WO2015083821A1 - 磁歪材料の製造方法および磁歪量増加方法 - Google Patents
磁歪材料の製造方法および磁歪量増加方法 Download PDFInfo
- Publication number
- WO2015083821A1 WO2015083821A1 PCT/JP2014/082249 JP2014082249W WO2015083821A1 WO 2015083821 A1 WO2015083821 A1 WO 2015083821A1 JP 2014082249 W JP2014082249 W JP 2014082249W WO 2015083821 A1 WO2015083821 A1 WO 2015083821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetostriction
- magnetostrictive material
- hot
- amount
- mass
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000005242 forging Methods 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 19
- 238000005097 cold rolling Methods 0.000 claims abstract description 11
- 238000005482 strain hardening Methods 0.000 claims description 20
- 238000005098 hot rolling Methods 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 abstract description 13
- 238000005266 casting Methods 0.000 abstract description 8
- 238000010248 power generation Methods 0.000 abstract description 8
- 229910017061 Fe Co Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000010622 cold drawing Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001329 Terfenol-D Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N35/00—Magnetostrictive devices
- H10N35/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N35/00—Magnetostrictive devices
- H10N35/101—Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N35/00—Magnetostrictive devices
- H10N35/80—Constructional details
- H10N35/85—Magnetostrictive active materials
Definitions
- the present invention relates to a method for manufacturing a magnetostrictive material and a method for increasing the amount of magnetostriction.
- Magnetostrictive materials are used for vibration power generation and force sensors that use the inverse magnetostriction phenomenon in which the magnetic field in a magnetic body changes due to strain caused by stress applied from the outside.
- Fe-Co alloys Co: 56-80
- Tb-Dy-Fe alloys Tefenol-D
- FeGa alloys Gafenol
- the present invention has been made paying attention to such a problem, and a magnetostrictive material manufacturing method and magnetostriction capable of increasing the magnetostriction amount of a magnetostrictive material used for vibration power generation or force sensor utilizing the inverse magnetostriction phenomenon.
- the object is to provide a method for increasing the amount.
- a method for producing a magnetostrictive material according to the present invention is characterized by hot working an alloy material to be a magnetostrictive material. By hot working an alloy material that becomes a magnetostrictive material, a magnetostrictive material having a high magnetostriction amount can be produced.
- the method for increasing the amount of magnetostriction of a magnetostrictive material according to the present invention is characterized by subjecting the magnetostrictive material to hot working and optionally cold working and / or heat treatment.
- the amount of magnetostriction can be increased by subjecting the magnetostrictive material to hot working and optionally cold working and / or heat treatment.
- cold working and heat treatment are not essential processes, only hot working, a combination of hot working and cold working, a combination of hot working and heat treatment, a combination of hot working and cold working and heat treatment. Either may be sufficient.
- the hot working may be any work that is plastically deformed hot, but in particular, it is preferably made of hot forging or hot rolling, and may be made of a hot block.
- Hot forging can be performed using, for example, a press or a hammer.
- Hot rolling can be performed using, for example, a roll mill. It is preferable to perform cold working after hot working. The amount of magnetostriction can be further increased by cold working after hot working.
- the cold work may be any work that is plastically deformed in the cold, but is preferably composed of cold rolling, and may be cold wire drawing. However, temperatures from room temperature to about 300 ° C. are regarded as cold as the manufacturing workplace environment.
- the alloy material is preferably made of an Fe—Co based magnetostrictive alloy material, and the magnetostrictive material is preferably an Fe—Co based bulk magnetostrictive material.
- the alloy material is preferably formed by dissolving and solidifying 67-87% by mass of Co, the remaining Fe and unavoidable impurities.
- a magnetostrictive material having a magnetostriction amount of 100 ppm or more can be easily produced.
- the alloy material is preferably formed by dissolving and solidifying 71-82% by mass of Co, the remaining Fe and unavoidable impurities.
- the magnetostrictive amount of the magnetostrictive material can be increased to 130 ppm or more by subjecting the alloy material having this composition to hot working and then cold working.
- the alloy material includes 67-87% by mass of Co, 1% by mass or less of Nb, Mo, V, Ti and Cr in combination of one or more, and the balance of Fe and inevitable impurities. And may be dissolved and solidified.
- the magnetostriction amount of the produced magnetostrictive material is somewhat lower than when Nb, Mo, V, Ti or Cr is not added, the mechanical strength, particularly the tensile strength can be increased.
- the total mass% of the combination is 1 mass% or less.
- the alloy material dissolves 67-72% by mass of Co, 0.6% by mass or less of Nb, Mo, V, Ti, and a combination of two or more, and the remaining Fe and inevitable impurities.
- Such a magnetostrictive material with increased mechanical strength is suitable for devices that require durability, such as vibration power generation and sensors utilizing the inverse magnetostrictive effect.
- the hot working is preferably performed at a temperature of 1200 ° C. or less, and more desirably, after heating at 900 to 1100 ° C., it is preferably removed from the furnace and plastically deformed at 1100 to 700 ° C. .
- the alloy material is desirably a molten bulk material having a size capable of being processed by hot forging or hot lump using a press or a hammer, hot rolling or cold rolling by a roll mill.
- heat treatment may be performed at a temperature not exceeding the (bcc + fcc) / bcc phase boundary in the Fe—Co binary phase diagram. In a specific temperature range, heat treatment may be performed at 400 to 1000 ° C. after hot working or after cold working.
- the shape of the magnetostrictive material after hot working or cold working is not limited, but examples thereof include a rod shape, a wire shape, and a plate shape.
- the present invention it is possible to provide a method of manufacturing a magnetostrictive material and a method of increasing the amount of magnetostriction that can increase the amount of magnetostriction of the magnetostrictive material used for vibration power generation or force sensor using the inverse magnetostriction phenomenon.
- the bulk magnetostrictive material with a magnetostriction amount of 100 ppm or more can be manufactured by melting, casting, and hot forging an alloy material having this composition. . Furthermore, the amount of magnetostriction can be further increased by performing cold rolling after hot forging. Hot rolling may be performed after hot forging. Moreover, you may perform cold rolling after hot rolling.
- the bulk magnetostrictive material with a magnetostriction amount of 110 ppm or more can be manufactured by melting, casting, and hot forging an alloy material having this composition. . Furthermore, a magnetostrictive material having a magnetostriction amount of 130 ppm or more can be produced by performing cold rolling after hot forging.
- the magnetostrictive material with a magnetostriction of 150 ppm or more is obtained by melting, casting, hot forging, and cold rolling the alloy material consisting of this composition. Can be manufactured.
- Ingredient Co 67 to 87 mass%, one or more combinations of Nb, Mo, V, Ti and Cr: 1 mass% or less, Fe and unavoidable impurities: the remainder Dissolve the alloy material consisting of this composition,
- a magnetostrictive material having a magnetostriction of 65 to 139 ppm and a tensile strength of 695 to 1010 MPa can be manufactured by hot forging after casting and further cold drawing.
- the amount of magnetostriction is considered to be complicatedly affected by the crystal structure, strain, lattice defects, and the like.
- the Fe—Co bulk magnetostrictive material After melting and refining an alloy material having the above-mentioned composition in an induction furnace in an atmosphere, it is ingoted, then heated to 900-1100 ° C and then discharged from the furnace for hot working (hot forging, heat Hot rolling after hot rolling or hot forging, etc.) to form a bar, wire, or plate.
- hot working hot forging, heat Hot rolling after hot rolling or hot forging, etc.
- the wire rod is drawn out in a cold state to obtain a thinner wire rod as it is, or a bar material that has been straightened. In the case of bars, bend and correct straight.
- the plate is straightened after being straightened, or it is made into a thinner plate or strip by cold rolling.
- the wire, bar, plate, and strip produced in this way are used as they are or after being processed into a use shape. Alternatively, it can be used after heat treatment at 400 to 1000 ° C.
- Example 1 An alloy material consisting of each mass% Co shown in Table 1 and the balance Fe and unavoidable impurities was melted in 7 kg in an Ar stream and cast into a mold to produce an ingot of about 80 mm ⁇ (Table Test 1 (dissolution step of (1) to (5)). Next, in tests (1) to (4) in Table 1, the ingot was held in a gas burner heating furnace at 1000 to 1100 ° C. for 1 hour and then left out, and about 15 mm thick by a hot forging air hammer. Molded into a plate (hot forging process).
- a 15 mm thick plate was formed into a 0.3 mm thick plate by a roll type cold rolling mill (cold rolling step). Furthermore, in test (2) in Table 1, the furnace was cooled to 800 ° C. for 1 hour in an electric furnace and then cooled (heat treatment process). In tests (3) and (4) in Table 1, a 15 mm thick plate was held in an electric furnace at about 1100 ° C. for 1 hour and then rolled to 1 mm thickness with a roll type hot rolling mill (hot rolling process) ). Furthermore, in test (4) in Table 1, the furnace was cooled to 800 ° C. for 1 hour in an electric furnace and then cooled (heat treatment process).
- test (5) in Table 1 a sample was cut out from the as-cast state after melting, held in an electric furnace at 800 ° C. for 1 hour, and then cooled in the furnace (heat treatment process). In this way, bulk magnetostrictive materials were manufactured by tests (1) to (5).
- the magnetostriction measurement sample was molded into a length of 8 mm ⁇ width of 5 mm ⁇ thickness of 0.3 mm, and a strain gauge (manufactured by Kyowa Denki Co., Ltd., “KFL-05-120-C1-11L1M2R”) was used as an adhesive (manufactured by Vishay) , “M-Bond610”).
- Example 2 7 kg of each mass% of Co, each mass% of Nb, Mo, V, Ti, or Cr, and the remaining alloy material of Fe and inevitable impurities shown in Table 2 and Table 3 in an Ar atmosphere, An ingot of about 80 mm ⁇ was produced by casting into a mold (melting process). Next, the ingot was held in a gas burner heating furnace at 1000 to 1100 ° C. for 1 hour and then left in the furnace, and formed into about 16 mm ⁇ by a hot forging air hammer (hot forging process). Next, it was formed into a wire of about 8 mm ⁇ by cold drawing (cold drawing process). Furthermore, the furnace was cooled to 800 ° C. for 1 hour in an electric furnace and then cooled (heat treatment process). Thus, a magnetostrictive material was manufactured.
- a 4 mm ⁇ JIS14A tensile test piece and a sample for magnetostriction measurement of length 8 mm ⁇ width 5 mm ⁇ thickness 0.3 mm were prepared from the produced magnetostrictive material and used for the test.
- the tensile strength was measured with an Instron type tensile tester.
- the results are shown in Table 2 and FIG. Magnetostriction measurement was performed in the same manner as in Example 1.
- the results are shown in Table 3 and FIG.
- the additive elements Nb, Mo, V, Ti, and Cr all increase the mechanical strength by solid solution strengthening. Even if two or more elements are added simultaneously, the same effect as the addition of one element can be obtained. .
- Such a magnetostrictive material with increased mechanical strength is suitable for devices that require durability, such as vibration power generation and sensors utilizing the inverse magnetostrictive effect. Vibratory power generation and sensors using the inverse magnetostrictive effect are deformed and deteriorated by repeated application of force, but if a magnetostrictive material with increased mechanical strength is used, the service life can be extended.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Soft Magnetic Materials (AREA)
- Forging (AREA)
Abstract
Description
これまで試みられている振動発電用磁歪合金のTb-Dy-Fe合金(Terfenol-D)、FeGa合金(Galfenol)の材質的脆弱性や加工性を改善したFe-Co合金(Co:56~80 at%)とその熱処理方法が古屋らによって提供されている(特許文献1参照)。
上記目的を達成するために、本発明に係る磁歪材料の製造方法は、磁歪材料となる合金素材を熱間加工することを特徴とする。
磁歪材料となる合金素材を熱間加工することにより、磁歪量の高い磁歪材料を製造することができる。
本発明に係る磁歪材料の磁歪量増加方法は、磁歪材料を熱間加工ならびに、任意に冷間加工および/または熱処理することを特徴とする。
本発明において、磁歪材料を熱間加工ならびに、任意に冷間加工および/または熱処理することにより、磁歪量を増加させることができる。本発明において、冷間加工および熱処理は必須工程ではなく、熱間加工のみ、熱間加工と冷間加工の組み合わせ、熱間加工と熱処理の組み合わせ、熱間加工と冷間加工と熱処理の組み合わせのいずれであってもよい。
特に、合金素材が、67-72質量%のCoと、0.6質量%以下のNb, Mo, V, TiおよびCrの1種または2種以上の組み合わせと、残部のFeおよび不可避的不純物とを溶解および凝固させて成る場合、熱間加工後、冷間加工することにより磁歪材料の磁歪量を110ppm以上に高めるとともに、機械的強度を大きくすることができる。
このような機械的強度を大きくした磁歪材料は、耐久性が求められるデバイス、例えば、逆磁歪効果を利用した振動発電やセンサーなどの用途に適している。
熱間加工または冷間加工後の磁歪材料の形状は、限定されないが、例示すれば、棒状、線状、板状などが挙げられる。
・成分 Co:67~87質量 %、Feおよび不可避的不純物:残部
この組成から成る合金素材を溶解、鋳造後、熱間鍛造することにより、磁歪量100ppm以上のバルク磁歪材料を製造することができる。さらに、熱間鍛造後、冷間圧延を行うことにより、磁歪量をさらに増加させることができる。熱間鍛造後、熱間圧延を行ってもよい。また、熱間圧延後、冷間圧延を行ってもよい。
この組成から成る合金素材を溶解、鋳造後、熱間鍛造することにより、磁歪量110ppm以上のバルク磁歪材料を製造することができる。さらに、熱間鍛造後、冷間圧延を行うことにより、磁歪量130ppm以上の磁歪材料を製造することができる。
この組成から成る合金素材を溶解、鋳造後、熱間鍛造し、さらに冷間圧延を行うことにより、磁歪量150ppm以上の磁歪材料を製造することができる。
この組成から成る合金素材を溶解、鋳造後、熱間鍛造し、さらに冷間引抜きを行うことにより、磁歪量65~139ppm、引張強度695~1010MPaの磁歪材料を製造することができる。
熱間や冷間での鍛造、圧延、伸線などの加工が磁歪量を増加させる。磁歪量は結晶組織、歪み、格子欠陥などの影響を複雑に受けると考えられる。
熱間加工、冷間加工後に歪み取り等の目的で400~1000℃で熱処理を施しても磁歪量が大きく低下することはない。また、熱間加工と冷間加工の間に熱処理を行ってもよい。但し1000℃以上で熱処理すると著しく低下することがあるが、原因としてはfcc相の析出などが関係していると考えられる。Fe-Co系2元系状態図を図2に示す。
例えば、雰囲気中誘導炉にて、前述の組成から成る合金素材を溶解、精錬したのち、造塊し、次いで900~1100℃に加熱後、炉出しして、熱間加工(熱間鍛造、熱間圧延または熱間鍛造後の熱間圧延など)して棒材、線材、または板材形状とする。次に、線材の場合は冷間で引抜きしてそのままさらに細い線材とするか、あるいは曲り矯正した棒材にする。棒材の場合は、冷間で曲がり矯正を行う。板材の場合は、曲り矯正をしてそのまま板材とするか、あるいは冷間圧延によりさらに薄い板または帯材とする。こうして製造した線材、棒材、板材、帯材は、そのまま、または使用形状に加工して使用に供する。あるいは、400~1000℃で熱処理して使用することもできる。
表1に示す各質量 %のCoと、残部のFeおよび不可避的不純物とから成る合金素材をAr気流中で7kg溶製し、金型に鋳込むことによって約80mmφの鋳塊を作製した(表1の試験(1)~(5)の溶解工程)。
次に、表1の試験(1)~(4)では、鋳塊を1000~1100℃のガスバーナー加熱炉中に1時間保持後炉出しして、熱間鍛造用エアハンマーにより約15mm厚の板に成形した(熱間鍛造工程)。
また、表1の試験(3)、(4)では、15mm厚の板を電気炉で約1100℃に1時間保持後、ロール式熱間圧延機により、1mm厚まで圧延した(熱間圧延工程)。さらに表1の試験(4)では、電気炉で800℃に1時間保持後炉冷した(熱処理工程)。
表1の試験(5)では、溶解後鋳造ままの状態から試料を切り出し、電気炉で800℃に1時間保持後炉冷した(熱処理工程)。
こうして、試験(1)~(5)により、バルク磁歪材料を製造した。
その結果を表1および図1に示す。
これに対し、試験(1)~(4)のCo:67~87質量 %、Feおよび不可避的不純物:残部の組成範囲外のものでは、100ppmを下回る磁歪量を示した。また、試験(1)~(4)と同じ組成域であっても、試験(5)の熱間の塑性加工を施さないものでは、100ppmを下回る磁歪量を示した。
表2、表3に示す、各質量 %のCoと、各質量%のNb, Mo, V, TiまたはCrと、Feおよび不可避的不純物が残部の合金素材をAr雰囲気中で7kg溶製し、金型に鋳込むことによって約80mmφの鋳塊を作製した(溶解工程)。
次に、鋳塊を1000~1100℃のガスバーナー加熱炉中に1時間保持後炉出しして、熱間鍛造用エアハンマーにより約16mmφに成形した(熱間鍛造工程)。
次に、冷間引抜きにより約8mmφの線材に成形した(冷間引抜き工程)。さらに電気炉で800℃に1時間保持後炉冷した(熱処理工程)。
こうして、磁歪材料を製造した。
添加元素のNb, Mo, V, Ti,Crは、いずれも固溶強化により機械強度を大きくするものであり、2種以上の元素を同時に添加しても1種添加と同様の効果が得られる。例えば、Co:71.5質量%、Nb:0.36質量%、V:0.24質量%、Feおよび不可避的不純物:残部の組成から成る合金は、磁歪量120ppm、引張強度830MPaの特性を有していた。
Claims (9)
- 磁歪材料となる合金素材を熱間加工することを特徴とする磁歪材料の製造方法。
- 前記熱間加工は熱間鍛造または熱間圧延から成ることを特徴とする請求項1記載の磁歪材料の製造方法。
- 熱間加工後、冷間加工することを特徴とする請求項1または2記載の磁歪材料の製造方法。
- 前記冷間加工は冷間圧延から成ることを特徴とする請求項3記載の磁歪材料の製造方法。
- 前記合金素材は、67-87質量%のCoと、残部のFeおよび不可避的不純物とを溶解および凝固させて成ることを特徴とする請求項1乃至4のいずれか1項に記載の磁歪材料の製造方法。
- 前記合金素材は、71-82質量%のCoと、残部のFeおよび不可避的不純物とを溶解および凝固させて成ることを特徴とする請求項3または4記載の磁歪材料の製造方法。
- 前記合金素材は、67-87質量%のCoと、1質量%以下のNb, Mo, V, TiおよびCrの1種または2種以上の組み合わせと、残部のFeおよび不可避的不純物とを溶解および凝固させて成ることを特徴とする請求項1乃至4のいずれか1項に記載の磁歪材料の製造方法。
- 熱間加工後または冷間加工後に400~1000℃で熱処理することを特徴とする請求項5,6または7記載の磁歪材料の製造方法。
- 磁歪材料を熱間加工ならびに、任意に冷間加工および/または熱処理することを特徴とする磁歪材料の磁歪量増加方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/102,244 US20160300998A1 (en) | 2013-12-06 | 2014-12-05 | Method for producing magnetostrictive material |
DE112014005579.4T DE112014005579B4 (de) | 2013-12-06 | 2014-12-05 | Verfahren zum Herstellen eines magnetostriktiven Materials |
CN201480074966.8A CN106164321B (zh) | 2013-12-06 | 2014-12-05 | 磁致伸缩材料的制造方法 |
JP2015551576A JP6112582B2 (ja) | 2013-12-06 | 2014-12-05 | 磁歪材料の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013253586 | 2013-12-06 | ||
JP2013-253586 | 2013-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015083821A1 true WO2015083821A1 (ja) | 2015-06-11 |
Family
ID=53273567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082249 WO2015083821A1 (ja) | 2013-12-06 | 2014-12-05 | 磁歪材料の製造方法および磁歪量増加方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160300998A1 (ja) |
JP (1) | JP6112582B2 (ja) |
CN (1) | CN106164321B (ja) |
DE (1) | DE112014005579B4 (ja) |
WO (1) | WO2015083821A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019152502A (ja) * | 2018-03-02 | 2019-09-12 | 国立大学法人横浜国立大学 | 応力センサー |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018112491A1 (de) * | 2017-10-27 | 2019-05-02 | Vacuumschmelze Gmbh & Co. Kg | Hochpermeable weichmagnetische Legierung und Verfahren zum Herstellen einer hochpermeablen weichmagnetischen Legierung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0317248A (ja) * | 1990-02-13 | 1991-01-25 | Res Inst Electric Magnetic Alloys | 磁歪作動体の製造法 |
JPH09228007A (ja) * | 1996-02-22 | 1997-09-02 | Toshiba Corp | 高強度磁歪合金、センサーコアおよびそれを用いた荷重センサー |
JPH11183278A (ja) * | 1997-12-16 | 1999-07-09 | Aisin Seiki Co Ltd | トルクセンサ用高感度磁歪材料,並びにセンサシャフト及びその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153020A (en) * | 1999-03-03 | 2000-11-28 | Lucent Technologies | Process for fabricating improved iron-cobalt magnetostrictive alloy and article comprising alloy |
US6685882B2 (en) * | 2001-01-11 | 2004-02-03 | Chrysalis Technologies Incorporated | Iron-cobalt-vanadium alloy |
JP4413804B2 (ja) * | 2005-03-24 | 2010-02-10 | 株式会社東芝 | 磁気冷凍材料及びその製造方法 |
JP2013177664A (ja) | 2012-02-28 | 2013-09-09 | Yasubumi Furuya | 磁歪振動発電用合金 |
-
2014
- 2014-12-05 CN CN201480074966.8A patent/CN106164321B/zh active Active
- 2014-12-05 US US15/102,244 patent/US20160300998A1/en not_active Abandoned
- 2014-12-05 DE DE112014005579.4T patent/DE112014005579B4/de active Active
- 2014-12-05 WO PCT/JP2014/082249 patent/WO2015083821A1/ja active Application Filing
- 2014-12-05 JP JP2015551576A patent/JP6112582B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0317248A (ja) * | 1990-02-13 | 1991-01-25 | Res Inst Electric Magnetic Alloys | 磁歪作動体の製造法 |
JPH09228007A (ja) * | 1996-02-22 | 1997-09-02 | Toshiba Corp | 高強度磁歪合金、センサーコアおよびそれを用いた荷重センサー |
JPH11183278A (ja) * | 1997-12-16 | 1999-07-09 | Aisin Seiki Co Ltd | トルクセンサ用高感度磁歪材料,並びにセンサシャフト及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
SHIN'ICHI YAMAURA ET AL.: "Fe-Co Gokin no Jiwai Tokusei to Bisai Soshiki", THE JAPAN INSTITUTE OF METALS KOEN GAIYOSHU, 3 September 2013 (2013-09-03) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019152502A (ja) * | 2018-03-02 | 2019-09-12 | 国立大学法人横浜国立大学 | 応力センサー |
Also Published As
Publication number | Publication date |
---|---|
CN106164321A (zh) | 2016-11-23 |
DE112014005579B4 (de) | 2023-02-09 |
JP6112582B2 (ja) | 2017-04-19 |
JPWO2015083821A1 (ja) | 2017-03-16 |
US20160300998A1 (en) | 2016-10-13 |
DE112014005579T5 (de) | 2016-08-11 |
CN106164321B (zh) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5065904B2 (ja) | 形状記憶性及び超弾性を有する鉄系合金及びその製造方法 | |
Leinenbach et al. | Thermo‐mechanical properties of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy with low transformation temperature | |
JP5185613B2 (ja) | 新規Fe−Al合金、及びその製造方法 | |
CN106460098A (zh) | Cu‑Al‑Mn系合金材料及其制造方法、以及使用了该合金材料的棒材或板材 | |
WO2014181642A1 (ja) | 安定した超弾性を示すCu-Al-Mn系棒材及び板材、その製造方法、それを用いた制震部材、並びに制震部材を用いた制震構造体 | |
CN105143480A (zh) | 具有高韧性的铜-镍-锡合金 | |
JPS6159390B2 (ja) | ||
JP5543970B2 (ja) | 磁気歪材料およびその調製方法 | |
JP2010138491A5 (ja) | ||
JP2016538422A (ja) | スラブ鋳造による金属鋼製造 | |
WO2018047787A1 (ja) | Fe基形状記憶合金材及びその製造方法 | |
JP6112582B2 (ja) | 磁歪材料の製造方法 | |
CN102537162A (zh) | 一种磁场控制劲度系数的弹簧及其制备方法 | |
Liang et al. | Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5 wt% Si alloy sheet | |
WO2014157146A1 (ja) | オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法 | |
JP2015163725A (ja) | Fe基制振合金およびその製造方法ならびにFe基制振合金材 | |
Yu et al. | Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment | |
KR20180006861A (ko) | TiNiNb 합금 및 이를 이용한 이음부 고정용 열수축링 | |
JP2016512576A (ja) | 鍛錬用銅−ニッケル−錫合金の成形性を改良するためのプロセス | |
Yang et al. | Hot drawn Fe–6.5 wt.% Si wires with good ductility | |
JP2009242867A (ja) | 超高純度アルミニウム高圧延材の製造方法 | |
JP5278987B2 (ja) | メガネフレームの製造方法 | |
JP7096226B2 (ja) | 熱間加工され均一な粒子サイズを有するスピノーダル合金の製造のためのプロセス | |
CN108118194B (zh) | Fe-Co基磁致伸缩合金丝的制备方法 | |
CN101906573A (zh) | 一种具有Wiedemann效应的合金丝及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015551576 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15102244 Country of ref document: US Ref document number: 112014005579 Country of ref document: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867184 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14867184 Country of ref document: EP Kind code of ref document: A1 |