WO2015090127A1 - 一种用于费-托合成的金属基整体式膜催化剂及其制备方法 - Google Patents

一种用于费-托合成的金属基整体式膜催化剂及其制备方法 Download PDF

Info

Publication number
WO2015090127A1
WO2015090127A1 PCT/CN2014/091398 CN2014091398W WO2015090127A1 WO 2015090127 A1 WO2015090127 A1 WO 2015090127A1 CN 2014091398 W CN2014091398 W CN 2014091398W WO 2015090127 A1 WO2015090127 A1 WO 2015090127A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
molecular sieve
sba
substrate
catalyst
Prior art date
Application number
PCT/CN2014/091398
Other languages
English (en)
French (fr)
Inventor
李昌元
刘倩倩
宋德臣
杨伟光
詹晓东
金家琪
张岩丰
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to EP14872435.4A priority Critical patent/EP3085442A4/en
Publication of WO2015090127A1 publication Critical patent/WO2015090127A1/zh
Priority to US15/186,583 priority patent/US10189013B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/66Synthesis on support on metal supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Definitions

  • the invention relates to a metal-based monolithic membrane catalyst for Fischer-Tropsch synthesis and a preparation method thereof, and belongs to the technical field of Fischer-Tropsch synthesis and catalyst.
  • Fischer-Tropsch synthesis refers to a reaction in which a synthesis gas (H 2 +CO) is used as a raw material to convert hydrocarbons under the action of a catalyst.
  • the main metal active component of the Fischer-Tropsch synthesis catalyst includes elements of Group VIII, Fe, Co, Ni, Ru, etc., especially cobalt-based catalysts have become a hot spot of current research and application with their excellent catalytic performance.
  • Mesoporous molecular sieves are molecular sieves with a pore size between 2 and 50 nm. They have a large specific surface area and a highly ordered pore structure, which is beneficial to improve mass transfer efficiency. Different molecular sieves have different structures, such as planar hexagonal structure, three-dimensional structure, etc. The pore size of the molecular sieve is easy to adjust and the heat is stable, so it is suitable for the carrier of the catalyst.
  • the patent CN102078818A discloses a FT synthesis catalyst using SBA-16 molecular sieve as a carrier and a preparation method thereof;
  • the patent CN102631944A discloses a preparation method of a FT synthesis cobalt-based catalyst using a mesoporous molecular sieve SBA-16 as a carrier;
  • CN102553634A discloses an FT synthesis catalyst which selects a molecular sieve having a ten-membered or twelve-membered ring structure. They all have the advantages of high CO conversion and low selectivity of CH 4 .
  • these catalysts based on molecular sieves are all in the form of powder, and the bed laminate has a high drop, and is only applied to a laboratory-scale small fixed bed reaction evaluation device.
  • the industrial catalyst generally exists in a spherical, cylindrical, clover-shaped, gear-shaped and other special-shaped structures. If the molecular sieve powder is formed into a clover-shaped and other shaped carrier by a molding step such as extrusion, it is easy to damage the molecular sieve.
  • the pore structure greatly reduces the catalytic performance of the catalyst, which limits the application of the molecular sieve carrier to the industrial scale Fischer-Tropsch synthesis unit.
  • the monolith catalyst is an integrated catalyst arranged neatly by a number of narrow parallel and straight channels. It is generally composed of a matrix, a coating and an active component, and has the characteristics of high porosity, good thermal stability, and small bed laminate reduction. It has been widely used in environmental protection fields such as automobile exhaust gas purification and catalytic combustion.
  • the monolithic catalyst had good heat transfer effect, the catalyst bed temperature was easy to control, the catalyst stability was good, and the product selectivity was high.
  • the thermal expansion coefficient of the catalyst matrix and the coating layer is quite different, and a large temperature change easily causes the coating to fall off and shorten the service life of the catalyst.
  • the invention is based on the structural characteristics of the monolith substrate and the configuration advantages of the molecular sieve membrane. After the molecular sieve membrane is grown in situ on the surface of the metal matrix, the molecular sieve membrane is used as a carrier, and the active component Co and other auxiliary elements are loaded, and then The calcination and the like are carried out to obtain a monolithic molecular sieve membrane catalyst.
  • the metal-based monolithic membrane catalyst for the Fischer-Tropsch synthesis reaction of the present invention comprises a metal monolith substrate, a molecular sieve membrane carrier, an active component Co and other auxiliary components, and the metal monolithic composition
  • the substrate is Ag, Au, Cu, Pt, Ti, Mo, Fe, Sn metal and alloys thereof; after pretreating the metal monolith substrate, the SBA-16 zeolite membrane carrier is grown in situ, and the thickness of the molecular sieve membrane carrier is 26-67 ⁇ m.
  • the auxiliary agent is selected from the group consisting of La, Zr, Ce, Rh, Pt, Re, Ru, Ti, Mg, Ca, Sr.
  • the active component Co and other auxiliary agents are selected from the group consisting of La, Zr, Ce, Rh, Pt, Re, Ru, Ti, Mg, Ca, Sr.
  • One or several additives are used.
  • the molecular sieve membrane carrier has a thickness of 30 to 60 ⁇ m.
  • the preparation method of the metal-based monolithic membrane catalyst for Fischer-Tropsch synthesis of the present invention comprises the following steps:
  • honeycomb metal monolith substrates of the same size and size are used, and the metal monolith substrate is first cleaned with deionized water and dried in an oven at 100 ° C;
  • the SBA-16 molecular sieve powder is dissolved in absolute ethanol, and the mixture is shaken for 20 to 30 minutes by ultrasonic vibration until a uniform molecular sieve powder impregnation liquid is formed; then the metal monolith substrate is placed in the immersion liquid. Soaking time 1 ⁇ 10s, after which the metal monolithic substrate is taken out, and the immersion liquid on the metal monolith substrate can be repeatedly immersed without being dripped; then the pre-planted metal monolith substrate is naturally dried;
  • the pretreated metal monolith substrate is placed in the SBA-16 molecular sieve synthesis liquid, and crystallized in the kettle at 70-150 ° C for 5 to 120 h, so that the SBA-16 molecular sieve is grown in situ on the surface of the metal monolith substrate.
  • Impregnation, aging and roasting of active components and auxiliary elements Impregnation, aging and roasting of active components and auxiliary elements:
  • the metal monolith substrate in which the SBA-16 zeolite membrane is grown is immersed in the salt solution of the active component Co and other auxiliary agents, and is taken out after immersion for 1-20 minutes; the catalyst substrate which is subjected to the impregnation and preliminary drying is at room temperature. The aging is 3 ⁇ 36h; afterwards, the temperature is programmed to finally calcine at 300-550 °C for 6-12 hours and then slowly drop to room temperature.
  • pretreatment of the metal substrate is dried in an oven at 100 ° C, treated with 0.1 mol / L hydrochloric acid for 5 s to 60 s, washed and dried with deionized water; then treated with 1 mol / L of NaOH Deionized water is washed and dried; the acid-base treated metal substrate is immersed in acetone for 0.5 to 1 hour, then washed and washed with deionized water; then immersed in hydrogen peroxide for 0.5 to 1 hour to introduce hydroxyl groups on the surface of the substrate to increase the firmness of the membrane. Sex; finally rinsed with deionized water.
  • the step 2) is repeated 1 to 20 times.
  • the step 3) adjusts the thickness of the in-situ growth of the SBA-16 zeolite membrane carrier on the surface of the metal substrate by adjusting the parameters of the synthetic liquid or changing the number of synthesis in situ to reach 26-67 ⁇ m.
  • the metal-based monolith molecular sieve membrane catalyst of the present invention is suitable for use in the field of catalysis, and is particularly suitable for Fischer-Tropsch synthesis.
  • the synthetic method provided by the invention pretreats the substrate first, so that the surface roughness is increased, which not only can increase the specific surface area, but also facilitate the in-situ growth of the molecular sieve membrane.
  • the substrate is then pre-planted and then immersed in a templating solution.
  • the templating solution and its cation can induce nucleation and growth of SBA-16 molecular sieve, and a uniform and firm SBA-16 zeolite membrane can be grown in situ in the matrix.
  • the crystal grows directly on the surface of the metal substrate, and the formed molecular sieve membrane has the ability to resist mechanical stress, and the in-situ grown molecular sieve is more robust than the molecular sieve coated directly on the surface of the metal substrate.
  • the in-situ synthesis method provided by the invention has simple operation, easy synthesis conditions, is suitable for various integral metal substrates, and is easy to be industrialized.
  • the metal-based monolithic membrane catalyst for the Fischer-Tropsch synthesis reaction of the present invention comprises a metal monolith substrate, a molecular sieve membrane carrier, an active component Co and other auxiliary components, and the metal monolith substrate is Ag, Au, Cu, Pt, Ti, Mo, Fe, Sn metal and alloys thereof; after pretreatment of the metal monolith substrate, the SBA-16 zeolite membrane carrier is grown in situ, and the molecular sieve membrane carrier has a thickness of 26-67 ⁇ m, and then is impregnated in the molecular sieve membrane.
  • the carrier is loaded with the active component Co and other auxiliary agents; the auxiliary agent is selected from one or several auxiliary agents of La, Zr, Ce, Rh, Pt, Re, Ru, Ti, Mg, Ca, Sr. .
  • the molecular sieve membrane carrier has a thickness of 30 to 60 ⁇ m.
  • the preparation method of the metal-based monolithic membrane catalyst for Fischer-Tropsch synthesis reaction of the invention comprises the following steps:
  • honeycomb metal monolith substrates of the same size and size are used, and the metal monolith substrate is first cleaned with deionized water and dried in an oven at 100 ° C;
  • the SBA-16 molecular sieve powder is dissolved in absolute ethanol, and the mixture is oscillated by ultrasonic vibration. 20 to 30 minutes, until a uniform molecular sieve powder impregnation liquid is formed; then the metal monolith substrate is placed in the immersion liquid, the immersion time is 1 to 10 s, and then the metal monolith substrate is taken out, and the immersion liquid on the metal monolith substrate is not dropped. The soaking can be repeated again; then the pre-planted metal monolithic substrate is naturally dried;
  • the ratio of SBA16 molecular sieve to solvent is generally 1 to 10 grams of SBA16 molecular sieve powder per 100 ml of absolute ethanol. The ratio does not need to be very strict. If the concentration of the fine immersion liquid is low, the immersion time is long; if the concentration is higher, the concentration can be Shorten the soaking time.
  • the solvent is generally selected from ethanol, and other such as water, acetonitrile, etc., but ethanol is more commonly used.
  • the pretreated metal monolith substrate is placed in the SBA-16 molecular sieve synthesis liquid, and crystallized in the kettle at 70-150 ° C for 5 to 120 h, so that the SBA-16 molecular sieve is grown in situ on the surface of the metal monolith substrate.
  • Impregnation, aging and roasting of active components and auxiliary elements Impregnation, aging and roasting of active components and auxiliary elements:
  • the metal monolith substrate in which the SBA-16 zeolite membrane is grown is immersed in the salt solution of the active component Co and other auxiliary agents, and is taken out after immersion for 1-20 minutes; the catalyst substrate which is subjected to the impregnation and preliminary drying is at room temperature. The aging is 3 ⁇ 36h; afterwards, the temperature is programmed to finally calcine at 300-550 °C for 6-12 hours and then slowly drop to room temperature.
  • pretreatment of the metal substrate is dried in an oven at 100 ° C, treated with 0.1 mol / L hydrochloric acid for 5 s to 60 s, washed and dried with deionized water; then treated with 1 mol / L of NaOH Deionized water is washed and dried; the acid-base treated metal substrate is immersed in acetone for 0.5 to 1 hour, then washed and washed with deionized water; then immersed in hydrogen peroxide for 0.5 to 1 hour to introduce hydroxyl groups on the surface of the substrate to increase the firmness of the membrane. Sex; finally rinsed with deionized water.
  • the step 2) repeats the soaking process for 1 to 20 times, preferably 2 to 10 times.
  • the step 3) adjusts the thickness of the in-situ growth of the SBA-16 zeolite membrane carrier on the surface of the metal substrate by adjusting the parameters of the synthetic liquid or changing the number of synthesis in situ to reach 26-67 ⁇ m.
  • honeycomb stainless steel 18*30mm cylindrical substrate washed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.1 mol/L hydrochloric acid for 10 s, and washed and washed with deionized water. After that, it was treated with 1 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was soaked in acetone for 1 hour and then washed and dried with deionized water. Then, it was immersed in hydrogen peroxide for 1 hour to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the SBA-16 molecular sieve film surface on the surface of the metal substrate was characterized by scanning electron microscopy to be 26 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g dinitrosodidiaplatinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution.
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • the composition of Catalyst A was characterized by XRF: 15.09% Co, 0.46% Pt, 3.02% Ce.
  • honeycomb stainless steel 18*30mm cylindrical substrate washed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.2 mol/L hydrochloric acid for 10 s, and washed and washed with deionized water. After that, it was treated with 1 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was immersed in acetone for 0.5 h and then washed and dried with deionized water. Then, it was immersed in hydrogen peroxide for 1 hour to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the pretreated metal substrate was fixed in a Teflon bottle with a Teflon bottle, and then the solution was transferred to a Teflon bottle.
  • the reaction vessel was sealed and allowed to stand at 35 ° C for 24 h and then at 90 ° C. After crystallization for 24 hours, the substrate was removed after cooling.
  • the SBA-16 molecular sieve film thickness on the surface of the metal substrate was characterized by scanning electron microscopy to be 31 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g dinitrosodidiaplatinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution.
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • the composition of Catalyst B was characterized by XRF: 15.43% Co, 0.56% Pt, 3.10% Ce.
  • honeycomb stainless steel 18*30mm cylindrical substrate washed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.3 mol/L hydrochloric acid for 10 s, and washed and washed with deionized water. After that, it was treated with 0.5 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was soaked in acetone for 1 hour and then washed and dried with deionized water. It was further immersed in hydrogen peroxide for 2 hours to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the in-situ growth of the molecular sieve membrane of this example is secondary growth.
  • the secondary growth is to treat the substrate obtained by in-situ growth by deionized water washing, drying, calcining, etc., and then repeat the in-situ growth step once to increase the thickness of the molecular sieve membrane.
  • the SBA-16 molecular sieve film thickness on the surface of the metal substrate was characterized by scanning electron microscopy to be 43 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g of Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g of dinitrosodiamine platinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution,
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • the temperature was raised to 400 ° C in a muffle furnace at a heating rate of 1 ° C / min, and after roasting for 6 hours, the temperature was lowered to room temperature at a temperature decreasing rate of 0.5 ° C / min to obtain a stainless steel substrate / SBA-16 membrane catalyst C.
  • the composition of Catalyst C was characterized by XRF: 14.97% Co, 0.49% Pt, 3.06% Ce.
  • honeycomb stainless steel 18*30mm cylindrical substrate washed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.1 mol/L hydrochloric acid for 30 s, and washed and washed with deionized water. After that, it was treated with 1 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was immersed in acetone for 0.5 h and then washed and dried with deionized water. Then, it was immersed in hydrogen peroxide for 1 hour to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the in-situ growth of the molecular sieve membrane of this example is secondary growth.
  • the secondary growth is to treat the substrate obtained by in-situ growth by deionized water washing, drying, calcining, etc., and then repeat the in-situ growth step once to increase the thickness of the molecular sieve membrane.
  • the SBA-16 molecular sieve film surface on the surface of the metal substrate was characterized by scanning electron microscopy to be 46 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g dinitrosodidiaplatinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution.
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • Catalyst D was characterized by XRF: 15.22% Co, 0.59% Pt, 2.95% Ce.
  • honeycomb stainless steel 18*30mm cylindrical substrate washed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.1 mol/L hydrochloric acid for 15 s, and washed and washed with deionized water. After that, it was treated with 1 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was immersed in acetone for 0.5 h and then washed and dried with deionized water. Then, it was immersed in hydrogen peroxide for 0.5 h to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the in-situ growth of the molecular sieve membrane of this example was three growths.
  • the three growth is to repeat the in-situ growth step twice after the substrate obtained by one in-situ growth is subjected to a step of deionized water washing, drying, calcination, etc., to increase the thickness of the molecular sieve membrane.
  • the pretreated metal substrate was fixed in a Teflon bottle with a Teflon bottle, and then the solution was transferred to a Teflon bottle.
  • the reaction vessel was sealed and allowed to stand at 35 ° C for 24 h and then at 85 ° C. After crystallization for 24 hours, the substrate was removed after cooling.
  • the SBA-16 molecular sieve film thickness on the surface of the metal substrate was characterized by scanning electron microscopy to be 73 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g of Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g of dinitrosodiamine platinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution,
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • honeycomb stainless steel 18*30mm cylindrical substrate rinsed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.1 mol/L hydrochloric acid for 10 s, and washed and washed with deionized water. After that, it was treated with 1 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was soaked in acetone for 1 hour and then washed and dried with deionized water. It was further immersed in hydrogen peroxide for 1.5 h to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the in-situ growth of the molecular sieve membrane of this example was three growths.
  • the three growth is to repeat the in-situ growth step twice after the substrate obtained by one in-situ growth is subjected to a step of deionized water washing, drying, calcination, etc., to increase the thickness of the molecular sieve membrane.
  • the SBA-16 molecular sieve film thickness on the surface of the metal substrate was characterized by scanning electron microscopy to be 60 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g of Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g of dinitrosodiamine platinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution,
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • the composition of the stainless steel substrate/SBA-16 membrane catalyst F was characterized by XRF: 15.31% Co, 0.46% Pt, 3.03% Ce.
  • honeycomb stainless steel 18*30mm cylindrical substrate washed with deionized water and dried in a 100 ° C oven. Then, it was treated with 0.1 mol/L hydrochloric acid for 10 s, and washed and washed with deionized water. After that, it was treated with 1 mol/L NaOH and then washed and washed with deionized water.
  • the acid-base treated metal substrate was soaked in acetone for 1 hour and then washed and dried with deionized water. It was further immersed in hydrogen peroxide for 2 hours to introduce a hydroxyl group on the surface of the substrate to increase the firmness of the film. Finally, it is washed and dried with deionized water.
  • the pretreated metal substrate was fixed in a Teflon bottle with a Teflon bottle, and the solution was transferred to a Teflon bottle.
  • the reaction vessel was sealed and allowed to stand at 35 ° C for 24 h and then at 105 ° C. After crystallization for 24 hours, the substrate was removed after cooling.
  • the SBA-16 molecular sieve film thickness on the surface of the metal substrate was characterized by scanning electron microscopy to be 39 ⁇ m.
  • the SBA-16 molecular sieve membrane carrier on the surface of the metal substrate is impregnated with Co and an auxiliary agent.
  • Co and an auxiliary agent Weigh 14.81g of Co(NO 3 ) 2 ⁇ 6H 2 O, 0.16g of dinitrosodiamine platinum and 1.86g of cerium nitrate hexahydrate Ce(NO 3 ) 3 ⁇ 6H 2 O with deionized water to make 15ml solution,
  • the monolithic carrier was immersed in the solution for 5 min, taken out, dried at room temperature for 3 h, and then dried in an oven at 100 ° C for 10 h.
  • the temperature was raised to 400 ° C in a muffle furnace at a heating rate of 1 ° C / min, and after roasting for 6 hours, the temperature was lowered to room temperature at a rate of 0.5 ° C / min to obtain a stainless steel substrate / SBA-16 membrane catalyst G.
  • the composition of the stainless steel substrate/SBA-16 membrane catalyst G obtained by XRF characterization was: 14.89% Co, 0.52% Pt, 3.09% Ce.
  • the molar ratio of each substance of the SBA-16 molecular sieve synthetic liquid of each example is as follows:
  • the reaction pressure was 2.0 MPa
  • the reaction temperature was 210 ° C
  • the gas space velocity GHSV was 6SL/(g ⁇ h).
  • the content of each element component was measured by means of XRF and other characterization means, and the activity evaluation results of the catalyst are listed in the attached table below.
  • the monolithic Fischer-Tropsch catalyst especially the SBA-16 zeolite membrane with a thickness of 30-60 ⁇ m, has higher CO conversion and C 5 + selectivity, and the methane selection of the non-target product.
  • the properties are lower, and the catalytic performance of the monolithic Fischer-Tropsch catalyst is better than that of the conventional powdered Co/SBA-16 Fischer-Tropsch catalyst.
  • the temperature control of the monolithic membrane catalyst was stable, and the reaction temperature fluctuation was within the range of ⁇ 1.5 °C.
  • the temperature of the catalyst H and the catalyst I fluctuated greatly during the experimental evaluation, and the reaction temperature fluctuation range 206 ° C ⁇ 217.7 ° C. It can be seen that the heat transfer performance of the monolithic membrane catalyst is better.
  • the core of the present invention is to eliminate the catalyst pores by the special structure of the metal-based surface molecular sieve membrane.
  • the diffusion limit improve the mass transfer effect, improve the activity of the catalyst and the selectivity of the product. Therefore, the Fischer-Tropsch synthesis catalyst products and methods using a metal matrix and in-situ growth of a SBA-16 zeolite membrane having a mesoporous structure as a carrier are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种用于费-托合成的金属基整体式膜催化剂及其制备方法。本发明的催化剂包括金属整体式基体、分子筛膜载体、活性组分Co以及其它助剂组成,将金属整体式基体预处理后,原位生长SBA-16分子筛膜载体,分子筛膜载体的厚度为26∼67μm,然后通过浸渍法在分子筛膜载体上负载活性组分Co及其它助剂。用于费-托合成反应的金属基整体式膜催化剂的制备方法包含如下步骤:金属基体的预处理:2)预植精种:3)将预处理后的金属整体式基体置于SBA-16分子筛合成液中分子筛膜载体在金属整体式基体上原位生长:4)活性组分及助剂元素的浸渍、老化及焙烧:将原位生长有SBA-16分子筛膜的金属整体式基体浸入到的活性组分Co及其它助剂的盐溶液中浸渍、干燥、老化、煅烧、降至室温。形成的分子筛膜具有抗机械压力的能力,更具有牢固性。

Description

一种用于费-托合成的金属基整体式膜催化剂及其制备方法 技术领域
本发明涉及一种用于费-托合成的金属基整体式膜催化剂及其制备方法,属于费-托合成及催化剂技术领域。
技术背景
费-托合成(Fischer-Tropsch合成,简称F-T合成),是指以合成气(H2+CO)为原料,在催化剂的作用下转化生成烃类的反应。费-托合成催化剂的主金属活性组分包括第Ⅷ族元素Fe、Co、Ni和Ru等,尤其是钴基催化剂以其优异的催化性能成为当前研究和应用的热点。
介孔分子筛就是孔径在2~50nm之间的分子筛,比表面积很大,且具有高度有序的孔道结构,利于提高传质效率。不同的分子筛拥有不同的结构,如平面六方结构、三维立体结构等,分子筛的孔壁孔径容易调节,热稳定良好,因此很适合应用于催化剂的载体。
近年来,有一些资料报道了介孔分子筛在费-托合成领域的应用。例如,专利CN102078818A公布了一种以SBA-16分子筛为载体的F-T合成催化剂及其制备方法;专利CN102631944A公布了一种以介孔分子筛SBA-16为载体的F-T合成钴基催化剂的制备方法;专利CN102553634A公布了一种F-T合成催化剂,其选择具有十元环或十二元环结构的分子筛。它们都具有CO转化率高,CH4选择性较低等优点。但是,这些以分子筛为载体的催化剂均是以粉末形态存在,床层压降较高,仅应用于实验室规模的小型固定床反应评价装置。而工业催化剂一般以球形、圆柱形、三叶草形、齿轮形等异型结构存在,如果按工业催化剂的规格要求将分子筛粉体通过挤条等成型步骤制成三叶草形等异型载体,极易破坏分子筛的孔道结构,大大降低催化剂的催化性能,这就限制了分子筛载体在工业规模的费-托合成装置上推广应用。
整体式催化剂是由许多狭窄的平行且直的通道整齐排列的一体化催化剂,一般由基体、涂层和活性组分组成,具有孔隙率高、热稳定性好、床层压降小等特点,在环保领域如汽车尾气净化、催化燃烧等方面得到了广泛的应用。
Christian Guizard等(Christian Guizard and Agnes Princivalle.Preparation and  characterization of catalyst thin films[J].Catalysis Today 146(2009):367-377)以金属基为载体制备了整体式费-托合成催化剂,反应结果表明,催化剂传热效率高,床层温度易控制,稳定性较好。Freek和Robert等(Freek Kapteijn,Ronakd M.de Deugd l,Jacob A.Moulijn.Fischer-Tropsch synthesis using monolithic catalysis[J].Catalysis Today,2005,105:305-356)分别制备了整体式费-托合成催化剂并应用到费-托合成反应中,发现整体式催化剂传热效果好,催化床层温度易控制,催化剂稳定性较好,产物的选择性高。但催化剂基体与涂层的热膨胀系数差异较大,较大的温度变化易导致涂层脱落,缩短催化剂的使用寿命。
目前,采用金属基体、以原位生长具有中孔结构的SBA-16分子筛膜为载体的费-托合成催化剂尚未有相关专利或文献报道。
发明内容
本发明的目的是提供一种用于费-托合成的金属基整体式膜催化剂及其制备方法。本发明立足于整体式基体的结构特点,以及分子筛膜的构型优势,在金属基体表面原位生长分子筛膜后,以此分子筛膜为载体,负载活性组分Co及其它助剂元素,再经过焙烧等步骤,得到整体式分子筛膜催化剂。
本发明采用的技术方案是:本发明的用于费-托合成反应的金属基整体式膜催化剂包括金属整体式基体、分子筛膜载体、活性组分Co以及其它助剂组成,所述金属整体式基体是Ag、Au、Cu、Pt、Ti、Mo、Fe、Sn金属及其合金;将金属整体式基体预处理后,原位生长SBA-16分子筛膜载体,分子筛膜载体的厚度为26~67μm,然后通过浸渍法在分子筛膜载体上负载活性组分Co及其它助剂;所述的助剂选自La、Zr、Ce、Rh、Pt、Re、Ru、Ti、Mg、Ca、Sr其中的一种或几种助剂构成。
所述分子筛膜载体的厚度为30~60μm。
本发明的用于费-托合成的金属基整体式膜催化剂的制备方法,包含如下步骤:
1)金属基体的预处理:
采用多个相同规格大小的蜂窝状金属整体式基体,先用去离子水清洗金属整体式基体,放入100℃烘箱里烘干;
2)预植精种:
将SBA-16分子筛粉体溶于无水乙醇中,采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液;之后将金属整体式基体置于浸渍液中, 浸泡时间1~10s,之后取出金属整体式基体,待金属整体式基体上的浸渍液不成流滴下即可再次重复浸泡;然后将预植精种的金属整体式基体自然晾干;
3)分子筛膜载体的原位生长:
将预处理后的金属整体式基体置于SBA-16分子筛合成液中,于70~150℃下在釜内晶化5~120h,使SBA-16分子筛原位生长于金属整体式基体表面,制成原位生长SBA-16分子筛膜的金属整体式基体;取出带膜金属整体式基体,用去离子水洗涤,干燥,最后在400~600℃下焙烧4~8h,得到所述原位生长SBA-16分子筛膜的金属整体式基体;
4)活性组分及助剂元素的浸渍、老化及焙烧:
将原位生长有SBA-16分子筛膜的金属整体式基体浸入到的活性组分Co及其它助剂的盐溶液中,浸渍1~20min后取出;对完成浸渍并初步干燥的催化剂基体,在室温下老化3~36h;之后通过程序升温,最终在300~550℃煅烧6~12h后缓慢降至室温。
所述的步骤1)金属基体的预处理放入100℃烘箱里烘干后,用0.1mol/L盐酸处理5s~60s,用去离子水清洗烘干;之后用1mol/L的NaOH处理后用去离子水清洗烘干;将酸碱处理过的金属基体用丙酮浸泡0.5~1h后用去离子水清洗烘干;再用双氧水浸泡0.5~1h,以在基体表面上引入羟基,增加膜的牢固性;最后用去离子水清洗烘干。
所述的步骤2)重复浸泡过程为1~20次。
所述的步骤3)SBA-16分子筛合成液的制取方法为:各物质的摩尔比为P123:F127:TEOS:HCl:H2O=1:1~5:200~800:1200~3500:30000~120000;按比例取P123和F127,用去离子水作溶剂,搅拌至完全溶解,加入盐酸,35℃±5℃下继续搅拌,溶液混合均匀后,倾入TEOS,继续搅拌1h~1.2h。
所述的步骤3)通过调整合成液参数或变更原位生长的合成次数来调整金属基体表面原位生长SBA-16分子筛膜载体的厚度达到26~67μm。
优选地,步骤3)SBA-16分子筛合成液的制取方法为:各物质的摩尔比为P123:F127:TEOS:HCl:H2O=1:1~3:350~650:1700~3000:50000~100000;按比例取P123和F127,用去离子水作溶剂,搅拌至完全溶解,加入盐酸,35℃±5℃下继续搅拌,溶液混合均匀后,倾入TEOS,继续搅拌1h~1.2h。
本发明的优点:本发明所述的金属基整体式分子筛膜催化剂适用于催化领域,特别的适合于费-托合成。
本发明提供的合成方法对基体先进行预处理,使得表面的粗糙度增加,不仅可以提高比表面积,也利于分子筛膜的原位生长。然后将基体预种植精种,再浸入模板剂溶液 中,模板剂溶液及其阳离子可以诱导SBA-16分子筛的成核及生长,可以在基体原位生长出均匀且牢固的SBA-16分子筛膜。晶体直接生长在金属基体表面,并且形成的分子筛膜具有抗机械压力的能力,相比于直接在金属基体表面涂覆分子筛,原位生长的分子筛更具有牢固性。
本发明提供的原位合成方法,操作简单,合成条件容易,适用于各种整体式金属基体,且易于工业化应用。
与现有的费-托合成催化剂相比,本发明的优点具体是:
(1)避免了浆态床反应器中催化剂固体颗粒和液体产品的分离难题;
(2)有利于反应气流的均匀分布;
(3)通过金属基表面分子筛膜的特殊结构,可以消除催化剂孔道内的扩散限制,改善传质效果,提高催化剂的活性和产品的选择性;
(4)催化剂制备过程简单,放大容易;
(5)催化剂的再生、更换容易;
(6)催化剂床层压降低,应用于工业规模的固定床反应器时,可大大减少设备和操作成本。
具体实施方式
本发明的用于费-托合成反应的金属基整体式膜催化剂包括金属整体式基体、分子筛膜载体、活性组分Co以及其它助剂组成,所述金属整体式基体是Ag、Au、Cu、Pt、Ti、Mo、Fe、Sn金属及其合金;将金属整体式基体预处理后,原位生长SBA-16分子筛膜载体,分子筛膜载体的厚度为26~67μm,然后通过浸渍法在分子筛膜载体上负载活性组分Co及其它助剂;所述的助剂选自La、Zr、Ce、Rh、Pt、Re、Ru、Ti、Mg、Ca、Sr其中的一种或几种助剂构成。
所述分子筛膜载体的厚度为30~60μm。
本发明的用于费-托合成反应的金属基整体式膜催化剂的制备方法,包含如下步骤:
1)金属基体的预处理:
采用多个相同规格大小的蜂窝状金属整体式基体,先用去离子水清洗金属整体式基体,放入100℃烘箱里烘干;
2)预植精种:
将SBA-16分子筛粉体溶于无水乙醇中,采用超声波震荡的方式,对混合液震荡 20~30min,直至形成均匀的分子筛粉末浸渍液;之后将金属整体式基体置于浸渍液中,浸泡时间1~10s,之后取出金属整体式基体,待金属整体式基体上的浸渍液不成流滴下即可再次重复浸泡;然后将预植精种的金属整体式基体自然晾干;
SBA16分子筛与溶剂的比例为每100ml无水乙醇中一般加入1~10克SBA16分子筛粉体,此比例不需要非常严格,精种浸渍液的浓度低,则浸泡时间长;浓度高些,则可以使浸泡的时间缩短。
另外,溶剂一般选用乙醇,其它的如水、乙腈等也可以,但乙醇较为常用。
3)分子筛膜载体的原位生长:
将预处理后的金属整体式基体置于SBA-16分子筛合成液中,于70~150℃下在釜内晶化5~120h,使SBA-16分子筛原位生长于金属整体式基体表面,制成原位生长SBA-16分子筛膜的金属整体式基体;取出带膜金属整体式基体,用去离子水洗涤,干燥,最后在400~600℃下焙烧4~8h,得到所述原位生长SBA-16分子筛膜的金属整体式基体;
4)活性组分及助剂元素的浸渍、老化及焙烧:
将原位生长有SBA-16分子筛膜的金属整体式基体浸入到的活性组分Co及其它助剂的盐溶液中,浸渍1~20min后取出;对完成浸渍并初步干燥的催化剂基体,在室温下老化3~36h;之后通过程序升温,最终在300~550℃煅烧6~12h后缓慢降至室温。
实施例中选用的活性组分为主金属Co,助剂选用Pt和Ce,在配制的合成液中的质量比为:Co:Pt:Ce=15%:0.5%:3%。
所述的步骤1)金属基体的预处理放入100℃烘箱里烘干后,用0.1mol/L盐酸处理5s~60s,用去离子水清洗烘干;之后用1mol/L的NaOH处理后用去离子水清洗烘干;将酸碱处理过的金属基体用丙酮浸泡0.5~1h后用去离子水清洗烘干;再用双氧水浸泡0.5~1h,以在基体表面上引入羟基,增加膜的牢固性;最后用去离子水清洗烘干。
所述的步骤2)重复浸泡过程为1~20次,优选2~10次。
所述的步骤3)SBA-16分子筛合成液的制取方法为:各物质的摩尔比为P123:F127:TEOS:HCl:H2O=1:1~5:200~800:1200~3500:30000~120000;按比例取P123和F127,用去离子水作溶剂,搅拌至完全溶解,加入盐酸,35℃±5℃下继续搅拌,溶液混合均匀后,倾入TEOS,继续搅拌1h~1.2h。
所述的步骤3)通过调整合成液参数或变更原位生长的合成次数来调整金属基体表面原位生长SBA-16分子筛膜载体的厚度达到26~67μm。
优选地,步骤3)SBA-16分子筛合成液的制取方法为:各物质的摩尔比为P123:F127: TEOS:HCl:H2O=1:1~3:350~650:1700~3000:50000~100000;按比例取P123和F127,用去离子水作溶剂,搅拌至完全溶解,加入盐酸,35℃±5℃下继续搅拌,溶液混合均匀后,倾入TEOS,继续搅拌1h~1.2h。
下面结合一些具体实施例对本发明进行进一步的描述,但本发明的保护范围并不仅限于此:
实施例1
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000001
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱里烘干。然后用0.1mol/L盐酸处理10s,用去离子水清洗烘干。之后用1mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡1h后用去离子水清洗烘干。再用双氧水浸泡1h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将2g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过程20次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的一次原位生长
分别取5g P123(EO20PO70EO20,M=5800)和11.8g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1400mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸200mL,35℃下继续搅拌,溶液混合均匀后,倾入65mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在80℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为26μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81g Co(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂A。通过XRF表征得到催化剂A的组成为:15.09%Co,0.46%Pt,3.02%Ce。
实施例2
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000002
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱里烘干。然后用0.2mol/L盐酸处理10s,用去离子水清洗烘干。之后用1mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡0.5h后用去离子水清洗烘干。再用双氧水浸泡1h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将6g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过程5次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的一次原位生长
分别取5g P123(EO20PO70EO20,M=5800)和14.99g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用830mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸142mL,35℃下继续搅拌,溶液混合均匀后,倾入76mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在90℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为31μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81g Co(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂B。通过XRF表征得到催化剂B的组成为:15.43%Co,0.56%Pt,3.10%Ce。
实施例3
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000003
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱里烘干。然后用0.3mol/L盐酸处理10s,用去离子水清洗烘干。之后用0.5mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡1h后用去离子水清洗烘干。再用双氧水浸泡2h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将5g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过程5次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的二次原位生长
本实施例的分子筛膜的原位生长为二次生长。二次生长即为将经过一次原位生长得到的基体经去离子水洗、干燥、焙烧等步骤处理之后、再重复原位生长步骤一次,增加分子筛膜的厚度。
分别取5g P123(EO20PO70EO20,M=5800)和10.9g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1550mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸221.5mL,35℃下继续搅拌,溶液混合均匀后,倾入117mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在100℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜 的一次生长。
再取5g P123(EO20PO70EO20,M=5800)和10.9g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1550mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸223mL,35℃下继续搅拌,溶液混合均匀后,倾入117mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。将基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在90℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的二次生长。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为43μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81gCo(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂C。通过XRF表征得到催化剂C的组成为:14.97%Co,0.49%Pt,3.06%Ce。
实施例4
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000004
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱里烘干。然后用0.1mol/L盐酸处理30s,用去离子水清洗烘干。之后用1mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡0.5h后用去离子水清洗烘干。再用双氧水浸泡1h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将4g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过 程10次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的二次原位生长
本实施例的分子筛膜的原位生长为二次生长。二次生长即为将经过一次原位生长得到的基体经去离子水洗、干燥、焙烧等步骤处理之后、再重复原位生长步骤一次,增加分子筛膜的厚度。
分别取5g P123(EO20PO70EO20,M=5800)和25.10g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1400mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸202.9mL,35℃下继续搅拌,溶液混合均匀后,倾入113mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在75℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的一次生长。
再取5g P123(EO20PO70EO20,M=5800)和25.10g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1400mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸202.9mL,35℃下继续搅拌,溶液混合均匀后,倾入113mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在75℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的二次生长。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为46μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81g Co(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在 100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂D。通过XRF表征得到催化剂D的组成为:15.22%Co,0.59%Pt,2.95%Ce。
实施例5
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000005
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱里烘干。然后用0.1mol/L盐酸处理15s,用去离子水清洗烘干。之后用1mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡0.5h后用去离子水清洗烘干。再用双氧水浸泡0.5h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将3g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过程15次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的三次原位生长
本实施例的分子筛膜的原位生长为三次生长。三次生长即为将经过一次原位生长得到的基体经去离子水洗、干燥、焙烧等步骤处理之后、再重复原位生长步骤两次,增加分子筛膜的厚度。
分别取5g P123(EO20PO70EO20,M=5800)和32.6g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用790mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸125.3mL,35℃下继续搅拌,溶液混合均匀后,倾入90mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在85℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的一次生长。
再取5g P123(EO20PO70EO20,M=5800)和32.6g F127(EO106PO70EO106,M=12600), 在35℃恒温条件下,用790mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸125.3mL,35℃下继续搅拌,溶液混合均匀后,倾入90mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在85℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的二次生长。
再取5g P123(EO20PO70EO20,M=5800)和32.6g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用790mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸125.3mL,35℃下继续搅拌,溶液混合均匀后,倾入90mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在85℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的三次生长。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为73μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81gCo(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂E。通过XRF表征得到催化剂E的组成为:15.22%Co,0.59%Pt,2.95%Ce。
实施例6
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000006
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱 里烘干。然后用0.1mol/L盐酸处理10s,用去离子水清洗烘干。之后用1mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡1h后用去离子水清洗烘干。再用双氧水浸泡1.5h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将8g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过程3次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的三次原位生长
本实施例的分子筛膜的原位生长为三次生长。三次生长即为将经过一次原位生长得到的基体经去离子水洗、干燥、焙烧等步骤处理之后、再重复原位生长步骤两次,增加分子筛膜的厚度。
分别取5g P123(EO20PO70EO20,M=5800)和16.3g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1089mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸132mL,35℃下继续搅拌,溶液混合均匀后,倾入72mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在80℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的一次生长。
再取5g P123(EO20PO70EO20,M=5800)和16.3g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1089mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸132mL,35℃下继续搅拌,溶液混合均匀后,倾入72mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在80℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的二次生长。
再取5g P123(EO20PO70EO20,M=5800)和16.3g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1089mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸132mL,35℃下继续搅拌,溶液混合均匀后,倾入72mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在80℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。完成分子筛膜的三次生长。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为60μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81gCo(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂F。通过XRF表征得到不锈钢基体/SBA-16膜催化剂F的组成为:15.31%Co,0.46%Pt,3.03%Ce。
实施例7
1)金属构件基体的预处理
将市售的蜂窝状不锈钢
Figure PCTCN2014091398-appb-000007
18*30mm圆柱状基体,用去离子水清洗并放入100℃烘箱里烘干。然后用0.1mol/L盐酸处理10s,用去离子水清洗烘干。之后用1mol/L的NaOH处理后用去离子水清洗烘干。将酸碱处理过的金属基体用丙酮浸泡1h后用去离子水清洗烘干。再用双氧水浸泡2h,以在基体表面上引入羟基,增加膜的牢固性。最后用去离子水清洗烘干。
2)预植精种
将10g SBA-16介孔分子筛溶于200ml无水乙醇中。采用超声波震荡的方式,对混 合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液。之后将金属基体置于浸渍液中,浸泡1~10s后取出金属基体,待浸渍液不成流滴下即可再次浸渍;重复浸泡及取出过程1次。之后,将预植精种的金属基体自然晾干,进行下一步骤。
3)分子筛膜的一次原位生长
分别取5g P123(EO20PO70EO20,M=5800)和32.6g F127(EO106PO70EO106,M=12600),在35℃恒温条件下,用1300mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸161mL,35℃下继续搅拌,溶液混合均匀后,倾入63mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h。先将预处理过的金属基体用聚四氟乙烯支架固定后放入Teflon瓶里,再将溶液移至Teflon瓶中,将反应釜密封好,在35℃下静置24h,再在105℃下晶化24h,冷却后开釜取出基体。
先用去离子水洗涤至中性,再放入100℃烘箱干燥12h后自然降温。
将其置于马弗炉内,以1℃/min的升温速率升到400℃并维持1h,再以1℃/min的升温速率升到550℃并维持4h,之后以0.5℃/min的降温速率降到室温。
通过扫描电镜表征得到金属基体表面的SBA-16分子筛膜厚为39μm。
4)活性组分及助剂元素的浸渍、老化及焙烧
对金属基体表面的SBA-16分子筛膜载体采用浸渍法负载Co及助剂。称取14.81gCo(NO3)2·6H2O、0.16g二亚硝基二氨铂与1.86g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成15ml溶液,将整体式载体浸入溶液中5min后取出,在室温下干燥3h后,在100℃烘箱里烘干10h。之后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后以0.5℃/min的降温速率降到室温,得到不锈钢基体/SBA-16膜催化剂G。通过XRF表征得到不锈钢基体/SBA-16膜催化剂G的组成为:14.89%Co,0.52%Pt,3.09%Ce。
对比例1
在35℃恒温条件下,分别取10g P123(EO20PO70EO20,M=5800)和23.6g F127(EO106PO70EO106,M=12600),用2800mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸400mL,35℃下继续搅拌,溶液混合均匀后,倾入130mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h,将溶液移至带聚四氟乙烯衬底的不锈钢釜反应(Teflon瓶)中,将反应釜密封好,在35℃下静置24h,再在100℃下晶化24h,冷却后,经过过滤、洗涤至中性。在120℃下干燥5h,最后在550℃下焙烧5h,即得到孔径为6~20nm,且具有笼形微观结构的白色粉末状SBA-16分子筛。
称取29.3g SBA-16载体,称取26.66g的Co(NO3)2·6H2O、0.27g二亚硝基二氨铂与 3.35g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成28ml溶液。将SBA-16载体倒入溶液中进行浸渍,然后在室温下干燥3h,在100℃烘箱里烘干10h,最后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后自然降温至室温,得到SBA-16粉体催化剂E。通过XRF表征得到对比催化剂H的组成为:15.24%Co,0.55%Pt,2.98%Ce。将粉体压片、筛分,选取30~60目的颗粒进行后续的活化及性能评价实验。
对比例2
在35℃恒温条件下,分别取10g P123(EO20PO70EO20,M=5800)和65g F127(EO106PO70EO106,M=12600),用2600mL去离子水作溶剂,搅拌至完全溶解,加入37wt%的盐酸320mL,35℃下继续搅拌,溶液混合均匀后,倾入125mL的TEOS(Si(OC2H5)4,M=208.33),继续搅拌1h,将溶液移至带聚四氟乙烯衬底的不锈钢釜反应(Teflon瓶)中,将反应釜密封好,在35℃下静置24h,再在95℃下晶化24h,冷却后,经过过滤、洗涤至中性。在120℃下干燥5h,最后在550℃下焙烧5h,即得到孔径为6~20nm,且具有笼形微观结构的白色粉末状SBA-16分子筛。
称取29.3g SBA-16载体,称取26.66g的Co(NO3)2·6H2O、0.27g二亚硝基二氨铂与3.35g六水合硝酸铈Ce(NO3)3·6H2O加去离子水配制成28ml溶液。将SBA-16载体倒入溶液中进行浸渍,然后在室温下干燥3h,在100℃烘箱里烘干10h,最后在马弗炉里以1℃/min的升温速率升到400℃,焙烧6h后自然降温至室温,得到SBA-16粉体催化剂E。通过XRF表征得到对比催化剂I的组成为:15.16%Co,0.47%Pt,3.12%Ce。将粉体压片、筛分,选取30~60目的颗粒进行后续的活化及性能评价实验。
各实施例SBA-16分子筛合成液各物质的摩尔比如下表:
摩尔比 P123 F127 TEOS HCl H2O
实施例1 1 1.09 335 2750 90000
实施例2 1 1.38 423 1926 53972
实施例3 1 1 650 3000 100000
实施例4 1 2.31 625 2750 90000
实施例5 1 3 500 1700 51000
实施例6 1 1.5 400 1800 70000
实施例7 1 3 350 2200 84000
对比例1 1 1.09 335 2750 90000
对比例2 1 3 350 2200 84000
催化剂的活化、活性评价与对比
整体式催化剂取1~3块,催化剂质量采用差量法计算,即是生成分子筛并浸渍金属盐、焙烧之后的整体式催化剂质量,减去预处理后的金属基体质量。称取3g以上的对比催化剂G。将催化剂装入
Figure PCTCN2014091398-appb-000008
18mm固定床反应器中分别进行活性评价。在系统压力0.5MPa,GHSV=3SL/(g·h)的H2气氛下,以1℃/min的速率从室温开始逐级升温,至200℃、250℃、300℃、350℃时分别恒温30min后继续升温。最终在400℃下原位活化10h后以0.5℃/min的降温速率降到室温。
活性评价实验的气体为氮气与合成气(VN2:Vsyn gas=1:1)的混合气,其中合成气的摩尔组成为:H2/CO=2。反应压力2.0MPa,反应温度210℃,气体空速GHSV=6SL/(g·h)。通过XRF等表征手段测得各元素组分的含量,催化剂的活性评价结果列于附表如下。
附表:催化剂的费-托合成反应评价结果
Figure PCTCN2014091398-appb-000009
从反应评价结果可以看出,整体式费-托膜催化剂尤其是SBA-16分子筛膜厚为30~60μm的催化剂,CO转化率和C5 +选择性都较高,而非目标产物的甲烷选择性则较低,与传统的粉末状的Co/SBA-16费-托合成催化剂相比,整体式费-托膜催化剂的催化性能更好。
在反应评价实验过程中,整体式膜催化剂的温度控制较稳定,反应温度波动变化在±1.5℃范围内;而催化剂H和催化剂I在实验评价过程中温度出现较大的波动,反应温度波动范围206℃~217.7℃。由此可见,整体式膜催化剂的传热性能更好。
综上所述,本发明的核心是通过金属基表面分子筛膜的特殊结构消除催化剂孔道内 的扩散限制,改善传质效果,提高催化剂的活性和产品的选择性。因此,凡是采用金属基体、以原位生长具有中孔结构的SBA-16分子筛膜为载体的费-托合成催化剂产品和方法,均属于本发明的保护范围。

Claims (10)

  1. 一种用于费-托合成的金属基整体式膜催化剂,包括金属整体式基体、分子筛膜载体、活性组分Co以及其它助剂组成,其特征在于:所述金属整体式基体是Ag、Au、Cu、Pt、Ti、Mo、Fe、Sn金属及其合金;将金属整体式基体预处理后,原位生长SBA-16分子筛膜载体,分子筛膜载体的厚度为26~67μm,然后通过浸渍法在分子筛膜载体上负载活性组分Co及其它助剂;所述的助剂选自La、Zr、Ce、Rh、Pt、Re、Ru、Ti、Mg、Ca、Sr其中的一种或几种助剂构成。
  2. 根据权利要求1所述的用于费-托合成的金属基整体式膜催化剂,其特征在于:所述分子筛膜载体的厚度为30~60μm。
  3. 一种权利要求1或2用于费-托合成的金属基整体式膜催化剂的制备方法,包含如下步骤:
    1)金属基体的预处理:
    采用多个相同规格大小的蜂窝状金属整体式基体,先用去离子水清洗金属整体式基体,放入100℃烘箱里烘干;
    2)预植精种:
    将SBA-16分子筛粉体溶于无水乙醇中,采用超声波震荡的方式,对混合液震荡20~30min,直至形成均匀的分子筛粉末浸渍液;之后将金属整体式基体置于浸渍液中,浸泡时间1~10s,之后取出金属整体式基体,待金属整体式基体上的浸渍液不成流滴下即可再次重复浸泡;然后将预植精种的金属整体式基体自然晾干;
    3)分子筛膜载体的原位生长:
    将预处理后的金属整体式基体置于SBA-16分子筛合成液中,于70~150℃下在釜内晶化5~120h,使SBA-16分子筛原位生长于金属整体式基体表面,制成原位生长SBA-16分子筛膜的金属整体式基体;取出带膜金属整体式基体,用去离子水洗涤,干燥,最后在400~600℃下焙烧4~8h,得到所述原位生长SBA-16分子筛膜的金属整体式基体;
    4)活性组分及助剂元素的浸渍、老化及焙烧:
    将原位生长有SBA-16分子筛膜的金属整体式基体浸入到的活性组分Co及其它助剂的盐溶液中,浸渍1~20min后取出;对完成浸渍并初步干燥的催化剂基体,在室温 下老化3~36h;之后通过程序升温,最终在300~550℃煅烧6~12h后缓慢降至室温。
  4. 根据权利要求3所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤1)金属基体的预处理放入100℃烘箱里烘干后,用0.1mol/L盐酸处理5s~60s,用去离子水清洗烘干;之后用1mol/L的NaOH处理后用去离子水清洗烘干;将酸碱处理过的金属基体用丙酮浸泡0.5~1h后用去离子水清洗烘干;再用双氧水浸泡0.5~1h,以在基体表面上引入羟基,增加膜的牢固性;最后用去离子水清洗烘干。
  5. 根据权利要求3或4所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤2)重复浸泡过程为1~20次。
  6. 根据权利要求3或4所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤3)SBA-16分子筛合成液的制取方法为:各物质的摩尔比为P123:F127:TEOS:HCl:H2O=1:1~5:200~800:1200~3500:30000~120000;按比例取P123和F127,用去离子水作溶剂,搅拌至完全溶解,加入盐酸,35℃±5℃下继续搅拌,溶液混合均匀后,倾入TEOS,继续搅拌1h~1.2h。
  7. 根据权利要求3或4所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤3)通过调整合成液参数或变更原位生长的合成次数来调整金属基体表面原位生长SBA-16分子筛膜载体的厚度达到26~67μm。
  8. 根据权利要求3或4所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤3)SBA-16分子筛合成液的制取方法为:各物质的摩尔比为P123:F127:TEOS:HCl:H2O=1:1~3:350~650:1700~3000:50000~100000;按比例取P123和F127,用去离子水作溶剂,搅拌至完全溶解,加入盐酸,35℃±5℃下继续搅拌,溶液混合均匀后,倾入TEOS,继续搅拌1h~1.2h。
  9. 根据权利要求3或4所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤3)通过调整合成液参数或变更原位生长的合成次数来调整金属基体表面原位生长SBA-16分子筛膜载体的厚度达到30~60μm。
  10. 根据权利要求6所述的用于费-托合成的金属基整体式膜催化剂的制备方法,其特征在于:步骤3)通过调整合成液参数或变更原位生长的合成次数来调整金属基体表面原位生长SBA-16分子筛膜载体的厚度达到30~60μm。
PCT/CN2014/091398 2013-12-18 2014-11-18 一种用于费-托合成的金属基整体式膜催化剂及其制备方法 WO2015090127A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14872435.4A EP3085442A4 (en) 2013-12-18 2014-11-18 Metal-matrix integrated membrane catalyst for fischer-tropsch synthesis, and preparation method thereof
US15/186,583 US10189013B2 (en) 2013-12-18 2016-06-20 Monolithic catalyst comprising molecular sieve membrane and method for preparing the monolithic catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310695773.1 2013-12-18
CN201310695773.1A CN104722327B (zh) 2013-12-18 2013-12-18 一种用于费-托合成的金属基整体式膜催化剂及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/186,583 Continuation-In-Part US10189013B2 (en) 2013-12-18 2016-06-20 Monolithic catalyst comprising molecular sieve membrane and method for preparing the monolithic catalyst

Publications (1)

Publication Number Publication Date
WO2015090127A1 true WO2015090127A1 (zh) 2015-06-25

Family

ID=53402083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091398 WO2015090127A1 (zh) 2013-12-18 2014-11-18 一种用于费-托合成的金属基整体式膜催化剂及其制备方法

Country Status (4)

Country Link
US (1) US10189013B2 (zh)
EP (1) EP3085442A4 (zh)
CN (1) CN104722327B (zh)
WO (1) WO2015090127A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105921167A (zh) * 2016-05-19 2016-09-07 武汉凯迪工程技术研究总院有限公司 整体式铁钴双金属费托合成催化剂及其制备方法
CN107020067A (zh) * 2017-04-28 2017-08-08 华南理工大学 一种蜂窝陶瓷基细粒径NaA分子筛块体吸附剂及原位合成方法与应用
CN112619448B (zh) * 2020-11-11 2022-05-17 宁波大学 焙烧辅助的分子筛膜继代合成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138720A (zh) * 2007-10-19 2008-03-12 北京化工大学 用于甲烷直接催化转化的金属基整体式催化剂及其制备方法
CN101992126A (zh) * 2009-08-19 2011-03-30 中国科学院金属研究所 碳化硅陶瓷表面多孔沸石分子筛涂层材料及其制备方法
CN102078818A (zh) 2010-12-27 2011-06-01 中南民族大学 以sba-16分子筛为载体的催化剂及其制法和应用
WO2011080198A2 (en) * 2009-12-29 2011-07-07 Shell Internationale Research Maatschappij B.V. Coating method for structured catalysts
CN102274710A (zh) * 2011-05-19 2011-12-14 浙江大学 Cu/不锈钢丝网催化剂负载ZSM-5分子筛膜反应器的制备方法
CN102343289A (zh) * 2011-06-16 2012-02-08 大连理工大学 金属基mfi型沸石分子筛膜的制备方法
CN102553634A (zh) 2010-12-31 2012-07-11 中国石油化工股份有限公司 一种费托合成催化剂及其应用
CN102631944A (zh) 2012-03-30 2012-08-15 内蒙古大学 一种以介孔分子筛sba-16为载体的合成气转油催化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909012B1 (fr) * 2006-11-23 2009-05-08 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.
KR101059413B1 (ko) * 2009-05-07 2011-08-29 한국에너지기술연구원 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체, 금속구조체의 제조방법 및 금속구조체촉매
RU2414296C1 (ru) * 2009-10-29 2011-03-20 Инфра Текнолоджиз Лтд. Катализатор для синтеза углеводородов из со и h2 и способ его получения
RU2551433C1 (ru) * 2011-04-28 2015-05-27 Сэсол Текнолоджи (Проприетери) Лимитед Катализаторы

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138720A (zh) * 2007-10-19 2008-03-12 北京化工大学 用于甲烷直接催化转化的金属基整体式催化剂及其制备方法
CN101992126A (zh) * 2009-08-19 2011-03-30 中国科学院金属研究所 碳化硅陶瓷表面多孔沸石分子筛涂层材料及其制备方法
WO2011080198A2 (en) * 2009-12-29 2011-07-07 Shell Internationale Research Maatschappij B.V. Coating method for structured catalysts
CN102078818A (zh) 2010-12-27 2011-06-01 中南民族大学 以sba-16分子筛为载体的催化剂及其制法和应用
CN102553634A (zh) 2010-12-31 2012-07-11 中国石油化工股份有限公司 一种费托合成催化剂及其应用
CN102274710A (zh) * 2011-05-19 2011-12-14 浙江大学 Cu/不锈钢丝网催化剂负载ZSM-5分子筛膜反应器的制备方法
CN102343289A (zh) * 2011-06-16 2012-02-08 大连理工大学 金属基mfi型沸石分子筛膜的制备方法
CN102631944A (zh) 2012-03-30 2012-08-15 内蒙古大学 一种以介孔分子筛sba-16为载体的合成气转油催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN GUIZARD; AGNES PRINCIVALLE: "Preparation and characterization of catalyst thin films[J", CATALYSIS TODAY, vol. 146, 2009, pages 367 - 377
FREEK KAPTEIJN; RONAKD M.DE DEUGD 1; JACOB A. MOULIJN, CATALYSIS TODAY, vol. 105, 2005, pages 305 - 356
IYURANOV, I. ET AL.: "Structured Combustion Catalysts Based on Sintered Metal Fibre Filters", APPLIED CATALYSIS B: ENVIROMENTAL, vol. 3, no. 43, 10 July 2003 (2003-07-10), pages 218, XP002529139 *
See also references of EP3085442A4

Also Published As

Publication number Publication date
EP3085442A1 (en) 2016-10-26
CN104722327A (zh) 2015-06-24
US10189013B2 (en) 2019-01-29
CN104722327B (zh) 2018-05-22
US20160288104A1 (en) 2016-10-06
EP3085442A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6604501B2 (ja) アンモニア分解触媒とその製造方法および、これを用いた装置
JP5939485B2 (ja) 水素化方法
KR101405518B1 (ko) 피셔-트롭시 합성반응용 코발트계 촉매의 제조방법
RU2517700C2 (ru) Катализаторы
WO2010054552A1 (zh) 一种负载型金属钯催化剂的制备方法
WO2017197980A1 (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
BR112013030533B1 (pt) Catalisadores
RU2326732C1 (ru) Катализатор для синтеза фишера-тропша и способ его получения
WO2017185929A1 (zh) 用于生产航煤的选择性加氢催化剂及其制备方法和应用
JP2011502758A5 (zh)
WO2015090127A1 (zh) 一种用于费-托合成的金属基整体式膜催化剂及其制备方法
JP2018531247A6 (ja) ハロニトロ芳香族の接触水素化のためのプロセス
RU2316394C1 (ru) Способ приготовления моно- и биметаллического катализатора и процессы с участием кислорода и/или водорода
WO2018161950A1 (zh) 加氢异构脱蜡催化剂及其制备方法
CN113398935B (zh) 一种钌-镍/石墨烯-复合氧化金属气凝胶催化剂及其制备方法与应用
KR101511363B1 (ko) 수증기-이산화탄소 복합개질을 위한 고내구성 금속폼 지지 촉매 및 그 제조방법
CN107376936B (zh) 一种铂-钴/凹凸棒石催化剂及其制备方法和应用
CN109382082B (zh) 载体及其制备方法和费托合成催化剂及费托合成方法
WO2011155955A1 (en) Zeolite supported ruthenium catalysts for the conversion of synthesis gas to hydrocarbons, and method for preparation and method of use thereof
CA2969362A1 (en) Catalyst for ammonia oxidation
Wu et al. Mechanical stability of ZSM-5 zeolite washcoated cordierite monoliths
US20140155501A1 (en) Process for preparing a cobalt - containing fischer tropsch catalyst
CN108380219B (zh) 一种醋酸乙酯加氢制乙醇的催化剂及其制备方法和应用
CN111185159A (zh) Pd-Ag@α-Al2O3催化剂及其制备方法
WO2016152796A1 (ja) 共役ジエンの製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014872435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872435

Country of ref document: EP