WO2015085704A1 - 阵列基板及其制备方法、液晶显示装置 - Google Patents

阵列基板及其制备方法、液晶显示装置 Download PDF

Info

Publication number
WO2015085704A1
WO2015085704A1 PCT/CN2014/076629 CN2014076629W WO2015085704A1 WO 2015085704 A1 WO2015085704 A1 WO 2015085704A1 CN 2014076629 W CN2014076629 W CN 2014076629W WO 2015085704 A1 WO2015085704 A1 WO 2015085704A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel unit
included angle
pixel
electrode
Prior art date
Application number
PCT/CN2014/076629
Other languages
English (en)
French (fr)
Inventor
徐智强
金熙哲
徐超
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/409,841 priority Critical patent/US20160011458A1/en
Publication of WO2015085704A1 publication Critical patent/WO2015085704A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • liquid crystal display device Array substrate and preparation method thereof, liquid crystal display device
  • the present invention relates to the field of display technologies, and in particular, to an array substrate, a method for fabricating the same, and a liquid crystal display device. Background technique
  • a Thin Film Transistor-Liquid Crystal Display is mainly composed of a liquid crystal display panel, a polarizer disposed on both sides of the liquid crystal display panel, and a backlight;
  • the liquid crystal display panel includes an array substrate a pair of substrate substrates, and a liquid crystal layer disposed between the two substrates.
  • the white light emitted by the backlight is a complex color light, including red light (wavelength 630 nm), green light (wavelength 550 nm), and blue light (wavelength 430 nm).
  • red light wavelength 630 nm
  • green light wavelength 550 nm
  • blue light wavelength 430 nm
  • linearly polarized white light is formed. Since the wavelengths of red light, green light, and blue light are different, linearly polarized white light, linearly polarized green light, and linearly polarized blue light may occur when the linearly polarized white light passes through a liquid crystal layer having the same thickness and the same deflection angle.
  • Embodiments of the present invention provide an array substrate, a method of fabricating the same, and a liquid crystal display device, which can reduce display chromatic aberration and improve display performance.
  • an array substrate includes a plurality of pixel units arranged in an array, and each of the pixel units includes at least a first sub- a pixel unit, a second sub-pixel unit, and a third sub-pixel unit, each of the sub-pixel units including a pixel electrode, a common electrode, and an alignment layer, wherein: the pixel electrode of each of the sub-pixel units and the common At least one of the electrodes is a strip electrode; a first angle is formed between the strip electrode in the first sub-pixel unit and an orientation direction of the alignment layer, and the second sub-pixel unit A second angle is formed between the strip electrode and the orientation direction, and the second angle and the third angle of the third sub-pixel unit are not completely equal.
  • a liquid crystal display device including the above array substrate is provided.
  • the liquid crystal display device further includes a color filter substrate, the color film substrate includes a color layer, and each of the pixel units of the array substrate includes a first sub-pixel unit and a second sub-pixel. a unit, a third sub-pixel unit, and an angle between an orientation direction of the strip electrode and the alignment layer in the first sub-pixel unit is greater than or equal to a strip electrode and an alignment layer in the second sub-pixel unit An angle between the orientation directions, an angle between the strip electrodes in the second sub-pixel unit and an orientation direction of the alignment layer is greater than or equal to the strip electrodes and the alignment layer in the third sub-pixel unit
  • the color layer includes a red photoresist corresponding to the first sub-pixel unit, a green photoresist corresponding to the second sub-pixel unit, and the third a blue photoresist corresponding to the sub-pixel unit
  • the array substrate further includes a color film, the color film includes a red photoresist corresponding to the first sub-pixel unit, a green photoresist
  • a method for fabricating an array substrate includes a plurality of pixel units arranged in an array, and each of the pixel units includes at least a first sub-pixel unit and a second sub-pixel unit. a third sub-pixel unit, each of the sub-pixel units including a pixel electrode, a common electrode, and an alignment layer, the method comprising the steps of: placing the pixel electrode and the common electrode of each of the sub-pixel units And forming at least one of the second sub-pixel units Between the strip electrode and the orientation direction Forming a second angle, the strip electrode in the third sub-pixel unit forms a third angle with the orientation direction, and the first angle, the second angle, and the third angle are not They are exactly equal.
  • a liquid crystal display device comprising: a backlight that emits white light; a light incident side polarizer, and white light from the backlight passes through the light incident side polarizer to form a linearly polarized red light.
  • Linearly polarized white light of linearly polarized green light and linearly polarized blue light ; a plurality of pixel units arranged in an array, each of the pixel units comprising at least one sub-pixel unit, two sub-pixel units, and three sub-pixel units, each The sub-pixel unit includes a pixel electrode, a common electrode, and an alignment layer, and at least one of the pixel electrode and the common electrode of each of the sub-pixel units is a strip electrode, and the first sub-pixel unit Forming a first angle between the strip electrode and an orientation direction of the alignment layer, forming a second angle between the strip electrode in the second sub-pixel unit and the alignment direction, Forming a third angle between the strip electrode in the third sub-pixel unit and the orientation direction; a liquid crystal layer; and a light-emitting side polarizer, wherein the first The corner, the second angle, and the third angle are disposed such that the linearly polarized red light, the linearly polarized green light, and the linearly polarized blue light
  • the white light emitted by the backlight is a complex color light including red light, green light, and blue light, and the white light passes through the polarizer disposed on the light incident side of the liquid crystal display device.
  • Linearly polarized white light is formed, wherein the wavelengths of red light, green light, and blue light are different, and the linearly polarized white light passes through the liquid crystal layer having the same thickness and the same deflection angle, wherein the linearly polarized red light,
  • the polarization directions of linearly polarized green light and linearly polarized blue light may change to different degrees, thereby causing the linearly polarized red light, the linearly polarized green light, and the linearly polarized blue light to be disposed on the liquid crystal display under the same voltage.
  • the light transmittance is different when the polarizer on the light exiting side of the device is different; the embodiment of the present invention passes the strip electrode in different sub-pixel units in each of the pixel units of the array substrate and the orientation
  • the angle between the orientation directions of the layers is set in a relationship such that the linearly polarized red light, the linearly polarized green light, and the linearly polarized blue light are in phase
  • the polarizer is disposed on the light-emitting side of the liquid crystal display device at the same voltage, the light transmittance remains substantially the same. Thereby, the chromatic aberration phenomenon caused when the light of different sub-pixel regions is mixed under different gray levels to generate the complex color light is reduced, and the display effect is improved.
  • FIG. 1 is a schematic structural diagram of a sub-pixel unit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a sub-pixel unit according to another embodiment of the present invention
  • FIG. 3 is a sub-pixel unit of still another embodiment of the present invention.
  • 4 is a schematic plan view of a pixel unit according to an embodiment of the present invention
  • FIG. 5 is a schematic plan view showing a planar structure of a pixel unit according to another embodiment of the present invention
  • Fig. 6 is a graph showing a voltage-transmittance simulation curve of a liquid crystal display device of one embodiment of the present invention.
  • 10-array substrate 10a-first sub-pixel unit; 10b-second sub-pixel unit; 10c-third sub-pixel unit; 10d-fourth sub-pixel unit; 100-thin film transistor; 101-pixel electrode; 102-common electrode; 1 03-alignment layer; 1030- orientation direction of the alignment layer; 104- strip electrode.
  • Embodiments of the present invention provide a liquid crystal display device including an array substrate 10, a counter substrate, and a liquid crystal layer between the two substrates; Further, a polarizer disposed on the light incident side and the light exiting side of the liquid crystal display device, and a backlight are separately included.
  • the array substrate 10 includes a plurality of pixel units arranged in an array, each of the pixel units including at least a first sub-pixel unit 10a, a second sub-pixel unit 10b, and a third sub-pixel unit 10c; As shown in FIG. 1 to FIG. 3, the sub-pixel unit includes a thin film transistor 100, a pixel electrode 101 electrically connected to a drain of the thin film transistor 100, a common electrode 102, and an alignment layer. At least one of the pixel electrode 101 and the common electrode 102 is a strip electrode 104.
  • the strip electrodes 106 and the first sub-pixel unit 10a, the second sub-pixel unit 10b, and the third sub-pixel unit 10c are The angles between the orientation directions 1030 of the alignment layers are not completely equal.
  • the angle between the longitudinal direction of the electrode and the orientation direction (sharp angle).
  • the liquid crystal display device includes the array substrate 10 and the pair of cassette substrates.
  • the pair of cassette substrates are generally the color film substrate; in the array substrate
  • the pair of substrate substrates are only used to form a paired box structure with the array substrate 10 to fill the liquid crystal.
  • the specific setting position of the color film is not limited.
  • each of the pixel units may generally include three or four sub-pixel units, but the present invention is not limited thereto, and the sub-pixel unit may be set according to the actual configuration of the liquid crystal display panel. quantity.
  • the orientation directions on the entire array substrate 10 are the same; therefore, for any one of the pixel units, the first sub-pixel unit 10a, the second
  • the angle between the strip electrode 10b in the third sub-pixel unit 10c and the orientation direction 1030 of the alignment layer is not completely equal, and only the strip electrode 104 is opposite.
  • the inclination angles of the orientation directions 1030 of the alignment layers are not completely equal.
  • not exactly equal may be for any of the pixel units, wherein The inclination angles of the strip electrodes 104 in the two sub-pixel units with respect to the alignment direction 1 030 of the alignment layer are not equal, and the orientation directions of the strip electrodes 104 in the other sub-pixel units with respect to the alignment layer
  • the inclination angle of 1030 may be equal to the inclination angle of one of the strip electrodes 104 in the two sub-pixel units; or may be for any one of the pixel units, wherein any two of the sub-pixel units
  • the inclination angles of the strip electrodes 104 relative to the orientation direction 1030 of the alignment layer are not equal.
  • the voltage-transmittance curve of the liquid crystal display device is simulated and matched so that the light transmittance of the differently colored linearly polarized light passing through the liquid crystal display device at the same voltage is the same.
  • an angle between the strip electrodes 104 of the sub-pixel units at the same relative position and an orientation direction 1030 of the alignment layer is equal.
  • each of the pixel units includes a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit that are sequentially disposed from left to right
  • the first sub-pixel of any one of the pixel units The cell corresponds to a first sub-pixel unit of any one of the other pixel units
  • a second sub-pixel unit of any one of the pixel units corresponds to a second one of the other of the pixel units
  • a third sub-pixel unit of any one of the pixel units corresponds to a third one of any three other of the pixel units.
  • the embodiment of the present invention further provides a liquid crystal display device including an array substrate 10, a counter substrate, a liquid crystal layer between the two substrates, and a light-input side and a light-emitting side respectively disposed on the liquid crystal display device.
  • a liquid crystal display device including an array substrate 10, a counter substrate, a liquid crystal layer between the two substrates, and a light-input side and a light-emitting side respectively disposed on the liquid crystal display device.
  • Side polarizers, and backlights are provided.
  • the array substrate 10 includes a plurality of pixel units arranged in an array, and each of the pixel units includes at least a first sub-pixel unit 10a, a second sub-pixel unit 10b, and a third sub-pixel unit 10c;
  • One of the sub-pixel units, the sub-pixel unit including a thin film transistor 100 and an image electrically connected to a drain of the thin film transistor 100 The electrode 101, the common electrode 102, and the alignment layer 103; at least one of the pixel electrode 101 and the common electrode 102 is a strip electrode.
  • the first sub-pixel unit 10a, the second sub-pixel unit 10b, the strip electrode 104 in the third sub-pixel unit 10c, and the orientation direction 1030 of the alignment layer are The angles are not exactly equal.
  • the white light emitted by the backlight is a complex color light including red light, green light, and blue light
  • when the white light passes through the polarizer disposed on the light incident side of the liquid crystal display device linearly polarized white light is formed, and red light is formed therein.
  • the wavelengths of green light and blue light are different.
  • the light transmittance is
  • the strip electrode 10 in the different sub-pixel units in each of the pixel units of the array substrate 10 and the orientation direction of the alignment layer are 1 030 The angle between the two is set according to a certain relationship, and the linearly polarized red light, the linearly polarized green light, and the linearly polarized blue light may be passed under the same voltage.
  • the light transmittance of the polarizer disposed on the light-emitting side of the liquid crystal display device is substantially the same, thereby reducing the chromatic aberration caused by the mixing of the light of different sub-pixel regions under different gray levels to generate the complex color light, thereby improving the display effect. .
  • one sub-pixel unit of the array substrate 10 corresponds to one color photoresist of the color film, such as a red photoresist, for any one of the sub-pixel units, passing through the array substrate 10
  • the linearly polarized white light can only emit linearly polarized red light corresponding to the color of the red photoresist after passing through a color photoresist corresponding to the one of the sub-pixel units, for example, a red photoresist, and therefore, in the setting of the sub-pixel unit
  • the angle between the strip electrode 104 and the orientation direction of the alignment layer is 1 030, only the linearly polarized red light emitted from the red photoresist may be considered.
  • the angle between the strip electrode 104 and the orientation direction 1 030 of the alignment layer in the other two sub-pixel units only needs to consider the green photoresist and the blue light corresponding thereto. It can block the linearly polarized green light and linearly polarized blue light.
  • the strip electrodes 104 in the different sub-pixel units are different from the above
  • the angle relationship between the orientation directions 1030 of the layers is also obtained by performing analog matching on the voltage-transmittance curves of the liquid crystal display device according to the respective parameters in the actual structure of the array substrate 10.
  • each of the pixel units in the array substrate 10 may include only the first sub-pixel unit 10a, the second sub-pixel unit 10b, and the third sub-pixel unit 10c.
  • an angle between the strip electrode 104 in the first sub-pixel unit 10a and an orientation direction 1030 of the alignment layer is greater than or equal to the strip shape in the second sub-pixel unit 10b.
  • An angle between the electrode 104 and the orientation direction 1030 of the alignment layer; an angle between the strip electrode 104 in the second sub-pixel unit 10b and the alignment direction 1030 of the alignment layer is greater than or equal to An angle between the strip electrode 104 in the third sub-pixel unit 10c and an orientation direction 1030 of the alignment layer.
  • the angle (the first angle) between the strip electrode 104 in the first sub-pixel unit 10a and the orientation direction 1030 of the alignment layer may be set to a
  • the second sub- An angle (second angle) between the strip electrode 104 in the pixel unit 10b and the alignment direction 1030 of the alignment layer is set to b
  • the strip in the third sub-pixel unit 10c is
  • the angle between the electrode 104 and the orientation direction 1030 of the alignment layer (the third angle) is C, and then the strip electrode 104 and the orientation direction of the alignment layer in the three sub-pixel units
  • the angle relationship between 1030 can be a> b>c, and a, b, c are not completely equal.
  • the array substrate 10 may further include a color film, and the color film includes a red photoresist, a green photoresist, and a blue photoresist; wherein the red photoresist corresponds to the first sub-pixel unit 10a.
  • the green photoresist corresponds to the second sub-pixel unit 10b, and the blue photoresist corresponds to the third sub-pixel unit 10c.
  • the pair of the substrate may be a color filter substrate, and the color filter substrate includes a color layer; wherein the first sub-pixel unit 10a may correspond to a red photoresist in the color layer of the color filter substrate
  • the second sub-pixel unit 10b may correspond to a green photoresist in a color layer of the color filter substrate
  • the third sub-pixel unit 10c may be blue with a color layer of the color filter substrate.
  • the color resist corresponds.
  • each of the pixel units may further include a fourth sub-pixel unit i od .
  • the color film of the array substrate 10 may further include a white photoresist or a yellow photoresist, or the color layer of the color filter substrate may further include a white photoresist or a yellow photoresist;
  • the fourth sub-pixel unit 10d may correspond to the white photoresist or the yellow photoresist.
  • the specific inclination angle of the strip electrode 104 in the fourth sub-pixel unit 10d with respect to the orientation direction 1 030 of the alignment layer needs to be according to various parameters in the actual structure of the array substrate 10; And performing analog matching on the voltage-transmittance curve of the liquid crystal display device so that the transmittance of the linearly polarized light of different colors after passing through the liquid crystal display device at the same voltage is the same.
  • the array substrate 10 may be an In-Plane Switch (IPS) array substrate; in this case, referring to FIG. 1, the pixel electrode 101 and The common electrodes 102 are spaced apart from each other and are strip electrodes 104; wherein the pixel electrodes 101 and the common electrodes 102 form an angle with the orientation direction 1030 of the alignment layer, and the angle the same.
  • IPS In-Plane Switch
  • the array substrate 10 may be an Advanced-Super Dimensional Switching (ADS) array 1 J substrate; in this case, referring to FIG. 2 and FIG. 3,
  • ADS Advanced-Super Dimensional Switching
  • the pixel electrode 101 and the common electrode 102 may be disposed in different layers, and the upper electrode is a strip electrode 104, and the lower electrode is a plate electrode; wherein only the pixel electrode 101 and the common are required
  • the strip electrode 106 in the upper electrode 102 may form an angle with the orientation direction 1030 of the alignment layer.
  • the angle relationship between the strip electrode 104 and the orientation direction 1030 of the alignment layer in different sub-pixel units is limited, for the strip
  • the width of the electrode 104 and the spacing between adjacent strip electrodes 104 are not limited, and may be set according to the structure of the array substrate 10 differently.
  • the angle between the strip electrodes 106 in the three sub-pixel units and the orientation direction 1030 of the alignment layer is set to a certain angle.
  • the voltage-transmittance curve of the liquid crystal display device is simulated and matched.
  • the strip electrode 104 in the sub-pixel unit and the orientation direction 1030 of the alignment layer may be The angle is set between 5° and 11°; for a large-sized liquid crystal display device, the angle between the strip electrode 104 in the sub-pixel unit and the orientation direction 1030 of the alignment layer is set to be greater than 11 . .
  • the strip electrode 104 and the alignment layer in the first sub-pixel unit 10a corresponding to the red photoresist may be The angle between the orientation directions 1030 is set at 7°-11°, and the orientation of the strip electrodes 104 and the alignment layer in the second sub-pixel unit 10b corresponding to the green photoresist is The angle between the directions 1030 is set at 7°-11°, and the strip electrode 104 in the third sub-pixel unit 10c corresponding to the blue photoresist and the orientation direction 1030 of the alignment layer are The angle between the angles is set at 5°-9°.
  • the angle between the strip electrode 104 in the first sub-pixel unit 10a and the orientation direction 1030 of the alignment layer corresponding to the red photoresist is preferably the green photoresist
  • Corresponding angles between the strip electrodes 104 in the second sub-pixel unit 10b and the orientation direction 1030 of the alignment layer are equal, and the third sub-pixel unit corresponding to the blue photoresist
  • the angle between the strip electrode 104 in 10c and the orientation direction 1030 of the alignment layer is preferably 1 ° - 2 ° to avoid excessive color shift in the case of low gray scale.
  • the angle between the strip electrode 104 in the sub-pixel unit and the orientation direction 1030 of the alignment layer is set to 7°, and the voltage-transmittance curve of the liquid crystal display device is simulated and matched.
  • the thickness of the liquid crystal layer is 3.6 ⁇
  • the birefringence coefficient of the liquid crystal molecules in the liquid crystal layer is 0.99
  • the width of the strip electrodes is 2 ⁇
  • the spacing between adjacent strip electrodes is 4 ⁇ .
  • a voltage-transmittance curve as shown in FIG. 6 is obtained, which can be seen from the figure, corresponding to the red photoresist (line of 630 nm-7°) and corresponding to the green photoresist (550 nm-7°).
  • the voltage-transmittance curve of the line) is basically the same, but the voltage-transmittance curves of the two corresponding to the blue photoresist (line of 430nm-7°) are quite different.
  • linearly polarized red light, linearly polarized green light, and linearly polarized blue light having different wavelengths undergo different degrees of optical phase retardation when passing through the liquid crystal layer having the same thickness and the same deflection angle, thereby causing the linear polarization.
  • Red light, the linearly polarized green light, the linearly polarized blue light has a different degree of change in polarization direction when passing through the liquid crystal layer; thus, at the same voltage, the linearly polarized red light, the linear polarization
  • the green light and the linearly polarized blue light pass through the color filter substrate and the polarizer disposed on the light exiting side of the liquid crystal display device, the light transmittance is different.
  • the voltage-transmittance curve of the linearly polarized red light and the linearly polarized green light are similar, and the voltage-transmittance curve of the linearly polarized blue light is far apart, so that the liquid crystal display is caused
  • the device produces a chromatic aberration when displayed, especially a chromatic aberration in which the white picture is yellowish under different gray levels.
  • the red photoresist corresponding to the color filter substrate may be respectively respectively.
  • the voltage-transmittance curve obtained by this simulation is shown in Fig. 6. As can be seen from the figure, it corresponds to the red photoresist (line of 630nm-7°) and the green photoresist (550nm-7°). Line) and the voltage of the blue photoresist (line of 430nm-5°)
  • the transmission curves are basically consistent and the matching is good. This indicates that the transmittances of linearly polarized red light, linearly polarized green light, and linearly polarized blue light having different wavelengths at the same voltage are substantially the same. In the same way, the problem that the white screen of the liquid crystal display device is yellowish under different gray levels can be improved, and of course, the chromatic aberration problem of other multi-color display can be improved.
  • the angle between the orientation directions 1030 of the alignment layer is 7°; the strip electrode 104 of the third sub-pixel unit 10c corresponding to the blue photoresist and the orientation direction 1030 of the alignment layer The angle between them is 5°.
  • the embodiment of the present invention further provides a method for fabricating an array substrate 10.
  • the array substrate 10 includes a plurality of pixel units arranged in an array, and each of the pixel units includes at least a first sub-pixel unit 10a and a second sub-pixel unit.
  • the method may include: forming a thin film transistor 100, a pixel electrode 101, and a common electrode 102 on a substrate for any one of the sub-pixel units, and forming the thin film transistor 100, the pixel electrode 101, and An alignment layer 103 is formed on the substrate of the common electrode 102; at least one of the pixel electrode 101 and the common electrode 102 is a strip electrode 104; wherein the first sub-pixel unit 10a, the The angle between the second sub-pixel unit 10b, the strip electrode 104 in the third sub-pixel unit 10c, and the orientation direction 1030 of the alignment layer is not completely equal.
  • the thin film transistor 100 may be formed on the substrate, or a top gate thin film transistor may be formed on the substrate, or a bottom gate thin film transistor may be formed on the substrate, which is not limited herein. .
  • the pixel electrode 101 or the common electrode 102 when the pixel electrode 101 or the common electrode 102 is formed, it may be formed together in the process of forming the thin film transistor 100, and the specific formation order may be according to the actual structure of the array substrate 10. And the preparation method is designed.
  • each of the pixel units may include only the first sub-pixel unit 10a, the second sub-pixel unit 10b, and the third sub-pixel unit 10c.
  • the strip electrode 104 and the first sub-pixel unit 10a The angle between the orientation directions 1030 of the alignment layer is greater than or equal to the angle between the strip electrodes 104 in the second sub-pixel unit 10b and the orientation direction 1030 of the alignment layer; An angle between the strip electrode 104 in the sub-pixel unit 10b and an orientation direction 1030 of the alignment layer is greater than or equal to the strip electrode 104 and the alignment layer in the third sub-pixel unit 10c.
  • the angle between the orientation directions 1030, and the above angles are not completely equal.
  • an angle between the strip electrode 104 in the first sub-pixel unit 10a and an orientation direction 1030 of the alignment layer is 7°-11°;
  • the angle between the strip electrode 104 in the pixel unit 10b and the orientation direction 1030 of the alignment layer is 7°-11°;
  • the strip electrode 104 in the third sub-pixel unit 10c The angle between the orientation directions 1030 of the alignment layer is 5°-9°.
  • an angle between the strip electrodes 104 in the first sub-pixel unit 10a and the second sub-pixel unit 10b and the orientation direction 1030 of the alignment layer is 7°;
  • the angle between the strip electrode 104 in the three sub-pixel unit 10c and the orientation direction 1030 of the alignment layer is 5°.
  • the array substrate 10 may further include a color film, and the color film includes a red photoresist, a green photoresist, and a blue photoresist.
  • the red photoresist needs to correspond to the first sub-pixel unit 10a
  • the green photoresist corresponds to the second sub-pixel unit 10b
  • the blue photoresist and the third sub-pixel unit 10c corresponds.
  • the pair of cassette substrates may be a color filter substrate, and the color filter substrate includes a color layer; in this case, the first sub-pixel unit 10a and Corresponding to a red photoresist in the color layer of the color filter substrate, the second sub-pixel unit 10b is corresponding to a green photoresist in the color layer of the color filter substrate, and the third sub-pixel unit is 10c corresponds to a blue photoresist in the color layer of the color filter substrate.
  • each of the pixel units may further include a fourth sub-pixel unit iod.
  • the color film of the array substrate 10 may further include a white photoresist or a yellow photoresist, or the color layer of the color filter substrate may further include a white photoresist or yellow. a color photoresist; wherein the fourth sub-pixel unit 10d may correspond to the white photoresist or the yellow photoresist.
  • the pixel electrode 101 and the common electrode 102 when the pixel electrode 101 and the common electrode 102 are formed, the pixel electrode 101 and the common electrode 102 which are arranged in the same layer and spaced apart may be formed by the same patterning process;
  • the pixel electrode 101 and the common electrode 102 are strip electrodes.
  • the pixel electrode 101 and the common electrode 102 in the sub-pixel unit form an angle with the orientation direction 1030 of the alignment layer, and the angle is the same.
  • an angle relationship between the strip electrodes 104 and the orientation direction 1030 of the alignment layer in each of the sub-pixel units included in the pixel unit may be according to each of the sub-pixels
  • the correspondence between the unit and the color photoresist is set, and details are not described herein again.
  • the pixel electrode 101 and the common electrode 102 when the pixel electrode 101 and the common electrode 102 are formed, the pixel electrode 101 and the common electrode of different layers may be respectively formed by two patterning processes. 102; wherein at least the upper electrode of the pixel electrode 101 and the common electrode 102 is a strip electrode 104.
  • the common electrode 102 may be first formed by a patterning process, and then formed by a patterning process.
  • the pixel electrode 101 in the form of a strip.
  • the pixel electrode 101 may be formed in a plate shape by one patterning process, and then formed by a patterning process.
  • the common electrode 102 in the form of a strip.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板(10)及其制备方法,该阵列基板(10)的每个像素单元至少包括第一子像素单元(10a)、第二子像素单元(10b)、第三子像素单元(10c)。每一个子像素单元包括像素电极(101)、公共电极(102)以及取向层(103),像素电极(101)和公共电极(102)中的至少一个为条状电极(104)。三个子像素单元中的条状电极(104)与取向层(103)的取向方向(1030)之间分别形成不同角度的夹角。还公开了一种液晶显示装置。该阵列基板(10)可减小显示色差,改善显示效果。

Description

阵列基板及其制备方法、 液晶显示装置 技术领域
本发明涉及显示技术领域, 尤其涉及阵列基板及其制备方法、 液晶显示装置。 背景技术
薄膜晶体管液晶显示器 (Thin Film Transistor-Liquid Crystal Display, 简称 TFT-LCD ) 主要由液晶显示面板、 设置在所述液晶 显示面板两侧的偏光片、 以及背光源组成; 所述液晶显示面板包 括阵列基板、 对盒基板、 以及设置在两基板之间的液晶层。
背光源发出的白光是一种复色光, 包括红光 (波长 630nm ) 、 绿光 (波长 550nm ) 、 蓝光 (波长 430nm ) , 当该白光经过设置 在阵列基板外侧的偏光片时会形成线偏振白光; 由于红光、 绿光、 蓝光的波长不同, 在所述线偏振白光穿过具有相同厚度以及相同 偏转角度的液晶层时, 其中的线偏振红光、 线偏振绿光、 线偏振 蓝光会发生不同程度的光学相位延迟, 从而导致线偏振红光、 线 偏振绿光、 线偏振蓝光在经过所述液晶层时, 偏振方向的改变程 度有所差异; 这样, 在相同的电压下, 所述线偏振红光、 所述线 偏振绿光、 所述线偏振蓝光经过彩膜以及设置在所述液晶显示面 板出光侧的偏光片时, 由于偏振方向的差异便会使得红光、 绿光、 蓝光的透光率有所不同, 从而导致不同子像素区域的光在不同灰 阶下混合之后产生的色彩与真实颜色之间存在色差, 影响显示效 果。
发明内容
本发明的实施例提供一种阵列基板及其制备方法、 液晶显示 装置, 可减小显示色差、 改善显示效果。
为达到上述目的, 本发明的实施例釆用如下技术方案:
根据本发明的一方面, 提供一种阵列基板, 所述阵列基板包 括阵列排布的多个像素单元, 每个所述像素单元至少包括第一子 像素单元、 第二子像素单元、 第三子像素单元, 每一个所述子像 素单元包括像素电极、 公共电极以及取向层, 其中: 每一个所述 子像素单元的所述像素电极和所述公共电极中的至少一个为条状 电极; 所述第一子像素单元中的所述条状电极与所述取向层的取 向方向之间形成第一夹角、 所述第二子像素单元中的所述条状电 极与所述取向方向之间形成第二夹角、 所述第三子像素单元中的 笫二夹角以及笫三夹角不完全相等。 根据本发明的另一方面, 提供一种液晶显示装置, 所述液晶 显示装置包括上述的阵列基板。
在本发明的一个实施例中, 所述液晶显示装置还包括彩膜基 板, 所述彩膜基板包括色层; 在所述阵列基板的每个像素单元包 括第一子像素单元、 第二子像素单元、 笫三子像素单元, 且所述 第一子像素单元中的条状电极与取向层的取向方向之间的夹角大 于或等于所述第二子像素单元中的条状电极与取向层的取向方向 之间的夹角、 所述第二子像素单元中的条状电极与取向层的取向 方向之间的夹角大于或等于所述第三子像素单元中的条状电极与 取向层的取向方向之间的夹角的情况下, 所述色层包括与所述第 一子像素单元对应的红色光阻、 与所述第二子像素单元对应的绿 色光阻、 与所述第三子像素单元对应的蓝色光阻, 或者, 所述阵 列基板还包括彩膜, 所述彩膜包括与所述第一子像素单元对应的 红色光阻、 与所述第二子像素单元对应的绿色光阻、 与所述第三 子像素单元对应的蓝色光阻。
根据本发明的再一方面, 提供一种阵列基板的制备方法, 所 述阵列基板包括阵列排布的多个像素单元, 每个所述像素单元至 少包括第一子像素单元、 第二子像素单元、 第三子像素单元, 每 一个所述子像素单元包括像素电极、 公共电极以及取向层, 所述 方法包括如下步骤: 将每一个所述子像素单元的所述像素电极和 所述公共电极中的至少一个形成为条状电极, 且所述第一子像素 单元中的所述条状电极与所述取向层的取向方向之间形成第一夹 角、 所述第二子像素单元中的所述条状电极与所述取向方向之间 形成第二夹角、 所述第三子像素单元中的所述条状电极与所述取 向方向之间形成第三夹角, 所述第一夹角、 第二夹角以及第三夹 角不完全相等。
根据本发明的又一方面, 提出了一种液晶显示装置, 包括: 发出白光的背光源; 入光侧偏光片, 来自背光源的白光经过所述 入光侧偏光片后形成具有线偏振红光、 线偏振绿光和线偏振蓝光 的线偏振白光; 阵列排布的多个像素单元, 每个所述像素单元至 少包括笫一子像素单元、 笫二子像素单元、 笫三子像素单元, 每 一个所述子像素单元包括像素电极、 公共电极以及取向层, 每一 个所述子像素单元的所述像素电极和所述公共电极中的至少一个 为条状电极, 所述第一子像素单元中的所述条状电极与所述取向 层的取向方向之间形成第一夹角、 所述第二子像素单元中的所述 条状电极与所述取向方向之间形成第二夹角、 所述第三子像素单 元中的所述条状电极与所述取向方向之间形成第三夹角; 液晶层; 以及出光侧偏光片, 其中, 所述第一夹角、 第二夹角以及第三夹 角设置成使得穿过具有相同厚度和相同偏转角度的所述液晶层的 所述线偏振红光、 线偏振绿光和线偏振蓝光在相同电压下经过所 述出光侧偏光片的透光率基本相同。
当所述阵列基板应用于液晶显示装置时, 由于背光源发出的 白光是一种包括红光、 绿光、 蓝光的复色光, 当该白光经过设置 在所述液晶显示装置入光侧的偏光片时会形成线偏振白光, 而其 中的红光、 绿光、 蓝光的波长不同, 在所述线偏振白光穿过具有 相同厚度以及相同偏转角度的所述液晶层时, 其中的线偏振红光、 线偏振绿光、 线偏振蓝光的偏振方向会发生不同程度的改变, 从 而导致相同电压下所述线偏振红光、 所述线偏振绿光、 所述线偏 振蓝光在经过设置在所述液晶显示装置出光侧的偏光片时, 透光 率有所不同; 本发明的实施例通过将所述阵列基板的每个所述像 素单元中的不同子像素单元中的所述条状电极与所述取向层的取 向方向之间的夹角按照一定的关系进行设置, 可以使所述线偏振 红光、 所述线偏振绿光、 所述线偏振蓝光在相同电压下经过设置 在所述液晶显示装置出光侧的偏光片时的透光率基本保持相同, 从而减小不同子像素区域的光在不同灰阶下混合产生复色光时所 引起的色差现象, 改善显示效果。
附图说明
将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而 易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1为本发明的一个实施例的子像素单元的结构示意图; 图 2为本发明的另一个实施例的子像素单元的结构示意图; 图 3为本发明的再一个实施例的子像素单元的结构示意图; 图 4为本发明的一个实施例的像素单元的平面结构示意图; 图 5 为本发明的另一个实施例的像素单元的平面结构示意图; 以及
图 6 为本发明的一个实施例的液晶显示装置的电压-透过率模 拟曲线。
附图标记:
10-阵列基板; 1 0a-第一子像素单元; 1 0b-第二子像素单元; 10c-第三子像素单元; 1 0d-第四子像素单元; 100-薄膜晶体管; 101 -像素电极; 102-公共电极; 1 03-取向层; 1030-取向层的取向 方向; 1 04-条状电极。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种液晶显示装置, 所述液晶显示装置 包括阵列基板 10、 对盒基板、 以及位于两基板之间的液晶层; 当 然还包括分别设置在所述液晶显示装置的入光侧和出光侧的偏光 片、 以及背光源。
所述阵列基板 1 0 包括阵列排布的多个像素单元, 每个所述像 素单元至少包括第一子像素单元 1 0a、 第二子像素单元 1 0b、 第三 子像素单元 10c; 针对任一个所述子像素单元, 如图 1 至图 3 所 示, 所述子像素单元包括薄膜晶体管 100、 与所述薄膜晶体管 1 00 的漏极电连接的像素电极 1 01、 公共电极 102、 以及取向层 103; 所述像素电极 1 01 和所述公共电极 1 02 中的至少一个为条状电极 104。
具体地, 如图 4 和图 5 所示, 所述第一子像素单元 10a、 所 述第二子像素单元 1 0b、 所述第三子像素单元 10c 中的所述条状 电极 1 04 与所述取向层的取向方向 1030 之间的夹角不完全相等。 状电极的纵向方向与取向方向之间的夹角 (锐角 ) 。
需要说明的是, 第一, 所述液晶显示装置包括所述阵列基板 10 和所述对盒基板。 其中, 在所述阵列基板 10 不包括彩膜的情 况下, 所述对盒基板即为通常所述的彩膜基板; 在所述阵列基板
10 包括彩膜的情况下, 所述对盒基板仅用于与所述阵列基板 1 0 形成对盒结构, 以填充液晶。 这里对于彩膜的具体设置位置不做 限定。
第二, 对于目前常见的阵列基板 10 , 每个所述像素单元通常 可以包括三个或四个子像素单元, 但本发明不限于此, 可以根据 液晶显示面板的实际构造设定所述子像素单元的数量。
第三, 受限于取向层 103的制备工艺, 其在整个阵列基板 10 上的取向方向均相同; 因此, 针对任一个所述像素单元, 所述第 一子像素单元 1 0a、 所述第二子像素单元 1 0b、 所述第三子像素单 元 10c 中的所述条状电极 104 与所述取向层的取向方向 1030之 间的夹角不完全相等, 只能是所述条状电极 104 相对所述取向层 的取向方向 1030的倾斜角度不完全相等。
这里, 不完全相等可以是针对任一个所述像素单元, 其中的 两个子像素单元中的所述条状电极 1 04 相对所述取向层的取向方 向 1 030的倾斜角度不相等, 而其它子像素单元中的所述条状电极 104相对所述取向层的取向方向 1030的倾斜角度可以与上述两个 子像素单元中的所述条状电极 1 04 中的一个条状电极的倾斜角度 相等; 还可以是针对任一个所述像素单元, 其中任意两个子像素 单元中的所述条状电极 1 04 相对所述取向层的取向方向 1030 的 倾斜角度均不相等。
至于每个所述子像素单元中的所述条状电极 1 04 相对所述取 向层的取向方向 1030 的具体倾斜角度, 需根据所述阵列基板 1 0 的实际结构中的各部分参数, 对所述液晶显示装置的电压-透过率 曲线进行模拟匹配而定, 以能使不同颜色的线偏振光在相同的电 压下经过所述液晶显示装置后的透光率相同为准。
笫四, 在每个所述像素单元中, 处于同一相对位置的所述子 像素单元的所述条状电极 104 与所述取向层的取向方向 1030 之 间的夹角相等。
例如, 若每一个所述像素单元均包括从左到右依次设置的第 一子像素单元、 第二子像素单元和第三子像素单元, 则, 任意一 个所述像素单元中的第一子像素单元与任意另一个所述像素单元 中的第一子像素单元相对应, 任意一个所述像素单元中的第二子 像素单元与任意另一个所述像素单元中的第二子像素单元相对应, 任意一个所述像素单元中的第三子像素单元与任意另三个所述像 素单元中的第三子像素单元相对应。
本发明实施例还提供了一种液晶显示装置, 所述液晶显示装 置包括阵列基板 10、 对盒基板、 位于两基板之间的液晶层、 分别 设置在所述液晶显示装置的入光侧和出光侧的偏光片、 以及背光 源。
所述阵列基板 1 0 包括阵列排布的多个像素单元, 每个所述像 素单元至少包括第一子像素单元 1 0a、 第二子像素单元 1 0b、 第三 子像素单元 1 0c; 针对任一个所述子像素单元, 所述子像素单元 包括薄膜晶体管 100、 与所述薄膜晶体管 100 的漏极电连接的像 素电极 1 01、 公共电极 1 02、 以及取向层 103; 所述像素电极 101 和所述公共电极 102中的至少一个为条状电极。
可选地, 所述第一子像素单元 10a、 所述第二子像素单元 10b、 所述第三子像素单元 1 0c 中的所述条状电极 104 与所述取 向层的取向方向 1030之间的夹角不完全相等。 由于背光源发出的白光是一种包括红光、 绿光、 蓝光的复色 光, 当该白光经过设置在所述液晶显示装置入光侧的偏光片时会 形成线偏振白光, 而其中的红光、 绿光、 蓝光的波长不同, 在所 述线偏振白光穿过具有相同厚度以及相同偏转角度的所述液晶层 时, 其中的线偏振红光、 线偏振绿光、 线偏振蓝光的偏振方向会 发生不同程度的改变, 从而导致相同电压下所述线偏振红光、 所 述线偏振绿光、 所述线偏振蓝光在经过设置在所述液晶显示装置 出光侧的偏光片时, 透光率有所不同; 因此, 本发明实施例通过 将所述阵列基板 1 0 的每个所述像素单元中的不同子像素单元中的 所述条状电极 1 04 与所述取向层的取向方向 1 030 之间的夹角按 照一定的关系进行设置, 可以使所述线偏振红光、 所述线偏振绿 光、 所述线偏振蓝光在相同电压下经过设置在所述液晶显示装置 出光侧的偏光片时的透光率基本保持相同, 从而减小不同子像素 区域的光在不同的灰阶下混合产生复色光时所引起的色差现象, 改善显示效果。
在本发明的一个实施例中, 所述阵列基板 10 的一个子像素单 元对应所述彩膜的一个颜色光阻例如红色光阻, 针对任一个所述 子像素单元, 经过所述阵列基板 10 的线偏振白光在通过与该一个 所述子像素单元对应的颜色光阻例如红色光阻后只能出射与该红 色光阻的颜色对应的线偏振红光, 因此, 在设置所述子像素单元 中的所述条状电极 1 04 与所述取向层的取向方向 1 030 之间的夹 角时, 只需考虑从该红色光阻出射的线偏振红光即可。 同理, 另 外两个所述子像素单元中的所述条状电极 104 与所述取向层的取 向方向 1 030之间的夹角, 也只需考虑从与之对应的绿色光阻、 蓝 色光阻出射的线偏振绿光、 线偏振蓝光即可。
此外, 不同所述子像素单元中的所述条状电极 1 04 与所述取 向层的取向方向 1030 之间的夹角关系, 还需根据所述阵列基板 10 的实际结构中的各部分参数, 对所述液晶显示装置的电压 -透过 率曲线进行模拟匹配而得到。
可选地, 参考图 4所示, 所述阵列基板 10中每个所述像素单 元可以仅包括第一子像素单元 10a、 第二子像素单元 10b、 第三子 像素单元 10c。
进一步地, 所述第一子像素单元 10a 中的所述条状电极 104 与所述取向层的取向方向 1030之间的夹角大于或等于所述第二子 像素单元 10b 中的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角; 所述第二子像素单元 10b 中的所述条状电极 104与所述取向层的取向方向 1030之间的夹角大于或等于所述第 三子像素单元 10c 中的所述条状电极 104 与所述取向层的取向方 向 1030之间的夹角。
这里, 可以将所述第一子像素单元 10a 中的所述条状电极 104与所述取向层的取向方向 1030之间的夹角 (第一夹角) 设为 a, 将所述第二子像素单元 10b 中的所述条状电极 104 与所述取 向层的取向方向 1030之间的夹角 (第二夹角) 设为 b, 将所述第 三子像素单元 10c 中的所述条状电极 104 与所述取向层的取向方 向 1030之间的夹角 (第三夹角) 设为 C, 则, 所述三个子像素单 元中的所述条状电极 104 与所述取向层的取向方向 1030 之间的 夹角关系可以为 a> b>c, 且 a、 b、 c不完全相等。
在此情况下, 所述阵列基板 10还可以包括彩膜, 所述彩膜包 括红色光阻、 绿色光阻、 蓝色光阻; 其中, 所述红色光阻与所述 第一子像素单元 10a 对应、 所述绿色光阻与所述第二子像素单元 10b对应、 所述蓝色光阻与所述第三子像素单元 10c对应。
或者, 所述对盒基板可以为彩膜基板, 且所述彩膜基板包括 色层; 其中, 所述第一子像素单元 10a 可以与所述彩膜基板的色 层中的红色光阻相对应, 所述第二子 ^象素单元 10b 可以与所述彩 膜基板的色层中的绿色光阻相对应, 所述第三子像素单元 10c 可 以与所述彩膜基板的色层中的蓝色光阻相对应。 进一步地, 参考图 5 所示, 每个所述像素单元还可以包括第 四子像素单元 i od。 在此情况下, 所述阵列基板 1 0的彩膜还可以包括白色光阻或 黄色光阻, 或者, 所述彩膜基板的色层还可以包括白色光阻或黄 色光阻; 其中, 所述第四子像素单元 10d 可以与所述白色光阻或 所述黄色光阻相对应。
这里, 所述第四子像素单元 10d 中的所述条状电极 1 04相对 所述取向层的取向方向 1 030的具体倾斜角度, 需根据所述阵列基 板 1 0 的实际结构中的各部分参数, 对所述液晶显示装置的电压- 透过率曲线进行模拟匹配而定, 以能使不同颜色的线偏振光在相 同的电压下经过所述液晶显示装置后的透光率相同为准。
基于上述描述, 可选地, 所述阵列基板 1 0可以是共平面切换 型 ( In-Plane Switch , 简称 IPS ) 阵列基板; 在此情况下, 参考图 1 所示, 所述像素电极 1 01 和所述公共电极 1 02 同层间隔设置, 且均为条状电极 104; 其中, 所述像素电极 101 和所述公共电极 102均与所述取向层的取向方向 1030之间形成夹角, 且角度相同。
或者可选地, 所述阵列基板 1 0 可以是高级超维场转换型 ( Advanced-super Dimensional Switching , 简称 ADS ) 阵歹1 J基 板; 在此情况下, 参考图 2和图 3所示, 所述像素电极 101 和所 述公共电极 102 可以不同层设置, 且在上的电极为条状电极 1 04 , 在下的电极为板状电极; 其中, 只需使所述像素电极 1 01 和所述 公共电极 1 02 中在上的所述条状电极 1 04 与所述取向层的取向方 向 1030之间形成夹角即可。
需要说明的是, 在本发明实施例中, 仅对不同所述子像素单 元中的所述条状电极 104 与所述取向层的取向方向 1030 之间的 夹角关系进行限定, 对于所述条状电极 104 的宽度以及相邻所述 条状电极 104 之间的间距不做限定, 其可以根据不同所述阵列基 板 10的结构进行设定。
下面通过将三个所述子像素单元中的所述条状电极 1 04 与所 述取向层的取向方向 1030之间的夹角设置成一定的角度, 对所述 液晶显示装置的电压-透过率曲线进行模拟匹配。
当所述条状电极 104 与所述取向层的取向方向 1030 之间的 夹角较小时, 可以获得透光率较高的液晶显示装置, 但液晶响应 速度较慢; 当所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角较大时, 可以获得响应速度较快的液晶显示装置, 但 透光率较低。 因此, 为了获得透光率与液晶响应速度的良好匹配, 对于小尺寸的液晶显示装置, 可将所述子像素单元中的所述条状 电极 104 与所述取向层的取向方向 1030 之间的夹角设置在 5°- 11°; 对于大尺寸的液晶显示装置, 将所述子像素单元中的所述条 状电极 104 与所述取向层的取向方向 1030 之间的夹角设置为大 于 11。。
在此基础上, 进一步的, 对于小尺寸的液晶显示装置而言, 可以将与所述红色光阻相对应的所述第一子像素单元 ioa 中的所 述条状电极 104 与所述取向层的取向方向 1030 之间的夹角设置 在 7°-11°, 将与所述绿色光阻相对应的所述第二子像素单元 10b 中的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹 角设置在 7°-11°, 将与所述蓝色光阻相对应的所述第三子像素单 元 10c 中的所述条状电极 104 与所述取向层的取向方向 1030之 间的夹角设置在 5°-9°。
在上述范围中, 优选所述红色光阻相对应的所述第一子像素 单元 10a 中的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角与所述绿色光阻相对应的所述第二子像素单元 10b 中 的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角 相等, 所述蓝色光阻相对应的所述第三子像素单元 10c 中的所述 条状电极 104与所述取向层的取向方向 1030之间的夹角小 1°-2° 为宜以避免引起低灰阶时色偏过大。
基于此, 示例性地, 将分别与所述彩膜基板的色层中的所述 红色光阻 (波长 630nm) 、 绿色光阻 (波长 550nm ) 、 蓝色光阻 (波长 430nm ) 对应的所述三个子像素单元中的所述条状电极 104与所述取向层的取向方向 1030之间的夹角均设为 7°, 对所述 液晶显示装置的电压-透过率曲线进行模拟匹配。 这里, 所述液晶层的厚度为 3.6μηπ , 所述液晶层中的液晶分 子的双折射系数为 0.99, 所述条状电极的宽度为 2μηπ , 相邻所述 条状电极之间的间距为 4μηπ。 经过模拟得到如图 6所示的电压-透 过率曲线, 从图中可以看出, 对应所述红色光阻 ( 630nm-7°的线) 和对应所述绿色光阻 ( 550nm-7°的线) 的电压 -透过率曲线基本吻 合, 但二者与对应所述蓝色光阻 ( 430nm-7°的线) 的电压-透过率 曲线相差较大。
这是由于具有不同波长的线偏振红光、 线偏振绿光、 线偏振 蓝光在经过具有相同厚度以及相同偏转角度的所述液晶层时会发 生不同程度的光学相位延迟, 从而导致所述线偏振红光、 所述线 偏振绿光、 所述线偏振蓝光在经过所述液晶层时偏振方向的改变 程度有所差异; 这样, 在相同的电压下, 所述线偏振红光、 所述 线偏振绿光、 所述线偏振蓝光经过所述彩膜基板以及设置在所述 液晶显示装置出光侧的偏光片时, 透光率便会有所不同。 其中, 所述线偏振红光和所述线偏振绿光的电压 -透光率曲线相近, 而与 所述线偏振蓝光的电压-透光率曲线相差较远, 这样便会使得所述 液晶显示装置在显示时产生色差, 尤其是白色画面在不同灰阶下 偏黄的色差。
基于此, 为了使所述线偏振蓝光的电压-透光率曲线与其它两 种线偏振光的电压-透光率曲线获得较好的匹配, 可以将分别对应 彩膜基板的所述红色光阻和所述绿色光阻的所述第一子像素单元 10a和所述第二子像素单元 10b 中的所述条状电极 1 04与所述取 向层的取向方向 1 030 之间的夹角均设为 7° , 将对应彩膜基板的 所述蓝色光阻的所述第三子像素单元 1 0c 中的所述条状电极 1 04 与所述取向层的取向方向 1 030 之间的夹角减小, 优选设为 5° , 对所述液晶显示装置的电压-透过率曲线再进行模拟匹配。
此次模拟得到的电压 -透过率曲线参考图 6 所示, 从图上可以 看出, 分别对应所述红色光阻 ( 630nm-7°的线) 、 所述绿色光阻 ( 550nm-7°的线) 、 以及所述蓝色光阻 (430nm-5°的线) 的电压
-透过率曲线均基本吻合, 匹配度较好。 这表明相同电压下具有不 同波长的线偏振红光、 线偏振绿光、 线偏振蓝光的透过率基本相 同, 这样便可以改善所述液晶显示装置的白色画面在不同灰阶下 偏黄的问题, 当然还可以改善其它复色显示的色差问题。
基于上述描述, 优选的, 分别与所述红色光阻和所述绿色光 阻对应的所述第一子像素单元 10a和所述第二子像素单元 1 0b 中 的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角 为 7°; 与所述蓝色光阻对应的所述第三子像素单元 10c 中的所述 条状电极 1 04与所述取向层的取向方向 1030之间的夹角为 5°。
在此情况下, 所述三个子像素单元中的所述条状电极 104 与 所述取向层的取向方向 1 030之间的夹角关系可以设置为: a=b > c。
本发明实施例还提供了一种阵列基板 10 的制备方法, 所述阵 列基板 1 0 包括阵列排布的多个像素单元, 每个所述像素单元至少 包括第一子像素单元 10a、 第二子像素单元 10b、 第三子像素单元 10c。 所述方法可以包括: 针对任一个所述子像素单元, 在基板上 形成薄膜晶体管 1 00、 像素电极 101 和公共电极 1 02 , 并在形成 有所述薄膜晶体管 100、 所述像素电极 1 01 和所述公共电极 1 02 的基板上形成取向层 103 ; 所述像素电极 1 01 和所述公共电极 102 中的至少一个为条状电极 1 04 ; 其中, 所述第一子像素单元 10a、 所述第二子像素单元 1 0b、 所述第三子像素单元 10c中的所 述条状电极 104 与所述取向层的取向方向 1030 之间的夹角不完 全相等。
这里需要说明的是, 所述在基板上形成薄膜晶体管 1 00 , 可 以是在所述基板上形成顶栅型薄膜晶体管, 也可以是在所述基板 上形成底栅型薄膜晶体管, 在此不作限定。
另外, 在形成所述像素电极 101 或所述公共电极 102 时, 其 可能是在形成所述薄膜晶体管 1 00 的过程中一并形成的, 具体的 形成顺序可以根据所述阵列基板 10 的实际结构以及制备方法进行 设计。
可选地, 参考图 4 所示, 每个所述像素单元可以仅包括第一 子像素单元 10a、 第二子像素单元 10b、 第三子像素单元 10c。
其中, 所述第一子像素单元 10a 中的所述条状电极 1 04与所 述取向层的取向方向 1030之间的夹角大于或等于所述第二子像素 单元 10b 中的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角; 所述第二子像素单元 10b 中的所述条状电极 104 与 所述取向层的取向方向 1030之间的夹角大于或等于所述第三子像 素单元 10c中的所述条状电极 104与所述取向层的取向方向 1030 之间的夹角, 且上述角度不完全相等。
基于上述描述可知, 优选的, 所述第一子像素单元 10a 中的 所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角为 7°-11°; 所述第二子像素单元 10b 中的所述条状电极 104 与所述 取向层的取向方向 1030之间的夹角为 7°-11°; 所述第三子像素单 元 10c 中的所述条状电极 104 与所述取向层的取向方向 1030之 间的夹角为 5°-9°。
进一步的, 所述第一子像素单元 10a 和所述第二子像素单元 10b中的所述条状电极 104与所述取向层的取向方向 1030之间的 夹角均为 7°; 所述第三子像素单元 10c中的所述条状电极 104与 所述取向层的取向方向 1030之间的夹角 5°。
在此情况下, 所述阵列基板 10还可以包括彩膜, 所述彩膜包 括红色光阻、 绿色光阻、 蓝色光阻。 此时, 需使所述红色光阻与 所述第一子像素单元 10a 对应、 所述绿色光阻与所述第二子像素 单元 10b对应、 所述蓝色光阻与所述第三子像素单元 10c对应。
或者, 当所述阵列基板 10应用于液晶显示装置时, 所述对盒 基板可以为彩膜基板, 且所述彩膜基板包括色层; 此时, 需将所 述第一子像素单元 10a 与所述彩膜基板的色层中的红色光阻相对 应, 将所述第二子像素单元 10b 与所述彩膜基板的色层中的绿色 光阻相对应, 将所述第三子像素单元 10c 与所述彩膜基板的色层 中的蓝色光阻相对应。
进一步地, 参考图 5 所示, 每个所述像素单元还可以包括第 四子像素单元 iod。 在此情况下, 所述阵列基板 10的彩膜还可以包括白色光阻或 黄色光阻, 或者, 所述彩膜基板的色层还可以包括白色光阻或黄 色光阻; 其中, 所述第四子像素单元 10d 可以与所述白色光阻或 所述黄色光阻相对应。
可选地, 参考图 1 所示, 在形成所述像素电极 101 和所述公 共电极 102 时, 可以通过同一次构图工艺形成同层且间隔排列的 所述像素电极 101 和所述公共电极 102; 其中, 所述像素电极 101和所述公共电极 102均为条状电极。
此处, 针对任一个所述子像素单元, 所述子像素单元中的所 述像素电极 101 和所述公共电极 102 均与所述取向层的取向方向 1030之间形成夹角, 且角度相同。
针对任一个所述像素单元, 所述像素单元包括的各个所述子 像素单元中的所述条状电极 104 与所述取向层的取向方向 1030 之间的夹角关系可以根据各个所述子像素单元与所述颜色光阻之 间的对应关系进行设定, 在此不再赘述。
或者可选地, 参考图 2 和图 3 所示, 在形成所述像素电极 101 和所述公共电极 102 时, 可以通过两次构图工艺分别形成不 同层的所述像素电极 101 和所述公共电极 102; 其中, 所述像素 电极 101 和所述公共电极 102 中至少位于上方的电极为条状电极 104。
在所述公共电极 102形成在先、 所述像素电极 101 形成在后 的情况下, 参考图 2 所示, 可以首先通过一次构图工艺形成板状 所述公共电极 102, 随后再通过一次构图工艺形成条状的所述像 素电极 101。
在所述像素电极 101 形成在先、 所述公共电极 102形成在后 的情况下, 参考图 3 所示, 可以首先通过一次构图工艺形成板状 所述像素电极 101 , 随后再通过一次构图工艺形成条状的所述公 共电极 102。
基于上述两种情况, 针对任一个所述子像素单元, 只需使所 述子像素单元中的所述像素电极 101 和所述公共电极 102 中在上 的所述条状电极 104 与所述取向层的取向方向 1030 之间形成夹 角即可。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范 围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露 的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保 护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护 范围为准。

Claims

权 利 要 求 书
1、 一种阵列基板, 包括阵列排布的多个像素单元, 每个所述 像素单元至少包括第一子像素单元、 第二子像素单元、 第三子像 素单元, 每一个子像素单元包括像素电极、 公共电极、 以及取向 层,
其中,
每一个所述子像素单元的所述像素电极和所述公共电极中的 至少一个为条状电极; 且
所述第一子像素单元中的所述条状电极与所述取向层的取向 方向之间形成第一夹角、 所述第二子像素单元中的所述条状电极 与所述取向方向之间形成第二夹角、 所述第三子像素单元中的所 述条状电极与所述取向方向之间形成第三夹角, 所述第一夹角、 第二夹角以及第三夹角不完全相等。
2、 根据权利要求 1所述的阵列基板, 其中,
所述第一子像素单元对应红色子像素单元, 所述第二子像素 单元对应绿色子像素单元, 所述第三子像素单元对应蓝色子像素 单元。
3、 根据权利要求 2所述的阵列基板, 其中,
每个所述像素单元包括第一子像素单元、 第二子像素单元、 第三子像素单元;
所述第一夹角大于或等于所述第二夹角; 且
所述第二夹角大于或等于所述第三夹角。
4、 根据权利要求 3所述的阵列基板, 其中,
所述第一夹角为 7°-1 1 °;
所述第二夹角为 7°-1 1 °; 且
所述第三夹角为 5°-9°。
5、 根据权利要求 4所述的阵列基板, 其中,
所述第一夹角和第二夹角相等; 且
所述第三夹角比所述第一夹角小 1 °-2°。
6、 根据权利要求 1至 5任一项所述的阵列基板, 其中, 所述像素电极和所述公共电极同层间隔设置, 且均为条状电 极。
7、 根据权利要求 1至 5任一项所述的阵列基板, 其中, 所述像素电极和所述公共电极不同层设置, 且所述像素电极 和所述公共电极中至少位于上方的电极为条状电极。
8、 根据权利要求 1至 5任一项所述的阵列基板, 其中, 第一子像素单元、 第二子像素单元、 第三子像素单元中的所 述笫一夹角相等;
第一子像素单元、 第二子像素单元、 第三子像素单元中的所 述第二夹角相等; 且
第一子像素单元、 第二子像素单元、 第三子像素单元中的所 述第三夹角相等。
9、 根据权利要求 3-5中任一项所述的阵列基板, 其中, 所述阵列基板还包括彩膜, 所述彩膜包括与所述第一子像素 单元对应的红色光阻、 与所述第二子像素单元对应的绿色光阻、 与所述第三子像素单元对应的蓝色光阻。
1 0、 一种液晶显示装置, 包括权利要求 1 至 8任一项所述的 阵列基板。
1 1、 根据权利要求 1 0所述的液晶显示装置, 其中,
所述液晶显示装置还包括彩膜基板, 所述彩膜基板包括色层; 且
所述阵列基板为根据权利要求 3-5 中任一项所述的阵列基板; 且所述色层包括与所述第一子像素单元对应的红色光阻、 与所述 第二子像素单元对应的绿色光阻、 与所述第三子像素单元对应的 蓝色光阻。
12、 根据权利要求 1 0所述的液晶显示装置, 其中,
所述阵列基板为根据权利要求 3-5 中任一项所述的阵列基板; 且
所述阵列基板还包括彩膜, 所述彩膜包括与所述第一子像素 单元对应的红色光阻、 与所述第二子像素单元对应的绿色光阻、 与所述第三子像素单元对应的蓝色光阻。
1 3、 一种阵列基板的制备方法, 所述阵列基板包括阵列排布 的多个像素单元, 每个所述像素单元至少包括第一子像素单元、 第二子像素单元、 第三子像素单元, 每一个所述子像素单元包括 像素电极、 公共电极以及取向层, 所述方法包括如下步骤:
将每一个所述子像素单元的所述像素电极和所述公共电极中 的至少一个形成为条状电极, 且所述第一子像素单元中的所述条 状电极与所述取向层的取向方向之间形成第一夹角、 所述第二子 像素单元中的所述条状电极与所述取向方向之间形成笫二夹角、 所述第三子像素单元中的所述条状电极与所述取向方向之间形成 第三夹角, 所述第一夹角、 第二夹角以及第三夹角不完全相等。
14、 根据权利要求 1 3所述的方法, 其中,
所述第一子像素单元对应红色子像素单元, 所述第二子像素 单元对应绿色子像素单元, 所述第三子像素单元对应蓝色子像素 单元。
1 5、 根据权利要求 14所述的方法, 其中,
每个所述像素单元包括第一子像素单元、 第二子像素单元、 第三子像素单元;
所述第一夹角大于或等于所述第二夹角; 且
所述第二夹角大于或等于所述第三夹角。
16、 根据权利要求 1 5所述的方法, 其中,
所述第一夹角为 7°-1 1 °;
所述第二夹角为 7°-1 1 °; 且
所述第三夹角为 5°-9°。
17、 根据权利要求 16所述的方法, 其中,
所述第一夹角和所述第二夹角相等; 且
所述第三夹角比所述第一夹角小 1 °-2°。
1 8、 一种液晶显示装置, 包括:
发出白光的背光源;
入光侧偏光片, 来自背光源的白光经过所述入光侧偏光片后 形成具有线偏振红光、 线偏振绿光和线偏振蓝光的线偏振白光; 阵列排布的多个像素单元, 每个所述像素单元至少包括第一 子像素单元、 第二子像素单元、 第三子像素单元, 每一个所述子 像素单元包括像素电极、 公共电极以及取向层, 每一个所述子像 素单元的所述像素电极和所述公共电极中的至少一个为条状电极, 所述第一子像素单元中的所述条状电极与所述取向层的取向方向 之间形成第一夹角、 所述第二子像素单元中的所述条状电极与所 述取向方向之间形成第二夹角、 所述第三子像素单元中的所述条 状电极与所述取向方向之间形成第三夹角;
液晶层; 以及
出光侧偏光片,
其中,
所述第一夹角、 第二夹角以及第三夹角设置成使得穿过具有相 同厚度和相同偏转角度的所述液晶层的所述线偏振红光、 线偏振绿 光和线偏振蓝光在相同电压下经过所述出光侧偏光片的透光率基本 相同。
PCT/CN2014/076629 2013-12-12 2014-04-30 阵列基板及其制备方法、液晶显示装置 WO2015085704A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/409,841 US20160011458A1 (en) 2013-12-12 2014-04-30 Array substrate, method of manufacturing the same, and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310681176.3 2013-12-12
CN201310681176.3A CN103645590B (zh) 2013-12-12 2013-12-12 一种阵列基板及其制备方法、液晶显示装置

Publications (1)

Publication Number Publication Date
WO2015085704A1 true WO2015085704A1 (zh) 2015-06-18

Family

ID=50250831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076629 WO2015085704A1 (zh) 2013-12-12 2014-04-30 阵列基板及其制备方法、液晶显示装置

Country Status (3)

Country Link
US (1) US20160011458A1 (zh)
CN (1) CN103645590B (zh)
WO (1) WO2015085704A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645590B (zh) * 2013-12-12 2016-10-05 京东方科技集团股份有限公司 一种阵列基板及其制备方法、液晶显示装置
CN103777416B (zh) * 2014-01-17 2017-11-24 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置
CN104199222B (zh) * 2014-09-09 2018-03-30 上海中航光电子有限公司 一种阵列基板、显示面板及显示装置
CN104678665B (zh) 2014-12-30 2017-11-24 上海天马微电子有限公司 一种tft阵列基板、液晶显示面板及液晶显示装置
CN104483781B (zh) * 2014-12-30 2018-05-04 厦门天马微电子有限公司 一种液晶显示器及其制作方法及电子设备
CN104765184B (zh) * 2015-02-13 2018-09-04 厦门天马微电子有限公司 液晶显示面板
CN104597676B (zh) * 2015-02-13 2018-06-26 厦门天马微电子有限公司 一种液晶显示面板及其制造方法
CN104597664B (zh) 2015-02-13 2017-12-26 厦门天马微电子有限公司 一种液晶显示面板及其制造方法
JP6511533B2 (ja) * 2015-03-04 2019-05-15 アップル インコーポレイテッドApple Inc. カラーモーションブラー補償構造を有する液晶ディスプレイ
CN104614904A (zh) * 2015-03-11 2015-05-13 京东方科技集团股份有限公司 一种像素结构及其驱动方法、阵列基板和显示装置
CN106444170A (zh) * 2015-08-13 2017-02-22 群创光电股份有限公司 液晶显示器
CN105093723A (zh) * 2015-09-08 2015-11-25 深圳市华星光电技术有限公司 改善色偏的液晶显示面板
KR102504900B1 (ko) * 2015-12-18 2023-02-28 엘지디스플레이 주식회사 액정 표시 장치
CN106324936A (zh) * 2016-11-21 2017-01-11 厦门天马微电子有限公司 一种像素阵列基板、液晶显示面板、液晶显示设备
CN106707627A (zh) * 2017-03-27 2017-05-24 京东方科技集团股份有限公司 阵列基板、显示面板以及显示装置
CN108732805B (zh) * 2018-05-28 2021-09-14 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
US10847552B2 (en) 2018-10-16 2020-11-24 Innolux Corporation Electronic modulating device
CN109188784B (zh) * 2018-10-29 2022-02-22 合肥鑫晟光电科技有限公司 显示基板及其制作方法、显示装置
US10673481B1 (en) * 2018-11-13 2020-06-02 Innolux Corporation Electronic modulating device
CN110602407B (zh) * 2019-09-30 2021-03-19 维沃移动通信(杭州)有限公司 一种拍摄方法及电子设备
CN115291443A (zh) * 2022-06-27 2022-11-04 上海天马微电子有限公司 显示装置、显示装置控制方法及电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350196A (zh) * 2000-10-25 2002-05-22 达碁科技股份有限公司 广视角的液晶显示器
JP2009229891A (ja) * 2008-03-24 2009-10-08 Epson Imaging Devices Corp 液晶装置及び電子機器
CN102789061A (zh) * 2012-08-10 2012-11-21 京东方科技集团股份有限公司 视差挡板及显示装置
CN102998849A (zh) * 2012-11-16 2013-03-27 北京京东方光电科技有限公司 基于ads显示模式的半透半反式液晶面板及显示装置
CN102998860A (zh) * 2012-12-14 2013-03-27 京东方科技集团股份有限公司 像素电极结构、阵列基板、液晶显示面板及驱动方法
CN103135293A (zh) * 2011-11-30 2013-06-05 Nlt科技股份有限公司 横向电场液晶显示装置及其制造方法
CN103293767A (zh) * 2012-10-24 2013-09-11 上海天马微电子有限公司 Ips/ffs型液晶显示面板及其形成方法
CN103645590A (zh) * 2013-12-12 2014-03-19 京东方科技集团股份有限公司 一种阵列基板及其制备方法、液晶显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141036A (ja) * 2003-11-07 2005-06-02 Hitachi Displays Ltd 液晶表示装置
JP5167781B2 (ja) * 2007-03-30 2013-03-21 セイコーエプソン株式会社 電界駆動型装置、液晶装置及び電子機器
JP2010079024A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 液晶表示装置
KR101525801B1 (ko) * 2008-11-14 2015-06-08 삼성디스플레이 주식회사 어레이 기판 및 그 제조 방법
JP2010145872A (ja) * 2008-12-19 2010-07-01 Sony Corp 液晶パネル及び電子機器
US8531408B2 (en) * 2009-02-13 2013-09-10 Apple Inc. Pseudo multi-domain design for improved viewing angle and color shift
CN102636919B (zh) * 2011-06-09 2015-03-11 京东方科技集团股份有限公司 一种液晶显示器及其制造方法
JP5732331B2 (ja) * 2011-06-27 2015-06-10 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350196A (zh) * 2000-10-25 2002-05-22 达碁科技股份有限公司 广视角的液晶显示器
JP2009229891A (ja) * 2008-03-24 2009-10-08 Epson Imaging Devices Corp 液晶装置及び電子機器
CN103135293A (zh) * 2011-11-30 2013-06-05 Nlt科技股份有限公司 横向电场液晶显示装置及其制造方法
CN102789061A (zh) * 2012-08-10 2012-11-21 京东方科技集团股份有限公司 视差挡板及显示装置
CN103293767A (zh) * 2012-10-24 2013-09-11 上海天马微电子有限公司 Ips/ffs型液晶显示面板及其形成方法
CN102998849A (zh) * 2012-11-16 2013-03-27 北京京东方光电科技有限公司 基于ads显示模式的半透半反式液晶面板及显示装置
CN102998860A (zh) * 2012-12-14 2013-03-27 京东方科技集团股份有限公司 像素电极结构、阵列基板、液晶显示面板及驱动方法
CN103645590A (zh) * 2013-12-12 2014-03-19 京东方科技集团股份有限公司 一种阵列基板及其制备方法、液晶显示装置

Also Published As

Publication number Publication date
CN103645590B (zh) 2016-10-05
US20160011458A1 (en) 2016-01-14
CN103645590A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2015085704A1 (zh) 阵列基板及其制备方法、液晶显示装置
US8130344B2 (en) Liquid crystal device and electronic apparatus
EP2894510B1 (en) Liquid crystal display device with a multi-layer wire-grid polariser
US8054242B2 (en) Liquid crystal display device and method of driving the same
KR101260841B1 (ko) 횡전계방식 액정표시장치
US20150293401A1 (en) Color filter substrate, display panel and display device
WO2017016205A1 (zh) 显示面板及其制作方法、驱动方法、显示装置
JP2007212498A (ja) 液晶表示装置、液晶表示装置の製造方法及び電子機器
WO2015100903A1 (zh) 阵列基板、显示面板及显示装置
KR102003521B1 (ko) 편광안경방식 입체영상표시장치 및 그 제조방법
JP2007034308A (ja) 液晶表示装置とその製造方法
US9195100B2 (en) Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped
WO2015109432A1 (zh) 阵列基板及其制备方法、显示装置
US20130321721A1 (en) Array substrate for liquid crystal display device and three-dimensional image display device including the same
JP2007163722A (ja) 液晶装置とその製造方法、位相差板、及び電子機器
JP2012047769A (ja) 立体表示装置
JP2010250025A (ja) 偏光素子とその製造方法および液晶表示装置
TW201632960A (zh) 穿透反射式液晶顯示裝置
WO2019085288A1 (zh) 显示面板及其制造方法
US10203564B2 (en) Array substrate, liquid crystal module and display device including pixel sub-units having different electric field intensities
US9201254B2 (en) Stereoscopic image display and method for manufacturing the same
WO2015043055A1 (zh) 阵列基板及其制作方法、液晶面板及显示装置
WO2016106901A1 (zh) 液晶面板及液晶显示装置
WO2018113061A1 (zh) 阵列基板、彩膜基板及液晶面板
US9019438B2 (en) Polarization system and three-dimensional image display apparatus having the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14409841

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.11.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14870060

Country of ref document: EP

Kind code of ref document: A1