WO2015085333A1 - Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren - Google Patents

Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren Download PDF

Info

Publication number
WO2015085333A1
WO2015085333A1 PCT/AT2013/000198 AT2013000198W WO2015085333A1 WO 2015085333 A1 WO2015085333 A1 WO 2015085333A1 AT 2013000198 W AT2013000198 W AT 2013000198W WO 2015085333 A1 WO2015085333 A1 WO 2015085333A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cooling space
core
wall
cooling
Prior art date
Application number
PCT/AT2013/000198
Other languages
English (en)
French (fr)
Inventor
Rudolf Mandorfer
Michael Aschaber
Original Assignee
Steyr Motors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Motors Gmbh filed Critical Steyr Motors Gmbh
Priority to US14/771,029 priority Critical patent/US9957914B2/en
Priority to CN201380070587.7A priority patent/CN105934578B/zh
Priority to PCT/AT2013/000198 priority patent/WO2015085333A1/de
Priority to DE112013006018.3T priority patent/DE112013006018B4/de
Priority to GB1511258.4A priority patent/GB2523698B/en
Publication of WO2015085333A1 publication Critical patent/WO2015085333A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/02Compacting by pressing devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/02Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor of cylinders, pistons, bearing shells or like thin-walled objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/16Arrangements for cooling other engine or machine parts for cooling fuel injectors or sparking-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B9/00Engines characterised by other types of ignition
    • F02B9/02Engines characterised by other types of ignition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/002Integrally formed cylinders and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/108Siamese-type cylinders, i.e. cylinders cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F2001/104Cylinders; Cylinder heads  having cooling means for liquid cooling using an open deck, i.e. the water jacket is open at the block top face

Definitions

  • the invention relates to an engine block of a diesel engine, which is integral with the cylinder head. with a plurality of cylinders in a row, with an outer wall and a cylinder wall and between a first cooling space for a liquid coolant, and with a second cooling space above a cylinder bottom with openings for the gas exchange valves, the first cooling chamber enclosing all cylinders all around and up to about the cylinder bottom reaches.
  • This construction is also known as the "monoblock", which avoids the disadvantages associated with a separate cylinder head: the connection of the cylinder head to the engine block by stud bolts and the cylinder head gasket high pressures and requires intensive cooling by the liquid coolant, especially in the vicinity of the cylinder base.,
  • this design makes high demands on the casting technique.
  • Such a motor is known for example from DE 19 38 134 A.
  • the cylinder walls are surrounded by a cooling liquid (usually water).
  • a cooling liquid usually water
  • the cooling space is divided into two separate rooms and the cylinder wall is mechanically weakened in the particularly sensitive transition region to the cylinder bottom and not directly flowed around by cooling liquid.
  • the DE GM 1 995 270 also shows an engine in monoblock - construction, in which the cylinder bases are combined to form a plate connecting all four cylinders. The first cooling space surrounding the cylinder walls thus does not extend all the way over the cylinder bottoms. As a result, the sensitive transition area is not surrounded by cooling water.
  • the injection units are supplied in the head of the cylinder block by a continuous longitudinal bore with fuel and its first cooling space all around the cylinder bottoms, without overlapping.
  • the second cooling space in the head part
  • only an externally drilled and clogged transverse bore can be seen.
  • the cooling water flow can not be performed in the upper cooling space in the manner required for high performance engines.
  • JP 07-0713 lO deals with a monobloc engine.
  • the first cooling space in the region of the opening for the valves overlaps the cylinder bottom, albeit only slightly.
  • the overlap is effective only through the interaction with the gap width increasing from top to bottom.
  • the downslope of the core part for this zone entails that the core part near the bottom of the cylinder is thicker than at its lower end, and the wall thickness of the cylinder wall thus above, in the particularly sensitive zone at the transition into the cylinder bottom, smaller. This "weak spot” "limits the increase in power density.
  • the cooling space between the cylinder walls of adjacent cylinders forms a gap whose width is constant or increases from top to bottom.
  • the cylinder bottom is above and the crankshaft below. Likewise horizontal and vertical.
  • This measure causes the cylinder wall in the sensitive area at the transition to the cylinder bottom not weakened or (if the width of the gap increases downwards or the gap is bridged) even reinforced and that the transition to the cylinder bottom is intensively cooled. This allows a further increase in power density.
  • the cooling space in the region of the exhaust valves overlaps the cylinder bottom.
  • the overlapping and encompassing allows further improvement in the cooling of the vulnerable zone, which is desirable especially in the vicinity of the exhaust valve.
  • the engine block includes wall parts that separate the first cooling space from the second cooling space, an advantageous development is that two horizontal bores are provided, ending a first in an outer wall and a second ending in the opposite outer wall, wherein one of the two horizontal bores in the vicinity of the injection nozzle, so that from the first cooling space upwardly flowing cooling liquid is directed to the injection nozzle.
  • the sensitive injector is effectively cooled by a jet directed at them.
  • the second cooling space can be fully included in the circulation of the coolant.
  • the drilling of the engine block from the outside and the piercing of the vertical wall part is very easy, especially since the finished cast block is in any case mechanically processed in many places.
  • the opening of the bore on the outer wall is easy to close, as well as other core holding holes are closed.
  • the invention also consists in a casting process, which is particularly suitable for the inventive design of the gap between adjacent cylinders. It is assumed that the individual parts of the core of appropriately prepared sand are each formed in core boxes and that the core portion forming the first cooling space is formed in the regions of the gap between adjacent cylinders by means of a separate insert, the shape of the width of the gap or the course of the width of the gap corresponds.
  • the insert with constant or decreasing thickness down is inserted into the mold for producing the core (the core box) in the vertical direction.
  • vertical guides are provided in the core box and the insert.
  • the insert is pulled together with the core part upwards out of the core tool, to the guides, and then removed to the side. So there is only one thing additional and very simple core tool needed.
  • the insert is made of a durable material and can therefore be reused. He may further be arbitrarily shaped at the gap forming side.
  • Fig. 1 A longitudinal section through a part of a generic engine
  • Fig. 2 A longitudinal section through a part of an inventive
  • FIG. 3 shows a cross section to FIG. 2, cut according to III-III in Fig. 5,
  • FIG. 4 shows a cross section to FIG. 2, cut to 1V-IV in FIG. 5, FIG.
  • FIG. 5 shows a horizontal section to Fig. 2 according to V-V in Fig. 3,
  • Fig. 6 A cross section through the mold for producing a motor
  • the engine block 1 with cylinders in series is integrally molded with a head part 2.
  • the cylinder walls 3 surround the combustion chambers 5 and are surrounded all around by cooling chambers, which are surrounded by cooling liquid (usually water).
  • the cooling chambers are represented by sand cores. These are formed in their own forms.
  • a Einformschräge of some angle degrees is required; the thinner (and more fragile) the core is, the more so.
  • the core in the gap 6 between the cylinder walls 3 of adjacent cylinders is particularly thin. Due to the Einformschräge the gap 6 from bottom to top to Cylinder bottom 4 always thicker and the cylinder walls 3 always thinner.
  • the cylinder walls 3 in the thermally and mechanically vulnerable zone 8 at its transition into the cylinder bottom 4, the thinnest. This weak point limits the power density of the motor, or cracks occur when overloaded.
  • Fig. 2 shows a longitudinal section through the engine block 10 according to the invention, wherein the longitudinal section is only a section of an engine with, for example, 6 cylinders.
  • Each cylinder consists of a cylinder wall 13 and a cylinder bottom 14 with opening 15 for an inlet valve and opening 16 for an outlet valve, and with an opening for an injection nozzle 17 (Fig 3).
  • An inlet channel 3 1 adjoins the opening 15 and an outlet channel 32 (FIG. 4) to the opening 16.
  • FIG. 3 shows a first cross section through the engine block 10.
  • Cylinder wall 13 and cylinder bottom 14 each enclose a combustion space 18.
  • Each cylinder wall 13 is surrounded by a first cooling space 22 all around. This is common to all cylinders and is surrounded on the outside by an outer wall 21 of the engine block 10.
  • the first cooling space 22 extends upwardly from the lower region of the engine block 10 and terminates above the cylinder outer surface of the cylinder bottom 14 at 29. Between adjacent cylinders, the first cooling space 22 forms a gap 23 (see FIG. 2).
  • the width 35 of this gap 23 is according to the invention constant or decreases from bottom to top, or even has a special course. For example, a bridge could be between two adjacent cylinder walls.
  • This gap 23 protrudes upward beyond the cylinder bottom 14 and ends in an extension 24, which engages over the cylinder base 14 and engages around.
  • the head part 12 includes a second cooling space 25 which is separated from the first cooling space 22 by an intermediate wall 26.
  • the intermediate wall 26 is of rugged spatial form and also has vertical wall parts, because it contributes to the formation of Intake passage 31, exhaust passage 32 and the opening for receiving the injection nozzle 17 is involved. In between, however, the intermediate wall 26 extends down to the outer cylindrical surface of the Zylmder foundeds 14, where it passes into him (14).
  • the second cooling space 25 ends lower than the upper end 29 of the first cooling space 22.
  • To connect the first cooling space 22 to the second cooling space 25 only the finished horizontal engine block 10 needs a first horizontal transverse bore 27 and a plug at its outer end 28 to be closed.
  • FIG. 4 shows a second cross section through the engine block 10 which is displaced in parallel from the cylinder center. This section runs through the opening 16 for the outlet valve.
  • the first cooling space 22 at 30 overlaps the cylinder bottom 14 in the vicinity of the exhaust valve particularly far.
  • a second horizontal transverse bore 33 can be seen, which connects the first cooling space 22 with the second cooling space 25 on the other longitudinal side 21 'of the cylinder block. Its outer end is clogged with a ball 34.
  • the second transverse bore 33 is directed to the injection nozzle 17, so that this sensitive organ is well cooled.
  • the horizontal section of Fig. 5 is guided in a plane defined by the center lines of the transverse bores 27.33 level. It cuts the separating wall 26 separating the two cooling chambers (22, 25), and also the outer walls 21, in the hatched area.
  • the first cooling space 22 corresponds to the core mentioned below, which is concerned with the core parts in and around this gap 23. For an engine with four valves per cylinder, the conditions would be similar.
  • Fig. 6 shows a summarily designated 40 mold for producing an engine block 10 according to the invention, in preparation for the description of the casting method according to the invention.
  • two-part box (OK and LJK) are not shown in detail core parts used.
  • the cores correspond to the cavities of the casting (for example 22 * the first cooling space 22, etc).
  • the core part 22 * for the first cooling space 22 is essential to the invention.
  • Further core parts are the core part 25 * for the second cooling space 25 and the core parts corresponding to the channels 3 1.
  • FIG. 7 shows the molding tool which is essential for the casting method according to the invention. It is used to produce the core part 22 * and is summarily designated 50.
  • the inner contour of the outer walls 56 of the mold corresponds to the inner contour of the outer wall 21 of the engine block 10 and the towers 5 1 correspond to the outer contour of the cylinder wall 13 and cylinder bottom 14.
  • the towers 51 have a vertical (ie not to the Angle of the Einformschräge inclined) dovetail groove 52 into which an insert 53 is inserted as part of the mold for the production of the core member in the vertical direction (arrow 57).
  • the insert 53 has a breast surface 55 which also has vertical generatrix or any shaped.
  • the course of the breast surface 55 special embodiments (so, for example, breakthroughs according to a connecting web, not shown, between adjacent cylinder walls) have au.
  • the breast surface 55 corresponds to the shape of the core member 42 in the gap 23 between adjacent cylinders.
  • the core member 42 is formed by injecting core sand into the mold 50.
  • the finished core part 42 is pulled together with the inserts 53 along the dovetail groove 54 from the mold 50 for the production of the core part, which is possible because of the vertical guide 54.
  • the inserts 53 are removed in a horizontal direction from the core part 42 and the core 22 * is finished, with the inventively shaped boundary of the gap 23rd

Abstract

Ein mit dem Zylinderkopf einstückig gegossener Motorblock eines Dieselmotors mit mehreren Zylindern in Reihenanordnung, hat eine Außenwand (21) und jeweils eine Zylinderwand (13) mit dazwischen einem ersten Kühlungsraum (22) für ein flüssiges Kühlmittel, und einen zweiten Kühlungsraum (25) über einem Zylinderboden (14), wobei der Zylinderboden (14) Öffnungen (15,16) für Gaswechselventile hat, und wobei der erste Kühlungsraum (22) alle Zylinderwände (13) rundum umschließt. Um die gefährdete Zone am Übergang von der Zylinderwand (13) zu Zylinderboden (14) zu verstärken und gut zu kühlen, bildet erfindungsgemäß der Kühlungsraum zwischen den Zylinderwänden (13) benachbarter Zylinder der erste Kühlungsraum (22) einen Spalt (23), dessen Weite (35) von oben nach unten konstant ist oder zunimmt.

Description

MOTORBLOCK EINES DIESELMOTORS MIT INTEGRIERTEM
ZYLINDERKOPF UND GIESSVERFAHREN
Gegenstand
Die Erfindung betrifft einen Motorblock eines Dieselmotors, der mit dem Zylinderkopf einstückig ist. mit mehreren Zylindern in Reihenanordnung, mit einer Außenwand und jeweils einer Zylinderwand und dazwischen einem ersten Kühlungsraum für ein flüssiges Kühlmittel, sowie mit einem zweiten Kühlungsraum über einem Zylinderboden mit Öffnungen für die Gaswechselventile, wobei der erste Kühlungsraum alle Zylinder rundum umschließt und nach oben bis über den Zylinderboden reicht.
Diese Bauweise ist auch unter der Bezeichnung„Monoblock" bekannt. Sie vermeidet die mit einem separaten Zylinderkopf verbunden Nachteile: Die der Verbindung des Zylinderkopfes mit dem Motorblock durch Stehbolzen und die Zylinderkopfdichtung. Sie ist deshalb für Dieselmotoren hoher Leistungsdichte besonders geeignet. Die hohe Leistungsdichte bringt hohe Drucke und erfordert intensive Kühlung durch das flüssige Kühlmittel, vor allem in der Umgebung des Zylinderbodens. Allerdings stellt diese Bauweise hohe Anforderungen an die Gusstechnik.
Stand der Technik
Ein derartiger Motor ist beispielsweise aus der DE 19 38 134 A bekannt. Bei diesem sind die Zylinderwände rundum von einer Kühlflüssigkeit (in der Regel Wasser) umströmt. Um in der Umgebung des Zylinderbodens ausreichende Festigkeit er zu erzielen, ist dieser dort Teil einer durchgehenden horizontalen Wand. Dadurch ist aber der Kühlungsraum in zwei getrennte Räume unterteilt und die Zylinderwand ist in dem besonders sensiblen Übergangsbereich zum Zylinderoden mechanisch geschwächt und nicht direkt von Kühlflüssigkeit umströmt. Das DE GM 1 995 270 zeigt ebenfalls einen Motor in Monoblock - Bauweise, bei dem die Zylinderböden zu einer alle vier Zylinder verbindenden Platte vereinigt sind. Der die Zylinderwände umgebende erste Kühlungsraum reicht somit nicht rundum über die Zylinderböden. Dadurch ist der sensible Übergangsbereich nicht von Kühlwasser umspült.
Aus der AT Patentschrift 382429 ist ein gattungsgemäßer Motor bekannt, dessen Einspritzeinheiten im Kopfteil des Zylinderblockes von einer durchgehenden Längsbohrung mit Treibstoff versorgt werden und dessen erster Kühlungsraum rundum über die Zylinderböden reicht, ohne sie zu übergreifen. Zur Strömungsverbindung mit dem zweiten Kühlungsraum (im Kopfteil) ist nur eine von außen gebohrte und verstopfte Querbohrung zu erkennen. So kann der Kühlwasserstrom nicht in der für Hochleistungsmotoren erforderlicher Weise in den oberen Kühlungsraum geführt werden.
Die JP 07-0713 lOhandelt von einem Motor in Monoblock - Bauweise. Gemäß deren Fig. 3 übergreift der erste Kühlungsraum in der Region der Öffnung für die Ventile den Zylinderboden, wenn auch nur geringfügig. Um die erstrebte Verbesserung von Festigkeit und Kühlung zu erreichen, ist das Übergrei fen j edoch erst durch das Zusammenwirken mit der von oben nach unten zunehmenden Spaltweite wirksam.
Die DE 100 33 271 B4 handelt von dem Wassermantelkern eines Motors konventioneller Bauweise, nicht als Monoblock. Bei konventioneller Bauweise gibt es den sensiblen Übergang zwischen Zylinderwand und Zylinderboden nicht. Bei dem dort beschriebenen Gießverfahren werden wohl Einlegeteile in den Kern eingesetzt. Diese sind aber zeitaudwendig. in der Gestaltung eingeschränkt und sie werden beim Entformen des Gussstücks zerstört.
Problem / Lösung
Bei der Herstellung der Gussform für einen derartigen Monoblock ist es erforderlich, für die dem Kühlungsraum um die Zylinderwand entsprechenden Kernteile eine Einformschräge von einigen Winkelgraden vorzusehen. Diese ist nötig, um den Kernteil aus der für seine Herstellung gebrauchten Kern form (dem sogenannten Kernkasten) unbeschädigt herausziehen zu können. Diese sogenannte Einformschräge ist immer nötig, auch wenn sie wegen des kleinen Winkels in den üblichen Darstellungen nicht erkennbar ist. Besonders wichtig ist sie bei sehr dünnen Kernteilen, wie sie in den Zonen des Kühlungsraumes zwischen benachbarten Zylindern vorkommen. Dünne Kernteile sind besonders zerbrechlich.
Die Ein formschräge des Kernteiles für diese Zone bringt mit sich, dass der Kernteil in der Nähe des Zylinderbodens dicker als an seinem unteren Ende, und die Wandstärke der Zylinderwand somit oben, in der besonders sensiblen Zone am Übergang in den Zylinderboden, kleiner ist. Diese ..Schwachstelle"" beschränkt die Erhöhung der Leistungsdichte.
Es ist somit das der Erfindung zugrunde liegende Problem, diese Schwachstelle zu eliminieren. Erfindungsgemäß bildet der Kühlungsraum zwischen den Zylinderwänden benachbarter Zylinder einen Spalt, dessen Weite von oben nach unten konstant ist oder zunimmt. Oben und unten bezieht sich hier wie auch im Folgenden auf einen vertikal stehenden Motor, dessen Zylinderboden oben und dessen Kurbelwelle unten ist. Ebenso horizontal und vertikal.
Diese Maßnahme bewirkt, dass die Zylinderwand in dem sensiblen Bereich am Übergang zum Zylinderboden nicht geschwächt oder (wenn die Weite des Spaltes nach unten zunimmt, oder der Spalt überbrückt ist) sogar verstärkt und dass der Übergang zum Zylinderboden intensiv gekühlt ist. Das erlaubt eine weitere Steigerung der Leistungsdichte.
Vorzugsweise übergreift der Kühlungsraum in der Region der Auslassventile den Zylinderboden. Das Übergreifen und Umgreifen erlaubt eine weitere Verbesserung der Kühlung der gefährdeten Zone, die besonders in der Umgebung des Auslassventils erstrebenswert ist. Wenn der Motorblock Wandteile enthält, die den ersten Kühlungsraum vom zweiten Kühlungsraum trennen, besteht eine vorteilhafte Weiterbildung darin, dass zwei horizontale Bohrungen vorgesehen sind, eine erste in einer Außenwand endend und eine zweite in der gegenüber liegenden Außenwand endend, wobei eine der beiden horizontalen Bohrungen in der Nähe der Einspritzdüse endet, sodass vom ersten Kühlungsraum aufwärts strömende Kühlflüssigkeit auf die Einspritzdüse gerichtet ist. Dadurch wird auch die empfindliche Einspritzdüse durch einen auf sie gerichteten Strahl wirksam gekühlt. Durch pro Zylinder paarweise angeordnete Querbohrungen kann der zweite Kühlungsraum voll in den Umlauf des Kühlmittels einbezogen werden.
Fertigungstechnisch ist das Anbohren des Motorblocks von außen und das Durchstoßen des vertikalen Wandteiles sehr einfach, zumal der fertig gegossene Block jedenfalls noch an vielen Stellen mechanisch bearbeitet wird. Die Öffnung der Bohrung an der Außenwand ist leicht zu verschließen, so wie auch andere Kernhaltebohrungen verschlossen werden.
Lösung / Verfahren
Die Erfindung besteht auch in einem Gussverfahren, das sich für die erfindungsgemäße Gestaltung des Zwischenraumes zwischen benachbarten Zylindern besonders eignet. Dabei wird davon ausgegangen, dass die einzelnen Teile des Kernes aus entsprechend präpariertem Sand jeweils in Kernkästen geformt werden und dass der den ersten Kühlungsraum bildende Kernteil in den Regionen des Spaltes zwischen benachbarten Zylindern mittels jeweils eines separaten Einlegeteiles gebildet wird, dessen Form der Weite des Spaltes beziehungsweise dem Verlauf der Weite des Spaltes entspricht.
Erfindungsgemäß wird der Einlegeteil mit konstanter oder nach unten abnehmender Dicke in die Form zur Herstellung des Kernes (den Kernkasten) in vertikaler Richtung eingeschoben. Zum Einschieben sind im Kernkasten und am Einlegeteil vertikale Führungen vorgesehen. Beim Entformen des Kernes aus dem Kernwerkzeug wird der Einlegteil gemeinsam mit dem Kernteil nach oben aus dem Kernwerkzeug herausgezogen, dazu die Führungen, und dann nach der Seite abgenommen. Es wird also nur ein zu- sätzliches und ganz einfaches Kernwerkzeug benötigt. Der Einlegeteil besteht aus einem haltbaren Werkstoff und kann daher wieder verwendet werden. Er kann weiters an der den Spalt bildenden Seite beliebig geformt sein.
Abb i l dung e n
Im Folgenden wird die Erfindung anhand von Abbildungen beschrieben und erläutert. Es stellen dar:
Fig. 1 : Einen Längsschnitt durch einen Teil eines gattungsgemäßen Motors
nach dem Stand der Technik,
Fig. 2: Einen Längsschnitt durch einen Teil eines erfindungsgemäßen
Motors,
Fig. 3: Einen Querschnitt zu Fig. 2, geschnitten nach III-III in Fig. 5,
Fig. 4: Einen Querschnitt zu Fig. 2, geschnitten nach 1V-IV in Fig. 5,
Fig. 5: Einen Horizontalschnitt zu Fig. 2 gemäß V-V in Fig. 3,
Fig. 6: Einen Querschnitt durch die Gussform zur Herstellung eines Motors
gemäß Fig. 2,
Fig. 7: Einen Formkasten zur Herstellung eines Kernteiles der Gussform nach
dem erfindungsgemäßen Verfahren.
B e s chreibung
Anhand der Fig. 1 wird zunächst das der Erfindung zugrunde liegende Problem anhand des Standes der Technik erläutert. Der Motorblock 1 mit Zylindern in Reihe ist einstückig mit einem Kopfteil 2 gegossen. Die Zylinderwände 3 umgeben die Verbrennungsräume 5 und sind rundum von Kühlungsräumen umgeben, welche von Kühlflüssigkeit (normalerweise Wasser) umströmt sind. In der Gussform sind die Kühlungsräume durch Sandkerne dargestellt. Diese werden in eigenen Formen gebildet. Um den Kern der Form unbeschädigt entnehmen zu können, ist eine Einformschräge von einigen Winkel graden erforderlich; um so mehr, je dünner (und fragiler) der Kern ist. Besonders dünn ist der Kern in dem Spalt 6 zwischen den Zylinderwänden 3 benachbarter Zylinder. Durch die Einformschräge wird der Spalt 6 von unten nach oben bis zum Zylinderboden 4 immer dicker und die Zylinderwände 3 immer dünner. Dadurch sind die Zylinderwände 3 in der thermisch und mechanisch gefährdeten Zone 8, an ihrem Übergang in den Zylinderboden 4, am dünnsten. Diese Schwachstelle begrenzt die Leistungsdichte des Motors, beziehungsweise treten bei Überlastung dort Risse auf.
Fig. 2 zeigt einen Längsschnitt durch den Motorblock 10 gemäß der Erfindung, wobei der Längsschnitt nur ein Ausschnitt eines Motors mit beispielsweise 6 Zylindern ist. Der Motorblock 10 besteht aus einem Zylinderteil 11 und einem mit ihm einstückigen Kopiteil 12. Jeder Zylinder besteht aus einer Zylinderwand 13 und einem Zylinderboden 14 mit Öffnung 15 für ein Einlassventil und Öffnung 16 für ein Auslassventil, sowie mit einer Öffnung für eine Einspritzdüse 17 (Fig. 3). An die Öffnung 15 schließt ein Einlasskanal 3 1 und an die Öffnung 16 ein Auslasskanal 32 (Fig. 4) an.
Fig. 3 zeigt einen ersten Querschnitt durch den Motorblock 10. Zylinderwand 13 und Zylinderboden 14 umschließen jeweils einen Verbrennungsraum 18. Jede Zylinderwand 13 ist rundum von einem ersten Kühlungsraum 22 umgeben. Dieser ist allen Zylindern gemeinsam und ist außen von einer Außenwand 21 des Motorblocks 10 umgeben. Der erste Kühlungsraum 22 erstreckt sich von der unteren Region des Motorblocks 10 nach oben und endet über der zylinderäußeren Oberfläche des Zylinderbodens 14 bei 29. Zwischen benachbarten Zylindern bildet der erste Kühlungsraum 22 einen Spalt 23 (siehe Fig. 2). Die Weite 35 dieses Spaltes 23 ist erfindungsgemäß konstant oder nimmt von unten nach oben ab, oder hat sogar einen besonderen Verlauf. So könnte zum Beispiel ein Steg zwischen zwei benachbarten Zylinderwänden sein. Dieser Spalt 23 ragt nach oben über den Zylinderboden 14 hinaus und endet in einer Erweiterung 24, die den Zylinderboden 14 übergreift und umgreift. Dadurch ist in der gefährdeten Zone (8 in Fig. 1 ) die Dicke der Zylinderwand 13 nicht verringert oder sogar verstärkt und der Übergang in den Zylinderboden 14 ist von Kühlflüssigkeit umspült.
Der Kopfteil 12 enthält einen zweiten Kühlungsraum 25. welcher vom ersten Kühlungsraum 22 durch eine Zwischenwand 26 getrennt ist. Die Zwischenwand 26 ist von zerklüfteter Raumform und hat auch vertikale Wandteile, weil sie an der Bildung von Einlasskanal 31 , Auslasskanal 32 und der Öffnung für die Aufnahme der Einspritzdüse 17 beteiligt ist. Dazwischen aber reicht die Zwischenwand 26 hinunter bis zur zylinderäußeren Oberfläche des Zylmderbodens 14, wo sie in ihn (14) übergeht. Der zweite Kühlungsraum 25endet also tiefer als das obere Ende 29 des ersten Kühlungsraumes 22. Zur Verbindung des ersten Kühlungsraumes 22 mit dem zweiten Kühlungsraum 25 braucht dann nur mehr am fertig gegossenen Motorblock 10 eine erste horizontale Querbohrung 27 hergestellt und an ihrem äußeren Ende mit einem Stopfen 28 verschlossen zu werden.
Fig. 4 zeigt einen zweiten aus der Zylindermitte parallel verschobenen Querschnitt durch den Motorblock 10. Dieser Schnitt verläuft durch die Öffnung 16 für das Auslassventil. Hier ist gut zu sehen, dass der erste Kühlungsraum 22 bei 30 den Zylinderboden 14 in der Umgebung des Auslassventils besonders weit übergreift. Weiters ist hier auch eine zweite horizontale Querbohrung 33 zu sehen, die auf der anderen Längsseite 21 'des Zylinderblocks den ersten Kühlungsraum 22 mit dem zweiten Kühlungsraum 25 verbindet. Ihr äußeres Ende ist mit einer Kugel 34 verstopft. Die zweite Querbohrung 33 ist auf die Einspritzdüse 17 gerichtet, sodass auch dieses sensible Organ gut gekühlt ist.
Der Horizontalschnitt der Fig. 5 ist in einer durch die Mittellinien der Querbohrungen 27.33 aufgespannten Ebene geführt. Er schneidet die die beiden Kühlungsräume (22, 25) separierende Trennwand 26, und auch die Außenwände 21 , in der schraffierten Fläche. Man sieht den ersten Kühlungsraum 22 zwischen den Außenwänden 21 und den Zylinderwänden 13 der einzelnen Zylinder und den Spalt 23 zwischen benachbarten Zylindern. Dem ersten Kühlungsraum 22 entspricht der weiter unten erwähnte Kern, bei dem es um die Kernteile in und um diesen Spalt 23 geht. Bei einem Motor mit vier Ventilen pro Zylinder wären die Verhältnisse ähnlich.
Fig. 6 zeigt eine summarisch mit 40 bezeichnete Gussform zur Herstellung eines erfindungsgemäßen Motorblocks 10, zur Vorbereitung auf die Beschreibung des erfindungsgemäßen Gießverfahrens. In einen nur durch die Trennlinie 41 angedeuteten zweiteiligen Kasten (OK und LJK) werden im Einzelnen nicht dargestellte Kernteile eingesetzt. Die Kerne entsprechen den Hohlräumen des Gussstücks (beispielsweise 22* dem ersten Kühlungsraum 22, etc). Erfmdungswesentlich ist der Kernteil 22* für den ersten Kühlungsraum 22. Weitere Kernteile sind der Kernteil 25* für den zweiten Kühlungsraum 25 und die den Kanälen 3 1. 32 entsprechenden Kernteile.
Fig. 7 zeigt das für das erfindungsgemäße Gießverfahren wesentliche Formwerkzeug. Es dient zur Herstellung des Kernteiles 22* und ist summarisch mit 50 bezeichnet. Die Innenkontur der Außenwände 56 des Formwerkzeuges entspricht der Innenkontur der Außenwand 21 des Motorblocks 10 und die Türme 5 1 entsprechen der Außenkontur von Zylinderwand 13 und Zylinderboden 14. Jeweils in der dem benachbarten Zylinder zugewandten Zone haben die Türme 51 eine vertikale (also nicht um den Winkel der Einformschräge geneigte) Schwalbenschwanznut 52, in die ein Einlegeteil 53 als Teil des Formwerkzeuges für die Herstellung des Kernteiles in vertikaler Richtung (Pfeil 57) eingeschoben wird.
Der Einlegeteil 53 hat eine Brust fläche 55 die ebenfalls vertikale Erzeugende hat oder überhaupt beliebig geformt ist. So kann der Verlauf der Brustfläche 55 besondere Ausformungen (so beispielsweise auch Durchbrüche entsprechend einem nicht dargestellten Verbindungssteg zwischen benachbarten Zylinderwänden) au weisen. Die Brustfläche 55 entspricht der Form des Kernteiles 42 im Spalt 23 zwischen benachbarten Zylindern. Sodann w ird der Kernteil 42 durch Einblasen von Kernsand in das Formwerkzeug 50 geformt. Der fertige Kernteil 42 wird mitsamt den Einlegeteilen 53 entlang der Schwalbenschwanznut 54 aus dem Formwerkzeug 50 zur Herstellung des Kernteiles gezogen, was wegen der vertikalen Führung 54 möglich ist. Dann werden die Einlegeteile 53 in horizontaler Richtung vom Kernteil 42 abgenommen und der Kern 22* ist fertig, mit der erfindungsgemäß geformten Begrenzung des Spaltes 23.

Claims

P a t e n t a n s p r ü c h e
1. Motorblock eines Dieselmotors, der mit dem Zylinderkopf einstückig ist, mit mehreren Zylindern in Reihenanordnung, mit einer Außenwand (21) und jeweils einer Zylinderwand ( 13) und dazwischen einem ersten Kühlungsraum (22) für ein flüssiges Kühlmittel, und mit einem zweiten Kühlungsraum (25) über einem Zylinderboden (14), wobei der Zylinderboden (14) Öffnungen (15, 16) für Gaswechselventile hat, und wobei der erste Kühlungsraum (22) alle Zylinderwände ( 13) rundum umschließt, wobei der die Zylinderwände ( 13) umgebende erste Kühlungsraum (22) rundum bis über die Zylinderböden ( 14) reicht, dadurch gekennzeichnet, dass zwischen den Zylinderwänden ( 13 ) benachbarter Zylinder der erste Kühlungsraum (22) einen Spalt (23) bildet, dessen Weite (35) von oben nach unten konstant ist oder zunimmt.
2. Motorblock nach Anspruch 1, dadurch gekennzeichnet, dass der erste Kühlungsraum (22) zumindest in der Region der Öffnungen (16) für die Auslassventile den Zylinderboden (14) übergreift (30).
3. Motorblock nach Anspruch 1 , wobei eine erste horizontale Querbohrung (27) vorgesehen ist. durch welche die beiden Kühlungsräume (22.25) miteinander ström ungs- verbunden sind, welche Querbohrung (27) von einer Außenwand (21) ausgehend den den Zylinderboden (14) nach oben überragenden ersten Kühlungsraum (22) durchstoßt, dadurch gekennzeichnet eine zweite (33) die beiden Kühlungsräume (22,35) miteinander Strömungsverbindende horizontale Querbohrung (33) vorgesehen ist, welche von der gegenüber liegenden Außenwand (21 ') ausgeht und in der Nähe der Einspritzdüse ( 17) endet, sodass vom ersten Kühlungsraum (22) aufwärts strömende Kühl flüssigkeit auf die Einspritzdüse ( 17 ) gerichtet ist.
4. Verfahren zum Gießen eines Motorblocks nach Anspruch 1, wobei die einzelnen Teile des Kernes jeweils in einem Kernkasten geformt werden und der den ersten Kühlungsraum bildende Kernteil (22* ) in den Regionen des Spaltes (23) zwischen benachbarten Zylinderwänden (13) jeweils mittels eines separaten Einlegeteiles (43; 53) gebildet wird, dessen Form der von oben nach unten konstanten oder zunehmenden Weite (35) des Spaltes (23 ) entspricht, dadurch gekennzeichnet, dass die Einlegeteile (53 ) in das Werkzeug (50) zur Herstellung des Kernes (22*) in vertikaler Richtung (57) eingeschoben werden und dass der in dem Kernwerkzeug (50) geformte Kernteil (22*) mit dem Einlegeteil (53) aus .dem Kernwerkzeug nach oben ausgezogen und sodann der Einlegeteil (53) abgenommen wird.
5. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Einlegeteil (53) an seiner dem entstehenden Kernteil (22*) abgewandten Rückseite eine schwalbenschwanzartige vertikale Führung (54) hat und aus einem haltbaren Werkstoff besteht.
PCT/AT2013/000198 2013-12-10 2013-12-10 Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren WO2015085333A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/771,029 US9957914B2 (en) 2013-12-10 2013-12-10 Engine block of a diesel engine with integrated cylinder head, and casting method
CN201380070587.7A CN105934578B (zh) 2013-12-10 2013-12-10 具有一体式气缸盖的柴油发动机的发动机缸体及其铸造方法
PCT/AT2013/000198 WO2015085333A1 (de) 2013-12-10 2013-12-10 Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren
DE112013006018.3T DE112013006018B4 (de) 2013-12-10 2013-12-10 Motorblock eines Dieselmotors mit integriertem Zylinderkopf und Gießverfahren
GB1511258.4A GB2523698B (en) 2013-12-10 2013-12-10 Engine block of a diesel engine with integrally cast cylinder head and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AT2013/000198 WO2015085333A1 (de) 2013-12-10 2013-12-10 Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren

Publications (1)

Publication Number Publication Date
WO2015085333A1 true WO2015085333A1 (de) 2015-06-18

Family

ID=49998002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2013/000198 WO2015085333A1 (de) 2013-12-10 2013-12-10 Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren

Country Status (5)

Country Link
US (1) US9957914B2 (de)
CN (1) CN105934578B (de)
DE (1) DE112013006018B4 (de)
GB (1) GB2523698B (de)
WO (1) WO2015085333A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156582B2 (ja) * 2014-06-30 2017-07-05 日産自動車株式会社 内燃機関
US11378036B2 (en) * 2020-10-01 2022-07-05 Ford Global Technologies, Llc Bore bridge cooling channels

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1995270U (de) 1965-07-28 1968-10-24 Ford Werke Ag Brennkraftkolbenmaschine.
DE1938134A1 (de) 1969-07-26 1971-01-28 Daimler Benz Ag Hubkolben-Brennkraftmaschine mit aus einem Block bestehendem Zylindergehaeuse und Zylinderkopf
US4230087A (en) * 1977-11-17 1980-10-28 Nissan Motor Company, Limited Low-noise-level internal combustion engine
AT382429B (de) 1979-09-28 1987-02-25 List Hans Einspritzbrennkraftmaschine
JPH07713A (ja) 1993-06-17 1995-01-06 Kurita Water Ind Ltd 水性塗料用凝集剤組成物
JPH0771310A (ja) * 1993-08-30 1995-03-14 Toyota Motor Corp 副室付き内燃機関
DE10033271B4 (de) 1999-07-13 2004-11-11 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Wassermantelkern
DE102011105388A1 (de) * 2011-06-22 2012-12-27 Daimler Ag Kern für ein Gießwerkzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1938134U (de) 1966-01-07 1966-05-12 Demag Zug Gmbh Selbsttragende laufschiene fuer haengebahnen, haengekrane u. dgl.
AT342925B (de) * 1975-09-04 1978-04-25 List Hans Wassergekuhlte brennkraftmaschine, insbesondere dieselmotor
AT376018B (de) 1975-09-04 1984-10-10 List Hans Wassergekuehlte brennkraftmaschine
AT378579B (de) * 1979-08-28 1985-08-26 List Hans Wassergekuehlte brennkraftmaschine
US4708105A (en) * 1985-12-23 1987-11-24 Ford Motor Company Chamber construction for internal combustion engine
US4763619A (en) * 1987-04-02 1988-08-16 Eitel Jay M Multicylinder internal combustion engine utilizing split block with unitized cylinder head and liner
US5404846A (en) * 1994-04-29 1995-04-11 Outboard Marine Corporation Four stroke one-piece engine block construction
US20020124815A1 (en) * 2001-03-06 2002-09-12 Toyota Jidosha Kabushiki Kaisha Cooling structure of cylinder head and method for manufacturing cylinder head
DE102005061075A1 (de) * 2005-12-21 2007-06-28 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu dessen Herstellung
CN201300194Y (zh) * 2008-11-18 2009-09-02 奇瑞汽车股份有限公司 一种柴油发动机的缸盖水套芯
AT513038B1 (de) 2012-10-08 2014-01-15 Steyr Motors Gmbh Motorblock eines Dieselmotors mit integriertem Zylinderkopf und Gießverfahren
CN103953453A (zh) * 2014-03-17 2014-07-30 东风朝阳朝柴动力有限公司 变气缸孔截面的发动机机体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1995270U (de) 1965-07-28 1968-10-24 Ford Werke Ag Brennkraftkolbenmaschine.
DE1938134A1 (de) 1969-07-26 1971-01-28 Daimler Benz Ag Hubkolben-Brennkraftmaschine mit aus einem Block bestehendem Zylindergehaeuse und Zylinderkopf
US4230087A (en) * 1977-11-17 1980-10-28 Nissan Motor Company, Limited Low-noise-level internal combustion engine
AT382429B (de) 1979-09-28 1987-02-25 List Hans Einspritzbrennkraftmaschine
JPH07713A (ja) 1993-06-17 1995-01-06 Kurita Water Ind Ltd 水性塗料用凝集剤組成物
JPH0771310A (ja) * 1993-08-30 1995-03-14 Toyota Motor Corp 副室付き内燃機関
DE10033271B4 (de) 1999-07-13 2004-11-11 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Wassermantelkern
DE102011105388A1 (de) * 2011-06-22 2012-12-27 Daimler Ag Kern für ein Gießwerkzeug

Also Published As

Publication number Publication date
GB201511258D0 (en) 2015-08-12
DE112013006018A5 (de) 2015-09-17
GB2523698A (en) 2015-09-02
US9957914B2 (en) 2018-05-01
US20160273478A1 (en) 2016-09-22
CN105934578B (zh) 2018-09-04
CN105934578A (zh) 2016-09-07
GB2523698B (en) 2020-06-03
DE112013006018B4 (de) 2022-05-12

Similar Documents

Publication Publication Date Title
EP2325453B1 (de) Kühlsystem
EP3379063B1 (de) Flüssigkeitsgekühlter verbrennungsmotor
EP1815122A1 (de) Kolben für einen verbrennungsmotor und kombination eines kolbens mit einer öleinspritzanordnung
DE102017206716B4 (de) Zylinderblock eines Verbrennungsmotors
WO2010122095A1 (de) Zylinderkopf einer brennkraftmaschine
AT519458B1 (de) Zylinderkopf für eine brennkraftmaschine
DE102008047185A1 (de) Kühlmittelströmungsweganordnung eines Zylinderkopfes einer Brennkraftmaschine und Verfahren zu dessen Kühlung
EP3333398A1 (de) Zylinderkopf
DE10033271A1 (de) Wassermantelkern
DE102011012402A1 (de) Motorblockanordnung für eine Brennkraftmaschine
AT515220B1 (de) Zylinderblock einer Verbrennungskraftmaschine in Monoblock - Bauweise und Gießform zu dessen Herstellung
DE112004002081B4 (de) Brennkraftmaschine
EP2636468B1 (de) Vorrichtung zur Herstellung eines Zylinderkurbelgehäuses
DE3416235A1 (de) Zylinderkopf fuer eine wassergekuehlte brennkraftmaschine
WO2015085333A1 (de) Motorblock eines dieselmotors mit integriertem zylinderkopf und giessverfahren
DE60131487T2 (de) Zylinderkopfkühlwasserstruktur und Verfahren zur Herstellung
DE10222755A1 (de) Zylinderkopf einer Brennkraftmaschine
WO2010121939A1 (de) Giessvorrichtung zum herstellen einer turbinenlaufschaufel einer gasturbine und turbinenlaufschaufel
AT513038B1 (de) Motorblock eines Dieselmotors mit integriertem Zylinderkopf und Gießverfahren
DE102016214224B4 (de) Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
AT524566B1 (de) Flüssigkeitsgekühlte Brennkraftmaschine
DE102006026131B4 (de) Verfahren zur Herstellung eines Zylinderkopfs für eine flüssigkeitsgekühlte Brennkraftmaschine
EP0637680B1 (de) Flüssigkeitsgekühlte Mehrzylinder-Brennkraftmaschine
WO2019036738A1 (de) Zylinderkopf
DE10339573B4 (de) Zylindergehäuse

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112013006018

Country of ref document: DE

Ref document number: 1120130060183

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 1511258

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131210

WWE Wipo information: entry into national phase

Ref document number: 1511258.4

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13821787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14771029

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013006018

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13821787

Country of ref document: EP

Kind code of ref document: A1