WO2015090135A1 - 一种位移传感器 - Google Patents

一种位移传感器 Download PDF

Info

Publication number
WO2015090135A1
WO2015090135A1 PCT/CN2014/092352 CN2014092352W WO2015090135A1 WO 2015090135 A1 WO2015090135 A1 WO 2015090135A1 CN 2014092352 W CN2014092352 W CN 2014092352W WO 2015090135 A1 WO2015090135 A1 WO 2015090135A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
potentiometer
brush
displacement sensor
sensor according
Prior art date
Application number
PCT/CN2014/092352
Other languages
English (en)
French (fr)
Inventor
张国政
Original Assignee
张国政
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张国政 filed Critical 张国政
Publication of WO2015090135A1 publication Critical patent/WO2015090135A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
    • G01D5/1655Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track more than one point of contact or actuation on one or more tracks

Definitions

  • the present invention relates to sensors, and more particularly to a displacement sensor.
  • Displacement sensors linear displacement sensors and angular displacement sensors
  • angular displacement sensors which are commonly used in many fields, use the principle of a linear potentiometer or an angle potentiometer to represent the corresponding position with a single relative voltage output.
  • the output voltage will fluctuate, that is, the position indicated by the sensor changes.
  • the anti-interference of the sensor to the supply voltage is weak, which is likely to cause inaccurate measurement data.
  • the object of the present invention is to provide a displacement sensor to overcome the defects of the prior art, so as to improve the anti-interference of the sensor to the supply voltage and improve the measurement accuracy.
  • the present invention adopts the following technical solutions:
  • a displacement sensor includes a first potentiometer and a second potentiometer which are linear potentiometers, a front end of the first resistor of the first potentiometer is connected to the power source Vcc, a rear end is grounded to COM; and a second resistor of the second potentiometer The front end of the device is connected to the power source Vcc, and the rear end is connected to the ground COM; the first brush of the first potentiometer and the second brush of the second potentiometer are connected by an insulated brush holder to make the first brush and the second brush While sliding at the same time; when the first brush and the second brush slide simultaneously, the output voltage of the first potentiometer increases and decreases, and the output voltage of the second potentiometer increases and decreases, and the sum of the two remains unchanged.
  • the resistance values and lengths of the first resistor and the second resistor are equal;
  • first resistor is juxtaposed with the second resistor, and the position of the rear end of the first resistor corresponds to the position of the front end of the second resistor.
  • the first brush and the second brush move in the same direction at the same time.
  • the first potentiometer further includes a first conductive strip as the output end of the first potentiometer, the first brush electrically connecting the first resistor and the first conductive strip, and the first conductive strip is juxtaposed with the first resistor.
  • the second potentiometer further includes a second conductive strip as the output end of the second potentiometer, the second brush electrically connecting the second resistor and the second conductive strip, and the second conductive strip is juxtaposed with the second resistor.
  • the two ends of the first resistor are respectively connected to the voltage dividing resistors R1 and R2, and the two ends of the second resistor are respectively connected to the voltage dividing resistors R3 and R4, and the resistance value of the resistor R1 is equal to the resistance value of the resistor R3, and the resistance value of the resistor R2 It is equal to the resistance value of resistor R4.
  • first resistor and the second resistor are both linear resistors.
  • first resistor and the second resistor are arc-shaped resistors, and the central axes of the two are collinear.
  • the brush holder rotates about a central axis of the first resistor and the second resistor.
  • the first potentiometer and the second potentiometer are linear outputs, the output voltages are opposite in direction and the sum of the output voltages is constant, and the two potentiometers are simultaneously connected between the same power source Vcc and the ground COM, thus the two potentials The voltage across the resistor is the same. It can be seen from the mathematical derivation that at a certain position, the quotient of the output voltage of the first potentiometer and the second potentiometer is not changed by the voltage magnitude of the power source Vcc, so the displacement is increased. The sensor's immunity to the supply voltage increases the measurement accuracy.
  • FIG. 1 is a detailed structural diagram of a first embodiment of the present invention
  • FIG. 2 is a diagram showing relationship between two output voltages and a brush holder stroke according to a first embodiment of the present invention
  • FIG. 3 is a front view of a second embodiment of the present invention
  • Figure 4 is a partial cross-sectional view of the H-H section of Figure 3 in accordance with a second embodiment of the present invention.
  • the structure of the first embodiment of the present invention is as shown in FIG.
  • the displacement sensor of the first embodiment is a linear displacement sensor including a first potentiometer 10 and a second potentiometer 20 which are both linear potentiometers, and thus has two outputs: V1 and V2.
  • the first potentiometer 10 includes a first resistor 11, a first brush 12, a first conductive strip 13 (ie, an output terminal V1 of the first potentiometer 10), a resistor R1, and a resistor R2.
  • the first brush 12 electrically connects the first resistor 11 and the first conductive strip 13.
  • the first conductive strip 13 is juxtaposed with the first resistor 11 and coincides with the length of the first resistor 11.
  • the second potentiometer 20 includes a second resistor 21, a second brush 22, a second conductive strip 23 (ie, the output terminal V2 of the second potentiometer 20), a resistor R3, and a resistor R4.
  • the second brush 22 electrically connects the second resistor 21 and the second conductive strip 23, and the second conductive strip 23 is juxtaposed with the second resistor 21.
  • the first resistor 11 and the second resistor 21 are both linear resistors.
  • the front end 111 of the first resistor 11 is connected to the power source Vcc through the resistor R1, and the rear end 112 is grounded to the COM through the resistor R2.
  • the front end 211 of the second resistor 21 is connected to the power source Vcc through the resistor R3, and the rear end 212 is grounded to the COM through the resistor R4.
  • the resistance value of the resistor R1 is equal to the resistance value of the resistor R3, and the resistance value of the resistor R2 is equal to the resistance value of the resistor R4.
  • the best implementation is that the resistance values of the resistor R1, the resistor R2, the resistor R3 and the resistor R4 are all the same (the resistance value is allowed to be within a small error range).
  • resistor R1 and the resistor R2 are used to prevent the output voltage of the first potentiometer 10 from appearing zero, and to avoid a quotient error (ie, a case where the denominator is zero).
  • resistor R3 and resistor R4 are also used to avoid quotient errors.
  • the resistance values and lengths of the first resistor 11 and the second resistor 21 are equal.
  • the first resistor 11 is juxtaposed with the second resistor 21, and the position of the rear end 112 of the first resistor 11 corresponds to the position of the front end 211 of the second resistor 21, that is, the first resistor 11 and the second resistor 21 The opposite direction.
  • This configuration and positional relationship of the first resistor 11 and the second resistor 21 is a relatively simple and easy to manufacture embodiment of the displacement sensor, which is very advantageous for reducing the cost of the displacement sensor.
  • the first brush 12 of the first potentiometer 10 and the second brush 22 of the second potentiometer 20 are connected by an insulating brush holder 30 such that the first brush 12 and the second brush 22 remain simultaneously slid.
  • the brush holder 30 is pulled by the drawbar, and the drawbar is kept parallel with the first potentiometer 10 and the second potentiometer 20.
  • What the displacement sensor is to measure is the displacement of the brush holder 30 (i.e., the displacement of the tie rod).
  • the relationship between the two output voltages of the first embodiment and the stroke of the brush holder 30 is as shown in FIG. In Fig. 2, the horizontal axis is the stroke of the brush holder 30, and the vertical axis is the output voltage.
  • AC is the output voltage of the output terminal V1
  • BD is the output voltage of the output terminal V2.
  • the ratio of the output voltage of the output terminal V1 to the output voltage of the output terminal V2 is only related to the position of the brush holder 30, the magnitude of the voltage of the power source Vcc, and the magnitude of the voltage applied to the first resistor 11 and the second resistor 21. None. It can be seen that the ratio of the output voltages of the first potentiometer 10 and the second potentiometer 20 is not affected by the external voltage, which improves the accuracy of the displacement measurement.
  • a second embodiment of the invention is illustrated in Figures 3 and 4.
  • the displacement sensor is an angular displacement sensor.
  • the difference from the first embodiment is that the first resistor 41 and the second resistor 51 are both arc-shaped resistors, the central axes of the two are collinear; the brush holder 60 surrounds the first resistor 41 and the The central axis of the two resistors 51 rotates.
  • the first brush 42 and the second brush 52 are simultaneously moved in a circular motion by the brush holder 60.
  • the first resistor 41, the first conductive strip 43, the second conductive strip 53, and the second resistor 51 are sequentially arranged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种位移传感器,包括均为线性电位计的第一电位器(10)和第二电位器(20),其特征在于,所述第一电位器(10)的第一电阻器(11)的前端(111)接电源Vcc,后端(112)接地COM;所述第二电位器(20)的第二电阻器(21)的前端(211)接电源Vcc,后端(212)接地COM;所述第一电位器(10)的第一电刷(12)与第二电位器(20)的第二电刷(22)通过一绝缘的电刷架(30)相连以使得第一电刷(12)和第二电刷(22)保持同时滑动;所述第一电刷(12)和第二电刷(22)同时滑动时,所述第一电位器(10)的输出电压增减趋势与第二电位器(20)的输出电压增减趋势相反并且两者之和保持不变。

Description

一种位移传感器
技术领域
本发明涉及传感器,尤其涉及一种位移传感器。
背景技术
现在很多领域中普遍采用的位移传感器(直线位移传感器和角度位移传感器两类),都是利用直线电位计或角度电位计的原理,用一个单路的相对电压的输出代表相应的位置。但是,如果供电的电压波动,就会造成输出电压的波动,也就是传感器所表示位置的变化,传感器对供电电压的抗干扰性较弱,容易造成测量数据的不准确。
发明内容
本发明的目的在于为克服现有技术的缺陷,而提供一种位移传感器,以提高传感器对供电电压的抗干扰性,提高测量准确度。
为实现上述目的,本发明采用以下技术方案:
一种位移传感器,包括均为线性电位计的第一电位器和第二电位器,第一电位器的第一电阻器的前端接电源Vcc,后端接地COM;第二电位器的第二电阻器的前端接电源Vcc,后端接地COM;第一电位器的第一电刷与第二电位器的第二电刷通过一绝缘的电刷架相连以使得第一电刷和第二电刷保持同时滑动;第一电刷与第二电刷同时滑动时,第一电位器的输出电压增减趋势与第二电位器的输出电压增减趋势相反并且两者之和保持不变。
进一步地,第一电阻器与第二电阻器的电阻值、长度均相等;
进一步地,第一电阻器与第二电阻器并排,第一电阻器的后端的位置对应着第二电阻器的前端的位置。
进一步地,电刷架移动时,第一电刷与第二电刷同时同向移动。
进一步地,第一电位器还包括作为第一电位器输出端的第一导电条,第一电刷电连接第一电阻器与第一导电条,第一导电条与第一电阻器并排。
进一步地,第二电位器还包括作为第二电位器输出端的第二导电条,第二电刷电连接第二电阻器与第二导电条,第二导电条与第二电阻器并排。
进一步地,第一电阻器的两端分别串联分压电阻R1和R2,第二电阻器的两端分别串联分压电阻R3和R4,电阻R1的电阻值等于电阻R3电阻值,电阻R2电阻值等于电阻R4电阻值。
进一步地,第一电阻器与第二电阻器均为直线型电阻器。
进一步地,第一电阻器与第二电阻器均为圆弧型电阻器,两者的中心轴共线。
进一步地,电刷架绕着第一电阻器与第二电阻器的中心轴旋转。
本发明与现有技术相比的有益效果是:
本发明中第一电位器和第二电位器为线性输出,输出电压趋势相反且输出电压之和不变,两个电位计还同时接入同一个电源Vcc和接地COM之间,因而两个电位计的电阻器两端电压一致,通过数学推导可知,在某一位置上,第一电位器和第二电位器的输出电压之商不会受到电源Vcc的电压大小变化而改变,所以提高了位移传感器对供电电压的抗干扰性,提高了测量准确度。
附图说明
图1为本发明第一实施例的具体结构图
图2为本发明第一实施例的两路输出电压与电刷架行程关系图
图3为本发明第二实施例的正面示意图
图4为本发明第二实施例的图3中H-H截面部分剖视图
具体实施方式
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明。
本发明第一实施例的结构如图1所示。
第一实施例的位移传感器为直线位移传感器,包括均为线性电位计的第一电位器10和第二电位器20,因此有两路输出:V1和V2。
第一电位器10包括第一电阻器11、第一电刷12、第一导电条13(即第一电位器10输出端V1)、电阻R1和电阻R2。第一电刷12电连接第一电阻器11与第一导电条13。第一导电条13与第一电阻器11并排且与第一电阻器11的长度一致。
第二电位器20包括第二电阻器21、第二电刷22、第二导电条23(即第二电位器20输出端V2)、电阻R3和电阻R4。第二电刷22电连接第二电阻器21与第二导电条23,第二导电条23与第二电阻器21并排。第一电阻器11与第二电阻器21均为直线型电阻器。
第一电阻器11的前端111通过电阻R1接电源Vcc,后端112通过电阻R2接地COM。第二电阻器21的前端211通过电阻R3接电源Vcc,后端212通过电阻R4接地COM。电阻R1的电阻值等于电阻R3电阻值,电阻R2电阻值等于电阻R4电阻值。最佳的实施方式是电阻R1、电阻R2、电阻R3和电阻R4的电阻值均相同(允许电阻值在较小的误差范围内)。电阻R1和电阻R2是用于避免第一电位器10的输出电压出现零,避免商错误(即分母为零的情况)。同理,电阻R3和电阻R4也是用于避免商错误。
为避免两路输出电压之比出现商错误,还可以选择在第一电阻器11和第二电阻器21的两端分别设置限位片,让第一电刷12不能够滑动至第一电阻器11的两端尽头、第二电刷22不能够滑动至第二电阻器21的两端尽头,其原理与两端串联分压电阻一样。根据同样的原理,也可以在其他机械结构上直接限制第一电刷12和第二电刷22的滑动行程来避免商错误。
如图1所示,第一电阻器11与第二电阻器21的电阻值、长度均相等。第一电阻器11与第二电阻器21并排,第一电阻器11的后端112的位置对应着第二电阻器21的前端211的位置,即第一电阻器11与第二电阻器21的方向相反。第一电阻器11、第二电阻器21的这种结构和位置关系是位移传感器的实施方式中比较简单、容易制造的一种方案,对于降低位移传感器的成本来说非常有利。
第一电位器10的第一电刷12与第二电位器20的第二电刷22通过绝缘电刷架30相连以使得第一电刷12和第二电刷22保持同时滑动。电刷架30由拉杆牵引运动,拉杆与第一电位器10和第二电位器20保持平行。位移传感器要测量的便是电刷架30的位移(即拉杆的位移)。电刷架30移动时,第一电刷12与第二电刷22同时同向同速度移动。由于第一电阻器11与第二电阻器21的方向相反,因此第一电刷12与第二电刷22同时同向同速度滑动时,第一电位器10的输出电压增减趋势与第二电位器20的输出电压增减趋势相反并且两者之和保持不变(互补关系)。
第一实施例的两路输出电压与电刷架30行程关系如图2所示。图2中横轴为电刷架30行程,竖轴为输出电压。AC为输出端V1的输出电压,BD为输出端V2的输出电压。当电刷架30在某个位置G时,输出端V1的输出电压为FG,输出端V2的输出电压EG,因此输出电压之比为FG:EG。
由相似三角形原理可知:
(1) FG/AD=CG/CD
(2) EG/BC=DG/DC
(3) AD=BC
(4) CD=DC
可得:FG/EG=CG/DG
因此,输出端V1的输出电压与输出端V2的输出电压之比只与电刷架30所在位置有关,与电源Vcc的电压大小以及第一电阻器11和第二电阻器21所加载的电压大小无关。由此可知第一电位器10和第二电位器20的输出电压之比不受外部电压的影响,提升了位移测量的准确度。
本发明第二实施例如图3和图4所示。第二实施例中位移传感器为角度位移传感器。与第一实施例不同的地方在于:第一电阻器41与第二电阻器51均为圆弧型电阻器,两者的中心轴共线;电刷架60绕着第一电阻器41与第二电阻器51的中心轴旋转。第一电刷42和第二电刷52是在电刷架60的带动下同时作圆周运动。第一电阻器41、第一导电条43、第二导电条53和第二电阻器51依次排列。
以上陈述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。

Claims (10)

  1. 一种位移传感器,包括均为线性电位计的第一电位器和第二电位器,其特征在于,所述第一电位器的第一电阻器的前端接电源Vcc,后端接地COM;所述第二电位器的第二电阻器的前端接电源Vcc,后端接地COM;所述第一电位器的第一电刷与第二电位器的第二电刷通过一绝缘的电刷架相连以使得第一电刷和第二电刷保持同时滑动;所述第一电刷与第二电刷同时滑动时,所述第一电位器的输出电压增减趋势与第二电位器的输出电压增减趋势相反并且两者之和保持不变。
  2. 如权利要求1所述的位移传感器,其特征在于,所述第一电阻器与第二电阻器的电阻值、长度均相等。
  3. 如权利要求1所述的位移传感器,其特征在于,所述第一电阻器与第二电阻器并排,所述第一电阻器的后端的位置对应着第二电阻器的前端的位置。
  4. 如权利要求1所述的位移传感器,其特征在于,所述电刷架移动时,所述第一电刷与第二电刷同时同向移动。
  5. 如权利要求1所述的位移传感器,其特征在于,所述第一电位器还包括作为第一电位器输出端的第一导电条,所述第一电刷电连接第一电阻器与第一导电条,所述第一导电条与第一电阻器并排。
  6. 如权利要求1所述的位移传感器,其特征在于,所述第二电位器还包括作为第二电位器输出端的第二导电条,所述第二电刷电连接第二电阻器与第二导电条,所述第二导电条与第二电阻器并排。
  7. 如权利要求1所述的位移传感器,其特征在于,所述第一电阻器的两端分别串联分压电阻R1和R2,所述第二电阻器的两端分别串联分压电阻R3和R4,所述电阻R1的电阻值等于电阻R3电阻值,所述电阻R2电阻值等于电阻R4电阻值。
  8. 如权利要求1至7任一项所述的位移传感器,其特征在于,所述第一电阻器与第二电阻器均为直线型电阻器。
  9. 如权利要求1至7任一项所述的位移传感器,其特征在于,所述第一电阻器与第二电阻器均为圆弧型电阻器,两者的中心轴共线。
  10. 如权利要求9所述的位移传感器,其特征在于,所述电刷架绕着第一电阻器与第二电阻器的中心轴旋转。
PCT/CN2014/092352 2013-12-19 2014-11-27 一种位移传感器 WO2015090135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310705963.7 2013-12-19
CN201310705963.7A CN103673859A (zh) 2013-12-19 2013-12-19 一种位移传感器

Publications (1)

Publication Number Publication Date
WO2015090135A1 true WO2015090135A1 (zh) 2015-06-25

Family

ID=50312147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092352 WO2015090135A1 (zh) 2013-12-19 2014-11-27 一种位移传感器

Country Status (2)

Country Link
CN (1) CN103673859A (zh)
WO (1) WO2015090135A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673859A (zh) * 2013-12-19 2014-03-26 张国政 一种位移传感器
CN105547122A (zh) * 2014-10-31 2016-05-04 北京精密机电控制设备研究所 一种零位微调节高精度分体式四冗余位移传感器
CN104848777A (zh) * 2015-05-28 2015-08-19 中国建筑第八工程局有限公司 一种界面滑移量的测量方法及测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128007A (ja) * 1993-11-02 1995-05-19 Toyota Motor Corp 摺動抵抗体式変位センサの制御装置
JP2000081305A (ja) * 1998-09-07 2000-03-21 Matsushita Electric Ind Co Ltd 変位センサ
CN201047751Y (zh) * 2007-04-06 2008-04-16 胡敬礼 新型直线电阻式位移传感器
CN101625228A (zh) * 2009-08-18 2010-01-13 宁波市北仑机械电器有限公司 一体双联直线位移传感器
CN202255268U (zh) * 2011-09-19 2012-05-30 上海安洁电子设备有限公司 一种直线位移传感器
CN103673859A (zh) * 2013-12-19 2014-03-26 张国政 一种位移传感器
CN203615888U (zh) * 2013-12-19 2014-05-28 张国政 一种位移传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2243689B (en) * 1990-05-01 1994-07-20 Rover Group A displacement sensing system
DE102004021620A1 (de) * 2004-05-03 2005-12-08 Jungheinrich Aktiengesellschaft Vorrichtung zur Erfassung eines Lenkwinkels in einer Lenksteuerung eines Flurförderzeugs
DE102005021890A1 (de) * 2005-05-04 2006-11-09 E.G.O. Elektro-Gerätebau GmbH Bedienvorrichtung und Verfahren zur Auswertung einer Bedienvorrichtung
CN100587409C (zh) * 2006-04-29 2010-02-03 同济大学 一种二维位移测量方法及二维位移传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128007A (ja) * 1993-11-02 1995-05-19 Toyota Motor Corp 摺動抵抗体式変位センサの制御装置
JP2000081305A (ja) * 1998-09-07 2000-03-21 Matsushita Electric Ind Co Ltd 変位センサ
CN201047751Y (zh) * 2007-04-06 2008-04-16 胡敬礼 新型直线电阻式位移传感器
CN101625228A (zh) * 2009-08-18 2010-01-13 宁波市北仑机械电器有限公司 一体双联直线位移传感器
CN202255268U (zh) * 2011-09-19 2012-05-30 上海安洁电子设备有限公司 一种直线位移传感器
CN103673859A (zh) * 2013-12-19 2014-03-26 张国政 一种位移传感器
CN203615888U (zh) * 2013-12-19 2014-05-28 张国政 一种位移传感器

Also Published As

Publication number Publication date
CN103673859A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015090198A1 (zh) 一种非接触式划线电位器
WO2015090135A1 (zh) 一种位移传感器
WO2014029369A1 (zh) 直读式计量装置和直读式水表
CN102135410A (zh) 非接触式位移测量装置及其传感器和磁感应测量电路
CN107219402A (zh) 一种用于电源模块端口的直流电阻快速测量电路
CN203241165U (zh) 一种基于三线制的热电阻测温电路
CN207113898U (zh) 一种霍尔磁性旋转位移传感器控制电路
CN106248240B (zh) 一种具有温度补偿的温度变送器
CN105300269B (zh) 一种无线精密应变测量装置和一种无线精密应变测量方法
CN1211666C (zh) 阻抗-电压转换器和转换方法
CN208968461U (zh) 一种应用于直线电机矢量控制的位置传感器系统
CN103913589A (zh) 转速传感器
CN201417184Y (zh) 两线制温度变送器
CN203132595U (zh) 汽车用电阻式水温燃油采样系统
CN203659562U (zh) 一种非接触式划线电位器
Li et al. A novel low-cost noncontact resistive potentiometric sensor for the measurement of low speeds
CN102353699A (zh) 采用方波对湿度传感器进行采样的方法
CN204228286U (zh) 一种水分仪用温度采集电路
CN205664779U (zh) 一种感应角度测量器
CN108303586A (zh) 一种电源功率测试装置
JP2014115251A (ja) 静電容量型ギアトースセンサ及び静電容量型の回転体の回転速度の検出方法
CN204730976U (zh) 压力传感器
CN209043234U (zh) 高精度容栅式角度传感器
BR112017020387B1 (pt) Sistema elétrico de alta voltagem e método para medir uma voltagem em um sistema elétrico de alta voltagem
CN207764249U (zh) 转速测量驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871170

Country of ref document: EP

Kind code of ref document: A1