WO2015087983A1 - レーザ装置、および、光ファイバレーザ - Google Patents

レーザ装置、および、光ファイバレーザ Download PDF

Info

Publication number
WO2015087983A1
WO2015087983A1 PCT/JP2014/082894 JP2014082894W WO2015087983A1 WO 2015087983 A1 WO2015087983 A1 WO 2015087983A1 JP 2014082894 W JP2014082894 W JP 2014082894W WO 2015087983 A1 WO2015087983 A1 WO 2015087983A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
laser
bending
multimode
bending radius
Prior art date
Application number
PCT/JP2014/082894
Other languages
English (en)
French (fr)
Inventor
孝介 柏木
江森 芳博
田中 完二
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201480066614.8A priority Critical patent/CN105849987B/zh
Priority to EP14869283.3A priority patent/EP3082205B1/en
Priority to JP2015552519A priority patent/JP6301959B2/ja
Publication of WO2015087983A1 publication Critical patent/WO2015087983A1/ja
Priority to US15/175,134 priority patent/US9690050B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29398Temperature insensitivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps
    • G02B6/4478Bending relief means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a laser device and an optical fiber laser.
  • the optical fiber when high-intensity laser light is input to the optical fiber, there is a problem that the optical fiber may be heated or damaged at the bent portion of the optical fiber. This is because light propagating through the optical fiber leaks to the coating portion of the optical fiber as bending loss at the bent portion of the optical fiber, and the coating portion that has absorbed the leaked light is heated and further damaged. Such heating and damage of the optical fiber due to bending loss is considered to be caused by light propagating in a clad mode coupled to the clad portion of the optical fiber out of the light input to the optical fiber. Therefore, a technique for reducing light propagating in the clad mode is disclosed (for example, see Patent Document 1).
  • the present inventors have found that there is a problem that heating or damage may occur at the bent portion of the optical fiber even if the light propagating in the cladding mode is reduced.
  • the present invention has been made in view of the above, and an object thereof is to provide a laser device and an optical fiber laser that are highly reliable and can be miniaturized.
  • a laser device combines a plurality of multimode semiconductor lasers that output laser light in multimode and the plurality of laser lights.
  • a multi-mode optical fiber comprising: a first bending portion formed on the multi-mode optical fiber and bent at a predetermined bending length and a predetermined first bending radius; and the coating at the first bending portion.
  • the laser device is characterized in that, in the above invention, the amount of suppression of temperature rise in the second bending portion is 10 ° C. or more.
  • the change rate of the temperature increase with respect to the change in the second bending radius is within a range of 5 mm including the second bending radius as a center value. / 5 mm or less.
  • the change rate of the temperature increase with respect to the change of the second bending radius is 10 ° C. within a range of 5 mm including the second bending radius as a center value. / 5 mm or less.
  • the change rate of the temperature increase with respect to the change of the second bending radius is 2 ° C. within a range of 5 mm including the second bending radius as a center value. / 5 mm or more remains.
  • the minimum bending radius on the multimode semiconductor laser side from the first bending portion of the multimode optical fiber is R0, and the first bending radius is R1.
  • R1 ⁇ R2 ⁇ R0 is established.
  • the laser apparatus is characterized in that, in the above invention, the bending length is not less than ⁇ ⁇ the first bending radius.
  • the light loss in the first bent portion is 0.2 dB or less in the above invention.
  • the second bending radius is an allowable bending radius defined by a standard of the multimode optical fiber.
  • a laser device includes a plurality of multimode semiconductor lasers that output laser light in a multimode, an optical multiplexer that combines and outputs the plurality of laser lights, and the plurality of multimodes.
  • a multimode optical fiber that connects a mode semiconductor laser and the optical multiplexer, and includes a core, a cladding formed on an outer periphery of the core, and a covering that covers an outer periphery of the cladding; A first bend formed on the mode optical fiber and bent at a predetermined bend length and a predetermined first bend radius; and formed on the outer side of the covering portion at the first bend.
  • Multi R0 [mm] is the minimum bending radius on the multi-mode semiconductor laser side of the first bending portion of the optical fiber
  • R1 [mm] is the first bending radius
  • R2 [mm] is the second bending radius.
  • the laser device according to one embodiment of the present invention is characterized in that, in the above invention, R1 ⁇ R2 and R1 ⁇ R0 are satisfied.
  • the laser device according to one embodiment of the present invention is characterized in that, in the above invention, R1 ⁇ R2 ⁇ R0 holds.
  • the laser device according to one aspect of the present invention is characterized in that, in the above invention, the first bending radius is 50 mm or less.
  • the laser apparatus according to one embodiment of the present invention is characterized in that, in the above invention, the bending length is ⁇ R1 or more.
  • the laser device is the laser device according to the above invention, wherein, in the first bending portion, the light that is transmitted from the multimode semiconductor laser to the multimode optical fiber is propagated through the core portion. The light of the next core mode is removed.
  • the light loss in the first bent portion is 0.2 dB or less in the above invention.
  • the laser device in the above invention, in the second bending portion, heating or damage to the covering portion due to bending loss of light propagating through the multimode optical fiber is suppressed. It is characterized by being.
  • the second bending radius is an allowable bending radius defined by a standard of the multimode optical fiber.
  • the refractive index of the covering portion is higher than the refractive index of the cladding portion.
  • the light intensity of the laser beam output from one or more multimode semiconductor lasers of the plurality of multimode semiconductor lasers is 10 W or more. It is characterized by that.
  • the laser device is characterized in that, in the above invention, the optical multiplexer has an optical fiber bundle structure.
  • the heat radiating portion includes a heat radiating material in which the multi-mode optical fiber is formed on an outer periphery of the covering portion, and the multi mode via the heat radiating material. And a heat dissipating member in contact with the optical fiber.
  • a resin is used as the heat dissipation material, and the heat dissipation material has a higher refractive index than the covering portion.
  • the heat dissipation material includes a silicone-based heat conductive compound.
  • the radiator is a plate member having thermal conductivity, and the first bent portion is formed on the plate radiator. It is arranged in a circular groove.
  • the radiator is a cylindrical member having thermal conductivity, and the first bent portion is wound around an outer periphery of the cylinder.
  • An optical fiber laser according to one aspect of the present invention is disposed on both ends of the laser device according to the invention, an amplification optical fiber to which output light of the laser device is input, and the amplification optical fiber, And an optical reflector that constitutes an optical resonator that oscillates laser light from light generated in the amplification optical fiber.
  • FIG. 1 is a schematic configuration diagram of a laser device according to an embodiment of the present invention as viewed from the side.
  • FIG. 2 is a schematic configuration diagram of an excitation laser unit of the laser apparatus shown in FIG.
  • FIG. 3 is a schematic configuration diagram of the heat radiating part of the excitation laser part shown in FIG.
  • FIG. 4 is a schematic diagram showing the configuration of the laser apparatus shown in FIG.
  • FIG. 5 is a schematic diagram showing the configuration of an experimental system for measuring the relationship between the bending radius of the multimode optical fiber and the temperature rise.
  • FIG. 6 is a diagram illustrating the relationship between the coating length and the temperature increase value of the multimode optical fiber when the multimode optical fiber is not bent in the first bending portion.
  • FIG. 1 is a schematic configuration diagram of a laser device according to an embodiment of the present invention as viewed from the side.
  • FIG. 2 is a schematic configuration diagram of an excitation laser unit of the laser apparatus shown in FIG.
  • FIG. 3 is a schematic configuration diagram of the heat radiat
  • FIG. 7 is a diagram illustrating the relationship between the first bending radius R1 of the multimode optical fiber and the temperature increase value of the multimode optical fiber when the coating length is 30 mm.
  • FIG. 8 is a diagram illustrating the relationship between the bending length and the temperature increase value of the multimode optical fiber when the first bending radius R1 of the multimode optical fiber is 25 mm or 30 mm.
  • FIG. 9 is a diagram illustrating the relationship between the second bending radius R2 of the multimode optical fiber and the temperature of the multimode optical fiber when the first bending portion is present and not present.
  • FIG. 10 is a diagram illustrating the influence of the difference in laser output in the multimode optical fiber having an NA of 0.15 on the temperature increase value of the optical fiber.
  • FIG. 11 is a diagram showing the influence of the difference in laser output in the multimode optical fiber having an NA of 0.22 on the temperature increase value of the optical fiber.
  • FIG. 12 is a diagram illustrating an optical fiber temperature rise value with respect to the second bending radius R2 when NA is 0.15.
  • FIG. 13 is a diagram illustrating an optical fiber temperature rise value with respect to the second bending radius R2 when NA is 0.22.
  • FIG. 14 is an explanatory diagram showing the state of light propagation in a multimode optical fiber.
  • FIG. 15 is a schematic configuration diagram of a heat radiating unit of an excitation laser unit according to a modification.
  • FIG. 1 is a schematic configuration diagram of a laser device according to an embodiment of the present invention as viewed from the side.
  • the laser device 100 is disposed on a substrate 10, a pump laser unit 20 disposed on the back surface of the substrate 10, a multimode optical fiber 30 connected to the pump laser unit 20, and a surface of the substrate 10.
  • the optical multiplexer 40 connected to the multimode optical fiber 30, the double clad optical fiber 50, the rare earth-doped optical fiber 60, the double clad optical fiber 70, and the fusion splicing portion 80 arranged on the surface of the substrate 10 and sequentially connected.
  • a single mode optical fiber 90 is arranged on the surface of the substrate 10.
  • the laser device 100 can be made smaller than fixing various elements only on one side.
  • substrate 10 may be various metal plates, such as aluminum, it is not limited to this.
  • the substrate 10 may be configured integrally with a housing (not shown) for housing the laser device 100. Further, the substrate 10 preferably has thermal conductivity in order to suppress a temperature rise in the laser device 100, and more preferably is made of a material having high thermal conductivity such as aluminum (Al).
  • the substrate 10 may have a water cooling structure including a circulation path for circulating cooling water therein, or is formed so as to penetrate from one place on the side face to another place on the side face or the other side face, and It is good also as a forced air cooling structure provided with the ventilation path (duct) which has a fin in an inner wall.
  • the excitation laser unit 20 includes a plurality of multimode semiconductor lasers that output laser light in a multimode (lateral multimode) fixed to the back surface of the substrate 10.
  • FIG. 2 is a schematic configuration diagram of an excitation laser unit of the laser apparatus shown in FIG.
  • the excitation laser unit 20 includes 12 multimode semiconductor lasers 21-1 to 21-12, and each of the multimode semiconductor lasers 21-1 to 12-12 is fixed on the substrate 10.
  • the output light intensity of each of the multimode semiconductor lasers 21-1 to 21-12 may be 10 W or more.
  • the output light intensity of each of the multimode semiconductor lasers 21-1 to 21-12 may be higher, for example, 20 W or more, or 50 W or more.
  • the number of multimode semiconductor lasers is 12, for example, but may be 6, 18 or the like, and can be appropriately selected.
  • the multimode optical fiber 30 has twelve multimode optical fibers 30-1 to 12, and each of the multimode optical fibers 30-1 to 30-12 includes a multimode semiconductor laser 21-1 to 12 and an optical multiplexer, respectively. 40 is connected.
  • Each of the multimode optical fibers 30-1 to 30-12 is a multimode optical fiber including a core portion, a cladding portion formed on the outer periphery of the core portion, and a covering portion covering the outer periphery of the cladding portion.
  • the refractive index of the covering portion is higher than the refractive index of the cladding portion.
  • an allowable bending radius determined by the standard of the multimode optical fibers 30-1 to 30-12 is R min .
  • This allowable bending radius R min is a value determined for a predetermined wavelength by the optical fiber manufacturer or the like as the minimum bending radius with a sufficiently small optical loss when the optical fiber is disposed.
  • the allowable bending radius R min has various definitions.
  • the allowable bending radius R min is such that when an optical fiber is wound 10 times with a bending radius R min , a bending loss in light of a predetermined wavelength is 0.5 dB or less. Can be defined as the bend radius.
  • the NA (Numerical Aperture) of each of the multimode optical fibers 30-1 to 30-12 may be, for example, 0.15 or 0.22.
  • a plurality of (for example, three) multimode optical fibers 30-1 to 12 connected to the multimode semiconductor lasers 21-1 to 21-12 are fixed by being bundled on the substrate 10.
  • the multi-mode optical fibers 30-1 to 30-12 are merely bundled together with the covering portions, and are not optically coupled.
  • the multimode optical fibers 30-1 to 30-12 are not limited to those fixed to the substrate 10 in a bundled state, but may be individually fixed to the substrate 10.
  • the multimode optical fibers 30-1 to 30-3 pass through the light removal unit 30a-1, and the multimode optical fibers 30-4 to 6 go through the light removal unit 30a-2 to enter the multimode optical fiber 30.
  • the multimode optical fibers 30-1 to 30-12 are merely bundled together with the covering portions, and are not optically coupled.
  • the light removing units 30a-1 to 30a-4 are formed in the multimode optical fibers 30-1 to 30-12, and are bent at a predetermined bending length and a predetermined first bending radius R1. 1 bent portions 30aa-1 to 4 are provided.
  • the bent portions are the first bent portions 30aa-1 to 30aa-1.
  • the bending lengths and the first bending radii R1 of the respective light removal units 30a-1 to 30a-4 may be the same, but may be different from each other, for example, input to the multimode optical fibers 30-1 to 30-12. You may adjust according to the light intensity to do.
  • the bending length of the first bent portions 30aa-1 to 30aa-1 to 4 may be, for example, ⁇ R1 or more, and more preferably 2 ⁇ R1 or more.
  • the bending lengths of the first bent portions 30aa-1 to 4 are ⁇ R1 when the multimode optical fibers 30-1 to 30-12 make a half turn around the first bent portions 30aa-1 to 4 in FIG.
  • the value is 3 ⁇ R1.
  • the bending length can be set to an arbitrary value such as 2 ⁇ R1 by appropriately changing the arrangement of the multimode optical fibers 30-1 to 30-12 and the first bending portions 30aa-1 to 4a.
  • the first bending radius R1 may be, for example, 50 mm or less, and more preferably 25 mm or less.
  • the optical loss in each of the first bending portions 30aa-1 to 30aa-1 to, for example, 0.2 dB or less, more preferably 0.1 dB or less. May be.
  • the light removal units 30a-1 to 30a-4 are formed outside the coating portions of the multimode optical fibers 30-1 to 30-12 in the first bending portions 30aa-1 to 4, and the heats of the multimode optical fibers 30-1 to 30-12 are formed.
  • a heat dissipating part for dissipating heat is provided.
  • the heat dissipating part includes a heat dissipating material formed on the outer periphery of the covering part of the multimode optical fibers 30-1 to 12 and a heat dissipating member in contact with the multimode optical fibers 30-1 to 12 through the heat dissipating material.
  • FIG. 3 is a schematic configuration diagram of the heat radiating part of the excitation laser part shown in FIG. FIG.
  • the heat radiating body 11 a of the heat radiating portion 11 is provided with a groove 11 aa.
  • the groove 11aa is formed in a circular shape having a radius substantially equal to the first bending radius R1, as in the light removing portions 30a-1 to 4 shown in FIG.
  • the multimode optical fibers 30-1 to 30-3 are arranged inside the groove 11aa. Further, the multimode optical fibers 30-1 to 30-3 are fixed inside the groove 11aa by the heat radiating material 11b.
  • the radiator 11a is integrally formed with the substrate 10 which is a plate member having thermal conductivity, and the multimode optical fibers 30-1 to 30-3 are disposed in the grooves.
  • each of the light removing units 30a-1 to 30a-1 to 4 has the heat radiating unit 11 having the configuration shown in FIG. 3, but the configuration of the heat radiating unit is different from each other in the light removing units 30a-1 to 30a-4. May be.
  • the heat dissipating material 11b of the heat dissipating part 11 has a higher refractive index than the covering parts of the multimode optical fibers 30-1 to 30-12.
  • the coating portion efficiently absorbs light leaking from the core portions of the multimode optical fibers 30-1 to 30-12.
  • the heat radiating material 11b may be a material containing, for example, a silicone-based heat conductive compound.
  • the heat dissipation material 11b may be a material having a thermal conductivity of 0.5 W / m ⁇ K or more.
  • the heat dissipating material 11b has a small absorption coefficient for the laser light output from the multimode semiconductor lasers 21-1 to 21-12. As a result, the temperature rise due to light absorption of the heat radiating member 11b is suppressed, and heating and damage of the multimode optical fibers 30-1 to 30-12 are further suppressed.
  • the heat dissipating member 11a of the heat dissipating part 11 may be a metal such as aluminum, but is not limited thereto as long as it is a material having thermal conductivity.
  • the heat radiator 11a may be comprised integrally with the board
  • the multimode optical fiber 30 having twelve multimode optical fibers 30-1 to 30 is disposed between the pump laser unit 20 and the optical multiplexer 40, so that the multimode optical fiber A second bending portion 30b for bending the fiber 30 with a predetermined second bending radius R2 is provided.
  • the second bent portion is formed when the multimode optical fiber 30 connects the excitation laser portion 20 on the back surface of the substrate 10 and the laser oscillation portion LO on the surface of the substrate 10.
  • the second bending radius R2 may be, for example, 50 mm or less, and more preferably 25 mm or less.
  • the second bending radius R2 may be an allowable bending radius Rmin .
  • the minimum bending radius on the side of the multimode semiconductor lasers 21-1 to 21-12 from the first bending portions 30aa-1 to 30aa-1 of the multimode optical fibers 30-1 to 30 is R0, and the first bending radius R1 and the first bending radius R1.
  • R0 shown in FIG. 2 is for the multimode optical fiber 30-1, but R0 is defined similarly for each of the multimode optical fibers 30-1 to 30-12.
  • the optical multiplexer 40 combines and outputs a plurality of laser beams input from the multimode optical fibers 30-1 to 30-12.
  • the optical multiplexer 40 is not particularly limited as long as it has a function of multiplexing the input light.
  • the optical multiplexer 40 has an optical fiber bundle structure in which twelve multimode optical fibers 30-1 to 12 are bundled. Good.
  • FIG. 4 is a schematic diagram showing the configuration of the laser apparatus shown in FIG. In the figure, “x” indicates the fusion splice point of the optical fiber.
  • the double clad optical fibers 50 and 70 are double clad optical fibers formed with FBGs (Fiber Bragg Grating) 50a and 70a.
  • the rare earth doped optical fiber 60 is an amplification optical fiber, and is a double clad optical fiber in which a rare earth element is added to the core.
  • the FBGs 50 a and 70 a constitute an optical resonator and together with the rare earth-doped optical fiber 60 constitute a laser oscillation unit LO.
  • the rare earth element added to the rare earth-doped optical fiber 60 core is, for example, erbium (Er), ytterbium (Yb) or the like, but is not particularly limited as long as it has an optical amplification function.
  • the wavelength of the laser light output from the multimode semiconductor lasers 21-1 to 21-12 is set to a wavelength capable of photoexciting the rare earth element added to the core of the rare earth doped optical fiber 60.
  • the rare earth element is Yb, For example, it is 915 nm.
  • the FBGs 50a and 70a have a characteristic of selectively reflecting a wavelength to be laser-oscillated by the laser oscillation unit LO with a predetermined reflectance.
  • the double clad optical fiber 70 is fusion spliced to the single mode optical fiber 90 by a fusion splicing portion 80.
  • Laser light as the final output of the laser device 100 is emitted from one end of the single mode optical fiber 90.
  • the multimode semiconductor lasers 21-1 to 21-12 of the excitation laser section 20 to which an electric current is applied from the outside outputs laser light in the transverse multimode.
  • Laser beams output from the multimode semiconductor lasers 21-1 to 21-12 are input to the multimode optical fibers 30-1 to 30-12.
  • light removal units 30a-1 to 30-4 are formed.
  • the multimode optical fibers 30-1 to 30-12 in the first bending portions 30aa-1 to 4 are bent at the first bending radius R1.
  • the covering part absorbs a part of the leaked light, and the absorbed light becomes heat. This heat is dissipated by the heat dissipating unit 11 of the light removing units 30a-1 to 30, and the heating of the multimode optical fibers 30-1 to 12 in the light removing units 30a-1 to 30a-4 is suppressed.
  • the light propagating through the multimode optical fiber 30 having the twelve multimode optical fibers 30-1 to 12 passes through the second bending portion 30b.
  • the light intensity of components that are likely to leak due to bending of the multimode optical fiber 30 has already been reduced by the light removing units 30a-1 to 30a-4.
  • the relationship of R1 ⁇ R2 is established, light leaking to the covering portion in the second bent portion 30b of the multimode optical fiber 30 is sufficiently suppressed. Thereby, the heating or damage of the multimode optical fiber 30 in the 2nd bending part 30b is suppressed.
  • the light propagating through the multimode optical fiber 30 is multiplexed by the optical multiplexer 40 and input to the double clad optical fiber 50.
  • the laser oscillation unit LO composed of the rare earth doped optical fiber 60 and the FBGs 50a and 70a oscillates the laser light, and the oscillated laser light is converted into the double clad optical fiber. 70.
  • the wavelength of the oscillating laser beam is a wavelength included in the emission wavelength band of the rare earth element added to the core of the rare earth doped optical fiber 60. For example, when the rare earth element is Yb, the thickness is 1.08 ⁇ m, for example.
  • the output light of the double clad optical fiber 70 is input to the single mode optical fiber 90 through the fusion splicing unit 80 and is emitted from one end of the single mode optical fiber 90 as the final output of the laser device 100.
  • the laser device 100 uses the light removal units 30a-1 to 30-4 disposed between the multimode semiconductor lasers 21-1 to 21-12 and the second bending unit 30b to provide multimode light in the second bending unit 30b.
  • the light intensity of a component that easily leaks due to the bending of the multimode optical fiber 30 is reduced.
  • R1 ⁇ R2 since the relationship of R1 ⁇ R2 is established, light leaking to the covering portion in the second bent portion 30b is sufficiently suppressed. Thereby, since heating or damage in the second bending portion 30b of the multimode optical fiber 30 is suppressed, a highly reliable laser device can be obtained.
  • the multimode optical fiber 30 may be heated or damaged.
  • the light removing units 30a-1 to 4 emit light having a component that easily leaks due to bending of the multimode optical fiber 30 out of the light propagating through the multimode optical fiber 30. Due to the reduction, the multimode optical fiber 30 can be arranged with the second bending radius R2. Thereby, the freedom degree of arrangement
  • R1 ⁇ R0 is established, where R0 is the minimum bending radius on the multimode semiconductor lasers 21-1 to 21-12 side of the first bending portions 30aa-1 to 4 of the multimode optical fibers 30-1 to 30-12.
  • R0 is the minimum bending radius on the multimode semiconductor lasers 21-1 to 21-12 side of the first bending portions 30aa-1 to 4 of the multimode optical fibers 30-1 to 30-12.
  • the present inventors can heat the multimode optical fiber, or remove the light propagating in the clad mode under a high output such that the light intensity input to the multimode optical fiber exceeds 10 W, or Discovered the problem that damage may occur. Therefore, the present inventors have studied the means for solving this problem as follows, and have come up with the present invention.
  • FIG. 5 is a schematic diagram showing the configuration of an experimental system for measuring the relationship between the bending radius of the multimode optical fiber and the temperature rise.
  • this experimental system includes a multimode semiconductor laser 101, a multimode optical fiber 102, and a power meter 103. Further, this experimental system is formed on the multimode optical fiber 102, and includes a first bent portion 102aa bent at a predetermined bending length and a predetermined first bending radius R1, and a covering portion of the multimode optical fiber 102.
  • a light removing unit 102a including a heat radiating unit that is formed outside and radiates heat of the multi-mode optical fiber 102, and a second bending unit 102b that bends the multi-mode optical fiber 102 with a second bending radius R2.
  • the refractive index of the coating portion of the multimode optical fiber 102 is higher than the refractive index of the cladding portion.
  • a silicone-based heat conductive compound was used as a heat dissipation material for the heat dissipation portion.
  • the bending length and the first bending radius R1 are variable. At this time, the bending length is the same as the coating length, which is the length for coating the heat radiation material on the multimode optical fiber 102.
  • the second bending radius R2 is fixed at 25 mm. At this time, the temperature of the multimode optical fiber 102 in the second bending portion 102b when the laser light from the multimode semiconductor laser 101 is not input, and the multimode optical fiber 102 in the second bending portion 102b when the laser light is input. The temperature of the multimode optical fiber 102 at the second bent portion 102b is measured when the laser beam is input.
  • the laser light output from the multimode semiconductor laser 101 was controlled to 25 W.
  • the temperature of the multimode optical fiber 102 in the second bent portion 102b was measured with a thermal camera.
  • the temperature rise value of the multimode optical fiber 102 refers to the temperature at the second bent portion 102b when no laser light is input from the temperature of the multimode optical fiber 102 at the second bent portion 102b when the laser light is input. This is a value obtained by subtracting the temperature of the multimode optical fiber 102.
  • FIG. 6 is a diagram illustrating the relationship between the coating length and the temperature increase value of the multimode optical fiber when the multimode optical fiber is not bent in the first bending portion 102aa. As shown in FIG. 6, even when the coating length was changed, the temperature rise value of the multimode optical fiber 102 in the second bent portion 102b did not change.
  • the refractive index of the coating portion is higher than the refractive index of the cladding portion, the light in the cladding mode leaks into the coating portion.
  • the temperature rise value of the multimode optical fiber 102 in the second bent portion 102b was substantially constant regardless of the coating length. This suggests that the light other than the light propagating in the clad mode among the light propagating through the multimode optical fiber 102 contributes to the temperature increase of the multimode optical fiber 102 in the second bent portion 102b.
  • FIG. 7 is a diagram illustrating the relationship between the first bending radius R1 of the multimode optical fiber and the temperature increase value of the multimode optical fiber when the coating length is 30 mm. As shown in FIG. 7, the temperature increase value of the multimode optical fiber 102 in the second bending portion 102b decreases rapidly as the first bending radius R1 approaches the second bending radius R2 (25 mm).
  • the second bending portion 102b This means that the light contributing to the temperature rise of the multimode optical fiber 102 is sufficiently reduced.
  • FIG. 8 is a diagram illustrating the relationship between the bending length and the temperature increase value of the multimode optical fiber when the first bending radius R1 of the multimode optical fiber is 25 mm or 30 mm.
  • the temperature rise value of the multimode optical fiber 102 at the second bend 102b decreases as the bend length increases.
  • the first bending radius R1 is the second bending radius R1. It is considered sufficiently close to the radius R2.
  • the effect of suppressing the temperature increase of the multimode optical fiber 102 at the second bending portion 102b is higher when the first bending radius R1 is 25 mm than when the first bending radius R1 is 30 mm. That is, when the relationship of R1 ⁇ R2 is established between the first bending radius R1 and the second bending radius R2, the effect of suppressing the temperature increase of the multimode optical fiber 102 is higher.
  • the temperature rise value of the multimode optical fiber 102 at the second bending portion 102b is reduced, so that the number of turns at the first bending portion 102aa is increased.
  • the effect of suppressing the temperature increase of the multimode optical fiber 102 is further increased.
  • a sufficient effect can be obtained by setting the number of turns of the multimode optical fiber 102 in the first bent portion 102aa to be a half turn (bending length ⁇ R1) or more.
  • a further effect can be obtained.
  • the number of turns of the multi-mode optical fiber 102 in the first bent portion 102aa is two rounds (bending length 4 ⁇ R1) or more.
  • FIG. 9 is a diagram illustrating the relationship between the second bending radius R2 of the multimode optical fiber and the temperature of the multimode optical fiber when the first bending portion 102aa is present and absent.
  • the case where the first bending portion 102aa is present is a case where the first bending radius R1 is set to 25 mm and the coating length is set to 157 mm.
  • the coating length is 157 mm, but the multi-mode optical fiber 102 is not bent at the first bent portion 102aa but is formed into a straight line.
  • FIG. 10 is a diagram illustrating the influence of the difference in laser output in the multimode optical fiber 102 having an NA of 0.15 on the optical fiber temperature rise value.
  • FIG. 11 is a diagram illustrating the influence of the difference in laser output in the multimode optical fiber 102 having an NA of 0.22 on the optical fiber temperature rise value.
  • the temperature increase value of the optical fiber with respect to the change of the second bending radius R2 is measured when the first bending portion is not provided and the laser output is different (15 W, 25 W). .
  • the optical fiber temperature rise value is compared with the presence or absence of the first bending portion 102aa.
  • the first bending radius R1 is set to 25 mm and one round. (Approximately 157 mm) and the radius R2 of the second bent portion 102b is 25 mm.
  • the temperature rise with respect to the decrease in the second bending radius R2 is large even if the laser output is relatively low. turn into.
  • the optical fiber of the optical fiber is compared with the case where the NA is 0.15. Temperature rise is kept low.
  • the laser output is about 15 W
  • the first bent portion 102aa is not provided, and the second bent portion is 25 mm
  • the NA is 0.15. Without the first bent portion 102aa, the temperature rise becomes as large as about 20 ° C. or more, but when the NA is 0.22, the temperature rise does not occur much even without the first bent portion 102aa.
  • FIGS. 12 and 13 are diagrams showing optical fiber temperature rise values with respect to the second bend radius R2 when NA is 0.15 and 0.22, respectively.
  • the first bending radius R1 in the first bending portion 102aa is set to 25 mm, and the bending length is set to one round (about 157 mm).
  • a laser beam having an output of about 25 W is input to the multimode optical fiber 102 having an NA of 0.15.
  • a laser beam having an output of about 64 W is input to the mode optical fiber 102.
  • the second bending radius R2 with respect to the second bending radius R2 at the second bending portion 102b is larger than when the NA is 0.22.
  • the rate of change in the temperature increase of the optical fiber in the 5 mm range including the central value is large.
  • the maximum value of the change rate of the optical fiber temperature rise in the range of 5 mm including the second bending radius R2 as the central value with respect to the second bending radius R2 in the second bending portion 102b is 30 ° C./5 mm. Therefore, even when the second bending radius R2 in the second bending portion 102b changes due to a disturbance or the like, the rate of change in the optical fiber temperature rise due to this disturbance is suppressed to 30 ° C./5 mm or less. .
  • the NA can be adjusted to 0.15 or 0.22.
  • the rate of change of the optical fiber temperature rise in the range of 5 mm including the second bending radius R2 as the center value with respect to the second bending radius R2 in the two-bending portion 102b can be 10 ° C./5 mm. Therefore, by using the first bent portion 102aa, it is possible to realize a highly reliable laser device in which the change in the optical fiber temperature rise with respect to the change in the second bend radius R2 in the second bent portion 102b is small.
  • the NA can be adjusted to 0.15 or 0.22.
  • the amount of suppression of the optical fiber temperature rise value at the two bent portions 102b is 10 ° C. or higher.
  • the amount of suppression of the temperature increase value of the optical fiber refers to the difference in the temperature increase value of the multimode optical fiber 102 in the comparison between the case where the first bending portion 102aa is present and the case where the first bending portion 102aa is not present.
  • the change rate of the optical fiber temperature rise in the range of 5 mm including the second bending radius R2 as the center value with respect to the second bending radius R2 in the second bending portion 102b is 2 ° C. / 5mm or more remains.
  • the optical fiber temperature rise is almost eliminated.
  • FIG. 13 and the like a slight temperature rise (temperature gradient) may remain depending on how the bending radius is selected.
  • the remaining portion of the temperature rise is sufficiently low, so that even if there is a slight change in the bending diameter, a laser device that is not easily affected by this change. Obtainable.
  • the relationship between the first bending radius R1 and the second bending radius R2 to R1 ⁇ R2 it is possible to sufficiently suppress the temperature increase of the multimode optical fiber 102 in the second bending portion 102b.
  • the portion may be heated or damaged. It is not preferable.
  • the minimum bending radius on the multimode semiconductor laser 101 side from the first bending portion 102aa of the multimode optical fiber 102 is R0
  • the first bending radius is R1
  • the second bending radius is R2 ⁇ R0.
  • the handling property of the multimode optical fiber 102 can be further improved as compared with the case of R0 ⁇ R2, which is more preferable.
  • FIG. 14 is an explanatory diagram showing the state of light propagation in a multimode optical fiber.
  • laser light is input to a multimode optical fiber including a core part 201, a clad part 202, and a covering part 203.
  • the propagation mode in the multimode optical fiber is determined by the angle at which the input laser light is coupled.
  • the laser light L ⁇ b> 1 is core mode light propagating through the core unit 201 coupled to the core unit 201.
  • the laser beam L2 is clad mode light propagating through the clad portion 202 coupled to the clad portion 202.
  • the cause of heating or damage of the multimode optical fiber is considered to be light propagating in a cladding mode such as the laser light L2. It was.
  • the experimental results of the present inventors show that the cause of heating or damage of the multimode optical fiber is not only the light propagating in the cladding mode such as the laser light L2. Yes. Therefore, the present inventors have found from the above experimental results that the reason why the multimode optical fiber is heated or damaged is the core mode light coupled to the core portion 201 such as the laser light L3. It is assumed that the light of the core mode.
  • the higher-order core mode light has a large bending loss and can easily leak from the core portion 201 when the multimode optical fiber is bent.
  • the higher-order core mode light such as the laser light L3 leaks from the core unit 201 to the lower-order core mode light as the multi-mode optical fiber is bent with a smaller bending radius. Therefore, by making the relationship between the first bending radius R1 and the second bending radius R2 such that R1 ⁇ R2, the light of the higher-order core mode that has leaked can be effectively removed by the light removal unit, and By providing the heat radiating portion in the light removing portion, the energy of the removed light can be effectively radiated.
  • the input side (excitation laser side) is more than a portion where the multimode optical fiber is bent with an allowable bending radius R min .
  • the multimode optical fiber may be bent with a bending radius equal to or smaller than the allowable bending radius Rmin , and a light removal unit including a heat radiating unit may be provided so as not to damage the multimode optical fiber.
  • the laser apparatus 100 includes the first bending portion that bends the multimode optical fiber at a predetermined bending length and a predetermined first bending radius, and the first bending portion.
  • a light removal portion that is formed outside the coating portion and that dissipates heat of the multimode optical fiber, and is disposed between the light removal portion and the optical multiplexer, and the multimode optical fiber is connected to the predetermined second
  • a second bending portion that bends at a bending radius
  • R0 is the minimum bending radius on the multimode semiconductor laser side of the first bending portion of the multimode optical fiber
  • R1 is the first bending radius
  • R2 is the second bending radius
  • the laser apparatus 100 is described as a forward-pumped laser apparatus in which the optical multiplexer 40 is disposed in front of the rare earth-doped optical fiber 60.
  • the present invention is not limited to this, and the optical multiplexing is performed.
  • a backward pumping type laser device in which the optical device 40 is arranged at the rear stage of the rare earth-doped optical fiber 60;
  • An optical multiplexer 40 and a rare earth-doped optical fiber 60 are disposed as an optical fiber amplifier for amplifying the laser beam output from the laser oscillation unit at the subsequent stage.
  • optical multiplexer 40 and the multimode optical fiber 30 A light source that outputs various types of high-power laser light, such as a MOPA type having a configuration provided with a connected excitation laser unit 20, and the laser light And a multimode optical fiber that can be applied to a laser apparatus having a.
  • FIG. 15 is a schematic configuration diagram of a heat radiating unit of an excitation laser unit according to a modification.
  • the heat radiating body 311a of the heat radiating portion 311 is a cylindrical member, and the first bent portion 311aa is constituted by the outer periphery of this cylinder, and the multimode optical fiber 30-1 is cylindrical.
  • the structure wound around the outer periphery of the heat radiator 311a may be used.
  • the multimode optical fiber 30-1 is fixed to the outer periphery of the first bent portion 311aa by a heat radiating material 311b.
  • a heat radiating material 311b In FIG. 15, only one of the multimode optical fibers 30-1 is shown in order to avoid the complexity of the drawing, but the other multimode optical fibers 30-2 and 30-3 are used as the radiator 311a. It may be wound around the outer periphery of.
  • the other multimode optical fibers 30-4 to 12-12 may be wound around the outer periphery of another cylindrical heat radiating body.
  • the structure of the first bending portion is not particularly limited as long as the first bending portion is configured to bend the multimode optical fiber.
  • the laser device and the optical fiber laser according to the present invention are useful for applications using high-power laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 マルチモードでレーザ光を出力する複数のマルチモード半導体レーザと、該レーザ光を合波して出力する光合波器と、複数のマルチモード半導体レーザと光合波器とを接続し、コア部と、その外周に形成されたクラッド部と、その外周を覆う被覆部とを備えるマルチモード光ファイバと、該光ファイバに形成され、所定の曲げ長さかつ所定の第1曲げ半径で曲げた第1曲げ部と、第1曲げ部において被覆部の外側に形成され該光ファイバの熱を放熱する放熱部と、第1曲げ部と光合波器との間のマルチモード光ファイバに形成され、所定の第2曲げ半径で曲げる第2曲げ部と、を備え、放熱部からの放熱によって、第2曲げ部における温度上昇が抑制されるレーザ装置である。これにより、信頼性が高くかつ小型化できるレーザ装置を提供する。

Description

レーザ装置、および、光ファイバレーザ
 本発明は、レーザ装置、および、光ファイバレーザに関するものである。
 近年、様々な高出力のレーザ装置が実用化されている。特に高出力なレーザ装置として、コア部に希土類元素が添加された光ファイバを増幅媒体とした光ファイバレーザが注目され、金属の加工等に使用されている。このような高出力なレーザ装置においては、10Wを超えるような高強度のレーザ光が光ファイバに入力される。
 ここで、高強度のレーザ光が光ファイバに入力すると、光ファイバの曲がり部で光ファイバの加熱や損傷が生じる場合があるという課題がある。これは、光ファイバを伝搬する光が光ファイバの曲がり部において、曲げ損失として光ファイバの被覆部へと漏れ、この漏れ光を吸収した被覆部が加熱し、さらには、損傷するためである。この様な曲げ損失による光ファイバの加熱や損傷は、光ファイバに入力された光のうち、光ファイバのクラッド部に結合したクラッドモードで伝搬する光が原因であると考えられている。そのため、クラッドモードで伝搬する光を低減する技術が開示されている(たとえば、特許文献1参照)。
特開2010-2608号公報
 しかしながら、クラッドモードで伝搬する光を低減したとしても、光ファイバの曲がり部で加熱や損傷が生じる場合があるという課題があることが、本発明者らによって見出された。
 本発明は、上記に鑑みてなされたものであって、信頼性が高く、かつ、小型化できるレーザ装置、および、光ファイバレーザを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係るレーザ装置は、マルチモードでレーザ光を出力する複数のマルチモード半導体レーザと、前記複数のレーザ光を合波して出力する光合波器と、前記複数のマルチモード半導体レーザと前記光合波器とを接続し、コア部と、前記コア部の外周に形成されたクラッド部と、前記クラッド部の外周を覆う被覆部とを備えるマルチモード光ファイバと、前記マルチモード光ファイバに形成され、所定の曲げ長さ、かつ、所定の第1曲げ半径で曲げた第1曲げ部と、前記第1曲げ部において前記被覆部の外側に形成され前記マルチモード光ファイバの熱を放熱する放熱部と、前記第1曲げ部と前記光合波器との間の前記マルチモード光ファイバに形成され、所定の第2曲げ半径で曲げた第2曲げ部と、を備え、前記放熱部からの放熱によって、前記第2曲げ部における温度上昇が抑制されることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ部における温度上昇の抑制量が10℃以上であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ半径の変化に対する温度上昇の変化割合が、当該第2曲げ半径を中心値として含む5mmの範囲内において、30℃/5mm以下に抑制されていることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ半径の変化に対する温度上昇の変化割合が、当該第2曲げ半径を中心値として含む5mmの範囲内において、10℃/5mm以下に抑制されていることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ半径の変化に対する温度上昇の変化割合が、当該第2曲げ半径を中心値として含む5mmの範囲内において、2℃/5mm以上残存していることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記マルチモード光ファイバの前記第1曲げ部より前記マルチモード半導体レーザ側における最小の曲げ半径をR0、前記第1曲げ半径をR1、前記第2曲げ半径をR2、とすると、R1≦R2<R0が成り立つことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記曲げ長さは、π×前記第1曲げ半径以上であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第1曲げ部における光損失は、0.2dB以下であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ半径は、前記マルチモード光ファイバの規格で定められた許容曲げ半径であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、マルチモードでレーザ光を出力する複数のマルチモード半導体レーザと、前記複数のレーザ光を合波して出力する光合波器と、前記複数のマルチモード半導体レーザと前記光合波器とを接続し、コア部と、前記コア部の外周に形成されたクラッド部と、前記クラッド部の外周を覆う被覆部とを備えるマルチモード光ファイバと、前記マルチモード光ファイバに形成され、所定の曲げ長さ、かつ、所定の第1曲げ半径で曲げた第1曲げ部と、前記第1曲げ部において前記被覆部の外側に形成され前記マルチモード光ファイバの熱を放熱する放熱部と、前記第1曲げ部と前記光合波器との間の前記マルチモード光ファイバに形成され、所定の第2曲げ半径で曲げた第2曲げ部と、を備え、前記マルチモード光ファイバの前記第1曲げ部より前記マルチモード半導体レーザ側における最小の曲げ半径をR0[mm]、前記第1曲げ半径をR1[mm]、前記第2曲げ半径をR2[mm]、とすると、R1-5[mm]≦R2かつR1<R0が成り立つことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、R1≦R2かつR1<R0が成り立つことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、R1≦R2<R0が成り立つことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第1曲げ半径は、50mm以下であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記曲げ長さは、πR1以上であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第1曲げ部において、前記マルチモード半導体レーザから前記マルチモード光ファイバに入力された光のうち、前記コア部を伝搬する高次のコアモードの光が除去されることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第1曲げ部における光損失は、0.2dB以下であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ部において、前記マルチモード光ファイバを伝搬する光の曲げ損失による前記被覆部の加熱、または、損傷が抑制されていることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記第2曲げ半径は、前記マルチモード光ファイバの規格で定められた許容曲げ半径であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記被覆部の屈折率は、前記クラッド部の屈折率より高いことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記複数のマルチモード半導体レーザのうち、1つ以上のマルチモード半導体レーザの出力する前記レーザ光の光強度は、10W以上であることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記光合波器は、光ファイババンドル構造を有することを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記放熱部は、前記マルチモード光ファイバが前記被覆部の外周に形成された放熱材と、前記放熱材を介して前記マルチモード光ファイバと接する放熱体と、を備えることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記放熱材には、樹脂が用いられ、前記放熱材は前記被覆部より屈折率が高いことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記放熱材は、シリコーン系の熱伝導性コンパウンドを含むことを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記放熱体は、熱伝導性を有する板状部材であり、前記第1曲げ部は、前記板状の放熱体に形成された円形の溝に配置されることを特徴とする。
 また、本発明の一態様に係るレーザ装置は、上記発明において、前記放熱体は、熱伝導性を有する円筒状部材であり、前記第1曲げ部は、前記円筒の外周に巻き付けられることを特徴とする。
 また、本発明の一態様に係る光ファイバレーザは、上記発明のレーザ装置と、前記レーザ装置の出力光を入力される増幅用光ファイバと、前記増幅用光ファイバの両端側に配置され、前記増幅用光ファイバで発生した光からレーザ光をレーザ発振させる光共振器を構成する光反射器と、を備えることを特徴とする。
 本発明によれば、信頼性が高く、かつ、小型化できるレーザ装置、および、光ファイバレーザを実現することができる。
図1は、本発明の実施の形態に係るレーザ装置を側面側から見た模式的な構成図である。 図2は、図1に示したレーザ装置の励起レーザ部の模式的な構成図である。 図3は、図2に示した励起レーザ部の放熱部の模式的な構成図である。 図4は、図1に示したレーザ装置の構成を表す概略図である。 図5は、マルチモード光ファイバの曲げ半径と温度上昇との関係を測定する実験系の構成を表す概略図である。 図6は、第1曲げ部においてマルチモード光ファイバを曲げない場合の塗布長とマルチモード光ファイバの温度上昇値との関係を表す図である。 図7は、塗布長が30mmである場合のマルチモード光ファイバの第1曲げ半径R1とマルチモード光ファイバの温度上昇値との関係を表す図である。 図8は、マルチモード光ファイバの第1曲げ半径R1が25mmまたは30mmである場合の曲げ長さとマルチモード光ファイバの温度上昇値との関係を表す図である。 図9は、第1曲げ部が有る場合と無い場合における、マルチモード光ファイバの第2曲げ半径R2とマルチモード光ファイバの温度との関係を表す図である。 図10は、NAが0.15のマルチモード光ファイバにおけるレーザ出力の違いが光ファイバ温度上昇値に与える影響を示す図である。 図11は、NAが0.22のマルチモード光ファイバにおけるレーザ出力の違いが光ファイバ温度上昇値に与える影響を示す図である。 図12は、NAが0.15の場合における、第2曲げ半径R2に対する光ファイバ温度上昇値を示す図である。 図13は、NAが0.22の場合における、第2曲げ半径R2に対する光ファイバ温度上昇値を示す図である。 図14は、マルチモード光ファイバにおける光の伝搬の様子を表す説明図である。 図15は、変形例に係る励起レーザ部の放熱部の模式的な構成図である。
 以下に、図面を参照して本発明に係るレーザ装置、および、光ファイバレーザの実施の形態を説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態)
 まず、本発明の実施の形態に係る光ファイバレーザであるレーザ装置について説明する。図1は、本発明の実施の形態に係るレーザ装置を側面側から見た模式的な構成図である。図1に示すとおり、レーザ装置100は、基板10と、基板10の裏面に配置された励起レーザ部20と、励起レーザ部20に接続されたマルチモード光ファイバ30と、基板10の表面に配置されマルチモード光ファイバ30と接続された光合波器40と、基板10の表面に配置され順次接続されたダブルクラッド光ファイバ50、希土類添加光ファイバ60、ダブルクラッド光ファイバ70、融着接続部80、シングルモード光ファイバ90と、を備える。
 基板10は、その両面に各種素子を固定することにより、片面のみに各種素子を固定するよりもレーザ装置100を小型化することができる。また、基板10は、アルミニウム等の各種の金属板であってよいが、これに限定されない。基板10は、レーザ装置100を収容するための不図示の筐体と一体として構成されていてもよい。また、基板10は、レーザ装置100内の温度上昇を抑制するため、熱伝導性を有することが好ましく、アルミニウム(Al)等の熱伝導性が高い材質からなることがより好ましい。また、基板10は、内部に冷却水を循環させる循環路を備える水冷構造としてもよいし、側面の或る箇所から当該側面または他の側面の別の箇所に貫通するように形成され、かつその内壁にフィンを有する送風路(ダクト)を備える強制空冷構造としてもよい。
 励起レーザ部20は、基板10の裏面に固定されたマルチモード(横マルチモード)でレーザ光を出力する複数のマルチモード半導体レーザを備える。図2は、図1に示したレーザ装置の励起レーザ部の模式的な構成図である。図2に示すように、励起レーザ部20は、12個のマルチモード半導体レーザ21-1~12を備え、各マルチモード半導体レーザ21-1~12は、基板10上に固定されている。各マルチモード半導体レーザ21-1~12の出力光強度は、10W以上であってよい。さらに、各マルチモード半導体レーザ21-1~12の出力光強度は、より高強度であってもよく、たとえば、20W以上、または、50W以上であってよい。なお、マルチモード半導体レーザの数は、たとえば、12個であるが、6個、または、18個などであってよく、適宜選択することができる。
 マルチモード光ファイバ30は、12本のマルチモード光ファイバ30-1~12を有し、各マルチモード光ファイバ30-1~12は、それぞれマルチモード半導体レーザ21-1~12と、光合波器40とを接続する。
 各マルチモード光ファイバ30-1~12は、コア部と、コア部の外周に形成されたクラッド部と、クラッド部の外周を覆う被覆部とを備えるマルチモード光ファイバである。被覆部の屈折率は、たとえば、クラッド部の屈折率より高くされている。
 また、マルチモード光ファイバ30-1~12の規格で定められた許容曲げ半径をRminとする。この許容曲げ半径Rminは、光ファイバを配置する際の光損失が十分少ない最小の曲げ半径として、光ファイバの製造者などによって所定の波長に対して定められた値である。許容曲げ半径Rminは種々の定義があるが、たとえば、許容曲げ半径Rminは、光ファイバを曲げ半径Rminで10回巻いたとき、所定の波長の光における曲げ損失が、0.5dB以下となる曲げ半径であると定義することができる。また、各マルチモード光ファイバ30-1~12のNA(Numerical Aperture)は、たとえば、0.15、または、0.22であってよい。
 図2に示すように、各マルチモード半導体レーザ21-1~12に接続されたマルチモード光ファイバ30-1~12は、基板10上に複数(たとえば3本ずつ)束ねて固定される。ただし、ここでは、各マルチモード光ファイバ30-1~12が、被覆部ごと束ねられているにすぎず、光学的に結合されているわけではない。また、マルチモード光ファイバ30-1~12は、束ねた状態で基板10に固定されているものに限られず、基板10に個別に固定されていてもよい。つぎに、マルチモード光ファイバ30-1~3は、光除去部30a-1を経由し、マルチモード光ファイバ30-4~6は、光除去部30a-2を経由し、マルチモード光ファイバ30-7~9は、光除去部30a-3を経由し、マルチモード光ファイバ30-10~12は、光除去部30a-4を経由し、12本のマルチモード光ファイバ30-1~12が束ねられる。ただし、ここでも、各マルチモード光ファイバ30-1~12が、被覆部ごと束ねられているにすぎず、光学的に結合されているわけではない。
 光除去部30a-1~4は、図2に示すように、各マルチモード光ファイバ30-1~12に形成され、所定の曲げ長さ、かつ、所定の第1曲げ半径R1で曲げた第1曲げ部30aa-1~4を備える。図2において、マルチモード光ファイバ30-1~12における、円形に曲げられている部分が第1曲げ部30aa-1~4である。各光除去部30a-1~4の曲げ長さ、および、第1曲げ半径R1は、同一であってもよいが、互いに異なる値でもよく、たとえば、マルチモード光ファイバ30-1~12に入力する光強度に合わせて調整してもよい。
 第1曲げ部30aa-1~4の曲げ長さは、たとえば、πR1以上であってよく、より好ましくは、2πR1以上であってよい。第1曲げ部30aa-1~4の曲げ長さは、図2において、マルチモード光ファイバ30-1~12が、第1曲げ部30aa-1~4を半周する場合、πR1であり、マルチモード光ファイバ30-1~12が、第1曲げ部30aa-1~4を1.5周する場合、3πR1である。ただし、曲げ長さは、マルチモード光ファイバ30-1~12および第1曲げ部30aa-1~4の配置を適宜変更することにより、たとえば、2πR1などの任意の値に設定することができる。第1曲げ半径R1は、たとえば、50mm以下であってよく、より好ましくは、25mm以下である。また、曲げ長さおよび第1曲げ半径R1を適切に設定することにより、各第1曲げ部30aa-1~4における光損失が、たとえば、0.2dB以下、より好ましくは、0.1dB以下とされていてもよい。
 さらに、光除去部30a-1~4は、第1曲げ部30aa-1~4におけるマルチモード光ファイバ30-1~12の被覆部の外側に形成されマルチモード光ファイバ30-1~12の熱を放熱する放熱部を備える。そして、放熱部は、マルチモード光ファイバ30-1~12の被覆部の外周に形成された放熱材と、放熱材を介してマルチモード光ファイバ30-1~12と接する放熱体とを備える。図3は、図2に示した励起レーザ部の放熱部の模式的な構成図である。図3は、図2のA-A線断面図に対応する。図3に示すように、放熱部11の放熱体11aには、溝11aaが設けられている。この溝11aaは、図2に示した光除去部30a-1~4のように、半径がほぼ第1曲げ半径R1である円形に形成されている。そして、溝11aaの内部にマルチモード光ファイバ30-1~3が配置されている。さらに、マルチモード光ファイバ30-1~3は、放熱材11bにより溝11aaの内部に固定されている。例えば、放熱体11aは熱伝導性を有する板状部材である基板10と一体に構成されており、この溝内にマルチモード光ファイバ30-1~3が配置される。このとき、マルチモード光ファイバ30-1~3が発する熱は、放熱材11bを介して、放熱体11aに放熱される。なお、本実施の形態では、光除去部30a-1~4はいずれも図3に示した構成の放熱部11を有するが、放熱部の構成は光除去部30a-1~4で互いに異なっていてもよい。
 放熱部11の放熱材11bには、樹脂が用いられ、また、放熱材11bはマルチモード光ファイバ30-1~12の被覆部より屈折率が高い。これにより、マルチモード光ファイバ30-1~12のコア部から漏れた光を被覆部が効率よく吸収する。また、放熱材11bは、たとえば、シリコーン系の熱伝導性コンパウンドを含む材料であってもよい。さらに、放熱材11bは、熱伝導率が0.5W/m・K以上の材料であってもよい。このとき、被覆部の光吸収による熱が、効率的に放熱体11aに伝導し、マルチモード光ファイバ30-1~12の加熱、および、損傷が抑制される。また、放熱材11bは、マルチモード半導体レーザ21-1~12の出力するレーザ光に対する吸収係数が小さいことが好ましい。これによって、放熱材11bの光吸収による温度上昇が抑制され、マルチモード光ファイバ30-1~12の加熱、および、損傷がさらに抑制される。
 放熱部11の放熱体11aは、アルミニウム等の金属であってよいが、熱伝導性を有する材料であればこれに限られない。また、放熱体11aは、基板10と一体として構成されていてもよいが、放熱体11aと基板10とが別体として構成され、放熱体11aが基板10上に固定されている構成であってもよい。
 つぎに、12本のマルチモード光ファイバ30-1~12を有するマルチモード光ファイバ30は、図1に示すように、励起レーザ部20と光合波器40との間に配置され、マルチモード光ファイバ30を所定の第2曲げ半径R2で曲げる第2曲げ部30bを備えている。第2曲げ部は、基板10裏面の励起レーザ部20と、基板10表面のレーザ発振部LOとの間をマルチモード光ファイバ30で接続する際に形成されるものである。このように、基板10の両面に各種素子を固定することで、レーザ装置100を小型化することができる。第2曲げ半径R2は、たとえば、50mm以下であってよく、より好ましくは、25mm以下である。また、第2曲げ半径R2は、許容曲げ半径Rminであってよい。ここで、各マルチモード光ファイバ30-1~12の第1曲げ部30aa-1~4よりマルチモード半導体レーザ21-1~12側における最小の曲げ半径をR0とし、第1曲げ半径R1、第2曲げ半径R2と比較すると、R1≦R2かつR1<R0の関係が成り立つが、これについては後に詳述する。なお、図2中に図示されるR0はマルチモード光ファイバ30-1に対するものであるが、各マルチモード光ファイバ30-1~12に対して同様にR0が定義される。
 光合波器40は、マルチモード光ファイバ30-1~12から入力される複数のレーザ光を合波して出力する。光合波器40は、入力光を合波する機能を備えれば特に限定されないが、たとえば、12本のマルチモード光ファイバ30-1~12が束ねられた構造である光ファイババンドル構造であってよい。
 図4は、図1に示したレーザ装置の構成を表す概略図である。図中「×」は、光ファイバの融着接続点を示している。図4に示すように、ダブルクラッド光ファイバ50および70は、FBG(Fiber Bragg Grating)50aおよび70aを形成したダブルクラッド光ファイバである。また、希土類添加光ファイバ60は、増幅用光ファイバであり、コアに希土類元素が添加されたダブルクラッド光ファイバである。そして、FBG50aおよび70aは、光共振器を構成し、希土類添加光ファイバ60とともにレーザ発振部LOを構成する。
 なお、希土類添加光ファイバ60コアに添加された希土類元素は、たとえばエルビウム(Er)、イッテルビウム(Yb)等であるが、光増幅作用を有するものであれば特に限定はされない。また、マルチモード半導体レーザ21-1~12が出力するレーザ光の波長は、希土類添加光ファイバ60のコアに添加された希土類元素を光励起できる波長に設定されており、希土類元素がYbの場合はたとえば915nmである。また、FBG50aおよび70aは、レーザ発振部LOにてレーザ発振させるべき波長を所定の反射率で選択的に反射する特性を有する。
 ダブルクラッド光ファイバ70は、融着接続部80によって、シングルモード光ファイバ90と融着接続されている。そして、シングルモード光ファイバ90の一端からレーザ装置100の最終的な出力としてのレーザ光が出射される。
 つぎに、本実施の形態に係るレーザ装置100の動作について説明する。はじめに、外部から電流を印加された励起レーザ部20のマルチモード半導体レーザ21-1~12が、横マルチモードでレーザ光を出力する。マルチモード半導体レーザ21-1~12から出力されたレーザ光は、マルチモード光ファイバ30-1~12に入力される。ここで、レーザ装置100には、光除去部30a-1~4が形成されている。そして光除去部30a-1~4において、第1曲げ部30aa-1~4におけるマルチモード光ファイバ30-1~12が第1曲げ半径R1で曲げられる。すると、マルチモード光ファイバ30-1~12を伝搬する光のうち、マルチモード光ファイバ30-1~12の曲げにより漏れ易い成分が被覆部へと漏れる。被覆部は、この漏れ光の一部を吸収して、吸収された光は熱となる。この熱は、光除去部30a-1~4の放熱部11により放熱され、光除去部30a-1~4におけるマルチモード光ファイバ30-1~12の加熱は抑制される。
 つぎに、12本のマルチモード光ファイバ30-1~12を有するマルチモード光ファイバ30を伝搬する光は、第2曲げ部30bを通過する。ここで、光除去部30a-1~4により、マルチモード光ファイバ30を伝搬する光のうち、マルチモード光ファイバ30の曲げにより漏れ易い成分の光強度はすでに低減されている。このとき、R1≦R2の関係が成り立っていることにより、マルチモード光ファイバ30の第2曲げ部30bにおいて被覆部に漏れる光は十分に抑制される。これにより、第2曲げ部30bにおけるマルチモード光ファイバ30の加熱、または、損傷が抑制される。
 その後、マルチモード光ファイバ30を伝搬する光は、光合波器40により合波され、ダブルクラッド光ファイバ50に入力される。そして、ダブルクラッド光ファイバ50に入力された光を励起光として、希土類添加光ファイバ60とFBG50aおよび70aが構成するレーザ発振部LOがレーザ光を発振し、発振したレーザ光が、ダブルクラッド光ファイバ70から出力される。なお、発振するレーザ光の波長は、希土類添加光ファイバ60のコアに添加された希土類元素の発光波長帯に含まれる波長である。たとえば、当該希土類元素がYbの場合にはたとえば1.08μmである。ダブルクラッド光ファイバ70の出力光は、融着接続部80により、シングルモード光ファイバ90に入力され、シングルモード光ファイバ90の一端から最終的なレーザ装置100の出力として出射される。
 このように、レーザ装置100は、マルチモード半導体レーザ21-1~12と第2曲げ部30bとの間に配置された光除去部30a-1~4により、第2曲げ部30bにおけるマルチモード光ファイバ30を伝搬する光のうち、マルチモード光ファイバ30の曲げにより漏れ易い成分の光強度を低減している。このとき、R1≦R2の関係が成り立っていることにより、第2曲げ部30bにおいて被覆部に漏れる光は十分に抑制される。これにより、マルチモード光ファイバ30の第2曲げ部30bにおける加熱、または、損傷が抑制されるので、信頼性の高いレーザ装置とすることができる。また、光除去部を設けない場合に、マルチモード光ファイバ30を第2曲げ半径R2で配置するとマルチモード光ファイバ30が加熱、または、損傷する恐れがある。しかしながら、本実施の形態に係るレーザ装置100においては、光除去部30a-1~4により、マルチモード光ファイバ30を伝搬する光のうち、マルチモード光ファイバ30の曲げにより漏れ易い成分の光を低減しているため、マルチモード光ファイバ30を第2曲げ半径R2で配置することができる。これにより、レーザ装置100のマルチモード光ファイバの配置の自由度が増し、たとえば、基板10の両面に各種素子を配置することができる。したがって、レーザ装置100は、小型化されたレーザ装置として構成することができる。
 さらに、マルチモード光ファイバ30-1~12の第1曲げ部30aa-1~4よりもマルチモード半導体レーザ21-1~12側における最小の曲げ半径をR0とすると、R1<R0が成り立つ。これによって、第1曲げ部30aa-1~4よりもマルチモード半導体レーザ21-1~12側においてマルチモード光ファイバ30-1~12に曲げ部分があったとしても、その曲げ部分では光除去部30a-1~4ほどの光の漏洩が無い。したがって、当該曲げ箇所でのマルチモード光ファイバ30-1~12の加熱、損傷が防止されるとともに、光除去部30a-1~4の効果がより確実に発揮される。
 以下、第1曲げ半径R1と、第2曲げ半径R2との関係、および第1曲げ半径R1と、マルチモード光ファイバ30-1~12の第1曲げ部30aa-1~4よりマルチモード半導体レーザ21-1~12側における最小の曲げ半径であるR0との関係についてより詳細に説明する。
 まず、上述したように、従来ダブルクラッドファイバをクラッドモードで伝搬する光を除去することにより、ダブルクラッドファイバの加熱、および、損傷を抑制することが提案されている。
 しかしながら、本発明者らは、マルチモード光ファイバに入力する光強度がたとえば10Wを超えるような高出力下では、クラッドモードで伝搬する光を除去したとしても、マルチモード光ファイバの加熱、または、損傷が生じる場合があるという課題を発見した。そこで、本発明者らは、この課題を解決する手段を以下のように検討し、本発明を想到するに到った。
 はじめに、本発明者らが行った実験の実験系について説明する。図5は、マルチモード光ファイバの曲げ半径と温度上昇との関係を測定する実験系の構成を表す概略図である。図5に示すように、この実験系は、マルチモード半導体レーザ101と、マルチモード光ファイバ102と、パワーメータ103とを備える。さらに、この実験系は、マルチモード光ファイバ102に形成され、所定の曲げ長さ、かつ、所定の第1曲げ半径R1で曲げた第1曲げ部102aaと、マルチモード光ファイバ102の被覆部の外側に形成されマルチモード光ファイバ102の熱を放熱する放熱部と、を備えた光除去部102aと、第2曲げ半径R2でマルチモード光ファイバ102を曲げた第2曲げ部102bとを備える。なお、マルチモード光ファイバ102の被覆部の屈折率は、クラッド部の屈折率より高いものとした。また、放熱部の放熱材として、シリコーン系の熱伝導性コンパウンドを用いた。
 まず、この実験系において、曲げ長さと第1曲げ半径R1とは可変とされている。このとき、曲げ長さと、マルチモード光ファイバ102に放熱材を塗布する長さである塗布長とは、同一である。つぎに、この実験系において、第2曲げ半径R2は、25mmに固定されている。このとき、マルチモード半導体レーザ101からのレーザ光を入力しない場合の第2曲げ部102bにおけるマルチモード光ファイバ102の温度と、レーザ光を入力した場合の第2曲げ部102bにおけるマルチモード光ファイバ102の温度とを比較し、レーザ光を入力した場合にどれだけ第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇があるかを測定した。なお、マルチモード半導体レーザ101からのレーザ光出力が25Wとなるように制御した。また、第2曲げ部102bにおけるマルチモード光ファイバ102の温度は、熱カメラで計測した。以下において、マルチモード光ファイバ102の温度上昇値とは、レーザ光を入力した場合の第2曲げ部102bにおけるマルチモード光ファイバ102の温度から、レーザ光を入力しない場合の第2曲げ部102bにおけるマルチモード光ファイバ102の温度を引いた値である。
 はじめに、第1曲げ部102aaでマルチモード光ファイバ102を曲げずに直線とし、塗布長のみを変化させた場合について測定した。図6は、第1曲げ部102aaにおいてマルチモード光ファイバを曲げない場合の塗布長とマルチモード光ファイバの温度上昇値との関係を表す図である。図6に示すように、塗布長を変化させても第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇値は変化しなかった。
 ここで、被覆部の屈折率は、クラッド部の屈折率より高いので、クラッドモードの光は被覆部に漏れ出す。このような被覆部へ漏洩するモードの光は、放熱材を被覆部の表面に塗布することによって被覆部外に漏れ、放熱材内部で熱に変換されて放熱される。したがって、クラッドモードの光に起因する場合、塗布長を長くするほど、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇値は減少するはずである。ところが、図6の結果が示すように、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇値は、塗布長に関わらず略一定であった。これは、マルチモード光ファイバ102を伝搬する光のうち、クラッドモードで伝搬する光以外の光が第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇に寄与していることを示唆する。
 つぎに、曲げ長さを30mmに固定し、第1曲げ半径R1を変化させた場合について測定した。図7は、塗布長が30mmである場合のマルチモード光ファイバの第1曲げ半径R1とマルチモード光ファイバの温度上昇値との関係を表す図である。図7に示すように、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇値は、第1曲げ半径R1が第2曲げ半径R2(25mm)に近づくにつれて、急激に小さくなる。このように、第1曲げ半径R1と第2曲げ半径R2とが十分に近い値であると、第1曲げ部102aaにおいて、マルチモード光ファイバ102を伝搬する光のうち、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇に寄与する光が十分に低減されることを意味している。
 そして、第1曲げ半径R1が、第2曲げ半径R2の25mmと等しい25mm、および、第2曲げ半径R2と十分近い30mmである場合に、曲げ長さを変化させた場合について測定した。図8は、マルチモード光ファイバの第1曲げ半径R1が25mmまたは30mmである場合の曲げ長さとマルチモード光ファイバの温度上昇値との関係を表す図である。
 図8に示すように、第1曲げ半径R1が第2曲げ半径R2に十分近い場合には、曲げ長さを大きくするにつれて、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇値が小さくなる。ここで、第1曲げ半径R1[mm]と第2曲げ半径R2[mm]の間に、R1-5[mm]≦R2という関係が成立している場合、第1曲げ半径R1が第2曲げ半径R2に十分近いと考えられる。さらに、第1曲げ半径R1が30mmの場合より、第1曲げ半径R1が25mmの場合の方が、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇を抑制する効果が高いことがわかる。すなわち、第1曲げ半径R1と第2曲げ半径R2の間に、R1≦R2という関係が成立している場合、マルチモード光ファイバ102の温度上昇を抑制する効果がより高い。
 また、図8に示すように、曲げ長さを大きくするにつれて、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇値が小さくなっているので、第1曲げ部102aaにおける巻き数を増やす方が、マルチモード光ファイバ102の温度上昇を抑制する効果がより高まる。第1曲げ部102aaにおけるマルチモード光ファイバ102の巻き数を半周(曲げ長さπR1)以上とすれば十分効果が得られるが、巻き数を1周(曲げ長さ2πR1)以上とするとことで、より一層の効果が得られる。さらに、第1曲げ部102aaにおけるマルチモード光ファイバ102の巻き数を2周(曲げ長さ4πR1)以上とすればより好ましい。
 つぎに、第1曲げ部102aaが有る場合と無い場合において、第2曲げ半径R2を60mmから25mmまで減少させながら、第2曲げ部102bにおけるマルチモード光ファイバ102の温度を測定した。図9は、第1曲げ部102aaが有る場合と無い場合における、マルチモード光ファイバの第2曲げ半径R2とマルチモード光ファイバの温度との関係を表す図である。ここで、第1曲げ部102aaが有る場合とは、第1曲げ半径R1を25mm、塗布長を157mmに設定した場合である。また、本実施例において第1曲げ部102aaが無い場合は、塗布長は157mmであるが、第1曲げ部102aaでマルチモード光ファイバ102を曲げずに直線とした場合である。
 図9に示すように、第1曲げ部102aaが有る場合においては、第2曲げ半径R2を60mmから25mmまで減少させた場合にマルチモード光ファイバ102の温度上昇が観測されたが、温度は55℃程度であり、許容範囲内であった。一方、第1曲げ部102aaが無い場合においては、第2曲げ半径R2を60mmから40mmまで減少させただけでマルチモード光ファイバ102が50℃まで温度上昇した。
 なお、NAが0.15の場合の実験においては、第1曲げ部がない場合についても、それに対応する位置に放熱材としてのシリコーン系熱伝導コンパウンドを塗布しているが、図6を参照しながら説明した上記実験結果のように、第1曲げ部がない場合は、当該コンパウンドの有無による光ファイバ温度上昇値に対する差異が実質確認されなかった。したがって、以下で説明するNAが0.22の実験においては、当該コンパウンドの塗布は行わずに行っている。
 つぎに、マルチモード光ファイバ102のNAが第1曲げ部102aaの有無にどのような影響を与えるかを検証した。図10は、NAが0.15のマルチモード光ファイバ102におけるレーザ出力の違いが光ファイバ温度上昇値に与える影響を示す図である。図11は、NAが0.22のマルチモード光ファイバ102におけるレーザ出力の違いが光ファイバ温度上昇値に与える影響を示す図である。なお、図10に示した検証実験では、第1曲げ部は設けず、レーザ出力が異なる場合(15W,25W)について、第2曲げ半径R2の変化に対する光ファイバの温度上昇値を測定している。一方、図11に示した検証実験では、第1曲げ部102aaの有無による光ファイバ温度上昇値の比較を行っており、第1曲げ部102aaを設ける場合は第1曲げ半径R1を25mmとして1周(約157mm)周回させ、かつ、第2曲げ部102bの半径R2を25mmとしている。
 図10に示すように、NAが0.15のマルチモード光ファイバ102では、第1曲げ部102aaがないと、比較的低いレーザ出力であっても第2曲げ半径R2の減少に対する温度上昇が大きくなってしまう。一方、図11に示すように、NAが0.22のマルチモード光ファイバ102では、第1曲げ部102aaがない場合であっても、NAが0.15の場合と比較すれば、光ファイバの温度上昇が低く抑えられている。実際、図10と図11と比較すると解るように、レーザ出力が同じ約15W付近、かつ、第1曲げ部102aaは設けず第2曲げ部を25mmとしたとき、NAが0.15の場合は第1曲げ部102aaがないと温度上昇が約20℃以上と大きくなってしまうが、NAが0.22の場合は第1曲げ部102aaがなくても温度上昇はあまり発生しない。
 ただし、NAが0.22のマルチモード光ファイバ102であっても、レーザ出力を上げていくと、光ファイバ温度上昇の問題が顕在化する。図11に示すように、第1曲げ部102aaがない場合、レーザ出力の上昇に伴って、光ファイバ温度の上昇が急峻となっている。したがって、レーザ出力を例えば100数十Wまで上昇させた場合、たとえ、NAが0.22のマルチモード光ファイバ102であっても、顕著な光ファイバ温度上昇が発生することが予想される。また、図13の点線「高出力時の推測線」は、NAが0.15の実験結果と0.22の実験結果を比較し、NAが0.22の光ファイバを使用し、第1曲げ部は設けずに、レーザ出力が100数十Wになった場合のR2と光ファイバ温度上昇値との関係を推測したものである。この推測線からも、レーザ出力が更に大きくなった場合、NAが0.22となっても、光ファイバ温度上昇の問題が発生する可能性があることがわかる。このような高出力のレーザを用いる場合であっても、図11に示すように、本実施形態に係る第1曲げ部102aaを用いれば、光ファイバ温度の急峻な上昇を抑制することができる。
 ここで、マルチモード光ファイバ102のNAの違いに拘わらず共通する第1曲げ部102aaの性質について検討する。図12および図13は、それぞれNAが0.15と0.22との場合における、第2曲げ半径R2に対する光ファイバ温度上昇値を示す図である。図12および図13に示した検証実験では、第1曲げ部102aaにおける第1曲げ半径R1を25mmとし、曲げ長さを1周(約157mm)としている。また、図12に示した検証実験では、NAが0.15のマルチモード光ファイバ102に対し出力約25Wのレーザ光を入力し、図13に示した検証実験では、NAが0.22のマルチモード光ファイバ102に対し出力約64Wのレーザ光を入力している。
 図12および図13に示すように、NAが0.22の場合よりもNAが0.15の場合の方が、第2曲げ部102bにおける第2曲げ半径R2に対する、当該第2曲げ半径R2を中心値として含む5mm範囲の光ファイバ温度上昇の変化割合が大きい。そして、NAが0.15の場合における、第2曲げ部102bにおける第2曲げ半径R2に対する、当該第2曲げ半径R2を中心値として含む5mmの範囲の光ファイバ温度上昇の変化割合の最大値は、30℃/5mmである。したがって、第2曲げ部102bにおける第2曲げ半径R2が外乱等の要因で変化をした場合であっても、この外乱に起因する光ファイバ温度上昇の変化割合は30℃/5mm以下に抑制される。
 さらに、図12および図13に示すように、第1曲げ半径R1および第2曲げ半径R2を適切に選択することで、NAが0.15および0.22のいずれの場合であっても、第2曲げ部102bにおける第2曲げ半径R2に対する、当該第2曲げ半径R2を中心値として含む5mmの範囲の光ファイバ温度上昇の変化割合を、10℃/5mmにすることができる。よって、第1曲げ部102aaを用いれば、第2曲げ部102bにおける第2曲げ半径R2の変動に対する光ファイバ温度上昇の変化が少ないという、信頼性が高いレーザ装置を実現することができる。
 また、図12および図13に示すように、第1曲げ半径R1および第2曲げ半径R2を適切に選択することで、NAが0.15および0.22のいずれの場合であっても、第2曲げ部102bにおける光ファイバ温度上昇値の抑制量が10℃以上になっている。ここで、光ファイバ温度上昇値の抑制量とは、第1曲げ部102aaが有る場合と無い場合の比較において、マルチモード光ファイバ102の温度上昇値の差のことをいう。
 なお、図12および図13に示すように、第2曲げ部102bにおける第2曲げ半径R2に対する、当該第2曲げ半径R2を中心値として含む5mmの範囲の光ファイバ温度上昇の変化割合が2℃/5mm以上残存している。第2曲げ部102bにいて除去される光がクラッドモードである場合、光ファイバ温度上昇はほぼなくなると推測されるが、このように、高次のコアモードのレーザ光を除去する場合、図12および図13などからわかるように、曲げ半径の選び方によっては若干の温度上昇(温度勾配)が残存することがある。しかし、本実施形態に係る第1曲げ部102aaを備えれば、温度上昇の残存分が十分に低くなることで、多少の曲げ径の変化があったとしても、これに影響されにくいレーザ装置を得ることができる。
 以上の結果から、第1曲げ半径R1と第2曲げ半径R2との関係をR1≦R2とすることで、第2曲げ部102bにおけるマルチモード光ファイバ102の温度上昇を十分に抑制することができることがわかる。なお、マルチモード光ファイバ102の第1曲げ部102aaよりマルチモード半導体レーザ101側に第1曲げ半径R1より曲げ半径が小さい部分があると、その部分が加熱、または、損傷する可能性があるため好ましくない。また、マルチモード光ファイバ102の第1曲げ部102aaよりマルチモード半導体レーザ101側における最小の曲げ半径をR0、第1曲げ半径をR1、第2曲げ半径をR2、としたときに、R1<R0とすることにより、マルチモード光ファイバ102の第1曲げ部102aaよりマルチモード半導体レーザ101側における加熱、損傷が防止される。さらに、R1≦R2<R0が成り立つことによって、R0≦R2の場合よりもマルチモード光ファイバ102の取り回し性が更に向上でき、より好ましい。
 ここで、上記の実験結果からマルチモード光ファイバにおける光の伝搬について考察する。図14は、マルチモード光ファイバにおける光の伝搬の様子を表す説明図である。図14に示すように、コア部201と、クラッド部202と、被覆部203とを備えるマルチモード光ファイバに、レーザ光が入力されるとする。すると、入力されたレーザ光は結合する角度によって、マルチモード光ファイバ内における伝搬モードが決まる。まず、レーザ光L1は、コア部201に結合したコア部201を伝搬するコアモードの光である。一方、レーザ光L2は、クラッド部202に結合したクラッド部202を伝搬するクラッドモードの光である。これまで、マルチモード光ファイバに高強度の光を入射した場合に、マルチモード光ファイバが加熱、または、損傷する原因は、レーザ光L2のようなクラッドモードで伝搬する光であると考えられていた。
 しかしながら、本発明者らの実験結果のたとえば図6の結果は、マルチモード光ファイバが加熱、または、損傷する原因は、レーザ光L2のようなクラッドモードで伝搬する光だけではないことを示している。そこで、本発明者らは、上記の実験結果から、マルチモード光ファイバが加熱、または、損傷する原因は、レーザ光L3のようなコア部201に結合したコアモードの光であるが、高次のコアモードの光であると想定している。高次のコアモードの光は、曲げ損失が大きく、マルチモード光ファイバを曲げるとコア部201から容易に漏れ得る光である。
 レーザ光L3のような高次のコアモードの光は、マルチモード光ファイバをより小さい曲げ半径で曲げるほど、より次数の低いコアモードの光までコア部201から漏れると考えられる。したがって、第1曲げ半径R1と第2曲げ半径R2との関係について、R1≦R2が成り立つようにすることで、漏洩した高次のコアモードの光を光除去部で効果的に除去でき、かつ光除去部に放熱部を設けたことによって、除去した光のエネルギーを効果的に放熱処理することができる。このとき、たとえば、レーザ装置のある位置で許容曲げ半径Rminでマルチモード光ファイバを配置したい場合、マルチモード光ファイバを許容曲げ半径Rminで曲げる部分よりも入力側(励起レーザ側)に、許容曲げ半径Rmin以下の曲げ半径でマルチモード光ファイバを曲げ、かつ、マルチモード光ファイバが損傷しないよう放熱部を備えた光除去部を設けるようにしてもよい。
 以上説明したように、本実施の形態に係るレーザ装置100は、マルチモード光ファイバを、所定の曲げ長さ、かつ、所定の第1曲げ半径で曲げる第1曲げ部と、第1曲げ部において被覆部の外側に形成されマルチモード光ファイバの熱を放熱する放熱部と、を備える光除去部と、光除去部と光合波器との間に配置され、マルチモード光ファイバを所定の第2曲げ半径で曲げる第2曲げ部と、を備え、マルチモード光ファイバの第1曲げ部よりマルチモード半導体レーザ側における最小の曲げ半径をR0、第1曲げ半径をR1、第2曲げ半径をR2、とすると、R1≦R2かつR1<R0であることを特徴とする。
 なお、上述した実施の形態において、レーザ装置100は、光合波器40を希土類添加光ファイバ60の前段に配置した前方励起型のレーザ装置として記載したが、本発明はこれに限られず、光合波器40を希土類添加光ファイバ60の後段に配置した後方励起型のレーザ装置、光合波器40を希土類添加光ファイバ60の前段、後段それぞれに配置した双方向励起型のレーザ装置、またレーザ発振部の後段にそのレーザ発振部から出力されるレーザ光を増幅するための光ファイバアンプとして、光合波器40と希土類添加光ファイバ60とを配置し、さらに光合波器40とマルチモード光ファイバ30で接続された励起レーザ部20を設けた構成を有するMOPAタイプ等、各種の高出力なレーザ光を出力する光源と、そのレーザ光を入力するマルチモード光ファイバとを備えたレーザ装置に適用することができる。
 また、上述した実施の形態において、放熱体は板状部材であり、第1曲げ部は、板状の放熱体に形成された円形の溝により構成されているとしたが、本発明はこれに限られない。図15は、変形例に係る励起レーザ部の放熱部の模式的な構成図である。図15に示すように、放熱部311の放熱体311aは、円筒状部材であり、第1曲げ部311aaは、この円筒の外周により構成されており、マルチモード光ファイバ30-1が円筒状の放熱体311aの外周に巻き付けられる構成であってもよい。さらに、マルチモード光ファイバ30-1は、放熱材311bにより第1曲げ部311aaの外周に固定されている。なお、図15においては、図の煩雑さを避けるため、マルチモード光ファイバ30-1の1本のみを記載しているが、他のマルチモード光ファイバ30-2、30-3が放熱体311aの外周に巻き付けられていてもよい。また、他のマルチモード光ファイバ30-4~12は、他の円筒状の放熱体の外周に巻き付けられていてもよい。このように、第1曲げ部は、マルチモード光ファイバを曲げることができる構成であれば、特にその構造は限定されない。
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明に係るレーザ装置および光ファイバレーザは、高出力のレーザ光を用いる用途に有用である。
 10 基板
 11、311 放熱部
 11a、311a 放熱体
 11aa 溝
 11b、311b 放熱材
 20 励起レーザ部
 21-1~12、101 マルチモード半導体レーザ
 30、30-1~12、102 マルチモード光ファイバ
 30a-1~4、102a 光除去部
 30aa-1~4、102aa,311aa 第1曲げ部
 30b、102b 第2曲げ部
 40 光合波器
 50、70 ダブルクラッド光ファイバ
 50a、70a FBG
 60 希土類添加光ファイバ
 80 融着接続部
 90 シングルモード光ファイバ
 100 レーザ装置
 103 パワーメータ
 201 コア部
 202 クラッド部
 203 被覆部
 R1 第1曲げ半径
 R2 第2曲げ半径
 L1、L2、L3 レーザ光
 LO レーザ発振部

Claims (27)

  1.  マルチモードでレーザ光を出力する複数のマルチモード半導体レーザと、
     前記複数のレーザ光を合波して出力する光合波器と、
     前記複数のマルチモード半導体レーザと前記光合波器とを接続し、コア部と、前記コア部の外周に形成されたクラッド部と、前記クラッド部の外周を覆う被覆部とを備えるマルチモード光ファイバと、
     前記マルチモード光ファイバに形成され、所定の曲げ長さ、かつ、所定の第1曲げ半径で曲げた第1曲げ部と、
     前記第1曲げ部において前記被覆部の外側に形成され前記マルチモード光ファイバの熱を放熱する放熱部と、
     前記第1曲げ部と前記光合波器との間の前記マルチモード光ファイバに形成され、所定の第2曲げ半径で曲げた第2曲げ部と、を備え、
     前記放熱部からの放熱によって、前記第2曲げ部における温度上昇が抑制されることを特徴とするレーザ装置。
  2.  前記第2曲げ部における温度上昇の抑制量が10℃以上であることを特徴とする請求項1に記載のレーザ装置。
  3.  前記第2曲げ半径の変化に対する温度上昇の変化割合が、当該第2曲げ半径を値として含む5mmの範囲内において、30℃/5mm以下に抑制されていることを特徴とする請求項1に記載のレーザ装置。
  4.  前記第2曲げ半径の変化に対する温度上昇の変化割合が、当該第2曲げ半径を値として含む5mmの範囲内において、10℃/5mm以下に抑制されていることを特徴とする請求項3に記載のレーザ装置。
  5.  前記第2曲げ半径の変化に対する温度上昇の変化割合が、当該第2曲げ半径を値として含む5mmの範囲内において、2℃/5mm以上残存していることを特徴とする請求項2または請求項3に記載のレーザ装置。
  6.  前記マルチモード光ファイバの前記第1曲げ部より前記マルチモード半導体レーザ側における最小の曲げ半径をR0、前記第1曲げ半径をR1、前記第2曲げ半径をR2、とすると、R1≦R2<R0が成り立つことを特徴とする請求項1~5のいずれか一つに記載のレーザ装置。
  7.  前記曲げ長さは、π×前記第1曲げ半径以上であることを特徴とする請求項1~6のいずれか一つに記載のレーザ装置。
  8.  前記第1曲げ部における光損失は、0.2dB以下であることを特徴とする請求項1~7のいずれか一つに記載のレーザ装置。
  9.  前記第2曲げ半径は、前記マルチモード光ファイバの規格で定められた許容曲げ半径であることを特徴とする請求項1~8のいずれか一つに記載のレーザ装置。
  10.  マルチモードでレーザ光を出力する複数のマルチモード半導体レーザと、
     前記複数のレーザ光を合波して出力する光合波器と、
     前記複数のマルチモード半導体レーザと前記光合波器とを接続し、コア部と、前記コア部の外周に形成されたクラッド部と、前記クラッド部の外周を覆う被覆部とを備えるマルチモード光ファイバと、
     前記マルチモード光ファイバに形成され、所定の曲げ長さ、かつ、所定の第1曲げ半径で曲げた第1曲げ部と、
     前記第1曲げ部において前記被覆部の外側に形成され前記マルチモード光ファイバの熱を放熱する放熱部と、
     前記第1曲げ部と前記光合波器との間の前記マルチモード光ファイバに形成され、所定の第2曲げ半径で曲げた第2曲げ部と、を備え、
     前記マルチモード光ファイバの前記第1曲げ部より前記マルチモード半導体レーザ側における最小の曲げ半径をR0[mm]、前記第1曲げ半径をR1[mm]、前記第2曲げ半径をR2[mm]、とすると、R1-5[mm]≦R2かつR1<R0が成り立つことを特徴とするレーザ装置。
  11.  R1≦R2かつR1<R0が成り立つことを特徴とする請求項10に記載のレーザ装置。
  12.  R1≦R2<R0が成り立つことを特徴とする請求項11に記載のレーザ装置。
  13.  前記第1曲げ半径は、50mm以下であることを特徴とする請求項10~12のいずれか一つに記載のレーザ装置。
  14.  前記曲げ長さは、πR1以上であることを特徴とする請求項10~13のいずれか一つに記載のレーザ装置。
  15.  前記第1曲げ部において、前記マルチモード半導体レーザから前記マルチモード光ファイバに入力された光のうち、前記コア部を伝搬する高次のコアモードの光が除去されることを特徴とする請求項10~14のいずれか一つに記載のレーザ装置。
  16.  前記第1曲げ部における光損失は、0.2dB以下であることを特徴とする請求項10~15のいずれか一つに記載のレーザ装置。
  17.  前記第2曲げ部において、前記マルチモード光ファイバを伝搬する光の曲げ損失による前記被覆部の加熱、または、損傷が抑制されていることを特徴とする請求項10~16のいずれか一つに記載のレーザ装置。
  18.  前記第2曲げ半径は、前記マルチモード光ファイバの規格で定められた許容曲げ半径であることを特徴とする請求項10~17のいずれか一つに記載のレーザ装置。
  19.  前記被覆部の屈折率は、前記クラッド部の屈折率より高いことを特徴とする請求項10~18のいずれか一つに記載のレーザ装置。
  20.  前記複数のマルチモード半導体レーザのうち、1つ以上のマルチモード半導体レーザの出力する前記レーザ光の光強度は、10W以上であることを特徴とする請求項1~19のいずれか一つに記載のレーザ装置。
  21.  前記光合波器は、光ファイババンドル構造を有することを特徴とする請求項1~20のいずれか一つに記載のレーザ装置。
  22.  前記放熱部は、前記マルチモード光ファイバが前記被覆部の外周に形成された放熱材と、前記放熱材を介して前記マルチモード光ファイバと接する放熱体と、を備えることを特徴とする請求項1~21のいずれか一つに記載のレーザ装置。
  23.  前記放熱材には、樹脂が用いられ、前記放熱材は前記被覆部より屈折率が高いことを特徴とする請求項22に記載のレーザ装置。
  24.  前記放熱材は、シリコーン系の熱伝導性コンパウンドを含むことを特徴とする請求項22に記載のレーザ装置。
  25.  前記放熱体は、熱伝導性を有する板状部材であり、
     前記第1曲げ部は、前記板状の放熱体に形成された円形の溝に配置されることを特徴とする請求項22~24のいずれか一つに記載のレーザ装置。
  26.  前記放熱体は、熱伝導性を有する円筒状部材であり、
     前記第1曲げ部は、前記円筒の外周に巻き付けられることを特徴とする請求項22~24のいずれか一つに記載のレーザ装置。
  27.  請求項1~26のいずれか1つに記載のレーザ装置と、
     前記レーザ装置の出力光を入力される増幅用光ファイバと、
     前記増幅用光ファイバの両端側に配置され、前記増幅用光ファイバで発生した光からレーザ光をレーザ発振させる光共振器を構成する光反射器と、を備えることを特徴とする光ファイバレーザ。
PCT/JP2014/082894 2013-12-11 2014-12-11 レーザ装置、および、光ファイバレーザ WO2015087983A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480066614.8A CN105849987B (zh) 2013-12-11 2014-12-11 激光器装置以及光纤激光器
EP14869283.3A EP3082205B1 (en) 2013-12-11 2014-12-11 Laser device and optical fiber laser
JP2015552519A JP6301959B2 (ja) 2013-12-11 2014-12-11 レーザ装置、および、光ファイバレーザ
US15/175,134 US9690050B2 (en) 2013-12-11 2016-06-07 Laser unit and optical fiber laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-256477 2013-12-11
JP2013256477 2013-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/175,134 Continuation US9690050B2 (en) 2013-12-11 2016-06-07 Laser unit and optical fiber laser

Publications (1)

Publication Number Publication Date
WO2015087983A1 true WO2015087983A1 (ja) 2015-06-18

Family

ID=53371281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082894 WO2015087983A1 (ja) 2013-12-11 2014-12-11 レーザ装置、および、光ファイバレーザ

Country Status (5)

Country Link
US (1) US9690050B2 (ja)
EP (1) EP3082205B1 (ja)
JP (1) JP6301959B2 (ja)
CN (1) CN105849987B (ja)
WO (1) WO2015087983A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019859A (zh) * 2016-07-22 2016-10-12 合肥芯碁微电子装备有限公司 一种用于激光直写曝光机的高功率紫外半导体激光器
JP2017009967A (ja) * 2015-06-26 2017-01-12 三星ダイヤモンド工業株式会社 光ファイバ装置
WO2018207615A1 (ja) * 2017-05-08 2018-11-15 株式会社フジクラ マルチモードファイバ、光増幅器、及びファイバレーザ
JP2020088354A (ja) * 2018-11-30 2020-06-04 ファナック株式会社 光ファイバの設置経路を分散させたレーザ発振器
JP2021129069A (ja) * 2020-02-17 2021-09-02 株式会社フジクラ ファイバレーザ装置及びファイバレーザ装置の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769028A (zh) * 2020-12-28 2021-05-07 北京凯普林光电科技股份有限公司 一种半导体光纤激光器组件和光纤激光器
CN114400498A (zh) * 2022-02-18 2022-04-26 山东华光光电子股份有限公司 一种可提高输出光斑均匀度的半导体激光器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002608A (ja) 2008-06-19 2010-01-07 Mitsubishi Electric Corp レーザ光伝送装置およびそれを備えたファイバレーザ発振器
JP2011035053A (ja) * 2009-07-30 2011-02-17 Aisin Seiki Co Ltd 光ファイバの放熱装置
JP2012074603A (ja) * 2010-09-29 2012-04-12 Furukawa Electric Co Ltd:The 光ファイバレーザモジュール
WO2012132479A1 (ja) * 2011-03-31 2012-10-04 株式会社フジクラ 光デリバリ部品、及び、それを用いたレーザ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066641A1 (ja) * 2005-12-05 2007-06-14 Matsushita Electric Industrial Co., Ltd. レーザ光源装置及び画像表示装置
US7437046B2 (en) * 2007-02-12 2008-10-14 Furukawa Electric North America, Inc. Optical fiber configuration for dissipating stray light
US7809236B2 (en) * 2007-03-27 2010-10-05 Jds Uniphase Corporation Optical fiber holder and heat sink
WO2011109753A1 (en) * 2010-03-05 2011-09-09 TeraDiode, Inc. Wavelength beam combining based pump / pulsed lasers
JPWO2013038794A1 (ja) * 2011-09-12 2015-03-26 古河電気工業株式会社 光ファイバ、光ファイバレーザおよび光ファイバ増幅器、ならびに光ファイバの製造方法
JP5216151B1 (ja) * 2012-03-15 2013-06-19 株式会社フジクラ 光ファイバコンバイナ、及び、それを用いたレーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002608A (ja) 2008-06-19 2010-01-07 Mitsubishi Electric Corp レーザ光伝送装置およびそれを備えたファイバレーザ発振器
JP2011035053A (ja) * 2009-07-30 2011-02-17 Aisin Seiki Co Ltd 光ファイバの放熱装置
JP2012074603A (ja) * 2010-09-29 2012-04-12 Furukawa Electric Co Ltd:The 光ファイバレーザモジュール
WO2012132479A1 (ja) * 2011-03-31 2012-10-04 株式会社フジクラ 光デリバリ部品、及び、それを用いたレーザ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082205A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009967A (ja) * 2015-06-26 2017-01-12 三星ダイヤモンド工業株式会社 光ファイバ装置
CN106019859A (zh) * 2016-07-22 2016-10-12 合肥芯碁微电子装备有限公司 一种用于激光直写曝光机的高功率紫外半导体激光器
WO2018207615A1 (ja) * 2017-05-08 2018-11-15 株式会社フジクラ マルチモードファイバ、光増幅器、及びファイバレーザ
US11114811B2 (en) 2017-05-08 2021-09-07 Fujikura Ltd. Multimode fiber, optical amplifier, and fiber laser
JP2020088354A (ja) * 2018-11-30 2020-06-04 ファナック株式会社 光ファイバの設置経路を分散させたレーザ発振器
JP2021129069A (ja) * 2020-02-17 2021-09-02 株式会社フジクラ ファイバレーザ装置及びファイバレーザ装置の製造方法

Also Published As

Publication number Publication date
CN105849987A (zh) 2016-08-10
JP6301959B2 (ja) 2018-03-28
JPWO2015087983A1 (ja) 2017-03-16
EP3082205A1 (en) 2016-10-19
EP3082205A4 (en) 2017-08-02
US20160291252A1 (en) 2016-10-06
EP3082205B1 (en) 2021-10-13
US9690050B2 (en) 2017-06-27
CN105849987B (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6301959B2 (ja) レーザ装置、および、光ファイバレーザ
JP5621930B2 (ja) ファイバレーザ
JP5260885B2 (ja) 光ファイバの漏洩光処理構造
JP5865413B2 (ja) 高出力光ファイバ部材用エネルギ放散パッケージ及びパッケージング方法
JP4954737B2 (ja) 光増幅システム、これを用いた光ファイバレーザ及び光ファイバ増幅器
US8885993B2 (en) Dual-index optical pump stripper assembly
US20100135339A1 (en) High power fiber laser system with cladding light stripper
CN110418992B (zh) 包层模光除去构造和激光装置
JP5753718B2 (ja) 光デリバリ部品、及び、それを用いたレーザ装置
JP2017208563A (ja) 高パワーで液体冷却された励起光および信号光の結合器
JP6034720B2 (ja) 光増幅部品及びファイバレーザ装置
JP5156385B2 (ja) レーザ光源装置及び画像表示装置
JP7306870B2 (ja) 光結合器および光出力装置
JP2014146732A (ja) 光増幅部品及びファイバレーザ装置
CA2810351C (en) Dual-index optical pump stripper assembly
KR102135943B1 (ko) 광섬유 레이저 장치
JP2018098307A (ja) ファイバレーザ装置
WO2020195411A1 (ja) 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置
WO2019172398A1 (ja) 余剰光除去装置及びファイバレーザ
KR102428105B1 (ko) 고출력 광섬유 레이저용 클래드 모드 스트리퍼 및 그 제작 방법
JP2007123594A (ja) 光ファイバ型光増幅装置及びこれを用いた光ファイバ型レーザ装置
WO2020045569A1 (ja) クラッドモード光除去構造、レーザ装置、及びクラッドモード光除去構造の製造方法
WO2020105553A1 (ja) クラッドモード光除去構造及びレーザ装置
JP2020136525A (ja) 光部品およびレーザ装置
JP2017072665A (ja) ポリマークラッド光ファイバ及びファイバレーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552519

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014869283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869283

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE