WO2015089704A1 - 用于生产乙醇并联产甲醇的方法 - Google Patents

用于生产乙醇并联产甲醇的方法 Download PDF

Info

Publication number
WO2015089704A1
WO2015089704A1 PCT/CN2013/089539 CN2013089539W WO2015089704A1 WO 2015089704 A1 WO2015089704 A1 WO 2015089704A1 CN 2013089539 W CN2013089539 W CN 2013089539W WO 2015089704 A1 WO2015089704 A1 WO 2015089704A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
acetate
methanol
ethanol
reaction
Prior art date
Application number
PCT/CN2013/089539
Other languages
English (en)
French (fr)
Inventor
刘勇
朱文良
刘红超
倪友明
刘中民
孟霜鹤
李利娜
刘世平
周慧
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to AU2013408110A priority Critical patent/AU2013408110B2/en
Priority to BR112016013033-2A priority patent/BR112016013033B1/pt
Priority to EA201691256A priority patent/EA028834B1/ru
Priority to JP2016538026A priority patent/JP6244465B2/ja
Priority to PCT/CN2013/089539 priority patent/WO2015089704A1/zh
Priority to EP13899528.7A priority patent/EP3085682B1/en
Priority to MYPI2016702184A priority patent/MY171339A/en
Priority to DK13899528.7T priority patent/DK3085682T3/da
Priority to US15/103,076 priority patent/US10059649B2/en
Priority to KR1020167019239A priority patent/KR101855876B1/ko
Priority to SG11201604942RA priority patent/SG11201604942RA/en
Publication of WO2015089704A1 publication Critical patent/WO2015089704A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/08Ethanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of catalytic chemistry, and in particular relates to a novel method for producing ethanol in parallel to produce methanol. Background technique
  • Ethanol is mainly used as a fuel for vehicles and fuels for vehicles. It is also an important basic organic chemical raw material, mainly used in the production of acetaldehyde, ether, acetic acid, ethyl acetate and ethylamine.
  • global ethanol production reached 85.1 billion liters, while China's ethanol gasoline accounted for more than 20% of China's total gasoline consumption.
  • China's non-fossil energy will increase its proportion of primary energy to 11.4%, and no new fuel-ethanol project with grain as the main raw material will be built. Therefore, multi-channel synthesis of ethanol has important practical and strategic significance for saving petroleum resources and reducing environmental pollution.
  • ethanol production methods include fermentation and ethylene hydration (no matter whether it is ethanol produced by fermentation or ethylene hydration, it is usually an azeotrope of ethanol and water, and it is necessary to obtain dehydration of anhydrous ethanol:).
  • the main raw materials for fermentation are plants such as sugar cane, cassava, and corn.
  • a large amount of corn in the United States is used to produce ethanol fuel, resulting in food shortages and rising prices worldwide, so many countries have imposed restrictions on bioethanol projects.
  • Ethylene hydration uses phosphoric acid supported on silica gel or diatomaceous earth as a catalyst. This process was first industrialized by Shell in 1947. Broadening the source of ethanol raw materials and reducing dependence on petroleum resources have become the focus of research.
  • Methanol is also an important chemical raw material and vehicle fuel additive, mainly used as a solvent and preparation of formaldehyde, acetic acid, dimethyl ether, and MTG, MTO and other processes.
  • China's methanol production reached 20.35 million tons.
  • MTO and other technologies it is expected that methanol production will increase in the future.
  • methanol synthesis is carried out using a copper-based catalyst in a fixed bed reactor at 240-260 ° C, 5-10 MPa.
  • dimethyl ether can be synthesized from syngas (using a bifunctional catalyst, methanol synthesis and methanol dehydration in one reactor) or methanol dehydration.
  • Syngas can be produced using non-petroleum energy sources such as coal, biomass, and natural gas. If a certain amount of methanol can be co-produced while synthesizing ethanol, methanol can be used as a final product or dehydrated to form dimethyl ether, dimethyl ether is carbonylated to form methyl acetate, and methyl acetate is hydrogenated to form the final product ethanol.
  • the ratio of ethanol and methanol can be adjusted according to market demand, and the flexibility of the product and the maneuverability of the device can be improved, which has important practical significance for the development of new coal chemical industry. Therefore, there is a need in the art to develop a method for synthesizing ethanol in parallel under the conditions of syngas and acetate co-feed. Summary of the invention
  • the present invention provides a method for producing ethanol in parallel to produce methanol, characterized in that a feed gas containing acetate and syngas, passed through a reactor equipped with a catalyst, at a reaction temperature
  • reaction volume space velocity is 100 ⁇ 45000 mlg - 1 ⁇ 1
  • acetate mass space velocity is OO l S.
  • Oh- 1 ethanol is produced in parallel;
  • the active component of the catalyst is copper and optionally zinc and/or aluminum.
  • the acetate is methyl acetate and/or ethyl acetate.
  • the active component copper is 50.0-100.0% by weight of the total weight of the catalyst in terms of CuO; zinc is 0-35.0% by weight of the total weight of the catalyst in terms of ZnO; Aluminum accounts for 0-10.0% by weight of the total weight of the catalyst in terms of A1 2 0 3 .
  • the catalyst further contains one or more of manganese, molybdenum, zirconium, chromium, iron, cerium, magnesium, nickel, and calcium as an auxiliary.
  • the adjuvant is from 0 to 5.0% by weight based on the total weight of the catalyst based on its metal oxide.
  • the catalyst is subjected to a reduction treatment with hydrogen and/or syngas prior to use.
  • the synthesis gas/acetate molar ratio in the feed gas is from 10 to: 101/0.1 to 4, and the hydrogen/carbon monoxide molar ratio in the synthesis gas is from 9 to 100/1.
  • the synthesis gas/acetate molar ratio is 21 to 10 1/2 to 4, and the hydrogen/carbon monoxide molar ratio in the synthesis gas is 20 to: 100/1.
  • the reaction temperature is 180 to 300 ° C
  • the reaction pressure is 1.0 to 10.0 MPa
  • the reaction volume space velocity is 400 to 35000 mlg - the acetate mass space velocity is 0.1 ⁇ 3.0h—
  • the invention promotes the conversion of carbon monoxide to methanol by syngas and acetate co-feed as a reaction raw material, while maintaining a very high acetate hydrogenation activity.
  • the method of the present invention co-produces a certain amount of methanol while producing ethanol, and the ratio of ethanol and methanol is adjustable, thereby improving product flexibility.
  • a raw material gas containing acetate and syngas is passed through a reactor equipped with a catalyst at a reaction temperature of 150 to 350 ° C, a reaction pressure of 0.1 to 20.0 MPa, and a reaction volume space velocity of 100 to 45,000 mlg. 1 ⁇ 1 , the production of ethanol in parallel with the mass velocity of acetate is 0.01 ⁇ 5.0 h- 1 ;
  • the active component of the catalyst is copper, and may also contain zinc and/or aluminum.
  • the acetate is methyl acetate and/or ethyl acetate.
  • the active component is copper, and the content thereof is 50.0 to 100.0 wt% based on the total weight of the catalyst, and the zinc of the auxiliary agent is 0 to 35.0, based on the total weight of the catalyst. Wt%; Auxiliary aluminum is 0 ⁇ 10.0wto/o, based on the total weight of the catalyst, based on the metal oxide.
  • the catalyst may further contain, as an auxiliary agent, one or a combination of manganese, molybdenum, zirconium, chromium, iron, lanthanum, magnesium, nickel, calcium, and preferably, it is oxidized by a metal.
  • the content (for example, MnO, Cr 2 O 3 , Fe 2 O 3 , MgO, NiO, etc.) is 0 to 5.0 wt% of the total weight of the catalyst.
  • the catalyst is subjected to a reduction treatment with hydrogen and/or synthesis gas prior to the reaction.
  • the synthesis gas/acetate molar ratio in the raw material gas is 10 to 101/0.1 to 4, and the hydrogen/carbon monoxide molar ratio in the synthesis gas is 9 to 100/1. Further preferably, the synthesis gas/acetate molar ratio is 21 to 10 1/2 to 4, and the hydrogen/carbon monoxide molar ratio in the synthesis gas is 20 to 100/1.
  • reaction temperature 180 ⁇ 300 ° C reaction pressure 1.0 ⁇ 10.0 MPa
  • reaction volume space velocity 400 ⁇ 35000 mlg 1 ⁇ 1 reaction volume space velocity 400 ⁇ 35000 mlg 1 ⁇ 1
  • the catalyst of the present invention (also referred to as a copper-based catalyst) is preferably prepared by a coprecipitation method, and includes the following steps:
  • step a) adding a solution containing Cu 2+ and/or optionally Zn 2+ and/or Al 3+ ions to a precipitant solution at 25-60 ° C, stirring the resulting precipitate to homogeneity, and obtaining the pH of the precipitate 7.0-10.0; b) The precipitate obtained in step a) is aged for 5 to 60 hours, dried at 80-160 ° C and calcined at 240-500 ° C to obtain a calcined sample;
  • the calcined sample obtained in step b) is placed in a salt solution containing one or any of several metals of the components manganese, molybdenum, zirconium, chromium, iron, strontium, magnesium, nickel, calcium
  • the copper-based catalyst is obtained by dipping one or more times, drying after drying at 80-160 ° C, and calcining at 240-500 ° C.
  • the main advantage of the invention lies in that a simple co-precipitation method is used to prepare a catalyst for synthesizing methanol and acetic acid co-feed to produce ethanol in parallel, and the process promotes The conversion of carbon monoxide to methanol produces an extremely high acetate hydrogenation activity.
  • the ratio of ethanol to methanol can be adjusted, and a new reaction process is developed to increase product flexibility.
  • Example 1 Catalyst preparation
  • the obtained precipitate was dried in an oven at 120 ° C for 24 hours. After drying, the sample was placed in a muffle furnace, heated to 400 ° C at a heating rate of rC / mm, and calcined for 5 hours to obtain a calcined sample.
  • This catalyst is referred to as CAT1.
  • the precipitate was washed with deionized water to neutrality and centrifuged.
  • the obtained precipitate was dried in an oven at 120 ° C for 24 hours. After drying, the sample was placed in a muffle furnace, heated to 400 ° C at a heating rate of rC / mm, and calcined for 5 hours to obtain a calcined sample.
  • This catalyst is referred to as CAT3.
  • the preparation of the remaining catalysts CAT2 and CAT5 10 is similar to CAT3 and CAT4.
  • the relationship between the specific preparation conditions of the catalyst and the numbering is shown in Table 1.
  • XR measurement X-ray fluorescence spectrum, PANalytical, the Netherlands
  • the catalyst composition is shown in Table 2.
  • the reaction volume space velocity in the present invention is defined as the volumetric flow rate of the reaction feedstock (in standard conditions) entering the reaction system per hour divided by the mass of the catalyst. Expressed in GHSV, the unit is mlg - ⁇ 10 g of 20-40 mesh of the above catalyst is charged into the fixed bed reactor constant temperature zone. Before the reaction, the catalyst was subjected to on-line reduction, the reduction temperature was 260 ° C, the pressure was 0.1 MPa, the reducing gas was 5% 3 ⁇ 4 + 95% N 2 , and the reduction time was 24 h.
  • the reaction temperature controller regulating the temperature dropped to 230 ° C, N 2 purge line with the reactor and the residual H 2, then the gas was changed to a synthesis gas having a constant composition and filling pressure, mass flow rate adjusted Calculate the specified flow rate (standard condition), set the acetate high pressure feed pump to the specified flow rate, and start the reaction when the temperature and pressure are stable.
  • the product was analyzed online and sampled once every hour. From the outlet of the reactor to the inlet of the gas chromatographic ten-way valve, all lines and back pressure valves are heated and insulated.
  • FID column HP-PLOT-Q 19091P-Q04, 30m x 0.32mm (inside diameter), 20 ⁇ carrier gas: helium, 2 ml/min
  • Oven temperature 50°C-240°C, 10°C/min
  • TCD column carbon molecular sieve column, TDX-01 2m X 2mm (inside diameter)
  • Carrier gas helium, 35ml/min
  • Oven temperature 50°C-240°C, 10°C/min
  • reaction temperature 240 ° C reaction pressure 4.5 MPa
  • reaction temperature is 250 ° C
  • the invention has the advantage that in a reactor, a cheap and readily available catalyst, a certain amount of syngas and acetate co-feed are used as raw materials, and under appropriate reaction conditions, ethanol can be efficiently synthesized in parallel to produce methanol. Compared with conventional methanol synthesis, this invention promotes the conversion of carbon monoxide to methanol, while maintaining efficient acetic acid hydrogenation activity. This invention opened up a new route for the development of the coal chemical industry. It should be noted that various modifications to these embodiments can be implemented by those skilled in the art without departing from the principles of the present invention, and such modifications are also considered to be within the scope of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种使用合成气与醋酸酯共进料作为反应原料,在一个反应器内一种催化剂上生产乙醇并联产甲醇的方法。更具体地,本发明提供一种用于生产乙醇并联产甲醇的方法,其中将含有醋酸酯与合成气的原料气,通过装有催化剂的反应器,在反应温度150∼350°C,反应压力0.1∼20.0 MPa,反应体积空速为100∼45000 mlg-1h-1,醋酸酯质量空速为0.01∼5.0h-1的条件下生产乙醇并联产甲醇;所述催化剂的活性组分为铜以及任选的锌和/或铝。本发明方法大大促进了一氧化碳转化生成甲醇,同时保持了极高的醋酸酯加氢活性。而且,本发明的方法在生产乙醇的同时联产一定量的甲醇,乙醇、甲醇比例可调,提高了产品灵活性。

Description

用于生产乙醇并联产甲醇的方法 技术领域
本发明属于催化化学领域,具体地涉及一种用于生产乙醇并联产甲醇 的新方法。 背景技术
乙醇主要作为车用燃料和车用燃料添加剂,同时也是一种重要的基本 有机化工原料,主要用于生产乙醛、乙醚、乙酸、乙酸乙酯、乙胺等。2012 年全球乙醇产量达到 851亿升,而中国的乙醇汽油已占中国汽油消耗总量 的 20%以上。 在十二五期间, 中国的非化石能源占一次能源比重将提高 到 11.4%, 同时不再建设新的以粮食为主要原料的燃料乙醇项目。 因此多 途径合成乙醇对节省石油资源,减轻环境污染具有重要的现实意义和战略 意义。
目前工业上乙醇生产方法包括发酵法和乙烯水合法 (无论用发酵法或 乙烯水合法制得的乙醇,通常都是乙醇和水的共沸物,要得到无水乙醇需 进一歩脱水:)。 发酵法的主要原料是甘蔗、 木薯、 玉米等植物。 美国大量 玉米被用来生产乙醇燃料,导致世界范围内的粮食短缺和价格上涨, 因此 许多国家对生物乙醇项目采取了一定的限制。乙烯水合法使用负载在硅胶 或硅藻土上的磷酸作为催化剂, 该工艺最早由 Shell公司于 1947年工业 化。拓宽乙醇原料来源, 减轻对石油资源的依赖成为研究的热点。 由合成 气直接制取乙醇被认为是最有前途的路线之一 [Appl. Catal. A 261 (2004) 47, J. Catal. 261 (2009) 9]。 Pan等人 [Nat. Mater. 6 (2007) 507]报道了一种 选择性负载在碳纳米管内壁的 Rh贵金属催化剂, 大大提高了合成气直接 制取乙醇的产率。但由于使用昂贵的贵金属 R , 限制了它的进一歩应用。 另一种路线是合成气直接制乙醇。 2011年 11月 1 日, 江苏索普集团 3万 吨 /年合成气制乙醇成套技术研发项目开工建设, 该技术由中科院大连化 学物理研究所开发,这标志着该项创新技术已全面进入工业示范实施阶 段,项目建成后将成为全球首套万吨级煤经合成气制乙醇工业化装置。但 该路线采用贵金属铑催化剂, 催化剂的成本较高。 且严格来说, 产物是
C1-C5的低碳混合醇,乙醇选择性低于 80% [Appl. Catal. A 407 (2011) 231, Appl. Catal. A 243 (2003) 155]。 此外甲醇同系化反应制备乙醇也进行了大 量研究, 该路线采用 Co或 Ru作为催化剂, 碘化物作为助催化剂, 在均 相体系下反应 [ Catal. 90 (1984)127, J. Mol. Catal. A 96 (1995) 215]。但由 于碘化物严重腐蚀设备, 且反应产物复杂, 乙醇选择性低, 此法的应用也 受到一定的限制。
最新的从合成气出发直接合成乙醇的路线为以二甲醚为原料,通过羰 基化反应直接合成乙酸甲酯,然后加氢制乙醇。此路线目前尚处于研究阶 段, 但具有非常高的应用前景。 最近 Tsubaki 等人 [JP2008239539, ChemSusChem 3 (2010) 1192]在 H-MOR和 Cu/ZnO催化剂上实现了 DME 直接生成乙醇, 研究发现两种催化剂具有协同效应。
甲醇也是一种重要的化工原料和车用燃料添加剂,主要作为溶剂和制 备甲醛、 乙酸、 二甲醚, 以及 MTG、 MTO等过程。 2011年我国甲醇产 量达到 2035万吨, 随着 MTO等技术的推广, 预计未来甲醇产量还会增 长。 目前甲醇合成采用铜基催化剂在固定床反应器中于 240-260°C, 5-10MPa下实现。
目前二甲醚可由合成气一歩制取(使用双功能催化剂, 甲醇合成和甲 醇脱水在一个反应器内发生)或者甲醇脱水合成。合成气可以使用煤、生 物质、天然气等非石油能源制备。如果能实现合成乙醇的同时联产一定量 的甲醇, 甲醇既可以作为最终产品, 也可以脱水生成二甲醚, 二甲醚羰基 化生成醋酸甲酯,醋酸甲酯加氢生成最终产品乙醇。可以根据市场需求情 况调节乙醇、 甲醇比例, 提高产品的灵活性和装置操作机动性, 对开发新 型煤化工产业有着重要的现实意义。因此本领域需要开发一种合成气和醋 酸酯共进料条件下合成乙醇并联产甲醇的方法。 发明内容
本发明的目的在于提供一种利用合成气和醋酸酯共进料条件下生产 乙醇并联产甲醇的方法。
为此,本发明提供一种用于生产乙醇并联产甲醇的方法,其特征在于, 将含有醋酸酯与合成气的原料气, 通过装有催化剂的反应器, 在反应温度
150〜350°C, 反应压力 0.1〜20.0MPa, 反应体积空速为 100〜45000 mlg-1^1 , 醋酸酯质量空速为 O.O l S .Oh—1的条件下生产乙醇并联产甲醇; 所述催化剂的活性组分为铜以及任选的锌和 /或铝。
在一个优选实施方式中, 所述醋酸酯为醋酸甲酯和 /或醋酸乙酯。 在一个优选实施方式中, 在所述催化剂中, 活性组分铜以 CuO计占 所述催化剂总重量的 50.0-100.0wt%; 锌以 ZnO计占所述催化剂总重量的 0-35.0wt%; 铝以 A1203计占所述催化剂总重量的 0-10.0wt%。
在一个优选实施方式中, 所述催化剂还含有锰、 钼、 锆、 铬、 铁、 钡、 镁, 镍、 钙中的一种或多种作为助剂。 优选地, 所述助剂以其金属氧化物 计占所述催化剂总重量的 0-5.0 wt%。
在一个优选实施方式中,所述催化剂在使用前用氢气和 /或合成气进行 还原处理。
在一个优选实施方式中, 在所述原料气中, 合成气 /醋酸酯摩尔比为 10〜: 101/0.1〜4, 所述合成气中氢气 /一氧化碳的摩尔比为 9〜: 100/1。 优选 地, 合成气 /醋酸酯摩尔比为 21〜101/2〜4, 所述合成气中氢气 /一氧化碳 的摩尔比为 20〜: 100/1。
在一个优选实施方式中, 所述反应温度为 180〜300°C, 所述反应压 力为 1.0〜10.0MPa, 所述反应体积空速为 400〜35000 mlg— 所述醋酸 酯质量空速为 0.1〜3.0h—
本发明通过合成气与醋酸酯共进料作为反应原料,促进了一氧化碳转 化生成甲醇, 同时保持了极高的醋酸酯加氢活性。本发明的方法在生产乙 醇的同时联产一定量的甲醇, 并且乙醇、 甲醇比例可调, 提高了产品灵活 性。 具体实施方式
在本发明方法中,将含有醋酸酯与合成气的原料气,通过装有催化剂 的反应器, 在反应温度 150〜350°C, 反应压力 0.1〜20.0MPa, 反应体积 空速为 100〜45000 mlg 1^1 , 醋酸酯质量空速为 0.01〜5.0h— 1的条件下生 产乙醇并联产甲醇; 所述催化剂的活性组分为铜, 也可以含有锌和 /或铝。 优选地, 所述醋酸酯为醋酸甲酯和 /或醋酸乙酯。
优选地, 所述催化剂中, 活性组分为铜, 其含量以金属氧化物计, 占 催化剂总重量的 50.0〜100.0 wt%; 助剂锌以金属氧化物计, 占催化剂总 重量的 0〜35.0wt%; 助剂铝以金属氧化物计, 占催化剂总重量的 0〜 10.0wto/o。
优选地, 所述催化剂中, 还可以含有锰、 钼、 锆、 铬、 铁、 钡、 镁, 镍、钙中的一种或任意几种的组合物作为助剂, 优选地, 其以金属氧化物 (例如 MnO, Cr203, Fe203, MgO, NiO等)计, 占催化剂总重量的 0〜 5.0 wt% o
优选地, 所述催化剂在反应前, 先用氢气和 /或合成气进行还原处理。 用 1〜: 100% H2或合成气(H2/CO=0.5〜50)在温度 180〜350°C、压力 0.1〜 5.0MPa条件下, 对其进行还原处理 5〜60小时。
优选地, 所述原料气中, 合成气 /醋酸酯摩尔比为 10〜101/0.1〜4, 所述合成气中氢气 /一氧化碳的摩尔比为 9〜100/1。 进一歩优选范围为合 成气 /醋酸酯摩尔比为 21〜101/2〜4, 所述合成气中氢气 /一氧化碳的摩尔 比为 20〜: 100/1。
优选的反应条件为: 反应温度 180〜300°C, 反应压力 1.0〜10.0MPa, 反应体积空速 400〜35000 mlg 1^1, 醋酸酯质量空速 0.1〜3.0h—
本发明的催化剂(也称为铜基催化剂)优选采用共沉淀法制备, 包括 以下歩骤:
a)将含有 Cu2+和 /或任选的 Zn2+和 /或 Al3+离子的溶液加入 25-60 °C的 沉淀剂溶液中, 搅拌所得沉淀物至均匀, 所得沉淀物 pH值为 7.0-10.0; b)歩骤 a)中所得沉淀物经 5-60小时老化、 80-160°C干燥和 240-500°C 焙烧处理, 得到焙烧样品;
c) 任选地, 将歩骤 b) 中所得焙烧样品置于含有组分锰、 钼、 锆、 铬、 铁、 钡、 镁, 镍、 钙中的一种或任意几种金属的盐溶液中浸渍一次或 多次, 浸渍完成后经 80-160°C干燥、 240-500°C焙烧得到所述的铜基催化 剂。
本发明优势主要在于, 采用廉价的原料, 利用简单的共沉淀法, 制备 了一种合成气和醋酸酯共进料制取乙醇并联产甲醇的催化剂,且该工艺促 进了一氧化碳转化生成甲醇, 同时保持了极高的醋酸酯加氢活性。通过改 变反应条件可以调节乙醇和甲醇比例,开发了一种新的反应工艺,提高了 产品灵活性。
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。 实施例 1: 催化剂制备
1 ) 100%CuO催化剂的制备
将将 121g Cu(N03)2-3H20溶于 2000ml去离子水中,用 1500ml去离子 水稀释 68.0g浓氨水 (25-28%)。 在室温下剧烈搅拌氨水溶液, 然后将该 金属硝酸盐水溶液缓慢加入氨水溶液中, 加入时间 60min左右。用氨水溶 液调节沉淀 pH值到 10.0, 继续搅拌 200mm之后, 老化 36h。 将沉淀用去 离子水洗涤至中性, 离心分离。 所得沉淀在 120°C烘箱中干燥 24h, 干燥 后样品置于马弗炉中, 以 rC/mm的升温速率升温到 400°C, 焙烧 5h, 得 到焙烧后的样品。 此催化剂记为 CAT1。
2) 85%CuO/10%ZnO/5%Al2O3催化剂的制备
将 102.85g Cu(N03)2-3H20 , 12.00g Ζη(Ν03)2·6Η20 , 14.71g Α1(Ν03)3·9Η20溶于 2000ml去离子水中, 用 1500ml去离子水稀释 72.52g 浓氨水(25-28%)。 在室温下剧烈搅拌氨水溶液, 然后将混合金属硝酸盐 水溶液缓慢加入氨水溶液中, 加入时间 60min左右。 用氨水溶液调节沉 淀 pH值到 10.0, 继续搅拌 200mm之后, 老化 36h。 将沉淀用去离子水 洗涤至中性, 离心分离。 所得沉淀在 120°C烘箱中干燥 24h, 干燥后样品 置于马弗炉中, 以 rC/mm的升温速率升温到 400°C, 焙烧 5h, 得到焙烧 后的样品。 此催化剂记为 CAT3。
3 ) 75%CuO/13%ZnO/5%Al203/l%MnO/l%NiO催化剂的制备 将 96.80g Cu(N03)2-3H20 , 15.60g Ζη(Ν03)2·6Η20 , 14.71g Α1(Ν03)3·9Η20溶于 2000ml去离子水中, 用 1500ml去离子水稀释 72.62g 浓氨水(25-28%)。 在室温下剧烈搅拌氨水溶液, 然后将混合金属硝酸盐 水溶液缓慢加入氨水溶液中, 加入时间 60min左右。 用氨水溶液调节沉 淀 pH值到 10.0, 继续搅拌 200mm之后, 老化 36h。 将沉淀用去离子水 洗涤至中性, 离心分离。 所得沉淀在 120°C烘箱中干燥 24h, 干燥后样品 置于马弗炉中, 以 rC/mm的升温速率升温到 400°C, 焙烧 5h, 得到焙烧 后的样品。 再将 1.41g Μη(Ν03)2·4¾0, 1.36g Ni(N03)2-4H20
溶于 50ml去离子水,采用浸渍法把锰和镍水溶液担载到焙烧后的样品中, 80°C蒸发掉多余的溶剂。 120°C烘箱中干燥 24h, 干燥后样品置于马弗炉 中, 以 rC/mm的升温速率升温到 400°C, 焙烧 3h, 得到催化剂样品。 此 催化剂记为 CAT4
其余催化剂 CAT2和 CAT5 10的制备与 CAT3和 CAT4类似。 催化 剂具体制备条件与编号的关系见表 1。 XR 测定(X-射线荧光光谱, 荷兰 帕纳科公司) 催化剂组成见表 2。
表 1: 催化剂制备
Figure imgf000008_0001
表 2: XRF测定的催化剂组成
Figure imgf000009_0001
实施例 2: 催化剂评价
本发明中的反应体积空速定义为反应原料(标准状况下)每小时进入 反应系统的体积流量除以催化剂的质量。以 GHSV表示, 单位为 mlg— ― 将 10g 20-40目上述催化剂装填入固定床反应器恒温区。 反应前, 对 催化剂进行在线还原, 还原温度为 260°C, 压力 O.lMPa, 还原气体为 5% ¾+95% N2, 还原时间 24h。 还原结束后, 调节温控仪使反应温度降为 230 °C , 用 N2吹扫管路和反应器内残余的 H2, 然后把气体切换为一定组 成的合成气并充压, 调节质量流量计到指定流量 (标准状况), 设置醋酸 酯高压进料泵到指定流速,当温度和压力稳定后开始反应。产物在线分析, 1小时取样一次。 从反应器出口到气相色谱十通阀入口, 所有管线以及背 压阀都进行加热保温。 产物的分析方法
色谱: Agilent 7890A
FID色谱柱: HP-PLOT-Q 19091P-Q04, 30m x 0.32mm (内径), 20μπι 载气: 氦气, 2 ml/min
柱箱温度: 50°C-240°C, 10°C/min
240°C保持 15min
进样口: 分流 (50:1 ); 温度: 250°C
检测器: FID; 温度: 300°C
TCD色谱柱: 碳分子筛柱, TDX-01 2m X 2mm (内径) 载气: 氦气, 35ml/min
柱箱温度: 50°C-240°C, 10°C/min
240°C保持 15min
进样口: 隔垫吹扫进样口; 温度: 250°C
检测器: TCD; 温度: 300°C
1 )不同组成催化剂在合成气(体积组成为 80%H2/4%CO及其他气体) 与醋酸甲酯 (MAC)共进料条件下反应的活性见表 3。
反应条件: 反应温度 240°C, 反应压力 4.5MPa, 原料气摩尔组成 H2/CO/MAc=20/l/4 (80%H2/4%CO/16%MAc), 总 体 积 空 速 GHSV=5676mlg 1h-1 , 醋酸甲酯质量空速 WHSVMAC=3.0h—
反应性能
Figure imgf000010_0001
甲露*择性 = 甲醇摩尔百分含蚩
X 100% (备注:此选择性不包
:酷酸甲酯加 ^各产物庠尔百; 含呈
括 CO加氢生成的甲醇:)。
bCO加氢反应中, 甲醇选择性为 100%, 无副产
2)催化剂 CAT5在不同温度下合成气(体积组成为 98.9%H2/0.99%CO 及其他气体) 与醋酸甲酯 (MAC)共进料的反应性能见表 4。
反 应 条 件 : 反 应 压 力 5.5MPa, 原 料 气 摩 尔 组 成 为 H2/CO/MAc=1000/10/l (98.9%H2/0.99%CO/0.1 l%MAc), 总体积空速
Figure imgf000011_0001
UVh— 表 4: 反应温度对 CAT5催化剂合成气与醋酸甲酯共进料制取乙醇并 联产甲醇反应性能的影响
Figure imgf000011_0003
甲醇庫尔百分含蚩
Figure imgf000011_0002
X 100% (备注: 此选择性不包
:醋酸申酯加氫各产物摩尔百分含蚩
括 CO加氢生成的甲醇:)。
bCO加氢反应中, 甲醇选择性为 100%, 无副产
3 )催化剂 CAT3在不同压力下以合成气(体积组成为 95.2%¾/1.4%CO 及其他气体) 与醋酸甲酯共进料的反应性能见表 5
反应条件: 反应温度 250°C, 原料气摩尔组成为 H2/CO/MAc=70/l/2.5 (95.2%H2/1.4%CO/3.4%MAc), 总体积空速 GHSV^QSSVmlg-1!!-1, 醋酸甲 酯质量空速 WHSVMAe=2.2h— 1
表 5: 反应压力对催化剂 CAT3合成气与醋酸甲酯共进料制取乙醇并 联产甲醇反应性能的影响
Figure imgf000012_0003
¾ 尔百分 呈
Figure imgf000012_0001
χ 100¾ (备注: 此选择性不包括
∑ 酯加氬各产物庳 百 含
CO加氢生成的甲醇:)。 bCO加氢反应中, 甲醇选择性为 100%, 无副产
Figure imgf000012_0002
并联产甲醇的反应性能
Figure imgf000012_0004
乙醇庫尔百分含蚩
'乙醇选铎性 = X 100% (备注: 此选择性不
∑醋酸乙酯加氫各产物庫尔百分含蚩
包括 CO加氢生成的甲醇:)。 bCO加氢反应中, 甲醇选择性为 100%, 无副产 根据以上实施例及数据可得出如下结论: 一定量的合成气与醋酸酯共进料作为反应原料, 在一个反应器内, 一 种特定的催化剂上, 可以有效的合成乙醇并联产少量甲醇; 联产的甲醇既 可以作为单独的产品, 也可以经过脱水生产二甲醚, 二甲醚经过羰基化加 氢再生产乙醇; 通过改变合成气中一氧化碳、氢气与醋酸酯的进料比, 可 以调节乙醇、 甲醇的比例, 提高装置操作的灵活性和适应市场的能力。
本发明的优势在于在一个反应器内, 一种廉价易得的催化剂上, 一定 量合成气与醋酸酯共进料作为原料, 适当的反应条件下, 能够有效的合成 乙醇并联产甲醇。与常规甲醇合成比较, 此发明促进了一氧化碳转化生成 甲醇的反应, 同时保持了高效的醋酸酯加氢反应活性。此发明为煤化工产 业发展开辟了一条新的路线。 应当指出, 对于本技术领域的专业技术人员, 在不脱离本发明技术原 理的前提下, 是能够实现对这些实施例的多种修改的, 而这些修改也应视 为本发明应该保护的范围内。

Claims

权 利 要 求
1. 一种用于生产乙醇并联产甲醇的方法, 其特征在于, 将含有醋酸 酯与合成气的原料气,通过装有催化剂的反应器,在反应温度 150〜350°C, 反应压力 0.1〜20.0MPa, 反应体积空速为 100〜45000 mlg— 醋酸酯质 量空速为 o.o i S.oh—1的条件下生产乙醇并联产甲醇; 所述催化剂的活性 组分为铜以及任选的锌和 /或铝。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述醋酸酯为醋酸甲 酯和 /或醋酸乙酯。
3. 根据权利要求 1 所述的方法, 其特征在于, 在所述催化剂中, 活 性组分铜以 CuO计占所述催化剂总重量的 50.0-100.0wt%;锌以 ZnO计占 所述催化剂总重量的 0-35.0wt%; 铝以 A1203计占所述催化剂总重量的 0-10.0wt%。
4. 根据权利要求 1所述的方法, 其特征在于, 所述催化剂还含有锰、 钼、 锆、 铬、 铁、 钡、 镁, 镍、 钙中的一种或多种作为助剂。
5. 根据权利要求 5所述的方法, 其特征在于, 所述助剂以其金属氧 化物计占所述催化剂总重量的 0-5.0 wt%。
6. 根据权利要求 1 所述的方法, 其特征在于, 所述催化剂在使用前 用氢气和 /或合成气进行还原处理。
7. 根据权利要求 1 所述的方法, 其特征在于, 在所述原料气中, 合 成气 /醋酸酯摩尔比为 10〜101/0.1〜4, 所述合成气中氢气 /一氧化碳的摩 尔比为 9〜丽 1。
8. 根据权利要求 1 所述的方法, 其特征在于, 在所述原料气中, 合 成气 /醋酸酯摩尔比为 21〜101/2〜4, 所述合成气中氢气 /一氧化碳的摩尔 比为 20〜: 100/1。
9. 根据权利要求 1所述的方法, 其特征在于, 所述反应温度为 180〜 300 °C , 所述反应压力为 1.0〜10.0MPa, 所述反应体积空速为 400〜35000 mlg— 1 , 所述醋酸酯质量空速为 O.l S.Oh—
PCT/CN2013/089539 2013-12-16 2013-12-16 用于生产乙醇并联产甲醇的方法 WO2015089704A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2013408110A AU2013408110B2 (en) 2013-12-16 2013-12-16 Method for use in production of ethanol and coproduction of methanol
BR112016013033-2A BR112016013033B1 (pt) 2013-12-16 2013-12-16 Processo para a produção de etanol e co-produção de metanol
EA201691256A EA028834B1 (ru) 2013-12-16 2013-12-16 Способ производства этанола совместно с метанолом
JP2016538026A JP6244465B2 (ja) 2013-12-16 2013-12-16 エタノールを生産するとともにメタノールを併産するための方法
PCT/CN2013/089539 WO2015089704A1 (zh) 2013-12-16 2013-12-16 用于生产乙醇并联产甲醇的方法
EP13899528.7A EP3085682B1 (en) 2013-12-16 2013-12-16 Method for use in production of ethanol and coproduction of methanol
MYPI2016702184A MY171339A (en) 2013-12-16 2013-12-16 Method for producing ethanol and coproducing methanol
DK13899528.7T DK3085682T3 (da) 2013-12-16 2013-12-16 Fremgangsmåde til anvendelse ved fremstilling af ethanol og medfremstilling af methanol
US15/103,076 US10059649B2 (en) 2013-12-16 2013-12-16 Method for producing ethanol and coproducing methanol
KR1020167019239A KR101855876B1 (ko) 2013-12-16 2013-12-16 에탄올을 생산하고 메탄올을 공동생산하는 방법
SG11201604942RA SG11201604942RA (en) 2013-12-16 2013-12-16 Method for producing ethanol and coproducing methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089539 WO2015089704A1 (zh) 2013-12-16 2013-12-16 用于生产乙醇并联产甲醇的方法

Publications (1)

Publication Number Publication Date
WO2015089704A1 true WO2015089704A1 (zh) 2015-06-25

Family

ID=53401898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089539 WO2015089704A1 (zh) 2013-12-16 2013-12-16 用于生产乙醇并联产甲醇的方法

Country Status (10)

Country Link
US (1) US10059649B2 (zh)
EP (1) EP3085682B1 (zh)
JP (1) JP6244465B2 (zh)
KR (1) KR101855876B1 (zh)
AU (1) AU2013408110B2 (zh)
BR (1) BR112016013033B1 (zh)
DK (1) DK3085682T3 (zh)
EA (1) EA028834B1 (zh)
SG (1) SG11201604942RA (zh)
WO (1) WO2015089704A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181897A (zh) * 2021-05-11 2021-07-30 太原理工大学 一种Zn-Al浆状催化剂及其制备方法和在合成气制乙醇中的应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189763B2 (en) 2016-07-01 2019-01-29 Res Usa, Llc Reduction of greenhouse gas emission
US9981896B2 (en) 2016-07-01 2018-05-29 Res Usa, Llc Conversion of methane to dimethyl ether
WO2018004994A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Fluidized bed membrane reactor
CN106831413B (zh) * 2017-01-18 2019-09-03 上海华谊(集团)公司 生产醋酸乙酯的方法
JP7227564B2 (ja) * 2018-07-05 2023-02-22 株式会社豊田中央研究所 アルコール合成用触媒及びそれを用いたアルコールの製造方法
CN109111345B (zh) 2018-09-10 2020-08-14 大连理工大学 一种乙醇催化转化制备甲基苯甲醇的方法
CN109772329A (zh) * 2019-02-14 2019-05-21 国家能源投资集团有限责任公司 催化剂、其制备方法及其在合成气制低碳醇的合成反应中的应用
JP2023531717A (ja) * 2020-06-25 2023-07-25 エアー カンパニー ホールディングス インコーポレイテッド 修飾銅-亜鉛触媒、及び二酸化炭素からのアルコール生成のための方法
CN114225939B (zh) * 2021-12-27 2023-04-07 中国科学院山西煤炭化学研究所 一种合成气制增塑剂醇催化剂及其制法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020139A (zh) * 2006-05-13 2007-08-22 厦门大学 由合成气制甲醇的催化剂及其制备方法
CN101185895A (zh) * 2006-11-17 2008-05-28 南化集团研究院 用于合成气合成低碳醇的催化剂及其制备方法
JP2008239539A (ja) 2007-03-27 2008-10-09 Ihi Corp エタノール合成方法及び装置
CN102872878A (zh) * 2012-10-11 2013-01-16 上海华谊(集团)公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN103288594A (zh) * 2013-06-04 2013-09-11 临海市联盛化学有限公司 一种醋酸甲酯加氢制备甲醇和乙醇的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072489A1 (en) * 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons into ethanol
EP2072488A1 (en) * 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbon to ethanol
EP2072487A1 (en) * 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
US7884253B2 (en) * 2008-12-11 2011-02-08 Range Fuels, Inc. Methods and apparatus for selectively producing ethanol from synthesis gas
EP2196447A1 (en) * 2008-12-12 2010-06-16 BP p.l.c. An improved process for hydrogenating alkyl ester(s) in the presence of carbon monoxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020139A (zh) * 2006-05-13 2007-08-22 厦门大学 由合成气制甲醇的催化剂及其制备方法
CN101185895A (zh) * 2006-11-17 2008-05-28 南化集团研究院 用于合成气合成低碳醇的催化剂及其制备方法
JP2008239539A (ja) 2007-03-27 2008-10-09 Ihi Corp エタノール合成方法及び装置
CN102872878A (zh) * 2012-10-11 2013-01-16 上海华谊(集团)公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN103288594A (zh) * 2013-06-04 2013-09-11 临海市联盛化学有限公司 一种醋酸甲酯加氢制备甲醇和乙醇的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
APPL. CATAL. A, vol. 243, 2003, pages 155
APPL. CATAL. A, vol. 261, 2004, pages 47
APPL. CATAL. A, vol. 407, 2011, pages 231
CHEMSUSCHEM, vol. 3, 2010, pages 1192
J. CATAL., vol. 261, 2009, pages 9
J. CATAL., vol. 90, 1984, pages 127
J. MOL. CATAL. A, vol. 96, 1995, pages 215
PAN ET AL., NAT. MATER., vol. 6, 2007, pages 507

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181897A (zh) * 2021-05-11 2021-07-30 太原理工大学 一种Zn-Al浆状催化剂及其制备方法和在合成气制乙醇中的应用

Also Published As

Publication number Publication date
KR101855876B1 (ko) 2018-05-09
EP3085682A1 (en) 2016-10-26
SG11201604942RA (en) 2016-07-28
AU2013408110B2 (en) 2017-07-06
DK3085682T3 (da) 2020-01-20
EP3085682B1 (en) 2019-11-13
JP2017502937A (ja) 2017-01-26
US10059649B2 (en) 2018-08-28
AU2013408110A1 (en) 2016-07-14
JP6244465B2 (ja) 2017-12-06
BR112016013033B1 (pt) 2021-06-22
EA028834B1 (ru) 2018-01-31
US20160311740A1 (en) 2016-10-27
EP3085682A4 (en) 2017-08-16
KR20160098466A (ko) 2016-08-18
EA201691256A1 (ru) 2016-10-31
AU2013408110A2 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2015089704A1 (zh) 用于生产乙醇并联产甲醇的方法
US7847134B2 (en) Process of producing monohydric alcohols from monocarboxylic acids or derivatives thereof
Liu et al. Recent advances in the routes and catalysts for ethanol synthesis from syngas
Gong et al. Selective hydrogenolysis of glycerol to 1, 3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media
CN104710282B (zh) 用于生产乙醇并联产甲醇的方法
WO2017012246A1 (zh) 一种乙酸甲酯的生产方法
CN103447059B (zh) 一种醋酸酯加氢催化剂的制备方法
CN104148086B (zh) 制备乙醇的催化剂及方法
CN105435779B (zh) 一氧化碳气相合成草酸酯催化剂
Cui et al. A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes
WO2017012244A1 (zh) 一种低级脂肪羧酸烷基酯的生产方法
CN103240095A (zh) 一种醋酸甲酯加氢催化剂及其制备方法
CN103157490B (zh) 一种用于醋酸酯加氢生产乙醇的催化剂及其制备方法
CN104193606A (zh) 一种合成气制丙酮的工艺
CN103420791B (zh) 合成气加氢制乙醇的方法
KR20100084131A (ko) 고순도 부탄올 제조 공정
WO2014101900A2 (zh) 一种低碳脂加氢制备乙醇的方法
CN103638933B (zh) 一种用于低温甲醇合成反应的非稳态催化剂的制备方法
CN103570485A (zh) Co2或co的还原偶联反应制备丙烯、乙烯、乙醛酸、丙醇、乙醇、丙二醇、丙二酸酯等的方法
CN104710280B (zh) 用于生产甲醇并联产c2‑c4醇的方法
WO2015089703A1 (zh) 用于生产甲醇并联产c2-c4醇的方法
CN103012094B (zh) 一种紫罗兰酮系香料中间体的合成方法
WO2012157578A1 (ja) アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法
CN108707060B (zh) 一种利用裂解甲醇原位还原醋酸制乙醇的工艺
Ghita et al. Hydrogen production by steam reforming of bioethanol over Pt based catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538026

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013899528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15103076

Country of ref document: US

Ref document number: 2013899528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016013033

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201604441

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013408110

Country of ref document: AU

Date of ref document: 20131216

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691256

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112016013033

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160607