate previously dried using molecular sieves (pore size of 3 ⁇ ).
  • the ink thus obtained is coated on a PET film allowing the membrane to be peeled off after drying. The thickness of this membrane is 50 ⁇ m.
  • the positive electrode is made from an NMC type material of composition LiNiO.6OMnO.2OCoO.2OO 2 covered with a 10 nm layer of LiNbOs, mixed with solid electrolyte U 6 PS 5 CI, carbon fibers (VGCF) and copolymer binder based on polyvinylidene fluoride in mass proportions NMC: Li 6 PS 5 CI: VGCF: binder 70: 30: 3: 3. These materials are dispersed in a mixture of xylene and isobutyl isobutyrate solvents. A homogeneous ink is obtained after passing through the planetary mixer. This ink is then coated on an aluminum current collector previously covered with a thin layer of carbon. The weight of the electrode is varied between 15 and 95 mg / cm 2 .
  • a 12mm diameter disc is cut from the electrolytic membrane along with a 10mm diameter positive electrode disc. These two discs are pressed against each other in a mold under a pressure of 5.61.
  • a 10 mm diameter disc is cut from the negative electrode corresponding to the example and placed on the other side of the electrolytic membrane. This stack is then compressed at a pressure of 1 t / cm 2 and can be subjected to a heat treatment of between 80 and 130 ° C. for 12 h.
  • the stack is then placed in a Swagelok-type cell compressed at a pressure of between 1 and 5 MPa.
  • the charge and the discharge are carried out at a rate of C / 20.
  • CNT powder 40 nm in diameter and between 20 and 50 ⁇ m in length is dispersed in an organic solvent (for example NMP) in the presence of 2% PVDF.
  • the mixture is deposited on a copper collector then dried at 120 ° C. and compressed; the layer thickness is 25pm.
  • a silver deposit is then made by PECVD on the layer thus obtained followed by a deposit of LiPON by ALD.
  • the negative electrode is then obtained by cutting a 10mm diameter disc of coated collector.
  • the electrochemical cells are then prepared in an identical manner to Examples 1 to 6.
  • the examples described in Tables 2 and 3 show that the variations in thickness are significantly smaller than Comparative Examples 1 and 4 described in Tables 4 and 5; in fact the negative electrodes of comparative examples 4 and 5 correspond to an increase in thickness corresponding to more than 60% of the initial thickness.
  • Comparative Examples 2, 3 and 5 show too high inter CNT distances which give rise to problems with the mechanical strength of the CNTs under pressure associated with a heterogeneous lithium deposit resulting in a shorter lifetime.
  • Example 1 interCNT distance of the order of 300nm;
  • Example 2 low thickness of the surface layers;
  • Example 6 very high surface capacity.
  • Example 5 Poor penetration of lithium into the porosity and low developed surface area of carbon leading to the formation of dendrite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente demande concerne une électrode comprenant des piliers de conducteurs recouverts d'au moins deux couches, permettant d'améliorer le dépôt de lithium, ainsi que les éléments électrochimiques et batteries les comprenant.

Description

TITRE : Electrode nanoporeuse
La présente invention concerne le domaine du stockage de l’énergie, et plus précisément les accumulateurs, notamment de type lithium.
Les accumulateurs rechargeables lithium-ion offrent en effet d’excellentes densités énergétique et volumique et occupent aujourd’hui une place prépondérante sur le marché de l’électronique portable, des véhicules électriques et hybrides ou encore des systèmes stationnaires de stockage de l’énergie.
Les électrolytes solides offrent de plus une amélioration notable en termes de sécurité dans la mesure où ils présentent un risque d’inflammabilité bien moindre que les électrolytes liquides.
Le fonctionnement des accumulateurs au lithium est basé sur l’échange réversible de l’ion lithium entre une électrode positive et une électrode négative, séparées par un électrolyte, le lithium se déposant à l’électrode négative pendant le fonctionnement en charge.
Il est donc désirable de favoriser le dépôt du lithium et d’en obtenir un dépôt le plus homogène possible.
Des électrodes de condensateur comprenant des collecteurs de courant en aluminium sur lesquels sont déposés des nanotubes de carbone (CNT) ont été décrites par Arcila-Velez et al Nano Energy 2014, 8, 9-16.
KR101746927 décrit une électrode comprenant une couche de protection contenant un sel de lithium, afin d’éviter la corrosion du lithium par l’électrolyte liquide. La couche protectrice peut également comprendre des CNT. Néanmoins, du fait de sa très haute énergie de nucléation, des dendrites de lithium se formeront à la surface du carbone. Cette structure ne permet donc pas un dépôt homogène du lithium.
US 2019/088981 décrit une cellule pour batterie, telle que l’électrode négative comprend des éléments conducteurs : là encore, le dépôt de lithium ou d’alliage lithié va fortement augmenter l’épaisseur de l’électrode, ce qui conduit à fragiliser la structure lors des cycles de charge et décharge.
US2017/133662 décrit une batterie au lithium comprenant une anode de type composite dans laquelle le lithium métal est inséré au sein de la matrice poreuse. Néanmoins, le lithium est ici présent initialement et ce type de solution ne permet pas de maintenir le lithium dans la porosité du carbone au cours de cyclage ce qui entraîne une variation importante de l’épaisseur de l’électrode négative. Il a été effectivement observé qu’après plusieurs cycles, le lithium ne s’insère plus dans la structure poreuse de carbone mais entre la couche poreuse de carbone et le collecteur de courant (Y. G. Lee et al, Nat Energy (2020). https://doi.org/10.1038/s41560-020-0575-z ) . Ce phénomène s’explique par la migration des particules du matériau formant des alliages avec le lithium vers la surface du collecteur de courant sous la couche des particules de carbone. Cette solution ne permet pas de stocker le lithium dans la porosité du carbone et par conséquent va engendrer des variations d’épaisseur importantes de l’électrode négative à l’origine d’une dégradation de la durée de vie et de plus, elle nécessite d’appliquer des pressions mécaniques élevées sur l’accumulateur au cours de son fonctionnement.
Terranova et al Journal of Power Sources 246 (2014) 167-177 et WO 2017/034650 décrivent des électrodes à base de nanotubes de carbone mais ne décrivent aucunement l’inhibition de la variation d’épaisseur desdites électrodes lors des cycles de charge et de décharge.
Il est donc désirable de mettre à disposition une électrode négative dont la structure et composition permettent d’augmenter la quantité et la qualité du dépôt de lithium tout en évitant les fortes variations d’épaisseur.
L’invention vise donc notamment à fournir une électrode négative nanoporeuse comprenant des piliers de conducteur disposés sur le collecteur de courant, ladite électrode étant caractérisée en ce que la surface desdits piliers est au moins partiellement recouverte d’une couche d’un matériau constitué d’au moins un élément formant des alliages avec le lithium
Selon un mode de réalisation, les piliers sont tels qu’ils sont constitués de particules conductrices électroniques qui sont en contact direct avec le collecteur de courant.
Typiquement, c’est-à-dire que pour la grande majorité des particules de l’invention (typiquement plus de 90%), lors d’une observation au MEB, on ne perçoit pas d’espace entre le collecteur de courant et l’une des surfaces des particules (correspondant à la base du pilier) ; tenant compte de la résolution du MEB, cet espace doit être inférieur à 1 nm.
Du fait qu’il n’existe pas d’espace entre le collecteur et la base des particules (ici, les piliers), le composé formant des alliages avec le lithium ne peut pas migrer entre le collecteur et le matériau constitutif du pilier et par conséquent, la formation du lithium métal dans la porosité de l’électrode sera maintenue tout au long du cyclage. La structure d’électrode selon l’invention permet ainsi le dépôt du lithium de façon homogène au sein de la structure nanoporeuse tout en limitant fortement les variations volumiques de l’électrode.
On entend par « nanoporeux » selon l’invention une taille de pores inférieure à 300 nm.
La taille de pores correspond à la structure du matériau présentant un réseau organisé de canaux de taille de pore très petite variable (typiquement inférieure à 300 nanomètres), ce qui leur confère une surface active par unité de surface d’électrode particulièrement grande.
Le terme « électrode négative » désigne lorsque l'accumulateur est en décharge, l'électrode fonctionnant en anode et lorsque l'accumulateur est en charge, l'électrode fonctionnant en cathode, l’anode étant définie comme l’électrode où a lieu une réaction électrochimique d'oxydation (émission d'électrons), tandis que la cathode est le siège de la réduction.
Tel qu’utilisé ici, le terme « piliers de conducteur » fait référence notamment aux piliers tels que décrits parWei et al (Microelectronic Engineering, Vol. 158, 2016, 22-25). Notamment, ce terme illustre l’arrangement de plusieurs éléments constitués d’un matériau conducteur, tel que lesdits éléments sont en général parallèles entre eux, et tels qu’ils sont disposés sur une surface selon un angle variant entre environ 70 et 90° avec la surface, par exemple à angle droit. Les piliers forment la structure poreuse et servent de support au composé formant alliage.
Typiquement, lesdits piliers sont arrangés selon une forme en peigne, tels que les espaces situés entre lesdits piliers forment des canaux de longueur pouvant varier de 1 pm à 1 mm, typiquement de quelques micromètres à plusieurs centaines de micromètres. Lesdits piliers peuvent présenter des tailles et des espacements de quelques nanomètres à plusieurs centaines de nanomètres, préférentiellement de 10 à 10Onm.
Selon un mode de réalisation, les piliers de conducteur sont choisis parmi les piliers de cuivre, les nanotubes de carbone ou les carbones microporeux.
Selon un mode de réalisation, les nanotubes de carbone sont des nanotubes de carbone alignés verticalement (VACNT). L’expression « matériau formant des alliages avec le lithium » ou matériau « lithiophile » définit un matériau présentant une affinité pour le lithium.
Selon un mode de réalisation, l’électrode selon l’invention ne contient pas de lithium métal avant sa mise en fonctionnement.
Selon un mode de réalisation, l’élément lithiophile est choisi parmi l’argent, le zinc et le magnésium. Typiquement, les alliages formés par ces éléments avec le lithium incluent les alliages de type LixZny, LixMgy et LixAgy, avec des ratio atomiques x/y variables.
Selon un mode de réalisation, une deuxième couche nanométrique conductrice du lithium est déposée sur au moins une partie de la surface de la première couche.
La « couche nanométrique » mentionnée ici fait référence à l’épaisseur de la deuxième couche, qui peut varier de quelques nanomètres à moins de 10Onm, typiquement environ inférieure à 50nm.
Typiquement, la deuxième couche comprend un polymère, une céramique ou un gel.
La deuxième couche est conductrice du lithium, en ce qu’elle permet le transit des ions Li+ depuis la couche d’électrolyte vers la première couche. Elle peut également permettre une homogénéisation du dépôt de lithium en permettant la formation de piles locales : en effet au cours de la charge, une différence de potentiels est créée dans l’épaisseur de l’électrode ; cette différence de potentiels peut alors permettre un rééquilibrage électrochimique sur l’épaisseur de l’électrode par oxydation du lithium dans les zones de potentiels les plus positives et une réduction de Li+ dans les zones de potentiels les plus négatifs.
Selon un mode de réalisation, la porosité de l’électrode est comprise entre 45 et 98% pour permettre d’une part d’accueillir le lithium métal dans la porosité et en même temps de maintenir une tenue mécanique de l’électrode.
Selon un mode de réalisation, l’électrode négative selon l’invention comprend en outre une troisième couche comprenant un électrolyte.
Selon un mode de réalisation, la densité surfacique de CNT est comprise entre 109 et 2.1011 CNT/cm2.
Selon un mode de réalisation, la porosité de l’électrode est telle que :
[Math 1] E x s > 4,85 x C où C est la capacité surfacique de l’électrode positive (en mAh/cm2) ; E est l’épaisseur de l’électrode négative à l’état déchargé exprimée en pm ; et s est la porosité de l’électrode négative à l’état déchargé ( la porosité étant définie comme le ratio de la différence entre le volume total de l’électrode (hors collecteur de courant) et le volume de matériau divisé par le volume de l’électrode).
Selon un mode de réalisation, ladite électrode présente une épaisseur à l’état chargé (Ec) et une épaisseur à l’état déchargé (Ed), et telle que :
[Math 2]
Ec - Ed < 4,85 x C x h, où C est la capacité surfacique de l’électrode positive (en mAh/cm2) ; h est un nombre sans dimension compris entre 0 et 0.3.
Tel qu’utilisé ici, le terme « capacité surfacique (ou C) » désigne la quantité d'électricité que peut délivrer l’électrode par unité de surface.
Selon un autre objet, la présente invention vise également un procédé de préparation d’une électrode négative selon l’invention, ledit procédé comprenant l’étape de dépôt successif de la première couche puis de la deuxième couche, chacune des étapes de dépôt étant effectuée par voie physique ou chimique en phase vapeur (PVD ou CVD, respectivement), ou par voie liquide.
A titre de dépôt physique ou chimique en phase vapeur (CVD ou PVD), on peut notamment citer le dépôt de couche atomique (ALD). On peut également citer les dépôts par voie liquide notamment électrolytiques.
Selon un autre objet, la présente invention vise encore un élément électrochimique comprenant une électrode négative selon l’invention caractérisé en ce qu’il s’agit d’une batterie de type tout solide ou hybride (contenant au moins un électrolyte inorganique et un électrolyte organique polymère), par exemple une batterie de type Li free.
Selon un autre objet, la présente invention vise encore un élément électrochimique comprenant une électrode négative selon l’invention caractérisé en ce qu’il s’agit d’une batterie de type « lithium free ».
Il est entendu que le terme « lithium free » définit le fait que la batterie ne contient pas de lithium métal lors du montage de l’accumulateur, mais que du lithium est déposé sous forme métallique puis consommé de manière contrôlée et réversible in situ au cours du fonctionnement de la batterie. Typiquement, le lithium est déposé au sein de l’électrode négative au cours de la charge et consommé au cours de la décharge.
On entend par « élément électrochimique » une cellule électrochimique élémentaire constituée de l’assemblage électrode positive/électrolyte/électrode négative, permettant d’emmagasiner l’énergie électrique fournie par une réaction chimique et de la restituer sous forme de courant.
Selon un autre objet, la présente invention concerne également un module électrochimique comprenant l’empilement d’au moins deux éléments selon l’invention, chaque élément étant connecté électriquement avec un ou plusieurs autre(s) élément(s). Le terme « module » désigne donc ici l’assemblage de plusieurs éléments électrochimiques, lesdits assemblages pouvant être en série et/ou parallèle.
Un autre objet de l’invention est encore une batterie comprenant un ou plusieurs modules selon l’invention.
On entend par « batterie » ou accumulateur, l’assemblage de plusieurs modules selon l’invention.
Selon un mode de réalisation, les batteries selon l’invention sont des accumulateurs dont la capacité est supérieure à 100 mAh, typiquement 1 à 100Ah.
Figures
[Fig 1] La Figure 1 représente une représentation schématique de la structure d’une électrode selon l’invention. Le collecteur de courant (1) tel qu’un feuillard de métal présente une surface plane, sur laquelle s’élèvent des piliers de matériau conducteur (2), tels que des piliers de cuivre ou des nanotubes de carbone.
Ces piliers (2) sont recouverts d’au moins une couche :
- tout d’abord, en contact direct avec le pilier, une première couche (3) constituée d’un matériau capable de former des alliages avec le lithium ; et
- sur cette première couche et au contact de l’électrolyte : éventuellement une deuxième couche (4) conductrice des ions Li+.
En fonctionnement, en charge, les ions Li+ arrivent de la couche d’électrolyte solide séparant les 2 électrodes positive et négative, réagissent aux extrémités du pilier. Lorsque le pilier est constitué de carbone, ce dernier forme un composé lithié de formule variable (par exemple, dans le cas de graphite, sa composition est de CLio.17), Lorsque le potentiel de l’électrode négative atteint des potentiels inférieurs à 0V, un dépôt de lithium devrait se former ; néanmoins la formation de lithium métal requiert une énergie de nucléation qui peut être relativement élevée sur le carbone correspondant à une surtension. Une sursaturation du carbone en lithium peut ainsi avoir lieu et le lithium va ainsi diffuser dans le pilier ; le fait de rajouter un matériau formant des alliages avec le lithium à la surface du CNT va réduire la surtension de formation de lithium métal. Le lithium dans la structure du carbone lithié sursaturé va ainsi pouvoir se transformer en lithium métal sur la couche déposée à la surface du CNT. Notons au passage que le matériau formant des alliages se sera déjà lithié avant la précipitation de lithium métal car son potentiel de formation est supérieur à celui du lithium métal. En parallèle à ce processus, les ions lithium peuvent également transiter au travers de ladite éventuelle deuxième couche pour se déposer, sous forme de Li métal sous cette couche.
[Fig 2] La Figure 2 est une représentation schématique de la structure d’une électrode selon la Figure 1 précitée, à l’état chargé, où de Li (5) est présent autour des piliers.
Les exemples suivants sont donnés à titre illustratif et non limitatif d’un mode de réalisation de la présente invention.
Exemples
Réalisation des cellules électrochimiques :
Concernant la préparation de l’électrode négative, le dépôt de VACNT peut être réalisé comme décrit dans l’article de Arcila-Velez et al., Nano Energy, Volume 8, 2014, 9-16: les tubes de VACNT sont réalisés dans un tube en quartz de diamètre 5cm ; les 2 extrémités du tube sont partiellement refermées avec de l’inox. Le tube est placé dans un four avec 2 zones chaudes, la première zone servant de préchauffe et dans la seconde a lieu la réaction. Une pompe permet d’injecter le précurseur (solution de ferrocène dans du xylène, contenant par exemple 0.5 at% de fer) au centre de la zone de préchauffe. Des feuilles de cuivre nettoyées à l’acétone, de quelques cm de largeur et de longueur, sont placées au centre de la zone de réaction dans le four. Le système est porté à 600°C sous un flux d’argon et d’hydrogène (17% volumique de H2). Le précurseur est injecté à 600°C avec un faible débit, par exemple de 0.1 à 1 5ml/h, dans un flux de C2H2 avec un débit de 30cm3/min. La durée de traitement varie de 5 à 50 min en fonction de la longueur des CNT désirée.
Les dépôts de la première et de la deuxième couche peuvent être réalisé selon les 5 méthodologies suivantes:
[Table 1]
La préparation de la couche d’électrolyte et de l’électrode positive est effectuée sous atmosphère d’argon (< 1 ppm H2O). 0 La membrane électrolytique est obtenue en plusieurs étapes. Une première étape de mélange d’électrolyte sulfure de type argyrodite U6PS5CI avec 2% massique d’un liant copolymère à base de polyfluorure de vinylidène est réalisée au broyeur planétaire. Ce mélange est effectué à une vitesse de 1000 trs/min pendant 10 min avec plusieurs solvants : du xylène et de l’isobutyl isobutyrate préalablement séchés à l’aide de tamis5 moléculaires (taille de pores de 3 Â). Dans une deuxième étape, l’encre ainsi obtenue est enduite sur un film de PET permettant de décoller la membrane après séchage. L’épaisseur de cette membrane est de 50pm.
De manière similaire, l’électrode positive est fabriquée à partir d’un matériau de type NMC de composition LiNiO.6OMnO.2OCoO.2OO2 recouvert d’une couche de 10 nm de LiNbOs, mélangé avec de l’électrolyte solide U6PS5CI, des fibres de carbones (VGCF) et du liant copolymère à base de polyfluorure de vinylidène en proportions massiques NMC : Li6PS5CI : VGCF : liant 70 : 30 : 3 : 3. Ces matériaux sont dispersés dans un mélange de solvants xylène et isobutyl isobutyrate. Une encre homogène est obtenue après un passage au mélangeur planétaire. Cette encre est ensuite enduite sur un collecteur de courant en aluminium préalablement recouvert d’une fine couche de carbone. On fait varier le grammage de l’électrode entre 15 et 95 mg/cm2.
Après séchage, un disque de 12 mm de diamètre est découpé dans la membrane électrolytique ainsi qu’un disque de 10 mm de diamètre d’électrode positive. Ces deux disques sont comprimés l’un contre l’autre dans un moule sous une pression de 5,61.
Pour un exemple donné, un disque de 10 mm de diamètre est découpé dans l’électrode négative correspondant à l’exemple et disposé de l’autre côté de la membrane électrolytique. Cet empilement est ensuite comprimé à une pression de 1 t/cm2 et peut être soumis à un traitement thermique compris entre 80 et 130°C pendant 12 h.
L’empilement est ensuite disposé dans une cellule de type Swagelok comprimée à une pression comprise entre 1 et 5MPa. Pour les tests électriques, la charge et la décharge sont réalisées à un régime de C/20.
Contre exemples :
Pour l’exemple comparatif N°1 , de la poudre de CNT de 40nm de diamètre et de longueur comprise entre 20 et 50pm est dispersée dans un solvant organique (par exemple de la NMP) en présence de 2% de PVDF. Le mélange est déposé sur un collecteur de cuivre puis séché à 120°C et comprimé ; l’épaisseur de la couche est de 25pm. Un dépôt d’argent est ensuite réalisé par PECVD sur la couche ainsi obtenue suivi d’un dépôt de LiPON par ALD. L’électrode négative est alors obtenue en découpant un disque de 10mm de diamètre de collecteur enduit.
Pour les exemples comparatifs 2 à 5, le mode de préparation des électrodes négatives est similaire à celui utilisé pour les exemples 1 à 6.
Les cellules électrochimiques sont ensuite préparées de manière identique aux exemples 1 à 6. Les exemples décrits dans les tableaux 2 et 3 montrent que les variations d’épaisseur sont significativement plus faibles que les exemples comparatifs 1 et 4 décrits dans les tableaux 4 et 5 ; en effet les électrodes négatives des exemples comparatifs 4 et 5 correspondent à une augmentation d’épaisseur correspondant à plus de 60% de l’épaisseur initiale. Les exemples comparatifs 2, 3 et 5 présentent des distances inter CNT trop élevées qui engendrent des problèmes de tenue mécanique des CNT sous pression associé à un dépôt de lithium hétérogène se traduisant par une durée de vie plus faible.
11
[Table 2]
On observe les particularités suivantes pour les réalisations du Tableau 2 ci-dessus : Exemple 1 : distance interCNT de l'ordre de 300nm ; - Exemple 2 : faible épaisseur des couches de surface;
Exemple 3 : forte capacité surfacique;
Exemple 4 : Ec-Ed >0 mais <0.2*4.85*0 ;
Exemple 5 : faible taille de pore = faible distance interCNT ;
Exemple 6 : très forte capacité surfacique.
[Table 3]
12
(*) épaisseur de l'électrode négative sans l'épaisseur du collecteur pour une face d'électrode Exemples comparatifs :
Les exemples suivants ont été obtenus à partir de cellules comprenant des électrodes négatives dont les caractéristiques sont rassemblées dans les tableaux 4 et 5.
[Table 4]
13
On observe les particularités suivantes pour les réalisations du Tableau 4 ci-dessus :
Exemple 1 : Poudre de CNT déposée sur un collecteur de Cu => tout le Li se dépose entre les CNT et le cuivre;
Exemple 2 : Mauvaise pénétration du lithium dans la porosité => mauvaise durée de vie et gonflement de l'électrode;
Exemple 3 : Distance interCNT > 300nm => faible résistance mécanique;
Exemple 4 : E*poro > 4.85.C et Ec-Ed> 0.2.4.85.C: fort gonflement de l'électrode correspondant à plus de 60% de l'épaisseur de l'électrode => mauvaise durée de vie;
Exemple 5 : Mauvaise pénétration du lithium dans la porosité et faible surface développée du carbone conduisant à la formation de dendrite.
[Table 5]
Il apparait ainsi notamment que lorsque E*poro > 4.85.C (exemple 4), on observe un fort gonflement de l'électrode.

Claims

REVENDICATIONS
1. Electrode négative nanoporeuse comprenant des piliers de conducteur disposés sur le collecteur de courant, telle que la porosité de ladite électrode négative est telle que :
E x s > 4,85 x C où C est la capacité surfacique de ladite électrode positive (en mAh/cm2) ;
E est l’épaisseur de ladite électrode négative à l’état déchargé exprimée en pm ; et s est la porosité de ladite électrode négative à l’état déchargé (la porosité étant définie comme le ratio de la différence entre le volume total de l’électrode (hors collecteur de courant) et le volume dudit matériau divisé par le volume de l’électrode), ladite électrode étant caractérisée en ce que la surface desdits piliers est au moins partiellement recouverte d’une couche d’un matériau constitué d’au moins un élément formant des alliages avec le lithium.
2. Electrode négative selon la revendication 1 comprenant une deuxième couche nanométrique conductrice du lithium déposée sur au moins une partie de la surface de ladite couche.
3. Electrode négative selon l’une quelconque des revendications précédentes telle que les piliers de conducteur sont choisis parmi les piliers de cuivre, les nanotubes de carbone ou les carbones microporeux.
4. Electrode négative selon la revendication 3 telle que les nanotubes de carbone sont des nanotubes de carbone alignés verticalement (VACNT).
5. Electrode négative selon la revendication 2 telle que la deuxième couche comprend un polymère, une céramique ou un gel.
6. Electrode négative selon la revendication 2 telle que l’épaisseur de la deuxième couche a une épaisseur comprise entre 0 et 100 nm.
7. Electrode négative selon l’une quelconque des revendications précédentes telle que l’élément lithiophile est choisi parmi l’argent, le zinc et le magnésium.
8. Electrode négative selon l’une quelconque des revendications 2 à 7 telle qu’elle comprend en outre une troisième couche comprenant un électrolyte.
9. Electrode selon l’une quelconque des revendications précédentes présentant une épaisseur à l’état chargé (Ec) et une épaisseur à l’état déchargé (Ed), et telle que :
Ec - Ed < 4,85 x C x h, où C est la capacité surfacique de l’électrode positive (en mAh/cm2) ; h est un nombre sans dimension compris entre 0 et 0.3.
10. Procédé de préparation d’une électrode selon l’une quelconque des revendications précédentes comprenant l’étape de dépôt successif de la première couche puis éventuellement de la deuxième couche, chacune des étapes de dépôt étant effectuée par voie physique ou chimique en phase vapeur (PVD ou CVD, respectivement), ou par voie liquide.
11. Elément électrochimique comprenant une électrode négative selon l’une quelconque des revendications 1 à 9 caractérisé en ce qu’il s’agit d’une batterie de type tout solide ou hybride.
12. Elément électrochimique selon la revendication 11 tel qu’il s’agit d’une batterie de type « Li free », en ce qu’elle ne contient pas de lithium métal lors du montage.
13. Module électrochimique comprenant l’empilement d’au moins deux éléments selon la revendication 11 à 12, chaque élément étant connecté électriquement avec un ou plusieurs autre(s) élément(s).
14. Batterie comprenant un ou plusieurs modules selon la revendication 13.
EP21714905.3A 2020-03-31 2021-03-30 Electrode nanoporeuse Pending EP4128388A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003195A FR3108793B1 (fr) 2020-03-31 2020-03-31 Electrode nanoporeuse
PCT/EP2021/058324 WO2021198271A1 (fr) 2020-03-31 2021-03-30 Electrode nanoporeuse

Publications (1)

Publication Number Publication Date
EP4128388A1 true EP4128388A1 (fr) 2023-02-08

Family

ID=72885598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21714905.3A Pending EP4128388A1 (fr) 2020-03-31 2021-03-30 Electrode nanoporeuse

Country Status (4)

Country Link
US (1) US20230125633A1 (fr)
EP (1) EP4128388A1 (fr)
FR (1) FR3108793B1 (fr)
WO (1) WO2021198271A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11991113B2 (en) * 2020-05-21 2024-05-21 Qualcomm Incorporated Positioning measurement reporting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895572B1 (fr) * 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
US8486562B2 (en) * 2009-02-25 2013-07-16 Applied Materials, Inc. Thin film electrochemical energy storage device with three-dimensional anodic structure
JPWO2014156053A1 (ja) * 2013-03-26 2017-02-16 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR101746927B1 (ko) 2014-06-13 2017-06-14 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 전지
US20180175379A1 (en) * 2015-06-10 2018-06-21 William Marsh Rice University Germanium-containing carbon nanotube arrays as electrodes
CN105099118B (zh) 2015-07-31 2017-11-17 瑞声光电科技(常州)有限公司 多谐振线性电机
US11145851B2 (en) 2015-11-11 2021-10-12 The Board Of Trustees Of The Leland Stanford Junior University Composite lithium metal anodes for lithium batteries with reduced volumetric fluctuation during cycling and dendrite suppression
WO2017152836A1 (fr) 2016-03-08 2017-09-14 北京好风光储能技术有限公司 Cellule pour batterie à pâte au lithium, et module de batterie à pâte au lithium

Also Published As

Publication number Publication date
WO2021198271A1 (fr) 2021-10-07
US20230125633A1 (en) 2023-04-27
FR3108793A1 (fr) 2021-10-01
FR3108793B1 (fr) 2022-09-09

Similar Documents

Publication Publication Date Title
Zhang et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
Nguyen et al. Highly interconnected Si nanowires for improved stability Li‐ion battery anodes
EP2351121A1 (fr) Materiau composite d&#39;electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode
CA3073099A1 (fr) Materiaux d&#39;electrode sous forme d&#39;alliage a base de lithium et leurs procedes de fabrication
EP3084866B1 (fr) Compartiment anodique avec collecteur en alliage amorphe
WO2019020938A1 (fr) Materiau nanostructure et son procede de preparation
FR3042915A1 (fr) Procede de fabrication d&#39;un accumulateur du type sodium-ion
EP3591750A1 (fr) Collecteur de courant à grille et dispositifs et procédés associés
Zhang et al. Leveraging Synergies by Combining Polytetrafluorethylene with Polyvinylidene Fluoride for Solvent‐Free Graphite Anode Fabrication
WO2022144725A1 (fr) Procede de fabrication d&#39;une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et microbatterie comprenant cette anode
EP4128388A1 (fr) Electrode nanoporeuse
CA3206652A1 (fr) Procede de fabrication d&#39;une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et batterie comprenant cette anode
EP3931892A1 (fr) Électrode pour dispositif de stockage de l&#39;énergie rechargeable
FR3059837B1 (fr) Accumulateur electrochimique metal-ion, comprenant un separateur regenerateur de capacite, procedes de realisation de separateur associes
EP4173059A1 (fr) Electrode négative hybride graphite/lithium
EP4305686A1 (fr) Electrode pour élément électrochimique lithium soufre tout solide comprenant un électrolyte sulfure conducteur ionique et électronique
EP3930045A1 (fr) Electrode négative poreuse
WO2024023694A1 (fr) Collecteur de courant pour dispositif electrochimique de stockage ou de generation d&#39;energie electrique
FR3124328A1 (fr) Procede de preparation d’electrode poreuse sans solvant et les elements electrochimiques comprenant de telles electrodes
EP4364193A1 (fr) Couches de germe nanostructurées pour dépôt de lithium métallique
FR3124895A1 (fr) Batterie a ions de lithium a forte densite de puissance et bas cout
CA3160766A1 (fr) Electrode composite comprenant un metal et une membrane polymere, procede de fabrication et batterie la contenant
FR3131450A1 (fr) Procede de fabrication d’une electrode poreuse, et batterie contenant une telle electrode
WO2021198892A1 (fr) Procede de fabrication de batteries a ions de lithium
FR3025363A1 (fr) Electrode pour batterie de vehicule

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)