WO2015085983A2 - 3d-infiltrationsverfahren - Google Patents
3d-infiltrationsverfahren Download PDFInfo
- Publication number
- WO2015085983A2 WO2015085983A2 PCT/DE2014/000621 DE2014000621W WO2015085983A2 WO 2015085983 A2 WO2015085983 A2 WO 2015085983A2 DE 2014000621 W DE2014000621 W DE 2014000621W WO 2015085983 A2 WO2015085983 A2 WO 2015085983A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- components
- water
- component
- pores
- process step
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/40—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
- B28B7/46—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for humidifying or dehumidifying
- B28B7/465—Applying setting liquid to dry mixtures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/04—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/04—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
- B28B11/045—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers by dipping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/04—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
- B28B11/048—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers by spraying or projecting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/40—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
- B28B7/44—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for treating with gases or degassing, e.g. for de-aerating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/4505—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
- C04B41/4545—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a powdery material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/251—Particles, powder or granules
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/121—Metallic interlayers based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/124—Metallic interlayers based on copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/125—Metallic interlayers based on noble metals, e.g. silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
Definitions
- the invention relates to a method for producing solidified three-dimensional components and to a material system suitable for an SD printing method.
- European Patent EP 0 431 924 B1 describes a method for producing three-dimensional objects from computer data.
- a particulate material is applied in a thin layer on a platform and this selectively printed by means of a print head with a binder material.
- the Parti kel Scheme printed with the binder sticks and solidifies under the influence of the binder and optionally an additional hardener.
- the printed and solidified areas create a three-dimensional object (component, molded body, 3D molded part).
- This object made of solidified particulate material is embedded after its completion in loose Parti kelmaterial and is then freed from it. This is done for example by means of a
- This process can process various particulate materials including, but not limited to, natural biological raw materials, polymeric plastics, metals, ceramics and sands.
- components made by the methods described above have the disadvantage that they have a porous structure and do not form a solid closed body.
- the porosity is caused by the building process and can not be avoided, for example, in the area of cement-bound materials.
- the porosity has not only disadvantages in terms of stability and strength of the components, but also involves numerous disadvantages in the long-term use of such components. In particular, when using such components in the outdoor area long-term durability is not guaranteed and it may come to various factors to material fatigue or damage.
- Cement-based materials are widely used in construction.
- the manufacture of components via SD printing processes is of particular interest in many aspects, such as cost-effectiveness, time savings and the variety of possible design of the components.
- a 3D component has a very large surface area. In the outdoor area, this surface is moistened with water for a long time after rainfall. This circumstance is supported by the fact that the vast majority of the surface inside the component, which dries only slowly even when exposed to sunlight. This fact promotes a growth with mosses and mushrooms, whereby the component is quickly damaged and decomposed.
- the invention relates to a method for producing consolidated 3D components, wherein the component can be produced by known SD printing methods and the method is modified and supplemented in method steps, that material is effectively introduced into the pores of the component and the strength of the Component significantly increased.
- the invention relates to a material system for use in a 3D printing process. In a further aspect, the invention relates to devices which are suitable for carrying out the method.
- the invention relates to components produced by the method according to the invention.
- 3D printing processes are all processes known from the prior art which enable the construction of components in three-dimensional shapes and which are compatible with the process components and devices described, in particular powder-based processes, such as, for example, SLS (US Pat. Selective laser sintering).
- Binder in the sense of the invention for the first method step may be any binder compatible with the layer build-up material, eg water-based binder, organic or inorganic binder, which are known to the person skilled in the art and thus need not be described in detail here Examples are Polyphor B and Polyphor C etc.
- “selective binder application” or “selective binder system application” can be carried out after each particle material application or, depending on the requirements of the molded article and for optimizing the production of moldings, also irregularly, ie nonlinear and parallel after each particle material application.
- “Selective binder application” or “Selective binder system application” can thus be adjusted individually and in the course of the production of moldings.
- “Shaped body” or “component” in the sense of the invention are all three-dimensional objects produced by means of the method according to the invention and / or the device according to the invention, which have a dimensional stability.
- any known 3D printing apparatus can be used which includes the required components.
- Conventional components are coater, construction field, means for moving the building field or other components, metering device and heating means and other components known to those skilled in the art, which are therefore not detailed here.
- particle materials All materials known for powder-based 3D printing, in particular sands, ceramic powders, metal powders, plastics, wood particles, fibrous materials, celluloses and / or lactose powders, can be used as "particle materials.”
- the particle material is preferably a dry, free-flowing and a cohesive cut-resistant Powder.
- a “hydraulically setting binder” is a material system that changes from a water-soluble to a water-insoluble state at a certain water consumption, whereby the water is firmly "incorporated” into the solid material.
- cement in the sense of the invention generally refers to a fine powder that is used in the particle or grains to bond together. The bonding is achieved by crystalline fibers which grow and penetrate from the cement grains when added to water and as it were felted.
- the cement must be “partially” hydrated in the component, which means that little water is applied to the cement during the printing process becomes. This amount is experimentally adapted to the required green strength.
- Green strength is defined in the sense of the invention as strength with which components from the loose powder can be safely unpacked and also in the subsequent processes not or not relevant geometric change.
- the result of the 3D printing process is generally a "porous body.”
- the porosity is not filled up during the printing process because it causes effects (e.g., massive shrinkage) that affect component accuracy.
- the invention relates to a method for producing a component (3D molded body), wherein (a) in a first step by means of powder coater (101), a particle layer is applied to a building platform (102), (b) in a second step by means of binder Dosing device (100) a binder (400) is selectively applied, (c) in a further step, the applied layer or layers by means of heat source (600) subjected to a heat treatment, (d) the building platform (102) is lowered or the powder coater ( 101) and optionally further device components is raised by one layer thickness, steps (a) to (d) are repeated until the component is constructed.
- the invention relates to a method for producing three-dimensional components by means of layer construction technique, wherein in a first method step, material layers of the component or components are applied by known layer construction methods and at least are partially solidified, the solidified areas at least partially have pores, and in a second process step, the component or components are brought into contact with a water-containing medium, and wherein for the construction of the material layers particulate material is used, which consists of a material or contains , which sets or solidifies by the introduction of an aqueous liquid.
- a binder is applied to the material layers on selective areas, and these areas are selectively solidified by application of the binder.
- a water-containing binder may be used or any other binders compatible with the material used for the layer construction.
- Different binder types or binder classes are conceivable, which can then be combined with the second process step.
- a core of the invention is the provision of a porous shaped body of a material having a hydraulically setting binder with a composition which is an incomplete hydration of the binder.
- the molded body has sufficient strength for unpacking after the first manufacturing step.
- the molding according to this invention is treated with a drying-hardening water-based infiltrate and the drying of the infiltrate in the interior is realized via the further water requirement of the hydraulic binder.
- the inventors have now surprisingly found that in systems employing hydraulically setting materials, a synergistic effect can be achieved between particulate material used to build up the layers and an infiltrant which releases water for solidification and / or drying.
- the materials and quantities are selected so that in the 3D printing process in a first process step, the amount of water of the binder is chosen so that that a sufficient basic strength of the molded part is achieved, for example, to unpack this.
- the material and the amount of the material for infiltrating the pores is selected - and in particular its water content - that the material constituting the shaped body has enough water absorption capacity to solidify the infiltrate by water release. At the same time, this amount of water serves precisely to further solidify the particulate material of the molding.
- moldings produced in this way exhibit excellent material properties with respect to e.g. Your strength. Also can be produced with the method according to the invention dimensionally accurate and accurate imaging.
- the construction process is carried out according to the invention and preferably with a water-based pressure medium. This must not have the setting of the hydraulically setting binder obstructing substances.
- the hydraulically setting binder can be adapted in its composition to the requirements of the medium.
- the selective solidification is carried out with insufficient to complete a setting of the hydraulically setting binder amount of water.
- the parts in loose powder are exposed to a rest period. This is necessary to one to achieve suitable green strength.
- the structure changes not only the property of strength during this phase, but also the body becomes water-insoluble.
- the body is unpacked from the particulate material. Then adhering powder quantities are removed. This can be done with a brush. Also proven are blowing off with compressed air and blasting with particulate matter.
- the infiltration is carried out with an infiltrate which sets by drying.
- the body can be brushed or sprayed with water glass, for example.
- a dipping of the component in a bath with the infiltrate is possible. It also several passes are possible.
- aqueous polymer dispersions are also suitable for infiltration.
- the solidification of the infiltrate is generally already during drying. In the case of water glass, both physical solidification and a chemical reaction in the sense of polymerization occur. This process can be additionally supported by heat and air movement from the outside. Likewise, the boundary layer can be influenced by the gasification with CO2. In this way, the chemical reaction of solidification is accelerated.
- the particulate material used to build up the material layers is preferably a hydraulically setting material, preferably a cement or a gypsum. It is possible to use all hydraulically setting materials known to the person skilled in the art which are compatible with one another for the purposes of the invention.
- the water-containing medium is preferably a water glass or a water-based plastic dispersion, preferably an aqueous solution of sodium silicate, potassium silicate or lithium water glass.
- the infiltration may be partial or complete, or may substantially cover only the surface of the pores.
- the water-containing medium coats the component externally and preferably the surfaces of the pores, more preferably it substantially fills the pores.
- the amount of the medium containing the water is selected so that it is sufficient to substantially completely bind and solidify the particulate material used to build up the material layers.
- the medium containing the water may contain further constituents which contribute to advantageous properties of the molded part.
- it contains polymers.
- the mold parts are allowed to rest after the first method step, wherein preferably the components produced in the first method step are paged out for at least 12 hours, preferably 24 hours, before the second method step.
- the hydraulically setting material is adapted to the other material components in quantity, mixing, etc. Preferably, there is an excess of hydraulically setting material in the component (s) before the second process step.
- the water-containing medium can be applied by any suitable means.
- the component (s) are brushed, sprayed or dipped in the medium containing water with a brush.
- further treatment steps or means can be used.
- the component (s) are additionally treated with heat and / or air exchange after the second method step.
- the component or components of a fumigation preferably with CO * , be subjected.
- the method can be designed such that in the second process step, a series of successive steps is carried out with different materials which are suitable for solidifying the particulate material and / or substantially filling the pores.
- the invention preferably relates to a material system which is suitable for producing three-dimensional components by means of layer construction technique, which contains or consists of two components, wherein the first component is a hydraulically hardening material, preferably a cement or a gypsum, and the second component a aqueous material containing or containing this, which is cured by the release of water.
- a hydraulically hardening material preferably a cement or a gypsum
- the second component a aqueous material containing or containing this, which is cured by the release of water.
- the material system according to the invention may contain sand or artificial sands, preferably it contains hollow glass spheres. It may also preferably contain other powdered materials.
- the material system contains a sodium, potassium or lithium water glass.
- it may contain other materials, preferably a polymer dispersion.
- the invention relates to devices which are suitable for carrying out the method according to the invention and to moldings which have been produced by the method.
- Figure 1 Schematic representation of the components of a
- Figure 2 Schematic representation of a porous body with unhydrated or partially hydrated cement particles.
- a particulate material is applied in a thin layer on a building platform.
- the particulate material consists in this preferred embodiment of quartz sand (200) with a center grain of 140 ⁇ . This sand is dried before use until the residual moisture is less than 0.3 wt .-%. This sand mixture is added to a pore space adapted cement grain mixture (201). This cement can be adapted in its reactivity.
- the layer thickness in this process is 0.25mm.
- the cement may be, for example, a calcium aluminate element of the type CA270 from Almatis or an alpha-bond 300 from Almatis.
- the binder liquid contains a silicate to adjust the printability. This is present in an aqueous solution.
- surfactants Surfynol 440 are used to further optimize the liquid for inkjet printheads.
- liquid binder 20 wt .-% liquid binder are added in the construction process based on the amount of particulate material.
- the cement "suffers" from a lack of water and only partially hardens (203). After printing, the building process rests and the molded part rests in the powder for 24 hours. No special measures are taken for ventilation. Due to diffusion effects in the powder surrounding the components, the cement continues to dry out. This, in turn, is useful for partial hydration.
- Adhesions are removed in a first step with a hard brush. Thereafter, the component (103) is gently blasted with sand.
- This part (103) is again dried for 24 hours in a convection oven at 40 ° C. As a result, the residual moisture is further reduced.
- infiltrate (300) can be used for example Kaliwasserglas 28/30. This can be applied by a brush. Penetration behavior can be improved by preheating the mold. Equally well, the component (103) can also be immersed in a bath (301) with the infiltrate, since the partially hydrated cement is not water-soluble.
- the thus treated component (103) is paged out in the air for another day.
- the strength has now increased sharply.
- the drying is done in large part by subsequent hydration of the cement. This process can be accelerated by heat.
- the solidification of the surface can be accelerated by drafts.
- the component (103) is now solidified and compacted. Now more layers of infiltration material can be easily applied for complete sealing or decoration. These can be water glass layers that cure quickly in thin layers. In addition, however, it is also possible to use polymers which have been optimized for outdoor use.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Composite Materials (AREA)
- Civil Engineering (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Herstellen dreidimensionaler Formteile in zwei Verfahrensschritten und Infiltration des Formteils sowie ein Materialsystem.
Description
3D-Infiltrationsverfahren Beschreibung
Die Erfindung betrifft ein Verfahren zum Herstellen verfestigter dreidimensionaler Bauteile sowie ein Materialsystem geeignet für ein SD- Druckverfahren.
In der europäischen Patentschrift EP 0 431 924 Bl wird ein Verfahren zur Herstellung dreidimensionaler Objekte aus Computerdaten beschrieben. Dabei wird ein Partikelmaterial in einer dünnen Schicht auf eine Plattform aufgetragen und dieses selektiv mittels eines Druckkopfes mit einem Bindermaterial bedruckt. Der mit dem Binder bedruckte Parti kelbereich verklebt und verfestigt sich unter dem Einfluss des Binders und gegebenenfalls eines zusätzlichen Härters. Anschließend wir die Plattform um eine Schichtdicke in einen Bauzylinder abgesenkt und mit einer neuen Schicht Partikelmaterial versehen, die ebenfalls, wie oben beschrieben, bedruckt wird. Diese Schritte werden wiederholt, bis eine gewisse, erwünschte Höhe des Objektes erreicht ist. Aus den bedruckten und verfestigten Bereichen entsteht so ein dreidimensionales Objekt (Bauteil, Formkörper, 3D-Formteil).
Dieses aus verfestigtem Partikelmaterial hergestellte Objekt ist nach seiner Fertigstellung in losem Parti kelmaterial eingebettet und wird anschließend davon befreit. Dies erfolgt beispielsweise mittels eines
1
Bestätigungskopiel
Saugers. Übrig bleiben danach die gewünschten Objekte, die dann von Pulveranhaftungen z.B. durch händisches Abbürsten befreit werden.
Das 3D-Drucken auf Basis pulverförmiger Werkstoffe und Eintrag flüssiger Binder ist unter den Schichtbautechniken das schnellste Verfahren.
Mit diesem Verfahren lassen sich verschiedene Partikelmaterialien, dazu zählen - nicht erschöpfend - natürliche biologische Rohstoffe, polymere Kunststoffe, Metalle, Keramiken und Sande, verarbeiten.
Bauteile, die mit den oben beschriebenen Verfahren hergestellt werden, zeigen jedoch den Nachteil, dass sie eine poröse Struktur aufweisen und keinen festen geschlossenen Körper bilden. Die Porosität wird durch den Bauprozess bedingt und ist beispielsweise im Bereich der zementgebundenen Werkstoffe nicht zu vermeiden. Die Porosität hat nicht n ur Nachteile hinsichtlich der Stabilität und Festigkeit der Bauteile, sondern birgt auch zahlreiche Nachteile bei der Langzeitverwendung derartiger Bauteile. Insbesondere beim Einsatz solcher Bauteile im im Außenbereich ist eine Langzeithaltbarkeit nicht gewährleistet und es kann durch verschiedene Einflüsse zu Materialermüdungen bzw. Beschädigungen kommen.
Zementbasierte Werkstoffe sind im Bauwesen weit verbreitet. Auf diesem technischen Gebiet ist die Herstellung von Bauteilen über SD- Druckverfahren unter zahlreichen Aspekten wie Wirtschaftlichkeit, Zeitersparnis und der Vielfalt der möglichen Formgebung der Bauteile besonders interessant.
Allerdings ist der Einsatz von mit 3D-Druckverfahren hergestellten Bauteilen in vielen Bereichen problematisch, da aufgrund der Porosität der Bauteile Probleme bei der Langzeitverbauung zu erwarten sind und nachgewiesener Maßen auftreten.
Zum einen kann in den mit 3D-Druckverfahren hergestellten Bauteilen Frostsprengung auftreten und so die Bauteile beschädigen oder zerstören. Eindringendes Wasser erzeugt beim Frieren im Winter hohe Druckkräfte und sprengt das 3D-Zementbauteil auseinander. Somit würde ein SD- gedrucktes Bauteil in Gegenden mit einer Frostperiode kein Jahr überdauern.
Zum Zweiten weist ein 3D-Bauteil aufgrund seiner Porosität eine sehr große Oberfläche auf. Diese Oberfläche ist im Außenbereich nach Regenfällen lange mit Wasser benetzt. Dieser Umstand wird gefördert durch die Tatsache, dass der überwiegende Teil der Oberfläche im Inneren des Bauteils, der somit selbst bei Sonneneinstrahlung nur langsam abtrocknet. Dieser Umstand fördert einen Bewuchs mit Moosen und Pilzen, wodurch das Bauteil schnell geschädigt und zersetzt wird.
Ferner haben mit der 3D-Drucktechnik hergestellte Bauteile aufgrund ihrer Porosität im Vergleich zu konventionell gegossenen Bauteilen eine niedrigere Festigkeit. Damit ist aufgrund der verminderten Festigkeit eine Grenze hinsichtlich deren Einsatz im Bauwesen gesetzt und ihr Einsatz an und für sich schon problematisch. Selbst Bauteile mit niedriger Beanspruchung müssen gewissen sicherheitstechnischen Anforderungen genügen, was mit 3D-Druckbauteilen nicht gesichert ist.
Nach dem Stand der Technik sind Methoden bekannt, die Festigkeit von 3D-gedruckten Bauteilen zu steigern. Dabei werden Polymere verwendet, die in das poröse Bauteil einsickern und dort verfestigen.
Diese Polymere können die Festigkeit von 3D-Bauteilen steigern. Das Auftragen einer Zwei-Komponenten-Mischung ist allerdings aufwändig und im 3D-Druckbereich und mit diesen Verfahren hergestellten Bauteilen nicht praktikabel. Ein automatisiertes Verfahren zur Verfestigung derart hergestellter Bauteile ist nach dem Stand der Technik nicht bekannt.
Eine weitere bekannte Methode zum Verfestigen von 3D-Bauteilen ist diese mit anorganischen Bindemitteln zu infiltrieren. Die Bindemittel müssen aber zur Verfestigung abtrocknen. Da sich meist auf der Oberfläche eine verfestigte Haut bildet ist der Verfestigungsvorgang oft verzögert bzw. es kommt in keiner „endlichen" Zeitspanne zu einer Verfestigung.
Gleiches gilt für Polymerdispersionen. Hier ist der Effekt der„Hautbildung" besonders ausgeprägt und damit nachteilig für deren Anwendung. Die ungünstigen Trockenzeiten hier sind ebenso sehr hinderlich.
Es besteht somit schon lange das Bedürfnis für ein einfaches, wirtschaftliches und gegebenenfalls automatisierbares Verfahren zur Verfestigung von 3D-Druckbauteilen.
Es ist daher eine Aufgabe der Erfindung ein Verfahren zur Verfestigung bereitzustellen oder zumindest ein Verfahren, das die Nachteile des Standes der Technik vermeidet oder zumindest teilweise vermeidet.
Kurze Beschreibung der Erfindung
In einem Aspekt betrifft die Erfindung ein Verfahren zum Herstellen verfestigter 3D-Bauteile, wobei das Bauteil mit bekannten SD- Druckverfahren hergestellt werden können und das Verfahren so modifiziert und in Verfahrensschritten ergänzt wird, dass Material wirksam in die Poren des Bauteils eingebracht und die Festigkeit des Bauteil deutlich erhöht.
In einem weiteren Aspekt betrifft die Erfindung ein Materialsystem zur Verwendung in einem 3D-Druckverfahren.
In einem weiteren Aspekt betrifft die Erfindung Vorrichtungen, die zum Durchführen des Verfahrens geeignet sind.
In einem weiteren Aspekt betrifft die Erfindung mit dem erfindungsgemäßen Verfahren hergestellte Bauteile.
Ausführliche Beschreibung der Erfindung
Im Folgenden werden einige Begriffe der Erfindung näher erläutert, die im Kontext der Erfindung wie im Folgenden verstanden werden sollen.
Im Sinne der Erfindung sind„3D-Druckverfahren" alle aus dem Stand der Technik bekannten Verfahren, die den Aufbau von Bauteilen in dreidimensionalen Formen ermöglichen und mit den beschriebenen Verfahrenskomponenten und Vorrichtungen kompatibel sind. Insbesondere sind dies Pulver-basierte Verfahren, wie beispielsweise SLS (Selective Laser Sintering).
„Binder" im Sinne der Erfindung für den ersten Verfahrensschritt kann jeder mit dem Schichtaufbaumaterial kompatibler Binder sein, z.B. wasserbasierter Binder, organischer oder anorganischer Binder sein, die dem Fachmann bekannt sind und somit hier nicht im Detail beschrieben werden müssen. Beispiele sind Polyphor B und Polyphor C etc.
„Selektiver Binderauftrag" oder„Selektiver Bindersystemauftrag" kann im Sinne der Erfindung nach jedem Partikelmaterialauftrag erfolgen oder je nach den Erfordernissen des Formkörpers und zur Optimierung der Formkörperherstellung auch unregelmäßig erfolgen, d.h. nicht linear und parallel nach jedem Partikelmaterialauftrag. „Selektiver Binderauftrag" oder „Selektiver Bindersystemauftrag" kann somit individuell und im Verlauf der Formkörperherstellung eingestellt werden.
„Formkörper" oder„Bauteil" im Sinne der Erfindung sind alles mittels des erfindungsgemäßen Verfahrens oder/und der erfindungsgemäßen Vorrichtung hergestellte dreidimensionale Objekte, die eine Formfestigkeit aufweisen.
Als „Vorrichtung" zum Durchführen des erfindungsgemäßen Verfahrens kann jede bekannte 3D-Druckvorrichtung verwendet werden, die die erforderlichen Komponenten beinhaltet. Übliche Komponenten sind Beschichter, Baufeld, Mittel zum Verfahren des Baufeldes oder anderer Bauteile, Dosiervorrichtung und Wärmemittel und andere dem Fachmann bekannte Bauteile, die deshalb hier nicht näher ausgeführt werden.
Als„Partikelmaterialien" können alle für den Pulver-basierten 3D Druck bekannten Materialien verwendet werden, insbesondere Sande, Keramikpulver, Metallpulver, Kunststoffe, Holzpartikel, Faserwerkstoffe, Cellulosen oder/und Lactosepulver. Das Partikelmaterial ist vorzugsweise ein trocken, frei fließendes und ein kohäsives schnittfestes Pulver.
Ein„hydraulisch abbindendes Bindemittel" stellt ein Materialsystem dar, das bei einem gewissen Wasserverbrauch von einem wasserlöslichen in einen wasserunlöslichen Zustand übergeht. Dabei wird das Wasser in den festen Werkstoff fest„eingebaut".
„Zement" im Sinne der Erfindung bezeichnet im Allgemeinen ein feines Pulver, das benutzt wird im Partikel oder Körner miteinander zu verkleben. Das Verkleben kommt durch kristalline Fasern zustande, die bei Wasserzugabe aus den Zementkörnern wachsen und sich durchdringen und dabei gewissermaßen verfilzen.
Der Zement muss im Bauteil „teilweise" hydratisiert vorliegen. Das bedeutet, dass beim Druckprozess wenig Wasser auf den Zement gegeben
wird. Diese Menge wird experimentell an die erforderliche Grünfestigkeit angepasst.
„Grünfestigkeit" wird im Sinne der Erfindung definiert als Festigkeit mit der Bauteile aus dem losen Pulver sicher entpackt werden können und sich auch in den Folgeprozessen nicht oder nicht relevant geometrisch verändern.
Ergebnis des 3D-Druckprozesses ist im Allgemeinen ein„poröser Körper". Die Porosität wird in vielen Fällen nicht während des Druckprozesses aufgefüllt, da hierdurch Effekte (z.B. massiver Schwund) auftreten, die die Genauigkeit der Bauteile beeinflussen.
Im Weiteren wird die Erfindung sowie deren bevorzugte Ausführungsformen genauer dargestellt.
Im allgemeinen betrifft die Erfindung ein Verfahren zum Herstellen eines Bauteils (3D-Formkörper), wobei (a) in einem ersten Schritt mittels Pulverbeschichter (101) eine Partikelschicht auf eine Bauplattform (102) aufgebracht wird, (b) in einem zweiten Schritt mittels Binder- Dosiervorrichtung (100) ein Binder (400) selektiv aufgetragen wird, (c) in einem weiteren Schritt die aufgebrachte Schicht oder Schichten mittels Wärmequelle (600) einer Wärmebehandlung unterzogen werden, (d) die Bauplattform (102) abgesenkt wird oder der Pulverbeschichter (101) und gegebenenfalls weitere Vorrichtungsbauteile um eine Schichtdicke angehoben wird, Schritte (a) bis (d) wiederholt werden bis das Bauteil aufgebaut ist.
Insbesondere betrifft die Erfindung ein Verfahren zum Herstellen dreidimensionaler Bauteile mittels Schichtaufbautechnik, wobei in einem ersten Verfahrensschritt Materialschichten des oder der Bauteile mit bekannten Schichtaufbauverfahren aufgetragen werden und zumindest
teilweise verfestigt werden, die verfestigten Bereiche zumindest teilweise Poren aufweisen, und in einem zweiten Verfahrensschritt das oder die Bauteile mit einem Wasser enthaltenden Medium in Kontakt gebracht werden, und wobei zum Aufbauen der Materialschichten partikuläres Material verwendet wird, das aus einem Material besteht oder es enthält, welches durch Eintrag einer wässrigen Flüssigkeit abbindet oder verfestigt.
Vorzugsweise wird auf die Materialschichten auf selektive Bereiche ein Binder aufgetragen und diese Bereiche werden durch das Auftragen des Binders selektiv verfestigt. Dabei kann ein Wasser enthaltender Binder verwendet werden oder jeglicher anderer mit dem verwendeten Material für den Schichtaufbau kompatibler Binder. Dabei sind verschiedene Bindertypen oder Binderklassen denkbar, die dann mit dem zweiten Verfahrensschritt kombinierbar sind.
Ein Kern der Erfindung ist dabei die Bereitstellung eines porösen Formkörpers aus einem Werkstoff mit hydraulisch abbindendem Bindemittel mit einer Zusammensetzung, die eine unvollständige Hydratation des Bindemittels darstellt. Der Formkörper weist nach dem ersten Herstellungsschritt eine zum Entpacken ausreichende Festigkeit auf. Im Anschluss wird der Formkörper gemäß dieser Erfindung mit einem durch Trocknung härtenden, wasserbasierten Infiltrat behandelt und die Trocknung des Infiltrats im Inneren über den weiteren Wasserbedarf des hydraulischen Bindemittels realisiert.
Die Erfinder haben nun überraschender Weise gefunden, dass in Systemen, die hydraulisch abbindende Werkstoffe verwenden, ein synergistischer Effekt zwischen Partikelmaterial, das zum Aufbau der Schichten verwendet wird, und einem Infiltrat erreicht werden kann, das zum Verfestigen oder/und Trocknen Wasser abgibt. Dabei werden die Materialien und Mengen so gewählt, dass im 3D-Druckprozess in einem ersten Verfahrensschritt die Wassermenge des Binders so gewählt wird,
dass eine ausreichende Grundfestigkeit des Formteils erreicht wird, um dieses z.B. zu entpacken. Andererseits wird das Material und die Menge des Materials zum Infiltrieren der Poren so ausgewählt - und insbesondere dessen Wassergehalt - , dass das den Formkörper aufbauende Material genug Wasseraufnahmekapazität aufweist, um das Infiltrat zu verfestigen durch Wasserabgabe. Gleichzeitig dient diese Wassermenge genau dazu, um das Partikelmaterial des Formkörpers weiter zu verfestige.
Es war überraschend, dass ein Verfahren und ein Materialsystem bereitgestellt werden konnte, das so kombiniert werden kann, dass sich die Wasserabgabe und Wasseraufnahmekapazitäten derart entsprechen, dass es in beiden Materialtypen zu einer vorteilhaften Verfestigung kommen kann.
Darüber hinaus zeigen derart hergestellt Formteile vorzügliche Materialeigenschaften hinsichtlich z.B. Ihrer Festigkeit. Auch können mit dem erfindungsgemäßen Verfahren formgenaue und abbildungsgenaue Formteile hergestellt werden.
Der Bauprozess wird erfindungsgemäß und vorzugsweise mit einem wasserbasiertem Druckmedium durchgeführt. Dieses darf keine die Abbindung des hydraulisch abbindenden Bindemittels behindernde Substanzen aufweisen. Das hydraulisch abbindende Bindemittel kann in seiner Zusammensetzung an die Erfordernisse des Mediums angepasst werden.
Die selektive Verfestigung wird mit einer zu einer vollständigen Abbindung des hydraulisch abbindenden Bindemittels nicht ausreichenden Wassermenge durchgeführt.
Im Anschluss an den Druckprozess werden die im losen Pulver befindlichen Teile einer Ruhezeit ausgesetzt. Diese ist notwendig, um eine
geeignete Grünfestigkeit zu erreichen. Der Baukörper ändert während dieser Phase nicht nur die Eigenschaft Festigkeit, sondern der Körper wird zudem wasserunlöslich.
Im Anschluss an die Ruhezeit wird der Körper aus dem Parti kelmaterial entpackt. Daraufhin werden anhaftende Pulvermengen entfernt. Dies kann mit einer Bürste erfolgen. Ebenso bewährt sind das Abblasen mit Druckluft und das Strahlen mit Partikelmaterial.
Hierauf kann sich eine weitere Trocknungsphase anschließen. Dabei wird noch verbleibendes Restwasser ausgetrieben, damit es nicht zur Hydratisierung zur Verfügung steht.
Nach dem Trocknen des Bauteils erfolgt die Infiltration mit einem durch Trocknung abbindenden Infiltrat. Hierzu kann der Körper beispielsweise mit Wasserglas bepinselt oder besprüht werden. Ebenso ist ein Tauchen des Bauteil in ein Bad mit dem Infiltrat möglich. Dabei sind auch mehrere Durchgänge möglich. Für die Infiltration eigenen sich ebenso bevorzugt wässrige Polymerdispersionen.
Überraschender Weise wurde entdeckt, dass sich durch einen Überschuss an nicht hydratisiertem Zement der Trocknungsprozess maßgeblich beeinflussen lässt. Körper die vollständig abgebunden sind, zeigen ein wesentlich langsameres Abtrocknen.
Die Verfestigung des Infiltrates erfolgt im Allgemeinen schon beim Abtrocknen. Bei Wasserglas tritt sowohl eine physikalische Verfestigung als auch eine chemische Reaktion im Sinne einer Polymerisation auf. Dieser Prozess kann zusätzlich durch Wärme und Luftbewegung von außen unterstützt werden.
Ebenso kann die Randschicht durch das begasen mit CO2 beeinflusst werden. Auf diese Weise wird die chemische Reaktion der Verfestigung beschleunigt.
Weitere bevorzugte Ausführungsformen der Erfindung sind wie folgt:
In dem erfindungsgemäßen Verfahren ist vorzugsweise das zum Aufbauen der Materialschichten verwendete partikuläre Material ein hydraulisch abbindendes Material, vorzugsweise ein Zement oder ein Gips. Es können alle dem Fachmann bekannten hydraulisch abbindenden Materialien verwendet werden, die im Sinne der Erfindung miteinander kompatibel sind.
Das Wasser enthaltende Medium ist vorzugsweise ein Wasserglas oder eine wasserbasierte Kunststoffdispersion, vorzugsweise eine wässrige Lösung von Natronwasserglas, Kaliwasserglas oder Lithiumwasserglas.
Die Infiltration kann teilweise oder vollständig erfolgen, oder nur die Oberfläche der Poren im wesentlichen bedecken. Vorzugsweise beschichtet das Wasser enthaltende Medium das Bauteil außen und vorzugsweise die Oberflächen der Poren, mehr bevorzugt füllt es die Poren im Wesentlichen aus.
Dabei wird die Menge des das Wasser enthaltende Medium so ausgewählt, dass diese ausreicht, um das zum Aufbauen der Materialschichten verwendete partikuläre Material im wesentlichen vollständig abzubinden und zu verfestigen.
Es können mit dem erfindungsgemäßen Verfahren Formteile hergestellt werden, die einen unterschiedlichen Grad der Festigkeit und Löslichkeit aufweisen, vorzugsweise sind die Formteile und das sie aufbauende
11
partikuläre Material nach dem Abbinden im wesentlichen nicht mehr wasserlöslich.
Weiterhin kann das das Wasser enthaltende Medium weitere Bestandteile enthalten, die zu vorteilhaften Eigenschaften des Formteils beitragen. Vorzugsweise enthält es Polymere.
Es kann sich ein weitere oder alternativer Verfahrensschritt anschließen, wobei das oder die Bauteile mit einem weiteren Material oder Materialgemisch behandelt werden, um die Poren im wesentlichen auszufüllen.
Vorzugsweise lässt man die Formteile nach dem ersten Verfahrensschritt ruhen, wobei vorzugsweise die in dem ersten Verfahrensschritt hergestellten Bauteile vor dem zweiten Verfahrensschritt mindestens 12 Stunden lang, vorzugsweise 24 Stunden lang, ausgelagert werden.
Das hydraulisch abbindende Material wird an die anderen Materialkomponenten angepasst in Menge, Zusammenmischung, etc. Vorzugsweise liegt ein Überschuss an hydraulisch abbindendem Material in dem oder den Bauteilen vor dem zweiten Verfahrensschritt vor.
Das Wasser enthaltende Medium kann mit allen geeigneten Mitteln aufgebracht werden. Vorzugsweise werden das oder die Bauteile mit einem Pinsel mit dem Wasser enthaltenden Medium eingestrichen, besprüht oder in dieses eingetaucht.
Es können vorzugsweise weitere Behandlungsschritte oder Mittel angewendet werden. Vorzugsweise werden das oder die Bauteile nach dem zweiten Verfahrensschritt zusätzlich mit Wärme und/oder Luftwechsel behandelt. Außerdem kann das oder die Bauteile einer Begasung, vorzugsweise mit CO* , unterzogen werden.
Das Verfahren kann so gestaltet werden, dass im zweiten Verfahrenschritt eine Reihe von aufeinander folgenden Schritten mit unterschiedlichen Materialien erfolgt, die geeignet sind, das partikuläre Material zu verfestigen oder/und die Poren im wesentlichen auszufüllen.
Weiterhin betrifft die Erfindung vorzugsweise ein Materialsystem, das geeignet ist zur Herstellen dreidimensionaler Bauteile mittels Schichtaufbautechnik, das zwei Komponenten enthält oder aus diesen besteht, wobei die erste Komponente ein hydraulisch härtendes Material ist, vorzugsweise ein Zement oder ein Gips, und die zweite Komponente ein eine wässrige Lösung enthaltendes Material ist oder dieses enthält, welches durch Abgabe von Wasser gehärtet wird.
Das erfindungsgemäße Materialsystem kann Sand oder künstliche Sande enthalten, vorzugsweise enthält es Hohlglaskugeln. Es kann auch vorzugsweise weitere pulverförmige Materialien enthalten.
Vorzugsweise enthält das Materialsystem ein Natrium-, Kalium- oder Lithiumwasserglas.
Weiterhin kann es weitere Materialien enthalten, vorzugsweise eine Polymerdispersion.
Weiterhin betrifft die Erfindung Vorrichtungen, die geeignet sind, das erfindungsgemäße Verfahren auszuführen sowie Formteile, die mit dem Verfahren hergestellt wurden.
Kurze Beschreibung der Figuren:
Figur 1: Schematische Darstellung der Komponenten eines
pulverbasierten 3D-Druckers als geschnittener Schrägriss.
Figur 2: Schematische Darstellung eines porösen Körpers mit nicht oder nur teilweise hydratisierten Zementpartikeln.
Figur 3: Tauchbad mit Wasserglas
Weitere Details und eine bespielhafte bevorzugte Ausführungsform des Verfahrens werden im Folgenden ausgeführt.
Beispiel
Herstellen eines Formteils mit dem erfindunasaemäßen Verfahren
Im ersten Schritt wird ein Partikelmaterial in einer dünnen Schicht auf eine Bauplattform aufgetragen. Das Partikelmaterial besteht in dieser bevorzugten Ausführungsform aus Quarzsand (200) mit einem Mittelkorn von 140μηι. Dieser Sand wird vor der Anwendung getrocknet bis die Restfeuchte weniger als 0,3 Gew.-% beträgt. Diesem Sandgemisch wird eine dem Porenraum angepasste Zementkornmischung (201) beigegeben. Dieser Zement kann in seiner Reaktionsfähigkeit angepasst werden. Die Schichtstärke bei diesem Prozess beträgt 0,25mm.
Zur Modifikation der Fließfähigkeit des Partikelgemisches wird zusätzlich ein Anteil von 0,5 Gew-%. pyrogene Kieselsäure beigegeben. Der Zement kann beispielweise ein Calziumaluminatzement des Typs CA270 von Almatis oder ein alpha-Bond 300 von Almatis sein.
Die Bindeflüssigkeit enthält ein Silikat, um die Verdruckbarkeit einzustellen. Dieses ist in einer wässrigen Lösung vorliegend. Zusätzlich werden Tenside Surfynol 440 genutzt, um die Flüssigkeit für Tintenstrahldruckköpfe weiter zu optimieren.
Insgesamt werden im Bauprozess bezogen auf die Partikelmaterialmenge 20 Gew.-% Flüssigbinder zugesetzt. Der Zement „leidet" an Wassermangel und härtet (203) dadurch nur partiell aus.
Nach dem Drucken ruht der Bauprozess und das Formteil ruht 24 Std. im Pulver. Dabei werden keine besonderen Maßnahmen zur Belüftung getroffen. Aufgrund von Diffusionseffekten in das die Bauteile umgebende Pulver trocknet der Zement weiter ab. Dies ist wiederum nützlich für die teilweise Hydratation.
Das Auspacken muss vorsichtig erfolgen, da der Baukörper nur die Grünfestigkeit aufweist. Anhaftungen werden in einem ersten Schritt mit einer harten Bürste entfernt. Danach wird das Bauteil (103) mit Sand vorsichtig gestrahlt.
Dieses Teil (103) wird wiederum 24 Std. in einem Umluftofen bei 40°C getrocknet. Dadurch wird die Restfeuchte weiter gesenkt.
Nach diesem Schritt erfolgt die Infiltration. Als Infiltrat (300) kann beispielsweise Kaliwasserglas 28/30 verwendet werden. Dies kann durch einen Pinsel aufgebracht werden. Das Eindringverhalten kann durch ein Vorwärmen der Form verbessert werden. Ebenso gut kann das Bauteil (103) aber auch in ein Bad (301) mit dem Infiltrat getaucht werden, da der teilhydratisierte Zement nicht wasserlöslich ist.
Dieser Vorgang wird direkt so oft wiederholt, bis das Infiltrat wieder aus dem Bauteil (103) tritt. Dadurch kann die festigkeitssteigernde Wirkung verstärkt werden.
Das so behandelte Bauteil (103) wird einen weiteren Tag an der Luft ausgelagert. Die Festigkeit ist jetzt stark angestiegen. Die Trocknung ist zum großen Teil durch nachträgliches Hydratisieren des Zementes erfolgt. Dieser Prozess kann durch Wärme beschleunigt werden. Die Verfestigung der Oberfläche kann durch Luftzug beschleunigt werden.
Erfindungsgemäß ist das Bauteil (103) jetzt verfestigt und verdichtet. Jetzt können in einfacher Weise weitere Schichten mit Infiltrationsmaterial zur vollständigen Abdichtung oder Dekoration aufgebracht werden. Dies können Wasserglasschichten sein, die in dünnen Schichten rasch aushärten. Zudem können aber auch Polymere verwendet werden, die für den Außenbereich optimiert sind.
Bezugszeichenliste
100 Binder-Dosiervorrichtung
101 Pulverbeschichter
102 Bau Plattform
103 Bauteil (3D Formteil)
104 Baufeldberandung
107 Pulverschichten
200 Sandpartikel
201 Zement nicht hydratisiert
202 hydratisierter Zement
203 verfestigter Bereich
300 Tauchbad
301 Infiltrat
Claims
1. Verfahren zum Herstellen dreidimensionaler Bauteile mittels Schichtaufbautechnik, wobei in einem ersten Verfahrensschritt Materialschichten des oder der Bauteile mit bekannten Schichtaufbauverfahren aufgetragen werden und zumindest teilweise verfestigt werden, die verfestigten Bereiche zumindest teilweise Poren aufweisen, und in einem zweiten Verfahrensschritt das oder die Bauteile mit einem Wasser enthaltenden Medium in Kontakt gebracht werden, wobei zum Aufbauen der Materialschichten partikuläres Material verwendet wird, das aus einem Material besteht oder es enthält, welches durch Eintrag einer wässrigen Flüssigkeit abbindet oder verfestigt.
2. Verfahren nach Anspruch 1, wobei das zum Aufbauen der Materialschichten verwendete partikuläre Material ein hydraulisch abbindendes Material, vorzugsweise ein Zement oder ein Gips, ist, vorzugsweise wobei das Wasser enthaltende Medium ein Wasserglas oder eine wasserbasierte Kunststoffdispersion ist, vorzugsweise eine wässrige Lösung von Natronwasserglas, Kaliwasserglas oder Lithiumwasserglas,
vorzugsweise wobei das Wasser enthaltende Medium das Bauteil außen und vorzugsweise die Oberflächen der Poren, beschichtet und vorzugsweise die Poren im Wesentlichen ausfüllt, vorzugsweise wobei die Menge des das Wasser enthaltende Medium so ausgewählt wird, dass diese ausreicht, um das zum Aufbauen der Materialschichten
verwendete partikuläre Material im wesentlichen vollständig abzubinden und zu verfestigen, vorzugsweise
wobei das partikuläre Material nach dem Abbinden im wesentlichen nicht mehr wasserlöslich ist, vorzugsweise
wobei das Wasser enthaltende Medium weitere Bestandteile, vorzugsweise Polymere enthält.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei in einem weiteren Verfahrensschritt das oder die Bauteile mit einem weiteren Material oder Materialgemisch behandelt werden, um die Poren im wesentlichen auszufüllen.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das oder die in dem ersten Verfahrensschritt hergestellten Bauteile vor dem zweiten Verfahrensschritt mindestens 12 Stunden, vorzugsweise 24 Stunden, lang ausgelagert werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein Überschuss an hydraulisch abbindendem Material in dem oder den Bauteilen vor dem zweiten Verfahrensschritt vorliegt.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der oder die Bauteile mit einem Pinsel mit dem Wasser enthaltenden Medium eingestrichen, besprüht oder in dieses eingetaucht werden, vorzugsweise wobei das oder die Bauteile nach dem zweiten Verfahrensschritt zusätzlich mit Wärme und/oder Luftwechsel behandelt werden, vorzugsweise wobei das oder die Bauteile einer Begasung mit COz unterzogen werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im zweiten Verfahrenschritt eine Reihe von aufeinander folgenden Schritten mit unterschiedlichen Materialien
erfolgt, die geeignet sind das partikuläre Material zu verfestigen oder/und die Poren im wesentlichen auszufüllen.
8. Materialsystem geeignet zur Herstellen dreidimensionaler Bauteile mittels Schichtaufbautechnik, das zwei Komponenten enthält oder aus diesen besteht, wobei die erste Komponente ein hydraulisch härtendes Material ist, vorzugsweise ein Zement oder ein Gips, und die zweite Komponente ein eine wässrige Lösung enthaltendes Material ist oder dieses enthält, welches durch Abgabe von Wasser gehärtet wird.
9. Materialsystem nach Anspruch 8, dadurch gekennzeichnet, dass es Sand oder künstliche Sande enthält, vorzugsweise
dadurch gekennzeichnet, dass es Hohlglaskugeln enthält, vorzugsweise dadurch gekennzeichnet, dass es weitere pulverförmige Materialien enthält, vorzugsweise Sand, Quarzsand, Gesteinsmehl oder andere anorganische Materialien, vorzugsweise
dadurch gekennzeichnet, dass es ein Natrium-, Kalium- oder Lithiumwasserglas enthält, vorzugsweise
dadurch gekennzeichnet, dass es eine Polymerdispersion enthält.
10. Formteil hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14843222.2A EP3079871B1 (de) | 2013-12-11 | 2014-12-05 | 3d-infiltrationsverfahren |
US15/100,775 US9943981B2 (en) | 2013-12-11 | 2014-12-05 | 3D infiltration method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013020491.7 | 2013-12-11 | ||
DE102013020491.7A DE102013020491A1 (de) | 2013-12-11 | 2013-12-11 | 3D-Infiltrationsverfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2015085983A2 true WO2015085983A2 (de) | 2015-06-18 |
WO2015085983A3 WO2015085983A3 (de) | 2015-08-06 |
Family
ID=52648774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2014/000621 WO2015085983A2 (de) | 2013-12-11 | 2014-12-05 | 3d-infiltrationsverfahren |
Country Status (4)
Country | Link |
---|---|
US (1) | US9943981B2 (de) |
EP (1) | EP3079871B1 (de) |
DE (1) | DE102013020491A1 (de) |
WO (1) | WO2015085983A2 (de) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170106595A1 (en) * | 2014-03-31 | 2017-04-20 | Voxeljet Ag | Method and device for 3d printing using temperature-controlled processing |
US9649812B2 (en) | 2011-01-05 | 2017-05-16 | Voxeljet Ag | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US9878494B2 (en) | 2011-08-31 | 2018-01-30 | Voxeljet Ag | Device for constructing models in layers |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9925721B2 (en) | 2010-02-04 | 2018-03-27 | Voxeljet Ag | Device for producing three-dimensional models |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10786945B2 (en) | 2013-10-30 | 2020-09-29 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007050953A1 (de) | 2007-10-23 | 2009-04-30 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
WO2015069849A1 (en) * | 2013-11-06 | 2015-05-14 | Rutgers, The State University Of New Jersey | Production of monolithic bodies from a porous matrix using low temperature solidification in an additive manufacturing process |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
DE102015011503A1 (de) | 2015-09-09 | 2017-03-09 | Voxeljet Ag | Verfahren zum Auftragen von Fluiden |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
WO2017105463A1 (en) * | 2015-12-17 | 2017-06-22 | Stewart Walter Mark | Toilet paper roll repairer |
WO2017140281A1 (zh) * | 2016-02-19 | 2017-08-24 | 珠海天威飞马打印耗材有限公司 | 金属三维打印机及其打印方法、三维打印材料 |
DE102016002777A1 (de) | 2016-03-09 | 2017-09-14 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen |
US10773456B2 (en) | 2016-09-22 | 2020-09-15 | Freshmade 3D, LLC | Process for strengthening porous 3D printed objects |
DE102016013610A1 (de) | 2016-11-15 | 2018-05-17 | Voxeljet Ag | Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken |
JP6961972B2 (ja) * | 2017-03-24 | 2021-11-05 | 富士フイルムビジネスイノベーション株式会社 | 立体形状成形装置、情報処理装置及びプログラム |
DE102017006860A1 (de) | 2017-07-21 | 2019-01-24 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler |
AT520756B1 (de) * | 2017-12-06 | 2019-07-15 | Montanuniv Leoben | Verfahren zum herstellen einer multimaterial-bauteilverbindung und die multimaterial-bauteilverbindung |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
DE102018006473A1 (de) | 2018-08-16 | 2020-02-20 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung |
WO2020160057A1 (en) * | 2019-01-28 | 2020-08-06 | Impossible Objects Llc | Three-dimensional printed composites using substrates with sodium silicate binder |
DE102019000796A1 (de) | 2019-02-05 | 2020-08-06 | Voxeljet Ag | Wechselbare Prozesseinheit |
AU2020289129A1 (en) * | 2019-06-04 | 2022-01-06 | A&S Business Group Pty Ltd | Materials and processes for manufacturing carbon composite articles by three-dimensional printing |
CN110759726B (zh) * | 2019-10-25 | 2020-11-27 | 北京科技大学 | 一种3d打印制备多孔陶瓷支架表面涂层的方法 |
DE102019007595A1 (de) | 2019-11-01 | 2021-05-06 | Voxeljet Ag | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat |
WO2021212110A1 (en) | 2020-04-17 | 2021-10-21 | Eagle Engineered Solutions, Inc. | Powder spreading apparatus and system |
US11633799B2 (en) * | 2020-10-01 | 2023-04-25 | Hamilton Sundstrand Corporation | Control assembly fabrication via brazing |
US12053822B2 (en) * | 2021-01-05 | 2024-08-06 | GE Precision Healthcare LLC | System and method for mitigating metal particle leakage from additive three-dimensional printed parts |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0431924B1 (de) | 1989-12-08 | 1996-01-31 | Massachusetts Institute Of Technology | Dreidimensionale Drucktechniken |
Family Cites Families (325)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2261344C3 (de) | 1972-12-15 | 1979-05-31 | Karl Becker Kg Maschinenfabrik, 3525 Oberweser | Vorrichtung zum Ablegen von körnigem Saatgut im Erdreich in Verbindung mit Einzelkornsämaschinen |
US4247508B1 (en) | 1979-12-03 | 1996-10-01 | Dtm Corp | Molding process |
US4591402A (en) | 1981-06-22 | 1986-05-27 | Ltv Aerospace And Defense Company | Apparatus and method for manufacturing composite structures |
FR2511149A1 (fr) | 1981-08-04 | 1983-02-11 | Roussel Uclaf | Dispositif et procede de dosage de quantites predeterminees d'au moins un produit |
US4711669A (en) | 1985-11-05 | 1987-12-08 | American Cyanamid Company | Method of manufacturing a bonded particulate article by reacting a hydrolyzed amylaceous product and a heterocyclic compound |
DE3221357A1 (de) | 1982-06-05 | 1983-12-08 | Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg | Verfahren zur herstellung von formen und kernen fuer giesszwecke |
JPS60180643A (ja) | 1984-02-29 | 1985-09-14 | Nissan Motor Co Ltd | 鋳物砂用粘結剤に用いる崩壊助剤 |
US4665492A (en) | 1984-07-02 | 1987-05-12 | Masters William E | Computer automated manufacturing process and system |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
JPS62275734A (ja) | 1986-05-26 | 1987-11-30 | Tokieda Naomitsu | 立体形成方法 |
US5263130A (en) | 1986-06-03 | 1993-11-16 | Cubital Ltd. | Three dimensional modelling apparatus |
IL84936A (en) | 1987-12-23 | 1997-02-18 | Cubital Ltd | Three-dimensional modelling apparatus |
US4752352A (en) | 1986-06-06 | 1988-06-21 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US4863538A (en) | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US4944817A (en) | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
DE3751819T2 (de) | 1986-10-17 | 1996-09-26 | Univ Texas | Verfahren und Vorrichtung zur Herstellung von gesinterten Formkörpern durch Teilsinterung |
US5076869A (en) | 1986-10-17 | 1991-12-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5017753A (en) | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5155324A (en) | 1986-10-17 | 1992-10-13 | Deckard Carl R | Method for selective laser sintering with layerwise cross-scanning |
US5147587A (en) | 1986-10-17 | 1992-09-15 | Board Of Regents, The University Of Texas System | Method of producing parts and molds using composite ceramic powders |
US5296062A (en) | 1986-10-17 | 1994-03-22 | The Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US4752498A (en) | 1987-03-02 | 1988-06-21 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US5047182A (en) | 1987-11-25 | 1991-09-10 | Ceramics Process Systems Corporation | Complex ceramic and metallic shaped by low pressure forming and sublimative drying |
US5772947A (en) | 1988-04-18 | 1998-06-30 | 3D Systems Inc | Stereolithographic curl reduction |
CA1337955C (en) | 1988-09-26 | 1996-01-23 | Thomas A. Almquist | Recoating of stereolithographic layers |
AU4504089A (en) | 1988-10-05 | 1990-05-01 | Michael Feygin | An improved apparatus and method for forming an integral object from laminations |
US5637175A (en) | 1988-10-05 | 1997-06-10 | Helisys Corporation | Apparatus for forming an integral object from laminations |
GB2233928B (en) | 1989-05-23 | 1992-12-23 | Brother Ind Ltd | Apparatus and method for forming three-dimensional article |
JP2738017B2 (ja) | 1989-05-23 | 1998-04-08 | ブラザー工業株式会社 | 三次元成形装置 |
US5248456A (en) | 1989-06-12 | 1993-09-28 | 3D Systems, Inc. | Method and apparatus for cleaning stereolithographically produced objects |
US5134569A (en) | 1989-06-26 | 1992-07-28 | Masters William E | System and method for computer automated manufacturing using fluent material |
US5216616A (en) | 1989-06-26 | 1993-06-01 | Masters William E | System and method for computer automated manufacture with reduced object shape distortion |
JPH0336019A (ja) | 1989-07-03 | 1991-02-15 | Brother Ind Ltd | 三次元成形方法およびその装置 |
US5156697A (en) | 1989-09-05 | 1992-10-20 | Board Of Regents, The University Of Texas System | Selective laser sintering of parts by compound formation of precursor powders |
US5182170A (en) | 1989-09-05 | 1993-01-26 | Board Of Regents, The University Of Texas System | Method of producing parts by selective beam interaction of powder with gas phase reactant |
US5053090A (en) | 1989-09-05 | 1991-10-01 | Board Of Regents, The University Of Texas System | Selective laser sintering with assisted powder handling |
US5431967A (en) | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
US5284695A (en) | 1989-09-05 | 1994-02-08 | Board Of Regents, The University Of Texas System | Method of producing high-temperature parts by way of low-temperature sintering |
AU643700B2 (en) | 1989-09-05 | 1993-11-25 | University Of Texas System, The | Multiple material systems and assisted powder handling for selective beam sintering |
DE3930750A1 (de) | 1989-09-14 | 1991-03-28 | Krupp Medizintechnik | Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse |
US5136515A (en) | 1989-11-07 | 1992-08-04 | Richard Helinski | Method and means for constructing three-dimensional articles by particle deposition |
US5387380A (en) | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
DE3942859A1 (de) | 1989-12-23 | 1991-07-04 | Basf Ag | Verfahren zur herstellung von bauteilen |
GB9007199D0 (en) | 1990-03-30 | 1990-05-30 | Tioxide Group Plc | Preparation of polymeric particles |
US5127037A (en) | 1990-08-15 | 1992-06-30 | Bynum David K | Apparatus for forming a three-dimensional reproduction of an object from laminations |
US5126529A (en) | 1990-12-03 | 1992-06-30 | Weiss Lee E | Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition |
DE4102260A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung beliebig geformter koerper |
US5506607A (en) | 1991-01-25 | 1996-04-09 | Sanders Prototypes Inc. | 3-D model maker |
US5740051A (en) | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
US6175422B1 (en) | 1991-01-31 | 2001-01-16 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
JP3104307B2 (ja) | 1991-06-28 | 2000-10-30 | ソニー株式会社 | グラビア印刷用版材 |
US5252264A (en) | 1991-11-08 | 1993-10-12 | Dtm Corporation | Apparatus and method for producing parts with multi-directional powder delivery |
US5269982A (en) | 1992-02-12 | 1993-12-14 | Brotz Gregory R | Process for manufacturing a shaped product |
IT1254974B (it) | 1992-06-18 | 1995-10-11 | Bayer Italia Spa | Granulati compositi, scorrevoli,idrofobi,un procedimento per la loro preparazione nonche' loro impiego |
US5342919A (en) | 1992-11-23 | 1994-08-30 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5352405A (en) | 1992-12-18 | 1994-10-04 | Dtm Corporation | Thermal control of selective laser sintering via control of the laser scan |
DE4300478C2 (de) | 1993-01-11 | 1998-05-20 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US6146567A (en) | 1993-02-18 | 2000-11-14 | Massachusetts Institute Of Technology | Three dimensional printing methods |
DE4305201C1 (de) | 1993-02-19 | 1994-04-07 | Eos Electro Optical Syst | Verfahren zum Herstellen eines dreidimensionalen Objekts |
US5433261A (en) | 1993-04-30 | 1995-07-18 | Lanxide Technology Company, Lp | Methods for fabricating shapes by use of organometallic, ceramic precursor binders |
US5427722A (en) | 1993-06-11 | 1995-06-27 | General Motors Corporation | Pressure slip casting process for making hollow-shaped ceramics |
DE4325573C2 (de) | 1993-07-30 | 1998-09-03 | Stephan Herrmann | Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung |
US5398193B1 (en) | 1993-08-20 | 1997-09-16 | Alfredo O Deangelis | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5490962A (en) | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US5518680A (en) | 1993-10-18 | 1996-05-21 | Massachusetts Institute Of Technology | Tissue regeneration matrices by solid free form fabrication techniques |
US5418112A (en) | 1993-11-10 | 1995-05-23 | W. R. Grace & Co.-Conn. | Photosensitive compositions useful in three-dimensional part-building and having improved photospeed |
DE4400523C2 (de) | 1994-01-11 | 1996-07-11 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US5518060A (en) | 1994-01-25 | 1996-05-21 | Brunswick Corporation | Method of producing polymeric patterns for use in evaporable foam casting |
DE4440397C2 (de) | 1994-11-11 | 2001-04-26 | Eos Electro Optical Syst | Verfahren zum Herstellen von Gußformen |
US6155331A (en) | 1994-05-27 | 2000-12-05 | Eos Gmbh Electro Optical Systems | Method for use in casting technology |
US5503785A (en) | 1994-06-02 | 1996-04-02 | Stratasys, Inc. | Process of support removal for fused deposition modeling |
US6048954A (en) | 1994-07-22 | 2000-04-11 | The University Of Texas System Board Of Regents | Binder compositions for laser sintering processes |
US5639402A (en) | 1994-08-08 | 1997-06-17 | Barlow; Joel W. | Method for fabricating artificial bone implant green parts |
US5616631A (en) | 1994-08-17 | 1997-04-01 | Kao Corporation | Binder composition for mold making, binder/curing agent composition for mold making, sand composition for mold making, and process of making mold |
US5555176A (en) | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
US5717599A (en) | 1994-10-19 | 1998-02-10 | Bpm Technology, Inc. | Apparatus and method for dispensing build material to make a three-dimensional article |
US5482659A (en) | 1994-12-22 | 1996-01-09 | United Technologies Corporation | Method of post processing stereolithographically produced objects |
GB9501987D0 (en) | 1995-02-01 | 1995-03-22 | Butterworth Steven | Dissolved medium rendered resin (DMRR) processing |
BR9607005A (pt) | 1995-02-01 | 1997-10-28 | 3D Systems Inc | Revestímento rápido de objetos tridimensionais formados em uma base transversal seccional |
US5573721A (en) | 1995-02-16 | 1996-11-12 | Hercules Incorporated | Use of a support liquid to manufacture three-dimensional objects |
DE19511772C2 (de) | 1995-03-30 | 1997-09-04 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
DE29506204U1 (de) | 1995-04-10 | 1995-06-01 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE19514740C1 (de) | 1995-04-21 | 1996-04-11 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
DE19515165C2 (de) | 1995-04-25 | 1997-03-06 | Eos Electro Optical Syst | Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie |
DE19525307C2 (de) | 1995-07-12 | 2003-04-03 | Eichenauer Gmbh & Co Kg F | Formmasse zur Herstellung von Gießkernen und Verfahren zur Herstellung eines Gießkerns |
DE19528215A1 (de) | 1995-08-01 | 1997-02-06 | Thomas Dipl Ing Himmer | Verfahren zur Herstellung von dreidimensionalen Modellen und Formen |
DE19530295C1 (de) | 1995-08-11 | 1997-01-30 | Eos Electro Optical Syst | Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern |
US5837960A (en) | 1995-08-14 | 1998-11-17 | The Regents Of The University Of California | Laser production of articles from powders |
DE69628348T2 (de) | 1995-09-27 | 2004-06-09 | 3D Systems, Inc., Valencia | Verfahren und Vorrichtung zur Datenveränderung und Systemsteuerung bei einer Modelliervorrichtung durch selektive Materialablagerung |
US6305769B1 (en) | 1995-09-27 | 2001-10-23 | 3D Systems, Inc. | Selective deposition modeling system and method |
US5943235A (en) | 1995-09-27 | 1999-08-24 | 3D Systems, Inc. | Rapid prototyping system and method with support region data processing |
US6270335B2 (en) | 1995-09-27 | 2001-08-07 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
US5749041A (en) | 1995-10-13 | 1998-05-05 | Dtm Corporation | Method of forming three-dimensional articles using thermosetting materials |
DE19545167A1 (de) | 1995-12-04 | 1997-06-05 | Bayerische Motoren Werke Ag | Verfahren zum Herstellen von Bauteilen oder Werkzeugen |
US5660621A (en) | 1995-12-29 | 1997-08-26 | Massachusetts Institute Of Technology | Binder composition for use in three dimensional printing |
US6210625B1 (en) | 1996-02-20 | 2001-04-03 | Mikuni Corporation | Method for producing granulated material |
ATE220958T1 (de) | 1996-03-06 | 2002-08-15 | Guild Ass Inc | Vorrichtung zum herstellen eines dreidimensionalen körpers |
US5747105A (en) | 1996-04-30 | 1998-05-05 | Owens Corning Fiberglas Technology Inc. | Traversing nozzle for applying granules to an asphalt coated sheet |
US6596224B1 (en) | 1996-05-24 | 2003-07-22 | Massachusetts Institute Of Technology | Jetting layers of powder and the formation of fine powder beds thereby |
GB9611582D0 (en) | 1996-06-04 | 1996-08-07 | Thin Film Technology Consultan | 3D printing and forming of structures |
US6316060B1 (en) | 1996-08-20 | 2001-11-13 | Pacifica Papers Inc. | Metering coatings |
US5902441A (en) | 1996-09-04 | 1999-05-11 | Z Corporation | Method of three dimensional printing |
US7332537B2 (en) | 1996-09-04 | 2008-02-19 | Z Corporation | Three dimensional printing material system and method |
US6989115B2 (en) | 1996-12-20 | 2006-01-24 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US7037382B2 (en) | 1996-12-20 | 2006-05-02 | Z Corporation | Three-dimensional printer |
US6007318A (en) | 1996-12-20 | 1999-12-28 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
DE29701279U1 (de) | 1997-01-27 | 1997-05-22 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element |
EP1015153A4 (de) | 1997-03-31 | 2004-09-01 | Therics Inc | Verfahren zur verteilung von pulvern |
US5940674A (en) | 1997-04-09 | 1999-08-17 | Massachusetts Institute Of Technology | Three-dimensional product manufacture using masks |
DE19715582B4 (de) | 1997-04-15 | 2009-02-12 | Ederer, Ingo, Dr. | Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten |
NL1006059C2 (nl) | 1997-05-14 | 1998-11-17 | Geest Adrianus F Van Der | Werkwijze en inrichting voor het vervaardigen van een vormlichaam. |
US5997795A (en) | 1997-05-29 | 1999-12-07 | Rutgers, The State University | Processes for forming photonic bandgap structures |
DE19723892C1 (de) | 1997-06-06 | 1998-09-03 | Rainer Hoechsmann | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
DE19726778A1 (de) | 1997-06-24 | 1999-01-14 | Cerdec Ag | Verfahren zur Herstellung keramischer und glasiger Beschichtungen, elektrostatisch applizierbares Beschichtungspulver hierfür und seine Verwendung |
EP0970764B1 (de) | 1998-01-29 | 2009-03-18 | Amino Corporation | Vorrichtung zum herstellen von plattenmaterial |
DE19805437A1 (de) | 1998-02-11 | 1999-08-12 | Bosch Gmbh Robert | Dosiervorrichtung für rieselfähiges Schüttgut |
US6355196B1 (en) | 1998-03-16 | 2002-03-12 | Vantico Inc. | Process for producing direct tooling mold and method for using the same |
US5989476A (en) | 1998-06-12 | 1999-11-23 | 3D Systems, Inc. | Process of making a molded refractory article |
JP3518726B2 (ja) | 1998-07-13 | 2004-04-12 | トヨタ自動車株式会社 | 積層造形方法及び積層造形用レジン被覆砂 |
US6476122B1 (en) | 1998-08-20 | 2002-11-05 | Vantico Inc. | Selective deposition modeling material |
DE19846478C5 (de) | 1998-10-09 | 2004-10-14 | Eos Gmbh Electro Optical Systems | Laser-Sintermaschine |
US20030114936A1 (en) | 1998-10-12 | 2003-06-19 | Therics, Inc. | Complex three-dimensional composite scaffold resistant to delimination |
DE19853834A1 (de) | 1998-11-21 | 2000-05-31 | Ingo Ederer | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
JP2000211918A (ja) | 1999-01-20 | 2000-08-02 | Yazaki Corp | 軽量アルミナ粒子の製造方法 |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
FR2790418B1 (fr) | 1999-03-01 | 2001-05-11 | Optoform Sarl Procedes De Prot | Procede de prototypage rapide permettant l'utilisation de materiaux pateux, et dispositif pour sa mise en oeuvre |
DE19911399C2 (de) | 1999-03-15 | 2001-03-01 | Joachim Heinzl | Verfahren zum Ansteuern eines Piezo-Druckkopfes und nach diesem Verfahren angesteuerter Piezo-Druckkopf |
TW554348B (en) | 1999-05-13 | 2003-09-21 | Shinetsu Chemical Co | Conductive powder and making process |
US6405095B1 (en) | 1999-05-25 | 2002-06-11 | Nanotek Instruments, Inc. | Rapid prototyping and tooling system |
US6165406A (en) | 1999-05-27 | 2000-12-26 | Nanotek Instruments, Inc. | 3-D color model making apparatus and process |
DE19928245B4 (de) | 1999-06-21 | 2006-02-09 | Eos Gmbh Electro Optical Systems | Einrichtung zum Zuführen von Pulver für eine Lasersintereinrichtung |
US6722872B1 (en) | 1999-06-23 | 2004-04-20 | Stratasys, Inc. | High temperature modeling apparatus |
US6401001B1 (en) | 1999-07-22 | 2002-06-04 | Nanotek Instruments, Inc. | Layer manufacturing using deposition of fused droplets |
US6972115B1 (en) | 1999-09-03 | 2005-12-06 | American Inter-Metallics, Inc. | Apparatus and methods for the production of powders |
US6658314B1 (en) | 1999-10-06 | 2003-12-02 | Objet Geometries Ltd. | System and method for three dimensional model printing |
DE19948591A1 (de) | 1999-10-08 | 2001-04-19 | Generis Gmbh | Rapid-Prototyping - Verfahren und - Vorrichtung |
WO2001034371A2 (en) | 1999-11-05 | 2001-05-17 | Z Corporation | Material systems and methods of three-dimensional printing |
EP1415792B1 (de) | 1999-11-05 | 2014-04-30 | 3D Systems Incorporated | Verfahren und Zusammenstellungen für dreidimensionales Drucken |
US6395811B1 (en) | 1999-11-11 | 2002-05-28 | 3D Systems, Inc. | Phase change solid imaging material |
US6133353A (en) | 1999-11-11 | 2000-10-17 | 3D Systems, Inc. | Phase change solid imaging material |
GB9927127D0 (en) | 1999-11-16 | 2000-01-12 | Univ Warwick | A method of manufacturing an item and apparatus for manufacturing an item |
DE19957370C2 (de) | 1999-11-29 | 2002-03-07 | Carl Johannes Fruth | Verfahren und Vorrichtung zum Beschichten eines Substrates |
FR2802128B1 (fr) | 1999-12-10 | 2002-02-08 | Ecole Nale Sup Artes Metiers | Dispositif de depose de couches minces de matiere en poudre ou pulverulente et procede adapte |
TWI228114B (en) | 1999-12-24 | 2005-02-21 | Nat Science Council | Method and equipment for making ceramic work piece |
DE19963948A1 (de) | 1999-12-31 | 2001-07-26 | Zsolt Herbak | Verfahren zum Modellbau |
US7300619B2 (en) | 2000-03-13 | 2007-11-27 | Objet Geometries Ltd. | Compositions and methods for use in three dimensional model printing |
WO2001072502A1 (en) | 2000-03-24 | 2001-10-04 | Generis Gmbh | Method for manufacturing a structural part by deposition technique |
US20010050031A1 (en) | 2000-04-14 | 2001-12-13 | Z Corporation | Compositions for three-dimensional printing of solid objects |
KR100838878B1 (ko) | 2000-04-14 | 2008-06-16 | 제트 코포레이션 | 입체물의 삼차원 인쇄용 조성물 |
JP2001334583A (ja) | 2000-05-25 | 2001-12-04 | Minolta Co Ltd | 三次元造形装置 |
DE10026955A1 (de) | 2000-05-30 | 2001-12-13 | Daimler Chrysler Ag | Materialsystem zur Verwendung beim 3D-Drucken |
SE520565C2 (sv) | 2000-06-16 | 2003-07-29 | Ivf Industriforskning Och Utve | Sätt och apparat vid framställning av föremål genom FFF |
US6619882B2 (en) | 2000-07-10 | 2003-09-16 | Rh Group Llc | Method and apparatus for sealing cracks in roads |
US6500378B1 (en) | 2000-07-13 | 2002-12-31 | Eom Technologies, L.L.C. | Method and apparatus for creating three-dimensional objects by cross-sectional lithography |
WO2002026419A1 (de) | 2000-09-25 | 2002-04-04 | Generis Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE10047614C2 (de) | 2000-09-26 | 2003-03-27 | Generis Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE10047615A1 (de) | 2000-09-26 | 2002-04-25 | Generis Gmbh | Wechselbehälter |
DE10049043A1 (de) | 2000-10-04 | 2002-05-02 | Generis Gmbh | Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern |
DE10053741C1 (de) | 2000-10-30 | 2002-02-21 | Concept Laser Gmbh | Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung |
US20020111707A1 (en) | 2000-12-20 | 2002-08-15 | Zhimin Li | Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers |
US20020090410A1 (en) | 2001-01-11 | 2002-07-11 | Shigeaki Tochimoto | Powder material removing apparatus and three dimensional modeling system |
DE20122639U1 (de) | 2001-02-07 | 2006-11-16 | Eos Gmbh Electro Optical Systems | Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US6896839B2 (en) | 2001-02-07 | 2005-05-24 | Minolta Co., Ltd. | Three-dimensional molding apparatus and three-dimensional molding method |
DE10105504A1 (de) | 2001-02-07 | 2002-08-14 | Eos Electro Optical Syst | Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts |
GB0103752D0 (en) | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-Dimensional printing |
GB0103754D0 (en) | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-dimensional structured printing |
US6939489B2 (en) | 2001-03-23 | 2005-09-06 | Ivoclar Vivadent Ag | Desktop process for producing dental products by means of 3-dimensional plotting |
DE10117875C1 (de) | 2001-04-10 | 2003-01-30 | Generis Gmbh | Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung |
WO2002083194A1 (en) | 2001-04-12 | 2002-10-24 | Therics, Inc. | Method and apparatus for engineered regenerative biostructures |
US20020155254A1 (en) | 2001-04-20 | 2002-10-24 | Mcquate William M. | Apparatus and method for placing particles in a pattern onto a substrate |
US6616030B2 (en) | 2001-05-07 | 2003-09-09 | West Bond, Inc. | Gantry mounted ultrasonic wire bonder with orbital bonding tool head |
GB0112675D0 (en) | 2001-05-24 | 2001-07-18 | Vantico Ltd | Three-dimensional structured printing |
DE10128664A1 (de) | 2001-06-15 | 2003-01-30 | Univ Clausthal Tech | Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern |
JP2003052804A (ja) | 2001-08-09 | 2003-02-25 | Ichiro Ono | インプラントの製造方法およびインプラント |
US6841116B2 (en) | 2001-10-03 | 2005-01-11 | 3D Systems, Inc. | Selective deposition modeling with curable phase change materials |
JP2003136605A (ja) | 2001-11-06 | 2003-05-14 | Toshiba Corp | 製品の作成方法及びその製品 |
GB2382798A (en) | 2001-12-04 | 2003-06-11 | Qinetiq Ltd | Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon |
SE523394C2 (sv) | 2001-12-13 | 2004-04-13 | Fcubic Ab | Anordning och förfarande för upptäckt och kompensering av fel vid skiktvis framställning av en produkt |
US7005293B2 (en) | 2001-12-18 | 2006-02-28 | Agilent Technologies, Inc. | Multiple axis printhead adjuster for non-contact fluid deposition devices |
US6713125B1 (en) | 2002-03-13 | 2004-03-30 | 3D Systems, Inc. | Infiltration of three-dimensional objects formed by solid freeform fabrication |
DE10216013B4 (de) | 2002-04-11 | 2006-12-28 | Generis Gmbh | Verfahren und Vorrichtung zum Auftragen von Fluiden |
DE10222167A1 (de) | 2002-05-20 | 2003-12-04 | Generis Gmbh | Vorrichtung zum Zuführen von Fluiden |
DE10224981B4 (de) | 2002-06-05 | 2004-08-19 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
DE10227224B4 (de) | 2002-06-18 | 2005-11-24 | Daimlerchrysler Ag | Verwendung eines Granulates zum Herstellen eines Gegenstandes mit einem 3D-Binderdruck-Verfahren |
WO2003106148A1 (de) | 2002-06-18 | 2003-12-24 | Daimlerchrysler Ag | Partikel und verfahren für die herstellung eines dreidimensionalen gegenstandes |
JP2005536324A (ja) | 2002-06-18 | 2005-12-02 | ダイムラークライスラー・アクチェンゲゼルシャフト | 処理精度を増大させたレーザ焼結法、及びその方法に用いられる粒子 |
US6986654B2 (en) | 2002-07-03 | 2006-01-17 | Therics, Inc. | Apparatus, systems and methods for use in three-dimensional printing |
DE10235434A1 (de) | 2002-08-02 | 2004-02-12 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens |
US6722822B2 (en) | 2002-08-20 | 2004-04-20 | The Young Industries, Inc. | System for pneumatically conveying bulk particulate materials |
US20040038009A1 (en) | 2002-08-21 | 2004-02-26 | Leyden Richard Noel | Water-based material systems and methods for 3D printing |
JP4069245B2 (ja) | 2002-08-27 | 2008-04-02 | 富田製薬株式会社 | 造形法 |
US7087109B2 (en) | 2002-09-25 | 2006-08-08 | Z Corporation | Three dimensional printing material system and method |
US20040112523A1 (en) | 2002-10-15 | 2004-06-17 | Crom Elden Wendell | Three dimensional printing from two dimensional printing devices |
US20040084814A1 (en) | 2002-10-31 | 2004-05-06 | Boyd Melissa D. | Powder removal system for three-dimensional object fabricator |
US6742456B1 (en) | 2002-11-14 | 2004-06-01 | Hewlett-Packard Development Company, L.P. | Rapid prototyping material systems |
US7153454B2 (en) | 2003-01-21 | 2006-12-26 | University Of Southern California | Multi-nozzle assembly for extrusion of wall |
US7497977B2 (en) | 2003-01-29 | 2009-03-03 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer |
US7722802B2 (en) | 2003-02-18 | 2010-05-25 | Daimler Ag | Coated powder particles for producing three-dimensional bodies by means of a layer constituting method |
DE602004023667D1 (de) | 2003-03-10 | 2009-12-03 | Kuraray Co | Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff |
JP2004321332A (ja) | 2003-04-22 | 2004-11-18 | Kohjin Co Ltd | 消臭機能を有する材料及びその製造方法 |
CN100553949C (zh) | 2003-05-21 | 2009-10-28 | Z公司 | 用于来自三维印刷系统的外观模具的热塑性粉末物料体系 |
WO2004106041A2 (en) | 2003-05-23 | 2004-12-09 | Z Corporation | Apparatus and methods for 3d printing |
US7435072B2 (en) | 2003-06-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication |
US7807077B2 (en) | 2003-06-16 | 2010-10-05 | Voxeljet Technology Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
DE10327272A1 (de) | 2003-06-17 | 2005-03-03 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
US20050012247A1 (en) | 2003-07-18 | 2005-01-20 | Laura Kramer | Systems and methods for using multi-part curable materials |
US7120512B2 (en) | 2003-08-25 | 2006-10-10 | Hewlett-Packard Development Company, L.P. | Method and a system for solid freeform fabricating using non-reactive powder |
US20050074511A1 (en) | 2003-10-03 | 2005-04-07 | Christopher Oriakhi | Solid free-form fabrication of solid three-dimesional objects |
US7220380B2 (en) | 2003-10-14 | 2007-05-22 | Hewlett-Packard Development Company, L.P. | System and method for fabricating a three-dimensional metal object using solid free-form fabrication |
US7455805B2 (en) | 2003-10-28 | 2008-11-25 | Hewlett-Packard Development Company, L.P. | Resin-modified inorganic phosphate cement for solid freeform fabrication |
US7348075B2 (en) | 2003-10-28 | 2008-03-25 | Hewlett-Packard Development Company, L.P. | System and method for fabricating three-dimensional objects using solid free-form fabrication |
US7381360B2 (en) | 2003-11-03 | 2008-06-03 | Hewlett-Packard Development Company, L.P. | Solid free-form fabrication of three-dimensional objects |
FR2865960B1 (fr) | 2004-02-06 | 2006-05-05 | Nicolas Marsac | Procede et machine pour realiser des objets en trois dimensions par depot de couches successives |
CA2496931A1 (en) | 2004-02-11 | 2005-08-11 | Kris Wallgren | Low profile mixing plant for particulate materials |
US7608672B2 (en) | 2004-02-12 | 2009-10-27 | Illinois Tool Works Inc. | Infiltrant system for rapid prototyping process |
DE102004008168B4 (de) | 2004-02-19 | 2015-12-10 | Voxeljet Ag | Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung |
DE102004014806B4 (de) | 2004-03-24 | 2006-09-14 | Daimlerchrysler Ag | Rapid-Technologie-Bauteil |
US7435763B2 (en) | 2004-04-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Solid freeform compositions, methods of application thereof, and systems for use thereof |
US20050280185A1 (en) * | 2004-04-02 | 2005-12-22 | Z Corporation | Methods and apparatus for 3D printing |
DE102004020452A1 (de) | 2004-04-27 | 2005-12-01 | Degussa Ag | Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren |
DE102004025374A1 (de) | 2004-05-24 | 2006-02-09 | Technische Universität Berlin | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels |
US7331948B2 (en) | 2004-06-18 | 2008-02-19 | Medtronic, Inc. | Catheter and catheter fabrication method |
US7387359B2 (en) | 2004-09-21 | 2008-06-17 | Z Corporation | Apparatus and methods for servicing 3D printers |
JP4635618B2 (ja) | 2005-01-19 | 2011-02-23 | セイコーエプソン株式会社 | 充填方法、及び液体吐出装置 |
ITMI20050459A1 (it) | 2005-03-21 | 2006-09-22 | Montangero & Montangero S R L | Dispositivo di movimentazione al suolo di un corpo |
US7357629B2 (en) | 2005-03-23 | 2008-04-15 | 3D Systems, Inc. | Apparatus and method for aligning a removable build chamber within a process chamber |
US20060257579A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Use of a salt of a poly-acid to delay setting in cement slurry |
DE102005022308B4 (de) | 2005-05-13 | 2007-03-22 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial |
US20060254467A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Method for making spray-dried cement particles |
WO2007024856A2 (en) | 2005-08-23 | 2007-03-01 | Valspar Sourcing, Inc. | Infiltrated articles prepared by laser sintering method and method of manufacturing the same |
JP2007062334A (ja) | 2005-09-02 | 2007-03-15 | Fujifilm Corp | セルロースアシレート樹脂フィルム及びその製造方法 |
DE102006040305A1 (de) | 2005-09-20 | 2007-03-29 | Daimlerchrysler Ag | Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand |
US20080241404A1 (en) | 2005-09-20 | 2008-10-02 | Sandrine Allaman | Apparatus for Building a Three-Dimensional Article and a Method for Building a Three-Dimensional Article |
US7296990B2 (en) | 2005-10-14 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Systems and methods of solid freeform fabrication with translating powder bins |
DE102005056260B4 (de) | 2005-11-25 | 2008-12-18 | Prometal Rct Gmbh | Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material |
US20070126157A1 (en) | 2005-12-02 | 2007-06-07 | Z Corporation | Apparatus and methods for removing printed articles from a 3-D printer |
EP1974838A4 (de) | 2005-12-27 | 2010-11-17 | Tomita Pharma | Verfahren zur herstellung eines musters |
US7621474B2 (en) | 2006-03-14 | 2009-11-24 | National Gypsum Properties, Llc | Method and apparatus for calcining gypsum |
KR101537494B1 (ko) | 2006-05-26 | 2015-07-16 | 3디 시스템즈 인코오퍼레이티드 | 3d 프린터 내에서 재료를 처리하기 위한 인쇄 헤드 및 장치 및 방법 |
DE102006029298B4 (de) | 2006-06-23 | 2008-11-06 | Stiftung Caesar Center Of Advanced European Studies And Research | Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung |
DE102006030350A1 (de) | 2006-06-30 | 2008-01-03 | Voxeljet Technology Gmbh | Verfahren zum Aufbauen eines Schichtenkörpers |
US20080018018A1 (en) | 2006-07-20 | 2008-01-24 | Nielsen Jeffrey A | Solid freeform fabrication methods and systems |
WO2008013483A1 (en) | 2006-07-27 | 2008-01-31 | Arcam Ab | Method and device for producing three-dimensional objects |
DE102006038858A1 (de) | 2006-08-20 | 2008-02-21 | Voxeljet Technology Gmbh | Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen |
DE202006016477U1 (de) | 2006-10-24 | 2006-12-21 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE102006053121B3 (de) | 2006-11-10 | 2007-12-27 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial |
DE102006055326A1 (de) | 2006-11-23 | 2008-05-29 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen |
JP5189598B2 (ja) | 2006-12-08 | 2013-04-24 | スリーディー システムズ インコーポレーテッド | 過酸化物硬化を用いた三次元印刷材料系および方法 |
ATE465014T1 (de) | 2006-12-21 | 2010-05-15 | Agfa Graphics Nv | Tintenstrahldruckverfahren und tintensätze |
EP2109528B1 (de) | 2007-01-10 | 2017-03-15 | 3D Systems Incorporated | Dreidimensionales druckmaterialsystem mit verbesserter farb- und geräteleistung sowie erhöhter bedienerfreundlichkeit und verfahren zu dessen benutzung |
JP4869155B2 (ja) | 2007-05-30 | 2012-02-08 | 株式会社東芝 | 物品の製造方法 |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
DE102007033434A1 (de) | 2007-07-18 | 2009-01-22 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Bauteile |
US20100279007A1 (en) | 2007-08-14 | 2010-11-04 | The Penn State Research Foundation | 3-D Printing of near net shape products |
DE102007040755A1 (de) | 2007-08-28 | 2009-03-05 | Jens Jacob | Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern |
ITPI20070108A1 (it) | 2007-09-17 | 2009-03-18 | Enrico Dini | Metodo perfezionato per la realizzazione automatica di strutture di conglomerato |
DE102007047326B4 (de) | 2007-10-02 | 2011-08-25 | CL Schutzrechtsverwaltungs GmbH, 96215 | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE102007049058A1 (de) | 2007-10-11 | 2009-04-16 | Voxeljet Technology Gmbh | Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils |
DE102007050679A1 (de) | 2007-10-21 | 2009-04-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen |
DE102007050953A1 (de) | 2007-10-23 | 2009-04-30 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
JP5146010B2 (ja) | 2008-02-28 | 2013-02-20 | 東レ株式会社 | セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法 |
WO2009145069A1 (ja) | 2008-05-26 | 2009-12-03 | ソニー株式会社 | 造形装置および造形方法 |
DE102008058378A1 (de) | 2008-11-20 | 2010-05-27 | Voxeljet Technology Gmbh | Verfahren zum schichtweisen Aufbau von Kunststoffmodellen |
US7887264B2 (en) | 2008-12-11 | 2011-02-15 | Uop Llc | Apparatus for transferring particles |
WO2010075112A1 (en) | 2008-12-15 | 2010-07-01 | össur hf | Noise reduction device for articulating joint, and a limb support device having the same |
US8545209B2 (en) | 2009-03-31 | 2013-10-01 | Microjet Technology Co., Ltd. | Three-dimensional object forming apparatus and method for forming three-dimensional object |
JP5364439B2 (ja) | 2009-05-15 | 2013-12-11 | パナソニック株式会社 | 三次元形状造形物の製造方法 |
DE102009030113A1 (de) | 2009-06-22 | 2010-12-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen |
US20100323301A1 (en) | 2009-06-23 | 2010-12-23 | Huey-Ru Tang Lee | Method and apparatus for making three-dimensional parts |
ES2386602T3 (es) | 2009-08-25 | 2012-08-23 | Bego Medical Gmbh | Dispositivo y procedimiento para la producción continua generativa |
DE102009055966B4 (de) | 2009-11-27 | 2014-05-15 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102009056696B4 (de) | 2009-12-02 | 2011-11-10 | Prometal Rct Gmbh | Baubox für eine Rapid-Prototyping-Anlage |
BR112012015181B1 (pt) | 2009-12-21 | 2020-03-10 | Basf Se | Processo para fabricar uma estrutura de pavimento de compósito, e, estrutura de pavimento de compósito |
US8211226B2 (en) | 2010-01-15 | 2012-07-03 | Massachusetts Institute Of Technology | Cement-based materials system for producing ferrous castings using a three-dimensional printer |
DE102010006939A1 (de) | 2010-02-04 | 2011-08-04 | Voxeljet Technology GmbH, 86167 | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013732A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013733A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010014969A1 (de) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
DE102010027071A1 (de) | 2010-07-13 | 2012-01-19 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik |
US8282380B2 (en) | 2010-08-18 | 2012-10-09 | Makerbot Industries | Automated 3D build processes |
DE102010056346A1 (de) | 2010-12-29 | 2012-07-05 | Technische Universität München | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011007957A1 (de) | 2011-01-05 | 2012-07-05 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
US8536547B2 (en) | 2011-01-20 | 2013-09-17 | Accuray Incorporated | Ring gantry radiation treatment delivery system with dynamically controllable inward extension of treatment head |
WO2012164078A2 (de) | 2011-06-01 | 2012-12-06 | Bam Bundesanstalt Für Materialforschung Und- Prüfung | Verfahren zum herstellen eines formkörpers sowie vorrichtung |
DE102011105688A1 (de) | 2011-06-22 | 2012-12-27 | Hüttenes-Albertus Chemische Werke GmbH | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011111498A1 (de) | 2011-08-31 | 2013-02-28 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102011053205B4 (de) | 2011-09-01 | 2017-05-24 | Exone Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
WO2013043908A1 (en) * | 2011-09-20 | 2013-03-28 | The Regents Of The University Of California | 3d printing powder compositions and methods of use |
DE102011119338A1 (de) | 2011-11-26 | 2013-05-29 | Voxeljet Technology Gmbh | System zum Herstellen dreidimensionaler Modelle |
JP6066447B2 (ja) | 2011-12-14 | 2017-01-25 | 株式会社リコー | トナー並びにこれを用いた画像形成方法 |
US8789490B2 (en) | 2012-01-20 | 2014-07-29 | Sso Venture Partners, Llc | System and method of pointillist painting |
DE102012004213A1 (de) | 2012-03-06 | 2013-09-12 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102012010272A1 (de) | 2012-05-25 | 2013-11-28 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen |
DE102012012363A1 (de) | 2012-06-22 | 2013-12-24 | Voxeljet Technology Gmbh | Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter |
US9168697B2 (en) | 2012-08-16 | 2015-10-27 | Stratasys, Inc. | Additive manufacturing system with extended printing volume, and methods of use thereof |
DE102012020000A1 (de) | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
DE102013004940A1 (de) | 2012-10-15 | 2014-04-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf |
DE102012022859A1 (de) | 2012-11-25 | 2014-05-28 | Voxeljet Ag | Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen |
DE102012024266A1 (de) | 2012-12-12 | 2014-06-12 | Voxeljet Ag | Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver |
KR102097109B1 (ko) | 2013-01-21 | 2020-04-10 | 에이에스엠 아이피 홀딩 비.브이. | 증착 장치 |
WO2014125379A2 (en) | 2013-02-15 | 2014-08-21 | Matthew Fagan | Methods and systems for a plasma machine for the processing of all long steel product including universal beams using a gantry style plate cutting machine |
DE102013003303A1 (de) | 2013-02-28 | 2014-08-28 | FluidSolids AG | Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung |
US9403725B2 (en) | 2013-03-12 | 2016-08-02 | University Of Southern California | Inserting inhibitor to create part boundary isolation during 3D printing |
DE102013005855A1 (de) | 2013-04-08 | 2014-10-09 | Voxeljet Ag | Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder |
DE102013018182A1 (de) | 2013-10-30 | 2015-04-30 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem |
DE102013019716A1 (de) | 2013-11-27 | 2015-05-28 | Voxeljet Ag | 3D-Druckverfahren mit Schlicker |
DE102013018031A1 (de) | 2013-12-02 | 2015-06-03 | Voxeljet Ag | Wechselbehälter mit verfahrbarer Seitenwand |
DE102013020491A1 (de) | 2013-12-11 | 2015-06-11 | Voxeljet Ag | 3D-Infiltrationsverfahren |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
EP2886307A1 (de) | 2013-12-20 | 2015-06-24 | Voxeljet AG | Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
DE102014004692A1 (de) | 2014-03-31 | 2015-10-15 | Voxeljet Ag | Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung |
DE102014007584A1 (de) | 2014-05-26 | 2015-11-26 | Voxeljet Ag | 3D-Umkehrdruckverfahren und Vorrichtung |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
DE102014011544A1 (de) | 2014-08-08 | 2016-02-11 | Voxeljet Ag | Druckkopf und seine Verwendung |
DE102014014895A1 (de) | 2014-10-13 | 2016-04-14 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren |
DE102014018579A1 (de) | 2014-12-17 | 2016-06-23 | Voxeljet Ag | Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial |
DE102015006533A1 (de) | 2014-12-22 | 2016-06-23 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
DE102015006363A1 (de) | 2015-05-20 | 2016-12-15 | Voxeljet Ag | Phenolharzverfahren |
DE102015008860A1 (de) | 2015-07-14 | 2017-01-19 | Voxeljet Ag | Vorrichtung zum Justieren eines Druckkopfes |
DE102015011503A1 (de) | 2015-09-09 | 2017-03-09 | Voxeljet Ag | Verfahren zum Auftragen von Fluiden |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
DE102015015353A1 (de) | 2015-12-01 | 2017-06-01 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor |
-
2013
- 2013-12-11 DE DE102013020491.7A patent/DE102013020491A1/de active Pending
-
2014
- 2014-12-05 US US15/100,775 patent/US9943981B2/en active Active
- 2014-12-05 WO PCT/DE2014/000621 patent/WO2015085983A2/de active Application Filing
- 2014-12-05 EP EP14843222.2A patent/EP3079871B1/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0431924B1 (de) | 1989-12-08 | 1996-01-31 | Massachusetts Institute Of Technology | Dreidimensionale Drucktechniken |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10960655B2 (en) | 2007-07-18 | 2021-03-30 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US9925721B2 (en) | 2010-02-04 | 2018-03-27 | Voxeljet Ag | Device for producing three-dimensional models |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9815243B2 (en) | 2010-03-31 | 2017-11-14 | Voxeljet Ag | Device for producing three-dimensional models |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10639715B2 (en) | 2010-04-17 | 2020-05-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10179365B2 (en) | 2010-04-17 | 2019-01-15 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US9649812B2 (en) | 2011-01-05 | 2017-05-16 | Voxeljet Ag | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US9878494B2 (en) | 2011-08-31 | 2018-01-30 | Voxeljet Ag | Device for constructing models in layers |
US10913204B2 (en) | 2011-08-31 | 2021-02-09 | Voxeljet Ag | Device for constructing models in layers and methods thereof |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10589460B2 (en) | 2012-03-06 | 2020-03-17 | Voxeljet Ag | Method and device for producing three-dimensional models |
US11225029B2 (en) | 2012-05-25 | 2022-01-18 | Voxeljet Ag | Device for producing three-dimensional models and methods thereof |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US11130290B2 (en) | 2012-11-25 | 2021-09-28 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US11072090B2 (en) | 2013-02-28 | 2021-07-27 | Voxeljet Ag | Material system for producing a molded part using a water-soluble casting mold |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US10786945B2 (en) | 2013-10-30 | 2020-09-29 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US11541596B2 (en) | 2013-10-30 | 2023-01-03 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US11850796B2 (en) | 2013-12-02 | 2023-12-26 | Voxeljet Ag | Interchangeable container with moveable side walls |
US11292188B2 (en) | 2013-12-02 | 2022-04-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10889055B2 (en) | 2013-12-20 | 2021-01-12 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US20170106595A1 (en) * | 2014-03-31 | 2017-04-20 | Voxeljet Ag | Method and device for 3d printing using temperature-controlled processing |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US12070905B2 (en) | 2014-05-26 | 2024-08-27 | Voxeljet Ag | 3D reverse printing method and device |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US12036732B2 (en) | 2015-12-01 | 2024-07-16 | Voxeljet Ag | Method and device for producing three- dimensional components with the aid of an overfeed sensor |
Also Published As
Publication number | Publication date |
---|---|
EP3079871B1 (de) | 2023-03-29 |
US9943981B2 (en) | 2018-04-17 |
EP3079871A2 (de) | 2016-10-19 |
DE102013020491A1 (de) | 2015-06-11 |
WO2015085983A3 (de) | 2015-08-06 |
US20160303762A1 (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3079871B1 (de) | 3d-infiltrationsverfahren | |
EP3126124B1 (de) | Verfahren und vorrichtung für den 3d-druck mit klimatisierter verfahrensführung | |
EP3148783B1 (de) | 3d-umkehrdruckverfahren | |
EP2714354B1 (de) | Verfahren zum herstellen eines formkörpers sowie vorrichtung | |
EP2906409B1 (de) | 3d-mehrstufenverfahren | |
EP3233432A1 (de) | Verfahren zum herstellen dreidimensionaler formteile und einstellen des feuchtegehaltes im baumaterial | |
DE102013018182A1 (de) | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem | |
EP2961581A1 (de) | Verfahren zum herstellen eines formteils mit einer wasserlöslichen gussform sowie materialsystem zu deren herstellung | |
DE202015009253U1 (de) | Betonelemente | |
DE2606291A1 (de) | Verfahren zum formen von zementartigen massen | |
DE102017009742A1 (de) | 3d-druckverfahren und damit hergestellte lösliche form insbesondere zur verwendung in kaltguss- und laminierverfahren | |
DE102009024013A1 (de) | Grünfeste Aerosande | |
WO2022247977A1 (de) | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von wasserglasbinder und ester | |
DE102008014119B4 (de) | Verfahren zum Herstellen eines 3-dimensionalen, polymeres Material aufweisenden Formkörpers, Verfahren zum Herstellen einer Beschichtung aus polymerem Material sowie ein 3-dimensionaler Formkörper | |
WO2021083446A1 (de) | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat | |
DE102015122418B4 (de) | Verfahren zur Herstellung dekorativer Laminate | |
DE102016008656A1 (de) | Verfahren und Vorrichtung zum Herstellen von 3D- Formteilen mit stabilisiertem Pulverkuchen | |
DE102020004612A1 (de) | Verfahren zum Herstellen eines 3D-Formkörpers sowie Vorrichtung unter Verwendung einer Siebplatte | |
DE10352574A1 (de) | Füllstoff enthaltende Aerogele | |
EP3173392A1 (de) | Verfahren und vorrichtung zur herstellung von keramikteilen | |
DE102010050004A1 (de) | Verfahren zum Herstellen von Perforationen aufweisende Artikel aus giessfähigen Massen | |
DE1811033A1 (de) | Zuschlagstoff fuer Leichtbeton | |
DE102004039270A1 (de) | Formbare Masse sowie deren Verwendung | |
EP3090883A2 (de) | Verfahren zur herstellung dekorativer laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14843222 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15100775 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014843222 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014843222 Country of ref document: EP |