WO2015090198A1 - 一种非接触式划线电位器 - Google Patents

一种非接触式划线电位器 Download PDF

Info

Publication number
WO2015090198A1
WO2015090198A1 PCT/CN2014/094064 CN2014094064W WO2015090198A1 WO 2015090198 A1 WO2015090198 A1 WO 2015090198A1 CN 2014094064 W CN2014094064 W CN 2014094064W WO 2015090198 A1 WO2015090198 A1 WO 2015090198A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating rod
potentiometer
permanent magnet
slider
scribe
Prior art date
Application number
PCT/CN2014/094064
Other languages
English (en)
French (fr)
Inventor
王峰
王俊云
计晓春
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to EP14871839.8A priority Critical patent/EP3086331B1/en
Priority to JP2016541000A priority patent/JP6389894B2/ja
Priority to US15/106,127 priority patent/US9978485B2/en
Publication of WO2015090198A1 publication Critical patent/WO2015090198A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/14Adjustable resistors adjustable by auxiliary driving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element

Definitions

  • the present invention relates to a scribe potentiometer, and more particularly to a non-contact scribe potentiometer that converts a linear displacement into a rotational angular displacement and is detected by a tunnel magnetoresistive sensor.
  • Potentiometer is a new type of electronic component with high linearity index and high reliability index. It can be used in aerospace, aerospace and precision instrumentation. With the development of technology, there is an urgent need for long-life, high-performance, high-reliability potentiometers. At present, the research on rotary potentiometers has made great progress, while the research and production of straight-slip potentiometers are relatively few.
  • the straight-slip potentiometer adopts a brush structure, which changes the position of the brush by linear sliding to realize the function of the product.
  • Chinese Patent Application No. 201010528601.1 “Direct Slide Potentiometer” discloses a straight slide type potentiometer comprising a housing, a slide shaft movable in the housing, and an extraction bus mounted on the housing, mounted in the housing There is a resistor body assembly including an insulating plate provided with a conductive rail and three mounting wires mounted on the insulating plate.
  • a brush assembly is mounted on one end of the sliding shaft and extends into the interior of the housing, and the brush assembly includes a slider fixed on the sliding shaft, and the slider is fixed to the electric
  • the brush is connected to the reed, and the brush is in contact with the conductive rail on the insulating plate.
  • the applicant has made some improvements to the design structure, and proposed a new patent application 201220557883.2, which discloses a coaxial double-straight-slip potentiometer, the potentiometer including a housing,
  • the conductive plastic substrate 1 and the conductive plastic substrate 2 are respectively provided with a resistor on the lower surface of the conductive plastic substrate 1 and the upper surface of the conductive plastic substrate 2, and an extension housing is disposed between the conductive plastic substrate 1 and the conductive plastic substrate 2.
  • the sliding rod is provided with a slider at one end of the sliding rod, and the upper and lower sides of the sliding rod are respectively provided with two brushes.
  • the voltage signal output by the potentiometer has a linear relationship with the linear displacement of the adjustment shaft, and can realize the conversion from mechanical motion to electrical signal. Although its reliability is improved relative to the former, its structure is more complicated, the cost is higher, and the service life is not long enough.
  • the object of the present invention is to overcome the above drawbacks in the prior art and to provide a non-contact scribe potentiometer with an extremely long service life.
  • the potentiometer is compact in structure and simple in manufacture, and can convert linear motion into rotation and pass through non-
  • the contacted tunnel magnetoresistive sensor is used to achieve the rotation angle detection, thereby achieving an improved service life.
  • the invention provides a non-contact scribe potentiometer comprising a slider, a rotating rod, a tunnel magnetoresistive sensor, a permanent magnet and a base; the slider has a first through hole ;
  • the rotating rod passes through the first through hole, and both ends of the rotating rod are rotatably mounted on the base;
  • the slider slides along an axial direction of the rotating rod, and the sliding of the sliding rod drives the rotating rod to rotate;
  • the permanent magnet is located at one end of the rotating rod, and rotates together with the rotating rod;
  • the tunnel magnetoresistive sensor is adjacent to the permanent magnet for detecting a magnetic field generated by the rotation of the permanent magnet and converting the detected magnetic field into a voltage signal output.
  • the non-contact scribe potentiometer further includes a guide rod, the slider further has a second through hole; the guide rod passes through the second through hole, parallel to the rotating rod, Both ends are fixed to the base.
  • the tunnel magnetoresistive sensor is a two-axis rotary magnetic sensor or two orthogonal single-axis rotary magnetic sensors.
  • the shape of the permanent magnet is a disc shape, a ring shape or a square shape.
  • the tunnel magnetoresistive sensor is a dual-axis magnetic sensor.
  • the permanent magnet has a disc shape or a ring shape.
  • the central axis of the tunnel magnetoresistive sensor is the same as the central axis of the permanent magnet and the rotating rod.
  • the internal magnetization direction of the permanent magnet is perpendicular to the axial direction of the rotating rod.
  • the non-contact scribe potentiometer further includes a ball between the slider and the rotating rod.
  • a pin for abutting the ball is fitted between the slider and the rotating rod, and the pin may be parallel to a plane parallel to the rotating rod and the guiding rod and perpendicular to the The axial direction of the rotating rod slides.
  • a spring piece is fitted between the slider and the pin.
  • the rotating rod includes a spiral groove, and the ball rolls along the spiral groove.
  • the spiral wire on the lead screw is pulled out by a wire plate, and an electroplating process or a heat treatment process is used to obtain a surface hardness required on the lead screw.
  • the bottom of the non-contact scribe potentiometer is provided with a printed circuit board, which further comprises a wiring pin, and the tunnel magnetoresistive sensor is soldered on the printed circuit board.
  • the rotating rod is a lead screw or a torsion rod.
  • the principle of the screw rod is reversely applied, and the slider is used as a power source to drive the rotating rod to rotate, thereby converting the linear motion into a circular motion.
  • a ball, a pin and a spring piece are mounted between the slider and the rotating lever, and a guide bar is used to provide a sliding guide of the slider.
  • the role of the ball is to convert the sliding friction into rolling friction, minimizing friction.
  • the spring piece and the slidable pin are used to eliminate the gap caused by manufacturing errors and assembly, and to ensure the accuracy of the forward and reverse stroke.
  • the present invention has the following beneficial effects:
  • the invention converts the linear sliding displacement into a rotational angular displacement, and senses the rotation angle of the rotating rod through the tunnel magnetoresistive sensor, thereby improving the linearity and reducing the power consumption;
  • the tunnel magnetoresistive sensor of the present invention can realize measurement without contacting the rotating rod, thereby improving the service life;
  • FIG. 1 is a schematic view showing the appearance of a non-contact type scribe potentiometer according to the present invention.
  • FIG. 2 is a schematic view showing the internal structure of a non-contact type scribe potentiometer according to the present invention.
  • FIG 3 is a schematic cross-sectional view showing the positional relationship between a tunnel magnetoresistive sensor and a permanent magnet.
  • FIG. 4 is a graph showing the relationship between the output voltage of the non-contact scribe potentiometer and the rotation angle of the permanent magnet in the invention.
  • Figure 5 is a partial cross-sectional view of the non-contact scribe potentiometer of the present invention.
  • Fig. 6 is a structural schematic view of a torsion bar replacing a lead screw.
  • FIG. 1 is a schematic view showing the external structure of a non-contact type scribe potentiometer according to the present invention
  • FIG. 2 is a schematic view showing the internal structure of the potentiometer after removing the outer casing 13.
  • the potentiometer comprises a rotatable rotating rod 1, a slider 2, a fixed guiding rod 3, bases 4 and 5, and a tunnel magnetoresistance (tunnel) Magneto- Resistance, TMR) sensor 9, permanent magnet 10, printed circuit board 12.
  • the rotating rod 1 has a spiral protrusion or groove which can convert the sliding of the slider into the rotation of the rotating rod.
  • the rotating lever 1 is a lead screw.
  • the lead screw 1 passes through a corresponding first through hole on the slider 2, and both ends thereof are rotatably mounted to the bases 4 and 5.
  • One end of the guide rod 3 is fixed on the base 4, and the other end passes through the slider 2.
  • the corresponding second through hole is fixed to the base 5.
  • the guide rod 3 is parallel to the lead screw 1. Moving the handle 11 on the slider 2 causes the slider 2 to slide along the axial direction of the lead screw 1 and the guide rod 3 (ie, the Z-axis direction 100 in FIG. 3), thereby driving the lead screw 1 to rotate, and the permanent magnet 10 Located at one end of the lead screw 1, it also rotates together with the lead screw 1.
  • the tunnel magnetoresistive sensor 9 is adjacent to the permanent magnet 10 and soldered to a printed circuit board (Printed Circuit Board, On the PCB 12, as shown in FIG. 2, the printed circuit board 12 is located at the bottom of the potentiometer, and further includes wiring pins (not shown).
  • the tunnel magnetoresistive sensor 9 may be a two-axis rotary magnetic sensor or two orthogonal single-axis rotation sensors.
  • the shape of the permanent magnet 10 may be a disk shape, a ring shape or a square shape, and the central axis of the tunnel magnetoresistive sensor 9 is always The central axes of the magnet 10 and the lead screw 1 are the same.
  • the tunnel magnetoresistive sensor 9 can also be a dual-axis magnetic sensor.
  • the permanent magnet 10 can be in the shape of a disk or a ring.
  • the tunnel magnetoresistive sensor 9 is located around the permanent magnet 10, preferably coaxially with the permanent magnet 10. .
  • the internal magnetization direction of the permanent magnet 10 is as shown by the N pole and the S pole in FIG. 3, and it can be seen from the figure that the magnetization direction is perpendicular to the Z axis direction 100.
  • guide bar 3 is a preferred manner for providing the sliding guide of the slider 2.
  • the tunnel magnetoresistive sensor 9 changes the detected X-axis and Y-axis magnetic field components with the rotation angle as shown by curves 41 and 42 in FIG. 4, respectively. Show.
  • the tunnel magnetoresistive sensor 9 converts the amplitude of the magnetic field generated by the permanent magnet 10 into an analog voltage signal, and the obtained analog voltage signal can be directly outputted, or can be outputted by using an analog-to-digital conversion circuit (ADC) to convert into a digital signal.
  • ADC analog-to-digital conversion circuit
  • the angle of rotation of the permanent magnet 10, that is, the angle of rotation of the lead screw 1 can be known from the output signal.
  • a ball 6, a pin 7, and a spring piece 8 are fitted between the slider 2 and the lead screw 1, as shown in FIG.
  • the ball 6 rolls along the spiral groove on the lead screw 1, and its function is to convert the sliding friction into rolling friction, thereby minimizing friction and thereby prolonging the service life.
  • the pin 7 is for holding the ball 6, which is slidable along a direction parallel to the plane of the rotating rod and the guiding rod and perpendicular to the axial direction of the rotating rod, so as to be slidable along the X-axis direction.
  • the spring piece 8 and the pin 7 are used to eliminate the gap caused by manufacturing errors and assembly, and to ensure the accuracy of the forward and reverse strokes.
  • the above X-axis direction is a direction parallel to the plane formed by the rotating rod and the guide rod and perpendicular to the axial direction of the rotating rod.
  • the lead screw 1 is improved by referring to the processing technology of the twisted wire, and the spiral wire which needs a lead is taken out by the twisting plate, and the slider 2 can slide along the spiral.
  • the surface can be subjected to a common electroplating process or a heat treatment process to obtain the required surface hardness to reduce wear and prolong the service life.
  • the lead screw 1 can also be replaced by a torsion bar, and the structure of the torsion bar is as shown in FIG. 6.
  • the material used to make the torsion bar is relatively cheaper and the manufacturing process is simpler, thus reducing costs.
  • the rest of the parts are common processing techniques that are easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Adjustable Resistors (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种非接触式划线电位器,该电位器包括滑块、转动杆、导向杆、隧道磁电阻传感器、永磁体、印刷电路板以及两个基座。其中,滑块沿着转动杆和导向杆滑动,从而带动转动杆转动,永磁体位于转动杆的一端,也跟随转动杆一起转动。隧道磁电阻传感器与永磁体相邻,焊接在印刷电路板上,用于测量永磁体转动的角度。导向杆用于为滑块提供滑动方向,两个基座位于转动杆和导向杆的两端,用于固定转动杆和导向杆。滑块与转动杆之间装配有滚珠、销钉和弹簧片。该电位器具有结构紧凑、制作简单、使用寿命长以及能给用户带来顺畅舒适的滑动手感等优点。

Description

一种非接触式划线电位器
技术领域
本发明涉及一种划线电位器,尤其是指一种将直线位移转化成旋转角位移并通过隧道磁电阻传感器检测的非接触式划线电位器。
背景技术
电位器是一种新型电子元器件,具有线性度指标高、可靠性指标高等特点,可应用于航空、航天和精密仪器仪表等领域中。随着科技的发展,迫切需求长寿命、高性能、高可靠的电位器。目前,旋转式电位器的研究已经取得了长足的进步,而对直滑式电位器的研究和制作却相对较少。
现有技术中,直滑式电位器采用电刷结构,其通过直线滑动的形式改变电刷的位置来实现产品的功能。中国专利申请201010528601.1“直滑式电位器”公开了一种直滑式电位器,该电位器包括壳体、能在壳体内移动的滑动轴和安装在壳体上的引出总线,在壳体内安装有电阻体组件,该电阻体组件包括设置有导电轨的绝缘板和安装在绝缘板上的三条安装线。滑动轴的一端伸入到壳体内部并且滑动轴伸入到壳体内部的一端安装有电刷组件,该电刷组件包括固定在滑动轴上的滑块,此滑块上这固定有与电刷连接的簧片,电刷与绝缘板上的导电轨相接触。虽然该传感器能实现直线位移和电子信号的转换,但其结构复杂,并且使用寿命短,特别不能适用于滑动频繁的应用。在此设计基础上,申请人又对此设计结构做了一些改进,提出了一新专利申请201220557883.2,该专利申请公开了一种同轴双联直滑式电位器,该电位器包括壳体、导电塑料基体一和导电塑料基体二,在导电塑料基体一的下表面和导电塑料基体二的上表面分别设置有一电阻,在导电塑料基体一和导电塑料基体二之间设置有伸出壳体的滑动杆,滑动杆伸入壳体内的一端设置有滑块,滑块的上、下侧面各自分别设置有两个电刷。该电位器输出的电压信号与调节轴的直线位移呈线性关系,能够实现从机械运动到电信号的转换。虽然其可靠性相对于前者有所提高,但其结构更加复杂,成本也更高,使用寿命也不够长。
发明内容
本发明的目的在于克服上述现有技术中的缺陷,提供一种超长使用寿命的非接触式划线电位器,该电位器的结构紧凑、制作简单,可以将直线运动转化为转动并通过非接触的隧道磁电阻传感器来实现旋转角度检测,从而实现提高使用寿命。
为实现上述目的,本发明通过以下技术方案实现:
本发明提供了一种非接触式划线电位器,所述非接触式划线电位器包括滑块、转动杆、隧道磁电阻传感器、永磁体以及基座;所述滑块具有第一通孔;
所述转动杆穿过所述第一通孔,所述转动杆的两端可转动的安装在所述基座上;
所述滑块沿着所述转动杆的轴向方向滑动,所述滑块的滑动带动所述转动杆转动;
所述永磁体位于所述转动杆的一端,跟随所述转动杆一起转动;
所述隧道磁电阻传感器与所述永磁体相邻,用于检测所述永磁体旋转所产生的磁场并将检测到的磁场转化为电压信号输出。
优选的,所述非接触式划线电位器还包括一导向杆,所述滑块还具有第二通孔;所述导向杆穿过所述第二通孔,平行于所述转动杆,其两端固定在所述基座上。
优选的,所述隧道磁电阻传感器为双轴旋转磁传感器或者两个正交的单轴旋转磁传感器。
优选的,所述永磁体的形状为圆盘形、环形或者方形。
优选的,所述隧道磁电阻传感器为双轴线性磁传感器。
优选的,所述永磁体的形状为圆盘形或者环形。
优选的,所述隧道磁电阻传感器的中心轴与所述永磁体、所述转动杆的中心轴相同。
优选的,所述永磁体的内部磁化方向与所述转动杆的轴向方向垂直。
优选的,所述非接触式划线电位器还包括有滚珠,其位于所述滑块和所述转动杆之间。
优选的,在所述滑块和所述转动杆之间装配有用于顶住所述滚珠的销钉,所述销钉可沿着平行于所述转动杆和所述导向杆组成的平面且垂直于所述转动杆的轴向的方向滑动。
优选的,在所述滑块和所述销钉之间装配有弹簧片。
优选的,所述转动杆上包括螺旋槽,所述滚珠沿着所述螺旋槽滚动。
优选的,利用搓丝板搓出所述导螺杆上的螺旋线,采用电镀工艺或热处理工艺来获得所述导螺杆上需要的表面硬度。
优选的,所述非接触式划线电位器的底部设置有印刷电路板,其上还包含有接线引脚,所述隧道磁电阻传感器焊接在所述印刷电路板上。
优选的,所述转动杆为导螺杆或扭杆。
将丝杆的原理反向应用,把滑块作为动力源,带动转动杆转动,从而将直线运动转化为圆周运动。滑块与转动杆之间装配有滚珠、销钉和弹簧片,另用一根导向杆来提供滑块的滑动导向。滚珠的作用在于将滑动摩擦转变为滚动摩擦,最大限度的减少摩擦力。利用弹簧片和可滑动的销钉来消除因制造误差和装配引起的间隙,保证正反行程的精确度。
与现有技术相比,本发明具有以下有益效果:
1)本发明的结构简单、易于制作、成本低;
2)本发明将直线滑动位移转化为旋转角位移,并通过隧道磁电阻传感器来感测转动杆的旋转角度,提高了其线性度,也降低了功耗;
3)本发明中的隧道磁电阻传感器无需与转动杆接触就能实现测量,从而提高了使用寿命;
4)本发明中只需手动滑块,让其沿着转动杆和导向杆滑动,该操作简单、易于实现。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中非接触式划线电位器的外观结构示意图。
图2为本发明中非接触式划线电位器的内部结构示意图。
图3为隧道磁电阻传感器与永磁体的位置关系剖面示意图。
图4为发明中非接触式划线电位器的输出电压与永磁体旋转角度的关系曲线图。
图5为本发明中非接触式划线电位器的局部剖面图。
图6为替换导螺杆的扭杆的结构示意图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例
图1为本发明中的非接触式划线电位器的外观结构示意图,图2为该电位器去除外壳13后的内部结构示意图。该电位器包括可转动的转动杆1、滑块2、固定不动的导向杆3、基座4和5,以及隧道磁电阻(tunnel magneto- resistance,TMR)传感器9、永磁体10、印刷电路板12。本发明具体实施例中,转动杆1上具有螺旋状的凸起或凹槽,能够将滑块的滑动转化为转动杆的转动。在本实施例中,转动杆1为导螺杆。导螺杆1穿过滑块2上对应的第一通孔,其两端可转动的安装到基座4和5上,导向杆3的一端固定在基座4上,另一端穿过滑块2上对应的第二通孔,固定到基座5上。本实施例中,导向杆3与导螺杆1平行。移动滑块2上的手柄11便可使滑块2沿着导螺杆1和导向杆3的轴向方向(即图3中的Z轴方向100)滑动,从而带动导螺杆1转动,永磁体10位于导螺杆1的一端,也跟随导螺杆1一起转动。隧道磁电阻传感器9与永磁体10相邻,焊接在印刷电路板(PrintedCircuitBoard, PCB)12上,如图2所示,印刷电路板12位于该电位器的底部,其上还包含有接线引脚(图中未示出)。隧道磁电阻传感器9可以为双轴旋转磁传感器或者两个正交的单轴旋转传感器,此时永磁体10的形状可以为圆盘形、环形或者方形,隧道磁电阻传感器9的中心轴与永磁体10、导螺杆1的中心轴相同。隧道磁电阻传感器9也可以为双轴线性磁传感器,此时永磁体10的形状可以为圆盘形或者环形,隧道磁电阻传感器9位于永磁体10的周围,优选地与永磁体10同轴放置。永磁体10的内部磁化方向如图3中的N极和S极所示,从图中可以看出该磁化方向与Z轴方向100垂直。
需要说明的是,上述导向杆3为一优选方式,用于提供滑块2的滑动导向。
当永磁体10随着导螺杆1沿旋转方向101旋转时,隧道磁电阻传感器9将所检测到的X轴和Y轴磁场分量随旋转角度的变化曲线分别如图4中的曲线41和42所示。隧道磁电阻传感器9将永磁体10所产生的磁场幅度转化为模拟电压信号,所得到的模拟电压信号可以直接输出,也可以通过用模拟数字转换电路(ADC)转换成数字信号后输出。根据输出的信号便可以得知永磁体10的旋转角度,也即导螺杆1的旋转角度。
滑块2与导螺杆1之间装配有滚珠6、销钉7和弹簧片8,如图5所示。滚珠6沿着导螺杆1上的螺旋槽滚动,其作用在于将滑动摩擦转变为滚动摩擦,最大限度的减少摩擦力,从而延长使用寿命。销钉7用于顶住滚珠6,其可沿着平行于所述转动杆和所述导向杆组成的平面且垂直于所述转动杆的轴向的方向滑动,即可沿着X轴方向滑动,利用弹簧片8和销钉7来消除因制造误差和装配引起的间隙,保证正反行程的精确度。上述X轴方向为平行于转动杆和导向杆组成的平面且垂直于转动杆的轴向的方向。
导螺杆1借鉴搓丝的加工工艺,加以改进,利用搓丝板搓出需要导程的螺旋线,滑块2可沿着螺旋线滑动。为提高使用寿命,表面可采用常见的电镀工艺或热处理工艺来获得需要的表面硬度,以减少磨损延长使用寿命。此外,导螺杆1还可以用扭杆取代,扭杆的结构如图6所示。制作扭杆的材料相对要便宜一些,制作过程也更加简单,从而降低了成本。其余零件均为常见的加工工艺,便于实现。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

1. 一种非接触式划线电位器,其特征在于,所述非接触式划线电位器包括滑块、转动杆、隧道磁电阻传感器、永磁体以及基座;所述滑块具有第一通孔;所述转动杆穿过所述第一通孔,所述转动杆的两端可转动的安装在所述基座上;
所述滑块沿着所述转动杆的轴向方向滑动,所述滑块的滑动带动所述转动杆转动;
所述永磁体位于所述转动杆的一端,跟随所述转动杆一起转动;
所述隧道磁电阻传感器与所述永磁体相邻,用于检测所述永磁体旋转所产生的磁场并将检测到的磁场转化为电压信号输出。
2. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述非接触式划线电位器还包括一导向杆,所述滑块还具有第二通孔;所述导向杆穿过所述第二通孔,平行于所述转动杆,其两端固定在所述基座上。
3. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述隧道磁电阻传感器为双轴旋转磁传感器或者两个正交的单轴旋转磁传感器。
4. 根据权利要求3所述的非接触式划线电位器,其特征在于,所述永磁体的形状为圆盘形、环形或者方形。
5. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述隧道磁电阻传感器为双轴线性磁传感器。
6. 根据权利要求5所述的非接触式划线电位器,其特征在于,所述永磁体的形状为圆盘形或者环形。
7. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述隧道磁电阻传感器的中心轴与所述永磁体以及所述转动杆的中心轴相同。
8. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述永磁体的内部磁化方向与所述转动杆的轴向方向垂直。
9. 根据权利要求2所述的非接触式划线电位器,其特征在于,所述非接触式划线电位器还包括有滚珠,其位于所述滑块和所述转动杆之间。
10. 根据权利要求9所述的非接触式划线电位器,其特征在于,在所述滑块和所述转动杆之间装配有用于顶住所述滚珠的销钉,所述销钉可沿着平行于所述转动杆和所述导向杆组成的平面且垂直于所述转动杆的轴向的方向滑动。
11. 根据权利要求10所述的非接触式划线电位器,其特征在于,在所述滑块和所述销钉之间装配有弹簧片。
12. 根据权利要求9所述的非接触式划线电位器,其特征在于,所述转动杆上包括螺旋槽,所述滚珠沿着所述螺旋槽滚动。
13. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述非接触式划线电位器的底部设置有印刷电路板,其上还包含有接线引脚,所述隧道磁电阻传感器焊接在所述印刷电路板上。
14. 根据权利要求1所述的非接触式划线电位器,其特征在于,所述转动杆为导螺杆或扭杆。
15. 根据权利要求14所述的非接触式划线电位器,其特征在于,利用搓丝板搓出所述导螺杆上的螺旋线,采用电镀工艺或热处理工艺来获得所述导螺杆上需要的表面硬度。
PCT/CN2014/094064 2013-12-18 2014-12-17 一种非接触式划线电位器 WO2015090198A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14871839.8A EP3086331B1 (en) 2013-12-18 2014-12-17 Non contact linear potentiometer
JP2016541000A JP6389894B2 (ja) 2013-12-18 2014-12-17 非接触型リニアポテンショメータ
US15/106,127 US9978485B2 (en) 2013-12-18 2014-12-17 Non-contact linear potentiometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310698204.2A CN103646736B (zh) 2013-12-18 2013-12-18 一种非接触式划线电位器
CN201310698204.2 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015090198A1 true WO2015090198A1 (zh) 2015-06-25

Family

ID=50251937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094064 WO2015090198A1 (zh) 2013-12-18 2014-12-17 一种非接触式划线电位器

Country Status (5)

Country Link
US (1) US9978485B2 (zh)
EP (1) EP3086331B1 (zh)
JP (1) JP6389894B2 (zh)
CN (1) CN103646736B (zh)
WO (1) WO2015090198A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9978485B2 (en) 2013-12-18 2018-05-22 MultiDimension Technology Co., Ltd. Non-contact linear potentiometer
CN114755462A (zh) * 2022-03-09 2022-07-15 中核核电运行管理有限公司 一种无骨架长单杆双置同步电位计

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645455B (zh) * 2018-08-15 2023-09-15 无锡市航鹄科技有限公司 电位器总装测试系统及其测试方法
CN110500941B (zh) * 2019-08-27 2024-05-14 成都宏明电子股份有限公司 一种rs485线性输出的直线位移磁敏传感器
DE112020005185T5 (de) * 2019-10-28 2022-09-22 Ergotron, Inc. Systeme und verfahren zum abschätzen von hubkraft
CN111941380B (zh) * 2020-09-22 2023-01-03 诸暨市中坚机械有限公司 一种螺纹槽孔开设用辅助螺纹线绘制机构
JP7489739B1 (ja) 2023-06-02 2024-05-24 栄通信工業株式会社 直線摺動型ポテンショメータ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109658A1 (de) * 1991-03-23 1992-09-24 Bosch Gmbh Robert Stellungsgeber
CN102456457A (zh) 2010-11-01 2012-05-16 陕西宏星电器有限责任公司 直滑式电位器
CN202487305U (zh) * 2012-03-28 2012-10-10 上海思博机械电气有限公司 一种非接触式数字电位器
CN202905355U (zh) 2012-10-26 2013-04-24 陕西宏星电器有限责任公司 一种同轴双联直滑式电位器
CN203260444U (zh) * 2013-04-01 2013-10-30 江苏多维科技有限公司 非接触式电位器
CN103646736A (zh) * 2013-12-18 2014-03-19 江苏多维科技有限公司 一种非接触式划线电位器
CN203659562U (zh) * 2013-12-18 2014-06-18 江苏多维科技有限公司 一种非接触式划线电位器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1665658A1 (de) * 1966-06-23 1971-04-08 Siemens Ag Anordnung zur Einstellung der Beleuchtung von Buehnen,Studios u.dgl.
US4088977A (en) * 1977-02-02 1978-05-09 Illinois Tool Works Inc. Contactless linear position sensor
DE3447312A1 (de) * 1984-12-24 1986-07-10 Standard Elektrik Lorenz Ag Magnetfeldsensor
JPS6217416A (ja) * 1985-07-15 1987-01-26 株式会社 興和工業所 ねじ山製品製作方法
JPH03179216A (ja) * 1989-12-08 1991-08-05 Alps Electric Co Ltd 磁気式回転センサ及びその製造方法
DE9010389U1 (zh) * 1990-07-10 1991-11-07 Merklein, Gernot, 8740 Bad Neustadt, De
DE19536433C2 (de) * 1995-09-29 1999-04-08 Siemens Ag Vorrichtung zur berührungslosen Positionserfassung eines Objektes und Verwendung der Vorrichtung
JP3313967B2 (ja) * 1996-02-20 2002-08-12 アルプス電気株式会社 検出装置
DE19612422C2 (de) * 1996-03-28 2000-06-15 Siemens Ag Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
US6133730A (en) * 1998-04-22 2000-10-17 Winn; William E. Apparatus for positioning a detection device for monitoring a rotatable machine element
JP4352189B2 (ja) * 1998-08-20 2009-10-28 株式会社安川電機 磁気式エンコーダおよび磁気式エンコーダ付モータ
JP2000158077A (ja) * 1998-11-20 2000-06-13 Nec Ibaraki Ltd ネジの鍛造方法及びそれに係るネジ転造工具
JP2002090107A (ja) * 2000-09-11 2002-03-27 Alps Electric Co Ltd ポジションセンサ
JP2003008101A (ja) * 2001-06-20 2003-01-10 Ricoh Co Ltd トンネル磁気抵抗効果素子及びこの素子を用いた方位検知システム
DE10134259A1 (de) * 2001-07-18 2003-02-06 Zf Lemfoerder Metallwaren Ag Kugelgelenk mit integriertem Winkelsensor
US6617958B1 (en) * 2002-04-24 2003-09-09 Taiwan Alpha Electronic Co., Ltd. Optical potentiometer
JP4635745B2 (ja) * 2004-07-06 2011-02-23 ヤマハ株式会社 スライド操作装置
JP3170249U (ja) * 2011-06-28 2011-09-08 株式会社飯塚製作所 ねじ補修装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109658A1 (de) * 1991-03-23 1992-09-24 Bosch Gmbh Robert Stellungsgeber
CN102456457A (zh) 2010-11-01 2012-05-16 陕西宏星电器有限责任公司 直滑式电位器
CN202487305U (zh) * 2012-03-28 2012-10-10 上海思博机械电气有限公司 一种非接触式数字电位器
CN202905355U (zh) 2012-10-26 2013-04-24 陕西宏星电器有限责任公司 一种同轴双联直滑式电位器
CN203260444U (zh) * 2013-04-01 2013-10-30 江苏多维科技有限公司 非接触式电位器
CN103646736A (zh) * 2013-12-18 2014-03-19 江苏多维科技有限公司 一种非接触式划线电位器
CN203659562U (zh) * 2013-12-18 2014-06-18 江苏多维科技有限公司 一种非接触式划线电位器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086331A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9978485B2 (en) 2013-12-18 2018-05-22 MultiDimension Technology Co., Ltd. Non-contact linear potentiometer
CN114755462A (zh) * 2022-03-09 2022-07-15 中核核电运行管理有限公司 一种无骨架长单杆双置同步电位计

Also Published As

Publication number Publication date
JP2017503345A (ja) 2017-01-26
JP6389894B2 (ja) 2018-09-12
EP3086331A1 (en) 2016-10-26
CN103646736A (zh) 2014-03-19
US9978485B2 (en) 2018-05-22
US20180053585A1 (en) 2018-02-22
CN103646736B (zh) 2017-01-18
EP3086331B1 (en) 2018-04-11
EP3086331A4 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2015090198A1 (zh) 一种非接触式划线电位器
WO2014029369A1 (zh) 直读式计量装置和直读式水表
WO2014161477A1 (zh) 非接触式电位器
WO2012031553A1 (zh) 隧道磁电阻效应磁性编码器
ITTO20010730A1 (it) Trasduttore di grandezze angolari.
CN108680201A (zh) 一种基于摩擦纳米发电机的转速、角度测量仪
WO2014190568A1 (zh) 中轴力矩测量装置
CN203659562U (zh) 一种非接触式划线电位器
CN205080953U (zh) 无止挡旋转多圈电位器
CN202747994U (zh) 一种新型霍尔式角位移传感器
WO2015090135A1 (zh) 一种位移传感器
WO2012048557A1 (zh) 一种时钟钟针位置检测装置及检测方法
CN101482386A (zh) 一种钢琴线-光电微分仪
CN215447751U (zh) 一种无死区双联电位器
CN215447750U (zh) 一种测量精度高的导塑角位移传感器
CN111964572A (zh) 一种磁敏联动式导电塑料角度位移传感器
KR100866904B1 (ko) 자기장의 각도변화를 이용한 위치센서
CN109959330A (zh) 一种角位移传感器
CN113327733A (zh) 一种基于丝杠原理的多圈非接触电位器
WO2016123834A1 (zh) 高精度螺旋电位装置
CN212274859U (zh) 一种磁敏联动式导电塑料角度位移传感器
CN113838619B (zh) 一种无死区双联电位器及其使用方法
CN209431984U (zh) 一种基于旋转磁场位移测量的千分尺
CN109323646A (zh) 一种应用于直线电机矢量控制的位置传感器系统
CN219798223U (zh) 非接触式的磁感角度传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541000

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15106127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014871839

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871839

Country of ref document: EP