WO2015083697A1 - スクイズフィルムダンパ、軸受ユニット及びタービン - Google Patents

スクイズフィルムダンパ、軸受ユニット及びタービン Download PDF

Info

Publication number
WO2015083697A1
WO2015083697A1 PCT/JP2014/081864 JP2014081864W WO2015083697A1 WO 2015083697 A1 WO2015083697 A1 WO 2015083697A1 JP 2014081864 W JP2014081864 W JP 2014081864W WO 2015083697 A1 WO2015083697 A1 WO 2015083697A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
inner ring
ring
squeeze film
bearing
Prior art date
Application number
PCT/JP2014/081864
Other languages
English (en)
French (fr)
Inventor
倫平 川下
健一 藤川
椙下 秀昭
岡本 直也
信博 永田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/100,059 priority Critical patent/US9890810B2/en
Priority to CN201480065340.0A priority patent/CN105793585B/zh
Priority to KR1020167013864A priority patent/KR101861028B1/ko
Priority to EP14867562.2A priority patent/EP3061981B1/en
Priority to JP2015551516A priority patent/JP6117377B2/ja
Publication of WO2015083697A1 publication Critical patent/WO2015083697A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/0237Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means involving squeeze-film damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/108Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid with a plurality of elements forming the bearing surfaces, e.g. bearing pads

Definitions

  • the present invention relates to a squeeze film damper in which a squeeze film is formed in a gap between an inner ring and an outer ring, a bearing unit, and a turbine.
  • the bearing support structure includes an outer housing that surrounds the bearing support, and a squeeze film ring is formed in a gap between a radially outer surface of the bearing support and a radially inner surface of the outer housing.
  • the rotational vibration has a frequency (rotational frequency) corresponding to the rotational speed of the rotating shaft.
  • the natural vibration is a low frequency vibration whose frequency (natural frequency) is lower than the rotational frequency.
  • the squeeze film damper is provided around the bearing of the rotating shaft in order to suppress these vibrations.
  • the squeeze film damper is provided with the weight of the rotating parts including the rotating shaft and the bearing, and the static load due to the steam mainly on the lower side in the vertical direction.
  • the gap with the bearing support serving as a ring becomes narrow and comes into contact.
  • the gap between the outer ring and the inner ring is maintained by connecting the outer ring and the inner ring with a rod-shaped connecting member.
  • the connecting member has a rigidity that allows the deformation of the gap between the outer ring and the inner ring while maintaining the gap so that the outer ring and the inner ring do not come into contact with a static load.
  • the connecting member must be designed more rigidly. It becomes difficult to obtain a damper effect by the squeeze film, and it becomes difficult to suppress vibration generated around the rotation axis.
  • this invention makes it a subject to provide the squeeze film damper which can maintain the clearance gap between an inner ring and an outer ring suitably, and can suppress the fall of the damper performance by a squeeze film, a bearing unit, and a turbine. .
  • the squeeze film damper of the present invention includes an inner ring provided around a radially outer periphery of a bearing that supports a rotating shaft, an outer ring provided around a radially outer periphery of the inner ring, and the inner ring
  • a connecting member that is deformable in accordance with a general displacement, and the connecting member has a higher rigidity in the load direction in a cross section perpendicular to the axial direction than in the orthogonal direction perpendicular to the load direction. It is characterized by becoming.
  • the rigidity of the connecting member in the load direction can be increased.
  • the clearance gap between an inner ring and an outer ring can be maintained suitably in a load direction, it can suppress that the damper effect by a squeeze film reduces by a clearance gap becoming narrow.
  • the rigidity in the orthogonal direction of the connecting member can be made lower than the rigidity in the load direction. At this time, in the orthogonal direction, the gap between the inner ring and the outer ring is not narrowed by the load, so that the gap between the inner ring and the outer ring can be suitably maintained.
  • the bearing may be a tilting pad bearing, a sliding bearing, or a rolling bearing, and is not particularly limited.
  • the viscous fluid may be air or a lubricating oil, and is not particularly limited.
  • the load direction may be a vertical direction
  • the orthogonal direction may be a horizontal direction, and is not particularly limited.
  • the inner ring and the outer ring each have an overlap portion that is overlapped in the axial direction, and the connecting member is provided along the axial direction, and the overlap of the inner ring And a portion of the connecting member is a deformable damper portion that can be deformed according to the displacement, and the deformable damper portion is axially
  • the rigidity in the load direction is preferably higher than the rigidity in the orthogonal direction orthogonal to the load direction.
  • the rigidity in the load direction of the deformation damper portion of the connecting member can be made higher than the rigidity in the orthogonal direction in the cross section orthogonal to the axial direction. Therefore, it can be set as the appropriate rigidity according to arrangement
  • the deformation damper portion has a cross-sectional shape having a long length in the load direction and a short length in the orthogonal direction in the cross section.
  • the cross-sectional shape of the deformation damper portion is a cross-sectional shape having a long length in the load direction and a short length in the orthogonal direction, so that the rigidity in the load direction of the deformation damper portion of the connecting member is orthogonal.
  • the rigidity in the direction can be increased.
  • the cross-sectional shape having a long length in the load direction and a short length in the orthogonal direction is not particularly limited, and may be a cross-sectional shape such as a rectangular shape, an elliptical shape, or an oval shape.
  • an inner side connection hole through which the connection member is inserted is formed in the overlap part of the inner ring, and an outer side connection through which the connection member is inserted in the overlap part of the outer ring.
  • a hole is formed, and the connecting member includes an inner fitting portion that fits into the inner connecting hole, an outer fitting portion that fits into the outer connecting hole, the inner fitting portion, and the The deformation damper portion provided between the outer side fitting portion and received in the inner side connection hole, and the deformation damper portion is formed on the inner surface of the inner side connection hole on the load direction side. It is preferable that they are in contact.
  • the deformation in the load direction of the deformation damper portion can be restricted by bringing the deformation damper portion of the connection member into contact with the inner surface of the inner side connection hole on the load direction side. For this reason, the deformation
  • the inner ring and the outer ring each have an overlap portion that is overlapped in the load direction, and the connecting member is provided along the load direction, It is preferable that the wrap portion and the overlap portion of the outer ring are connected, and a part of the connecting member is a deformation damper portion that deforms according to the displacement.
  • the length of the connecting member can be increased in the load direction by providing the connecting member along the load direction, the rigidity in the load direction of the deformation damper portion of the connecting member is compared with the rigidity in the orthogonal direction. And can be high. For this reason, it can be set as appropriate rigidity according to arrangement of a connecting member only by changing arrangement of a connecting member, without changing the shape of a connecting member.
  • the connecting members are provided along the axial direction, and a plurality of the connecting members are provided at a predetermined interval in the circumferential direction of the rotating shaft. It is preferable that the length is short on both sides in the direction and long on both sides in the orthogonal direction.
  • the interval between the connecting members is narrowed, while on both sides in the orthogonal direction, the interval between the connecting members is widened.
  • the rigidity can be increased compared to the rigidity in the orthogonal direction. For this reason, it can be set as appropriate rigidity by arrangement
  • Another squeeze film damper of the present invention includes an inner ring provided around the outer periphery in the radial direction of the bearing that pivotally supports the rotation shaft, and an outer ring provided around the outer periphery in the radial direction of the inner ring, A squeeze film formed by flowing a viscous fluid through a gap in a radial direction between the inner ring and the outer ring, and connecting the inner ring and the outer ring, and a radial direction between the outer ring and the inner ring.
  • a connecting member that can be deformed in accordance with relative displacement in the inner ring and the outer ring, wherein the inner ring and the outer ring are arranged in contact with each other in the load direction in a cross section orthogonal to the axial direction.
  • the deformation in the load direction can be regulated by bringing the inner ring and the outer ring into contact with each other, and the rigidity in the load direction is increased. can do.
  • the rigidity in the orthogonal direction is lower than the rigidity in the load direction. At this time, in the orthogonal direction, the gap between the inner ring and the outer ring is not narrowed by the load, and therefore the gap between the inner ring and the outer ring can be suitably maintained. For this reason, the damper effect by a squeeze film can be exhibited suitably in the orthogonal direction.
  • the outer ring has an inner peripheral surface facing the inner ring in contact with the outer peripheral surface of the inner ring on the load direction side, and the inner peripheral surface of the outer ring is orthogonal to the axial direction.
  • the radius of curvature at the portion on the load direction side is larger than the radius of curvature at the portion other than the load direction side.
  • the outer ring and the inner ring can be brought into contact with each other by increasing the radius of curvature of the inner peripheral surface of the outer ring at the portion on the load direction side. Further, when the outer ring and the inner ring move relatively in the orthogonal direction, the inner ring moves along the inner peripheral surface of the outer ring, so that the gap between the inner ring and the outer ring in the orthogonal direction is changed. And the damper effect can be suitably exhibited.
  • Another squeeze film damper of the present invention includes an inner ring provided around the outer periphery in the radial direction of the bearing that pivotally supports the rotation shaft, and an outer ring provided around the outer periphery in the radial direction of the inner ring, A squeeze film formed by flowing a viscous fluid through a gap in a radial direction between the inner ring and the outer ring, and connecting the inner ring and the outer ring, and a radial direction between the outer ring and the inner ring.
  • a connecting member that can be deformed in accordance with relative displacement in the case, and a spacer that is provided on the load direction side between the inner ring and the outer ring and that contacts the inner ring and the outer ring. It is characterized by.
  • the deformation of the connecting member in the load direction can be regulated by bringing the inner ring and the outer ring into contact with each other via the spacer.
  • the rigidity in the load direction can be increased.
  • the rigidity in the orthogonal direction is lower than the rigidity in the load direction.
  • the gap between the inner ring and the outer ring is not narrowed by the load, and therefore the gap between the inner ring and the outer ring can be suitably maintained. For this reason, the damper effect by a squeeze film can be exhibited suitably in the orthogonal direction.
  • the spacer is laid on the inner peripheral surface of the outer ring facing the inner ring.
  • the spacer can be easily installed by laying the spacer on the inner peripheral surface of the outer ring, and the processing cost can be reduced.
  • the spacer is disposed so as to penetrate from the radially outer side to the radially inner side of the outer ring.
  • the spacers can be easily installed, and the processing cost can be suppressed.
  • the connecting members are provided along the axial direction, and a plurality of the connecting members are provided at predetermined intervals in the circumferential direction of the rotating shaft.
  • the number is preferably smaller than the number on the opposite side of the load direction.
  • the inner ring and the outer ring are in contact with the load direction side, the inner ring is supported by the outer ring. For this reason, since the rigidity on the load direction side can be increased, the number of connecting members provided on the load direction side can be reduced. Therefore, since the number of connecting members can be reduced, the processing cost can be suppressed.
  • Another squeeze film damper of the present invention includes an inner ring provided around the outer periphery in the radial direction of the bearing that pivotally supports the rotation shaft, and an outer ring provided around the outer periphery in the radial direction of the inner ring, A squeeze film formed by flowing a viscous fluid through a gap in a radial direction between the inner ring and the outer ring, and connecting the inner ring and the outer ring, and a radial direction between the outer ring and the inner ring.
  • a connecting member that can be deformed according to relative displacement in the inner ring and the outer ring, wherein the gap in the load direction is orthogonal to the load direction in a cross section orthogonal to the axial direction. The gap is larger than the gap in the direction.
  • the gap between the inner ring and the outer ring in the load direction is not narrowed.
  • the clearance gap between an inner ring and an outer ring can be maintained suitably in a load direction, and it can suppress that the damper effect by a squeeze film reduces.
  • the gap between the inner ring and the outer ring is not narrowed by the load, so that the gap between the inner ring and the outer ring can be suitably maintained. For this reason, the damper effect by a squeeze film can be suitably exhibited in the orthogonal direction.
  • the outer ring has a groove portion that is recessed with respect to the inner circumferential surface facing the inner ring, and the groove portion is on both sides of the load direction in a cross section orthogonal to the axial direction. Preferably it is formed.
  • Another squeeze film damper of the present invention includes an inner ring provided around the outer periphery in the radial direction of the bearing that pivotally supports the rotation shaft, and an outer ring provided around the outer periphery in the radial direction of the inner ring, A squeeze film formed by flowing a viscous fluid through a gap in a radial direction between the inner ring and the outer ring, and connecting the inner ring and the outer ring, and a radial direction between the outer ring and the inner ring.
  • a connecting member that can be deformed according to relative displacement in the inner ring, wherein the inner ring has a cross section orthogonal to the axial direction, and the rigidity in the load direction is higher than the rigidity in the orthogonal direction orthogonal to the load direction. It is characterized by being high.
  • the inner ring preferably has a defect formed on both sides in the load direction.
  • the bearing includes a plurality of pads provided at predetermined intervals around the rotating shaft, and a bearing provided around the radially outer periphery of the plurality of pads that holds the plurality of pads.
  • a tilting pad bearing having a housing, and the bearing housing and the inner ring are preferably integrated.
  • the bearing housing and the inner ring can be integrated, the number of parts can be reduced and the manufacturing cost can be reduced.
  • a bearing unit includes a bearing that pivotally supports a rotating shaft, and the squeeze film damper provided around a radially outer side of the bearing.
  • a turbine according to the present invention includes the bearing unit described above and the rotating shaft supported by the bearing unit.
  • the rotation shaft can be suitably rotated while suppressing vibration of the rotation shaft by the bearing unit.
  • FIG. 1 is a cross-sectional view of a bearing unit including a squeeze film damper according to a first embodiment when cut along an axial direction.
  • FIG. 2 is a cross-sectional view taken along the line AA when the bearing unit including the squeeze film damper according to the first embodiment is cut along a plane orthogonal to the axial direction.
  • FIG. 3 is a perspective view schematically illustrating a connection pin of the squeeze film damper according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the connection pin of the squeeze film damper according to the first embodiment when cut by a plane orthogonal to the axial direction.
  • FIG. 5 is a cross-sectional view of the connection pin of the squeeze film damper according to the first modification when cut by a plane orthogonal to the axial direction.
  • FIG. 6 is a perspective view schematically illustrating a connection pin of the squeeze film damper according to the second embodiment.
  • FIG. 7 is a cross-sectional view of the connection pin of the squeeze film damper according to the second embodiment when cut by a plane orthogonal to the axial direction.
  • FIG. 8 is a cross-sectional view of the connection pin of the squeeze film damper according to Modification 2 when cut by a plane orthogonal to the axial direction.
  • FIG. 9 is a cross-sectional view of a bearing unit including the squeeze film damper according to the third embodiment when cut by a plane orthogonal to the axial direction.
  • FIG. 10 is a cross-sectional view taken along the line BB when the bearing unit including the squeeze film damper according to the third embodiment is cut along the axial direction.
  • FIG. 11 is a cross-sectional view taken along the line CC when the bearing unit including the squeeze film damper according to the third embodiment is cut along the axial direction.
  • FIG. 12 is a cross-sectional view of a bearing unit including the squeeze film damper according to the fourth embodiment cut along a plane orthogonal to the axial direction.
  • FIG. 13 is sectional drawing when a bearing unit provided with the squeeze film damper which concerns on Example 5 is cut in the surface orthogonal to an axial direction.
  • FIG. 14 is a cross-sectional view of a bearing unit including a squeeze film damper according to Modification 3 cut along a plane orthogonal to the axial direction.
  • FIG. 15 is a cross-sectional view of a bearing unit including the squeeze film damper according to the sixth embodiment when cut along a plane orthogonal to the axial direction.
  • FIG. 16 is sectional drawing when a bearing unit provided with the squeeze film damper which concerns on Example 7 is cut in the surface orthogonal to an axial direction.
  • FIG. 17 is a cross-sectional view of a bearing unit including the squeeze film damper according to the eighth embodiment cut along a plane orthogonal to the axial direction.
  • FIG. 1 is a cross-sectional view of a bearing unit including a squeeze film damper according to the first embodiment when cut along an axial direction.
  • FIG. 2 is a cross-sectional view of the bearing unit including the squeeze film damper according to the first embodiment, taken along a plane orthogonal to the axial direction, and is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a perspective view schematically illustrating a connection pin of the squeeze film damper according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the connection pin of the squeeze film damper according to the first embodiment when cut by a plane orthogonal to the axial direction.
  • FIG. 5 is a cross-sectional view of the connection pin of the squeeze film damper according to the first modification when cut by a plane orthogonal to the axial direction.
  • the squeeze film damper 11 is provided in the bearing unit 1 and is configured integrally with a bearing 10 that supports the rotary shaft 5. That is, the bearing unit 1 is integrally configured by the bearing 10 that supports the rotating shaft 5 and the squeeze film damper 11 that supports the bearing 10.
  • the rotating shaft 5 is a turbine rotor provided in the turbine 6 and is arranged so that the axial direction thereof is a horizontal direction.
  • vibration due to rotation is generated around the rotating shaft 5 and natural vibrations of rotating parts including the rotating shaft 5 and the bearing 10 are generated.
  • the frequency of natural vibration (natural frequency) is low-frequency vibration that is lower than the frequency of rotational vibration (rotational frequency).
  • the bearing 10 rotatably supports the rotating shaft 5, and the squeeze film damper 11 dampens the rotating shaft 5.
  • the turbine 6 may be a steam turbine or a gas turbine, and is not particularly limited.
  • the bearing 10 is, for example, a tilting pad bearing, and includes a plurality of pads 21 provided around the rotating shaft 5 and a bearing housing 22 provided around the pads 21.
  • a plurality of pads 21 are provided on the outer periphery of the rotating shaft 5 in the circumferential direction with a predetermined interval.
  • four pads 21 are provided.
  • Each pad 21 is formed in an arc shape, and the inner peripheral surface thereof is a curved surface facing the outer peripheral surface of the rotating shaft 5.
  • the housing 22 is provided in an annular shape on the outer periphery of the pads 21 arranged in the circumferential direction. As shown in FIG. 1, the housing 22 includes an annular portion 22a positioned on the outer peripheral side of the pad 21, a pair of inner peripheral flange portions 22b formed on both sides in the axial direction of the annular portion 22a, and an annular portion 22a.
  • the configuration includes a pair of outer peripheral flange portions 22c formed on both sides in the axial direction.
  • the pair of inner peripheral flange portions 22b are provided on both sides of the annular portion 22a in the axial direction, and protrude inward in the radial direction.
  • a pad 21 is provided between the pair of inner peripheral flange portions 22b in the axial direction, and the pair of inner peripheral flange portions 22b regulates movement of the pad 21 in the axial direction.
  • the pair of outer peripheral flange portions 22c are provided on both sides of the annular portion 22a in the axial direction, and are provided so as to protrude outward in the radial direction, thereby accommodating an outer ring 31 of the squeeze film damper 11 described later therein. It is possible.
  • the pair of outer peripheral flange portions 22c is an overlapping portion that overlaps with the outer ring 31 of the squeeze film damper 11 described later in the axial direction.
  • the first oil passage 24 for supplying the lubricating oil from the radially outer side to the radially inner pad 21 is formed in the annular portion 22a. For this reason, the lubricating oil flows into the first oil passage 24 from the outer peripheral surface of the annular portion 22a, flows toward the inner peripheral surface of the annular portion 22a, and then flows out to the inner peripheral side of the annular portion 22a. Since there is a pad 21 on the inner peripheral side of the annular portion 22a, the lubricating oil is filled around the pad 21 and also between the pad 21 of the rotating shaft 5.
  • a plurality of pivots 25 for positioning each pad 21 are formed on the inner peripheral surface of the annular portion 22a in accordance with the number of pads 21 installed.
  • the pivot 25 is a protrusion that protrudes radially inward from the inner peripheral surface of the annular portion 22a.
  • an engagement hole 26 that engages with the pivot 25 is formed in a concave shape on the radially outer peripheral surface of the pad 21. For this reason, the pad 21 is positioned with respect to the bearing housing 22 by engaging the engagement hole 26 of the pad 21 with the pivot 25 of the annular portion 22a.
  • the bearing 10 configured in this manner rotatably supports the rotating shaft 5 with lubricating oil interposed between the rotating shaft 5 and the pad 21.
  • the squeeze film damper 11 provided around the radially outer side of the bearing 10 includes an inner ring, an outer ring 31, and a connecting pin (connecting member) 32 that connects the inner ring and the outer ring 31.
  • a part of the bearing housing 22 functions as an inner ring.
  • the outer ring 31 is provided between a pair of outer peripheral flange portions 22c provided on both sides of the annular portion 22a in the axial direction, and movement in the axial direction is restricted.
  • the outer ring 31 is provided in an annular shape and overlaps with the pair of outer peripheral flange portions 22c in the axial direction.
  • the outer ring 31 has an outer peripheral surface supported by a fixing member 38.
  • the outer peripheral surface of the outer ring 31 is opposed to the outer peripheral surface of the annular portion 22a of the bearing housing 22.
  • the outer ring 31 is formed with a second oil passage 33 for supplying lubricating oil from the radially outer side to the annular portion 22a of the bearing housing 22 on the radially inner side. For this reason, the lubricating oil flows into the second oil passage 33 from the outer peripheral surface of the outer ring 31, flows out toward the inner peripheral surface of the outer ring 31, and then flows out to the outer peripheral side of the annular portion 22a. For this reason, an annular squeeze film 35 is formed between the outer ring 31 and the annular portion 22a by interposing lubricating oil as a viscous fluid. Note that the lubricating oil flowing on the outer peripheral side of the annular portion 22 a flows into the first oil passage 25.
  • the squeeze film 35 formed in an annular shape suppresses vibrations generated around the rotation shaft 5 by exhibiting a damper effect against the relative displacement in the radial direction between the outer ring 31 and the bearing housing 22.
  • the connecting pin 32 is a member that connects the bearing housing 22 and the outer ring 31 while forming a gap for circulating the lubricant between the outer ring 31 and the annular portion 22a.
  • the connecting pin 32 has a long rod shape in the longitudinal direction, and is arranged so that the longitudinal direction is the axial direction of the rotation shaft 5.
  • an inner side connection hole 41 for inserting the connection pin 32 is formed so as to penetrate in the axial direction.
  • the outer ring 31 is formed with an outer side connection hole 42 through which the connection pin 32 is inserted in the axial direction.
  • the inner side connection hole 41 and the outer side connection hole 42 are disposed so as to overlap in the axial direction and have a circular cross section.
  • the inner diameter of the inner side connection hole 41 and the outer side connection hole 42 is the same diameter.
  • a plurality of inner side connection holes 41 and outer side connection holes 42 are formed at predetermined intervals along the circumferential direction of the outer ring 31.
  • 12 Individually formed.
  • the rod-shaped connecting pin 32 is inserted into the inner side connecting hole 41 of one outer peripheral side flange portion 22c, passes through the outer side connecting hole 42 of the outer ring 31, and then the other outer peripheral side flange. It is inserted through the inner side connection hole 41 of the portion 22c.
  • the connecting pin 32 includes a pair of inner side fitting portions 51 provided at both end portions in the longitudinal direction, an outer side fitting portion 52 provided between the pair of inner side fitting portions 51, and each inner side fitting.
  • a pair of deformation damper portions 53 provided between the joint portion 51 and the outer side fitting portion 52 are configured.
  • each inner side fitting part 51 is formed in the column shape which becomes substantially the same diameter as the inner diameter of each inner side connection hole 41 so that it may fit in each inner side connection hole 41 which becomes circular cross section. .
  • the outer side fitting portion 52 is fitted into the outer side coupling hole 42.
  • the outer side fitting part 52 becomes substantially the same diameter as the inner diameter of the outer side coupling hole 42 so as to be fitted into the outer side coupling hole 42 having a circular cross section. It is formed in a cylindrical shape.
  • the length of the outer side fitting portion 52 in the axial direction is shorter than the length of the outer side connecting hole 42 in the axial direction, and the outer side fitting portion 52 extends in the axial direction of the outer side connecting hole 42. It is formed so as to be located in the center.
  • the pair of deformation damper portions 53 are provided between one inner side fitting portion 51 and the outer side fitting portion 52 and between the other inner side fitting portion 51 and the outer side fitting portion 52, respectively.
  • the outer side connecting hole 42 is inserted.
  • Each deformation damper portion 53 can be deformed according to a relative displacement between the outer ring 31 and the bearing housing 22 in the radial direction.
  • the deformed damper portion 53 has a rectangular cross section cut by a plane orthogonal to the longitudinal direction (axial direction).
  • the cross section of the deformable damper portion 53 is smaller than the cross sections of the inner side fitting portion 51 and the outer side fitting portion 52, and is large enough to fit within the cross sections of the inner side fitting portion 51 and the outer side fitting portion 52. It has become.
  • the long side of the rectangular cross section is in the vertical direction, and the short side of the rectangular cross section is in the horizontal direction.
  • the deformation damper portion 53 is formed in such a rectangular cross section, so that the rigidity in the vertical direction is higher than the rigidity in the horizontal direction. For this reason, the connecting pin 32 is difficult to bend even when a load is applied to the connecting pin 32 from the vertical direction.
  • the rigidity of the connecting pin 32 in the vertical direction can be increased.
  • the clearance gap between the outer ring 31 and the annular part 22a of the bearing housing 22 can be suitably maintained in the vertical direction as the load direction, the damper effect by the squeeze film 35 is reduced by narrowing the clearance gap. This can be suppressed.
  • the rigidity in the horizontal direction of the connecting pin 32 can be made lower than the rigidity in the vertical direction.
  • the gap between the outer ring 31 and the annular portion 22a of the bearing housing 22 is not narrowed by the load, and thus the gap between the outer ring 31 and the annular portion 22a of the bearing housing 22 is preferably maintained. can do.
  • the deformation of the gap between the outer ring 31 and the annular portion 22a of the bearing housing 22 in the horizontal direction is more easily deformed than the deformation of the gap between the outer ring 31 and the annular portion 22a of the bearing housing 22 in the vertical direction. It can be. For this reason, the damper effect by the squeeze film 35 can be exhibited suitably in the horizontal direction.
  • the rigidity of the deformation damper portion 53 of the connecting pin 32 in the vertical direction is increased in the cross section orthogonal to the axial direction. Since it can be made higher than the rigidity in the horizontal direction, it is possible to obtain an appropriate rigidity according to the arrangement of the connecting pins 32.
  • the rigidity in the vertical direction can be made higher than the rigidity in the horizontal direction with a simple configuration in which the cross-sectional shape of the deformation damper portion 53 is rectangular.
  • the bearing housing 22 and the inner ring can be integrated, the number of parts can be reduced and the manufacturing cost of the bearing unit 1 can be reduced.
  • the rotation shaft 5 can be suitably rotated while suitably suppressing the vibration of the rotation shaft 5 by the bearing unit 1.
  • the bearing 10 is a tilting pad bearing, but it may be a sliding bearing or a rolling bearing, and is not particularly limited. Moreover, in Example 1, although lubricating oil was used as a viscous fluid, it may be air and is not specifically limited.
  • the cross-sectional shape of the deformation damper portion 53 of the connecting pin 32 is a rectangular shape, but the shape shown in FIG. FIG. 5 is a cross-sectional view of the connection pin of the squeeze film damper according to the first modification when cut by a plane orthogonal to the axial direction.
  • the cross-sectional shape of the connecting pin 32 of Modification 1 is a cross-sectional shape in which the upper side and the lower side in the vertical direction are arcs and the left and right sides in the horizontal direction are straight lines extending in the vertical direction.
  • the connecting pin 32 has a cross-sectional shape that is long in the vertical direction and short in the horizontal direction.
  • the deformed damper portion 53 is not limited to the cross-sectional shape of the first embodiment and the first modified example, and any shape having a long length in the vertical direction (load direction) and a short length in the horizontal direction may be used.
  • a cross-sectional shape such as an elliptical shape or an oval shape may be used.
  • FIG. 3 is a schematic diagram of a container used in the brazing method according to the second embodiment.
  • FIG. 6 is a perspective view schematically illustrating a connection pin of the squeeze film damper according to the second embodiment
  • FIG. 7 is a cross-sectional view of the connection pin of the squeeze film damper according to the second embodiment taken along a plane orthogonal to the axial direction.
  • FIG. 1 parts that are different from the first embodiment will be described in order to avoid redundant descriptions, and parts that have the same configuration as the first embodiment will be described with the same reference numerals.
  • the position of the deformation damper portion 73 of the connection pin 71 is the position of the deformation damper portion 53 of the connection pin 32 in the bearing unit 1 of the first embodiment. It is in a different position.
  • the deformed damper portion 73 has a rectangular cross section cut by a plane orthogonal to the longitudinal direction (axial direction), as in the first embodiment. At this time, the deformed damper portion 73 has a lower portion in the vertical direction, more specifically, a lower corner portion abutting against the lower surface of the outer side connecting hole 42 through which the deformed damper portion 73 is inserted. Has been placed. That is, the modified damper portion 73 of the second embodiment is provided on the lower side in the vertical direction as compared with the modified damper portion 53 of the first embodiment.
  • the deformation damper portion 73 of the connection pin 71 is brought into contact with the lower surface of the inner side connection hole 42 (the inner surface on the lower side in the vertical direction).
  • the deformation in the load direction 73 (downward in the vertical direction) can be restricted. For this reason, deformation of the gap between the outer ring 31 and the annular portion 22a of the bearing housing 22 due to the load can be restricted, and the gap can be more suitably maintained.
  • FIG. 8 is a cross-sectional view of the connection pin of the squeeze film damper according to Modification 2 when cut by a plane orthogonal to the axial direction.
  • the cross-sectional shape of the deformation damper portion 73 in the connection pin 71 of the second modification is such that the short side on the lower side of the deformation damper portion 73 of the second embodiment having a rectangular cross section is formed on the outer side connection hole 42.
  • the cross-sectional shape is an arc that curves along the inner surface.
  • the deformation damper portion 73 of the connecting pin 71 can be brought into contact with the lower surface (the inner surface on the lower side in the vertical direction) of the inner side connecting hole 42 with an increased contact area. For this reason, the deformation
  • the deformed damper portion 73 is not limited to the cross-sectional shape of the second embodiment and the second modified example, and may be any cross-sectional shape that can contact the deformed damper portion 73 of the connecting pin 71 with the lower surface of the inner side connecting hole 42. Any may be sufficient and it does not specifically limit.
  • FIG. 9 is a cross-sectional view of a bearing unit including the squeeze film damper according to the third embodiment when cut by a plane orthogonal to the axial direction.
  • FIG. 10 is a cross-sectional view of the bearing unit including the squeeze film damper according to the third embodiment when cut along the axial direction, and is a cross-sectional view taken along the line BB of FIG.
  • FIG. 11 is a cross-sectional view of the bearing unit including the squeeze film damper according to the third embodiment when cut along the axial direction, and is a cross-sectional view taken along the line CC of FIG.
  • Example 3 parts different from Examples 1 and 2 will be described in order to avoid duplicated descriptions, and parts having the same configurations as those in Examples 1 and 2 will be described with the same reference numerals.
  • the longitudinal direction of the connecting pins 32 and 71 is the same as the axial direction of the rotary shaft 5, but in the third embodiment, the longitudinal direction of the connecting pin 121 is the same as the vertical direction. .
  • the connecting pin 121 is a member that connects the bearing housing 22 and the outer ring 31 while forming a gap for allowing the lubricant to flow between the outer ring 31 and the annular portion 22 a. ing.
  • the connecting pin 121 has a long bar shape in the longitudinal direction, and is arranged so that the longitudinal direction is the vertical direction.
  • an inner side connection hole 111 for inserting the connection pin 121 is formed so as to penetrate in the vertical direction.
  • the inner side coupling hole 111 is a hole that penetrates from the outer peripheral surface of the bearing housing 22 to the outer peripheral surface through the inside.
  • a pair of inner side connection holes 111 are formed on both sides in the horizontal direction of the annular bearing housing 22 with the rotation shaft 5 interposed therebetween. For this reason, a pair of inner side connection hole 111 is arrange
  • the outer ring 31 is formed with an outer side connection hole 112 through which the connection pin 121 is inserted in the vertical direction.
  • the outer side connection holes 112 are penetrated from the outer peripheral surface of the outer ring 31 to the inner peripheral surface, and are penetrated from the inner peripheral surface of the outer ring 31 to the outer peripheral surface.
  • the A pair of two outer side connecting holes 112 that are continuous in the vertical direction are formed on both sides in the horizontal direction of the annular outer ring 31 with the rotating shaft 5 interposed therebetween. For this reason, a pair of outer side connection hole 112 is arrange
  • the pair of outer side connecting holes 112 and inner side connecting holes 111 are arranged overlapping in the vertical direction, and their cross sections are circular. Moreover, the inner diameter of the inner side connection hole 41 and the outer side connection hole 42 is the same diameter. At this time, the inner side connection hole 111 is disposed between the pair of outer side connection holes 112 in the vertical direction.
  • the outer ring 31 is formed with a receiving portion 113 that is formed on the outer side in the radial direction of the outer side connecting hole 112 and in which the end portion in the longitudinal direction of the connecting pin 121 is received.
  • a retaining member 128 (to be described later) is in contact with the accommodating portion 113, thereby restricting the position of the connecting pin 121.
  • a plurality of inner side connection holes 111 and a set of outer side connection holes 112 are formed at predetermined intervals along the axial direction of the rotating shaft 5.
  • illustration of the pad 21 and the rotating shaft provided inside the bearing housing 22 is omitted.
  • the connecting pin 121 includes a pair of outer side fitting portions 126 provided at both end portions in the longitudinal direction, an inner side fitting portion 125 provided between the pair of outer side fitting portions 126, and each outer side fitting.
  • a pair of deformation damper portions 127 provided between the joint portion 126 and the inner side fitting portion 125 is configured.
  • each outer side fitting part 126 is formed in the column shape which becomes substantially the same diameter as the inner diameter of each outer side connection hole 112 so that it may fit in each outer side connection hole 112 which becomes circular cross section.
  • each outer side fitting portion 126 has an end portion in the longitudinal direction protruding from the outer side coupling hole 112 and inserted therethrough.
  • a retaining member 128 for restricting the position of the connecting pin 121 is provided at the end of the protruding outer side fitting portion 126. The retaining member 128 is inserted into a through hole formed in the outer side fitting portion 126 so as to penetrate in the radial direction, and the connecting pin 121 is prevented from coming off by coming into contact with the accommodating portion 113 in this state.
  • the inner side fitting portion 125 is fitted into the inner side coupling hole 111.
  • the inner side fitting part 125 is formed in the column shape which becomes substantially the same diameter as the inner diameter of the inner side connection hole 111 so that it may fit in the inner side connection hole 111 which becomes a cross-sectional circle shape.
  • the pair of deformation damper portions 127 includes one outer side fitting portion 126 and an inner side fitting portion 125, and the other outer side fitting portion 126 and the inner side fitting portion 125. Are inserted between the inner side connecting hole 111 and the outer side connecting hole 112.
  • Each deformation damper portion 127 can be deformed in accordance with a relative displacement between the outer ring 31 and the bearing housing 22 in the radial direction.
  • the deformation damper portion 127 is formed in a cylindrical shape having a smaller diameter than the inner diameters of the inner side connection hole 111 and the outer side connection hole 112.
  • the length of the connection pin 121 can be increased in the vertical direction by providing the connection pin 121 along the vertical direction (load direction).
  • the rigidity in the vertical direction of the damper portion 127 can be made higher than the rigidity in the horizontal direction. For this reason, the rigidity in the horizontal direction of the connecting pin 121 can be reduced as compared with the rigidity in the vertical direction only by changing the arrangement of the connecting pin 121 without changing the shape of the connecting pin 121.
  • FIG. 12 is a cross-sectional view of a bearing unit including the squeeze film damper according to the fourth embodiment cut along a plane orthogonal to the axial direction.
  • Example 4 parts different from Examples 1 to 3 will be described in order to avoid duplicate descriptions, and parts having the same configurations as those in Examples 1 to 3 will be described with the same reference numerals. .
  • the bearing housing 22 and the outer ring 31 are in contact with each other on the lower side in the vertical direction.
  • the outer ring 31 has an inner peripheral surface of a portion 31a on the lower side in the vertical direction and an inner peripheral surface of a portion 31b other than the lower side in the vertical direction. , Has a different radius of curvature. Specifically, the inner peripheral surface of the lower portion 31a has a larger radius of curvature than the inner peripheral surface of the portion 31b other than the lower portion. And the lower part 31a is formed in the range over a predetermined angle centering on the rotating shaft 5 on the lower side in the vertical direction. The lower portion 31 a formed in this manner protrudes toward the bearing housing 22, so that the lower inner peripheral surface of the outer ring 31 contacts the lower outer peripheral surface of the bearing housing 22.
  • the connecting pin 32 that connects the bearing housing 22 and the outer ring 31 has a long rod shape in the longitudinal direction, and is arranged so that the longitudinal direction is the axial direction of the rotary shaft 5.
  • a plurality of the connecting pins 32 are provided at predetermined intervals along the circumferential direction of the outer ring 31. At this time, the number of the plurality of connecting pins 32 on the lower side in the vertical direction is smaller than the number on the upper side in the vertical direction.
  • the plurality of connecting pins 32 are not provided in the lower half of the outer ring 31 in the vertical direction, but are provided in the upper half of the outer ring 31 in the vertical direction. .
  • the squeeze film can be obtained by bringing the bearing housing 22 and the outer ring 31 into contact with each other on the lower side in the vertical direction even when the length of the connecting pin 32 is increased.
  • the deformation of the damper 11 on the lower side in the vertical direction can be restricted, and the rigidity on the lower side in the vertical direction can be increased.
  • the rigidity of the squeeze film damper 11 in the horizontal direction is lower than the rigidity in the vertical direction. At this time, in the horizontal direction, the gap between the bearing housing 22 and the outer ring 31 is not narrowed by the load, so that the gap between the bearing housing 22 and the outer ring 31 can be suitably maintained. For this reason, the damper effect by the squeeze film 11 can be exhibited suitably in the horizontal direction.
  • the bearing housing 22 and the outer ring 31 are in contact with each other on the lower side in the vertical direction, the load is supported by the outer ring 31 in the bearing housing 22. For this reason, since the rigidity on the lower side in the vertical direction can be increased, the number of connecting pins 32 provided on the lower side in the vertical direction can be reduced. Therefore, since the number of connecting pins 32 can be reduced, the processing cost can be suppressed.
  • Example 4 the inner peripheral surface of the outer ring 31 protrudes toward the bearing housing 22 to come into contact with the bearing housing 22, but the configuration is not limited to this.
  • the structure which contacts the inner peripheral surface of the outer ring 31 may be sufficient as the outer peripheral surface of the bearing housing 22 protrudes in the outer ring 31 side.
  • FIG. 13 is sectional drawing when a bearing unit provided with the squeeze film damper which concerns on Example 5 is cut in the surface orthogonal to an axial direction.
  • Example 5 parts different from Examples 1 to 4 will be described in order to avoid duplicated descriptions, and parts having the same configurations as those in Examples 1 to 4 will be described with the same reference numerals.
  • a spacer 145 is provided between the bearing housing 22 and the outer ring 31.
  • a spacer 145 is provided between the bearing housing 22 and the outer ring 31 on the lower side in the vertical direction.
  • the spacer 145 is laid on the inner peripheral surface of the outer ring 31 on the lower side in the vertical direction, and is attached to the inner peripheral surface of the outer ring 31.
  • the spacer 145 has a lower side in the vertical direction in contact with the inner peripheral surface of the outer ring 31 and an upper side in the vertical direction in contact with the outer peripheral surface of the bearing housing 22. For this reason, the bearing housing 22 and the outer ring 31 are in contact via the spacer 145.
  • the connecting pin 32 that connects the bearing housing 22 and the outer ring 31 has a long rod shape in the longitudinal direction, and is arranged so that the longitudinal direction is the axial direction of the rotary shaft 5.
  • a plurality of the connecting pins 32 are provided at predetermined intervals along the circumferential direction of the outer ring 31. At this time, the number of the plurality of connecting pins 32 on the lower side in the vertical direction is smaller than the number on the upper side in the vertical direction.
  • the plurality of connecting pins 32 are not provided in the lower half of the outer ring 31 in the vertical direction, but are provided in the upper half of the outer ring 31 in the vertical direction. .
  • the bearing housing 22 and the outer ring 31 are contacted via the spacer 145 on the lower side in the vertical direction.
  • transformation in the downward direction of the perpendicular direction of the squeeze film damper 11 can be controlled, and the rigidity in the downward direction of a perpendicular direction can be made high.
  • the rigidity of the squeeze film damper 11 in the horizontal direction is lower than the rigidity in the vertical direction. At this time, in the horizontal direction, the gap between the bearing housing 22 and the outer ring 31 is not narrowed by the load, so that the gap between the bearing housing 22 and the outer ring 31 can be suitably maintained. For this reason, the damper effect by the squeeze film 11 can be exhibited suitably in the horizontal direction.
  • the bearing housing 22 and the outer ring 31 are in contact with each other on the lower side in the vertical direction via the spacer 145, so that the load is supported by the outer ring 31 in the bearing housing 22. .
  • the rigidity on the lower side in the vertical direction can be increased, the number of connecting pins 32 provided on the lower side in the vertical direction can be reduced. Therefore, since the number of connecting pins 32 can be reduced, the processing cost can be suppressed.
  • the spacer 145 can be easily installed by laying the spacer 145 on the inner peripheral surface of the outer ring 31, so that the processing cost can be suppressed.
  • the spacer 145 is attached to the outer peripheral surface of the outer ring 31, but is not limited to this configuration, and may be attached to the outer peripheral surface of the bearing housing 22.
  • FIG. 14 is a cross-sectional view of a bearing unit including a squeeze film damper according to Modification 3 cut along a plane orthogonal to the axial direction.
  • the spacer 145 is disposed so as to penetrate from the radially outer side of the outer ring 31 to the radially inner side.
  • a spacer 145 is provided between the bearing housing 22 and the outer ring 31 on the lower side in the vertical direction.
  • the spacer 145 has a spacer main body 145a and a fixing portion 145b.
  • the spacer main body 145 a is provided from the outer peripheral surface of the outer ring 31 to the inner peripheral surface.
  • the outer ring 31 is formed with a spacer through hole through which the spacer main body 145a is inserted.
  • the fixing portion 145b is provided on the outer ring 31 side (the lower side in the vertical direction) of the spacer body 145a and is attached to the outer peripheral surface of the outer ring 31.
  • the fixing portion 145b fixes the spacer main body 145a by being attached to the outer peripheral surface of the outer ring 31.
  • the fixed spacer body 145 a protrudes from the inner peripheral surface of the outer ring 31 and contacts the outer peripheral surface of the bearing housing 22.
  • the spacer 145 can be disposed through the outer ring 31, the spacer 145 can be easily installed, and the processing cost can be reduced. .
  • FIG. 15 is a cross-sectional view of a bearing unit including the squeeze film damper according to the sixth embodiment when cut along a plane orthogonal to the axial direction.
  • Example 6 parts different from Examples 1 to 5 will be described in order to avoid duplicate descriptions, and parts having the same configurations as those in Examples 1 to 5 will be described with the same reference numerals. .
  • the plurality of connecting pins 32 are arranged close to both sides in the vertical direction.
  • the connecting pin 32 that connects the bearing housing 22 and the outer ring 31 has a long rod shape in the longitudinal direction, and the longitudinal direction is the axis of the rotary shaft 5. It is arranged to be in the direction.
  • a plurality of the connecting pins 32 are provided at predetermined intervals along the circumferential direction of the outer ring 31. At this time, the intervals in the circumferential direction of the plurality of connecting pins 32 are short on both sides in the vertical direction (upper side and lower side) and longer on both sides in the horizontal direction (left side and right side). For this reason, the plurality of connecting pins 32 are gathered and arranged on the upper side and the lower side in the vertical direction, respectively, while being spread on the left side and the right side in the horizontal direction.
  • the distance between the connection pins 32 is narrowed on both sides in the vertical direction, while the distance between the connection pins 32 is widened on both sides in the horizontal direction.
  • the rigidity in the vertical direction of the pin 32 can be increased as compared with the rigidity in the horizontal direction. For this reason, the arrangement of the plurality of connecting pins 32 can make the squeeze film damper 11 have an appropriate rigidity.
  • FIG. 16 is sectional drawing when a bearing unit provided with the squeeze film damper which concerns on Example 7 is cut in the surface orthogonal to an axial direction.
  • a groove 165 is formed on the inner peripheral surface of the outer ring 31.
  • the outer ring 31 has a groove portion 165 formed on the inner peripheral surface on the lower side in the vertical direction, and the groove portion 165 is recessed from the inner peripheral surface of the outer ring 31. Is formed.
  • the groove portion 165 is formed along the inner peripheral surface of the outer ring 31 and is formed to a predetermined depth.
  • the groove 165 is formed in a range over a predetermined angle centering on the rotation shaft 5 on both sides in the vertical direction.
  • the groove part 165 is each formed in the both sides (upper side and lower side) of a perpendicular direction. For this reason, between the bearing housing 22 and the outer ring 31, the gap on both sides in the vertical direction is larger than the gap on both sides in the horizontal direction.
  • the gap between the bearing housing 22 and the outer ring 31 is not narrowed on both sides in the vertical direction. .
  • the clearance gap between the bearing housing 22 and the outer ring 31 can be suitably maintained on both sides in the vertical direction, and the reduction of the damper effect by the squeeze film 11 can be suppressed.
  • the gap between the bearing housing 22 and the outer ring 31 is not narrowed by the load, so that the gap between the bearing housing 22 and the outer ring 31 can be suitably maintained. For this reason, the damper effect by a squeeze film can be exhibited suitably in a horizontal direction.
  • the seventh embodiment by forming the groove portion 165, a clearance between the bearing housing 22 and the outer ring 31 on both sides in the vertical direction can be easily ensured, and the processing cost can be suppressed. .
  • the groove 165 is formed on the inner peripheral surface of the outer ring 31, but the groove 165 may be formed on the outer peripheral surface of the bearing housing 22, or the inner peripheral surface of the outer ring 31 and the bearing.
  • the groove part 165 may be formed in the outer peripheral surface of the housing 22, and it is not specifically limited.
  • FIG. 17 is a cross-sectional view of a bearing unit including the squeeze film damper according to the eighth embodiment cut along a plane orthogonal to the axial direction.
  • a defect portion 175 is formed on the inner peripheral surface of the bearing housing 22.
  • the bearing housing 22 has a defective portion 175 formed on the inner peripheral surface on the lower side in the vertical direction, and the defective portion 175 is the inner peripheral surface of the bearing housing 22. It is formed in a hollow.
  • the missing part 175 is formed to a predetermined depth by cutting out the bearing housing 22.
  • deletion part 175 is each formed in the both sides (upper side and lower side) of a perpendicular direction. For this reason, the bearing housing 22 has higher rigidity in the vertical direction than that in the horizontal direction.
  • the bearing housing 22 is hardly deformed in the vertical direction with respect to the horizontal direction. For this reason, since the clearance gap between the bearing housing 22 and the outer ring 31 can be maintained suitably in a perpendicular direction, it can suppress that the damper effect by the squeeze film 35 reduces. Further, in the horizontal direction, the gap between the bearing housing 22 and the outer ring 31 is not narrowed by a load, so that the gap between the bearing housing 22 and the outer ring 31 can be suitably maintained. For this reason, the damper effect by the squeeze film 35 can be exhibited suitably in the horizontal direction.
  • the rigidity of the bearing housing 22 in the horizontal direction can be easily reduced, and relatively in the vertical direction. Since the rigidity of the bearing housing 22 can be increased, the processing cost can be suppressed.
  • the defective portion 175 is formed on the inner peripheral surface of the bearing housing 22.
  • the defective portion 175 may be formed on the outer peripheral surface of the bearing housing 22 or the inner peripheral surface of the bearing housing 22. Further, the defect portion 175 may be formed on the outer peripheral surface, and is not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 スクイズフィルムダンパ11は、回転軸5を軸支する軸受10の径方向外側の周囲に亘って設けられるインナーリングとしての軸受ハウジング22と、軸受ハウジング22の径方向外側の周囲に亘って設けられるアウターリング31と、軸受ハウジング22とアウターリング31との径方向における隙間に粘性流体を流通させて形成されるスクイズフィルム35と、軸受ハウジング22とアウターリング31とを連結し、アウターリング31と軸受ハウジング22との径方向における相対的な変位に応じて変形可能な連結ピン32とを備え、連結ピン32は、回転軸5の軸方向に直交する断面において、鉛直方向における剛性が、水平方向における剛性に比して高くなっている。

Description

スクイズフィルムダンパ、軸受ユニット及びタービン
 本発明は、インナーリングとアウターリングとの隙間にスクイズフィルムが形成されるスクイズフィルムダンパ、軸受ユニット及びタービンに関するものである。
 従来、軸受の周囲に弾力性の制振構造を形成する軸受支持構造体が知られている(例えば、特許文献1参照)。この軸受支持構造体は、軸受支持体を取り囲む外側ハウジングを備え、軸受支持体の径方向外側面と外側ハウジングの径方向内側面との隙間に、スクイズフィルム環が形成されている。
特許第4963916号公報
 ところで、回転軸が回転すると、回転軸周りには、回転による振動が発生し、また、回転軸及び軸受を含む回転部品の固有振動が発生する。回転振動は、その周波数(回転振動数)が回転軸の回転数に応じたものとなる。一方で、固有振動は、その周波数(固有振動数)が、回転振動数よりも低くなる低周波振動となっている。スクイズフィルムダンパは、これらの振動を抑制するために、回転軸の軸受周りに設けられる。
 このとき、スクイズフィルムダンパには、回転軸及び軸受を含む回転部品の自重、および蒸気による静的な荷重が主に鉛直方向の下方側に与えられることから、アウターリングとなる外側ハウジングと、インナーリングとなる軸受支持体との隙間が狭くなり、接触してしまう場合がある。これを防ぐため、アウターリングとインナーリングとを棒状の連結部材により連結することで、アウターリングとインナーリングとの隙間を維持している。一方で、アウターリングとインナーリングとの隙間は、ダンパとして機能させるために、動的な荷重に対しては隙間の大きさが変化する必要がある。このため、連結部材は、静的な荷重に対してはアウターリングとインナーリングが接触しないよう隙間を維持しつつ、アウターリングとインナーリングとの隙間の変形を許容可能な剛性となっている。
 しかしながら、近年の軸系の長大化や出力の増大に伴い自重、蒸気力が増大するため、連結部材はより剛に設計する必要があるが、剛にすると動的な荷重に対して隙間が変化しにくくなり、スクイズフィルムによるダンパ効果を得ることが困難となり、回転軸周りに発生する振動を抑制することが困難となる。
 そこで、本発明は、インナーリングとアウターリングとの隙間を好適に維持して、スクイズフィルムによるダンパ性能の低下を抑制することができるスクイズフィルムダンパ、軸受ユニット及びタービンを提供することを課題とする。
 本発明のスクイズフィルムダンパは、回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、前記連結部材は、軸方向に直交する断面において、荷重方向における剛性が、前記荷重方向に直交する直交方向における剛性に比して高くなっていることを特徴とする。
 この構成によれば、連結部材の長さが長くなった場合であっても、連結部材の荷重方向における剛性を高くすることができる。このため、荷重方向においてインナーリングとアウターリングとの隙間を好適に維持することができることから、隙間が狭くなることによって、スクイズフィルムによるダンパ効果が低減することを抑制することができる。一方で、連結部材の直交方向における剛性を、荷重方向における剛性に比して低くすることができる。このとき、直交方向において、インナーリングとアウターリングとの隙間は、荷重によって狭くなることがないため、インナーリングとアウターリングとの隙間を好適に維持することができる。また、直交方向におけるインナーリングとアウターリングとの隙間の変形を、荷重方向におけるインナーリングとアウターリングとの隙間の変形に比して、変形し易いものとすることができる。このため、直交方向においてスクイズフィルムによるダンパ効果を好適に発揮することができる。なお、軸受は、ティルティングパッド軸受、すべり軸受け、または転がり軸受であってもよく、特に限定されない。また、粘性流体は、空気であってもよいし、潤滑油であってもよく、特に限定されない。さらに、荷重方向は、鉛直方向であってもよいし、直交方向は、水平方向であってもよく、特に限定されない。
 この場合、前記インナーリングと前記アウターリングとは、前記軸方向に重ね合わせられたオーバーラップ部をそれぞれ有し、前記連結部材は、軸方向に沿って設けられて、前記インナーリングの前記オーバーラップ部と前記アウターリングの前記オーバーラップ部とを連結しており、前記連結部材の一部は、前記変位に応じて変形可能な変形ダンパ部となっており、前記変形ダンパ部は、軸方向に直交する断面において、荷重方向における剛性が、前記荷重方向に直交する直交方向における剛性に比して高くなっていることが好ましい。
 この構成によれば、連結部材を軸方向に配置する場合、軸方向に直交する断面において、連結部材の変形ダンパ部の荷重方向における剛性を、直交方向における剛性に比して高くすることができるため、連結部材の配置に応じた適切な剛性とすることができる。
 この場合、前記変形ダンパ部は、前記断面において、前記荷重方向における長さが長く、前記直交方向における長さが短い断面形状となっていることが好ましい。
 この構成によれば、変形ダンパ部の断面形状を、荷重方向における長さが長く、直交方向における長さが短い断面形状とすることで、連結部材の変形ダンパ部の荷重方向における剛性を、直交方向における剛性に比して高くすることができる。なお、荷重方向における長さが長く、直交方向における長さが短い断面形状としては、特に限定されず、例えば、長方形状、楕円形状または長円形状等の断面形状としてもよい。
 この場合、前記インナーリングの前記オーバーラップ部には、前記連結部材が挿通されるインナー側連結孔が形成され、前記アウターリングの前記オーバーラップ部には、前記連結部材が挿通されるアウター側連結孔が形成され、前記連結部材は、前記インナー側連結孔に嵌め合わされるインナー側嵌合部と、前記アウター側連結孔に嵌め合わされるアウター側嵌合部と、前記インナー側嵌合部と前記アウター側嵌合部との間に設けられ、前記インナー側連結孔に収容される前記変形ダンパ部と、を有し、前記変形ダンパ部は、前記インナー側連結孔の前記荷重方向側の内面に当接していることが好ましい。
 この構成によれば、連結部材の変形ダンパ部を、インナー側連結孔の荷重方向側の内面に当接させることで、変形ダンパ部の荷重方向における変形を規制することができる。このため、荷重によるインナーリングとアウターリングとの隙間の変形を規制することができ、隙間をより好適に維持することができる。
 この場合、前記インナーリングと前記アウターリングとは、前記荷重方向に重ね合わせられたオーバーラップ部をそれぞれ有し、前記連結部材は、前記荷重方向に沿って設けられて、前記インナーリングの前記オーバーラップ部と前記アウターリングの前記オーバーラップ部とを連結しており、前記連結部材の一部は、前記変位に応じて変形する変形ダンパ部となっていることが好ましい。
 この構成によれば、連結部材を荷重方向に沿って設けることで、連結部材の長さを荷重方向に長くできることから、連結部材の変形ダンパ部の荷重方向における剛性を、直交方向における剛性に比して高くすることができる。このため、連結部材の形状を変えることなく、連結部材の配置を変更するだけで、連結部材の配置に応じた適切な剛性とすることができる。
 この場合、前記連結部材は、軸方向に沿って設けられると共に、前記回転軸の周方向に所定の間隔を空けて複数設けられ、複数の前記連結部材は、周方向における前記間隔が、前記荷重方向の両側において短く、前記直交方向の両側において長くなっていることが好ましい。
 この構成によれば、荷重方向の両側において、連結部材同士の間隔が狭くなる一方で、直交方向の両側において、連結部材同士の間隔が広くなるため、複数の連結部材の荷重方向における剛性を、直交方向における剛性に比して高めることができる。このため、複数の連結部材の配置によって、適切な剛性とすることができる。
 本発明の他のスクイズフィルムダンパは、回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、前記インナーリングと前記アウターリングとは、軸方向に直交する断面において、荷重方向側を接触させて配置されることを特徴とする。
 この構成によれば、連結部材の長さが長くなった場合であっても、インナーリングとアウターリングとを接触させることで、荷重方向における変形を規制することができ、荷重方向における剛性を高くすることができる。一方で、直交方向における剛性は、荷重方向における剛性に比して低くなる。このとき、直交方向において、インナーリングとアウターリングとの隙間は、荷重によって狭くなることがないため、インナーリングとアウターリングとの隙間は、好適に維持することができる。このため、直交方向において、スクイズフィルムによるダンパ効果を好適に発揮することができる。
 この場合、前記アウターリングは、前記インナーリングと対向する内周面が、前記荷重方向側において、前記インナーリングの外周面と接触し、前記アウターリングの前記内周面は、軸方向に直交する断面において、前記荷重方向側の部位における曲率半径が、前記荷重方向側以外の部位における曲率半径に比して、大きくなっていることが好ましい。
 この構成によれば、荷重方向側の部位におけるアウターリングの内周面の曲率半径を大きくすることで、アウターリングとインナーリングとを接触させることができる。また、アウターリングとインナーリングとが相対的に直交方向に移動する場合、インナーリングは、アウターリングの内周面に沿って移動するため、直交方向におけるインナーリングとアウターリングとの隙間を変化させることができ、ダンパ効果を好適に発揮することができる。
 本発明の他のスクイズフィルムダンパは、回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、前記インナーリングと前記アウターリングとの間において、荷重方向側に設けられ、前記インナーリング及び前記アウターリングに接触するスペーサと、を備えることを特徴とする。
 この構成によれば、連結部材の長さが長くなった場合であっても、インナーリングとアウターリングとをスペーサを介して接触させることで、連結部材の荷重方向における変形を規制することができ、荷重方向における剛性を高くすることができる。一方で、直交方向における剛性は、荷重方向における剛性に比して低くなる。このとき、直交方向において、インナーリングとアウターリングとの隙間は、荷重によって狭くなることがないため、インナーリングとアウターリングとの隙間は、好適に維持することができる。このため、直交方向において、スクイズフィルムによるダンパ効果を好適に発揮することができる。
 この場合、前記スペーサは、前記アウターリングの前記インナーリングと対向する内周面に敷設されることが好ましい。
 この構成によれば、アウターリングの内周面にスペーサを敷設することで、簡単にスペーサを設置させることができ、加工コストの抑制を図ることができる。
 この場合、前記スペーサは、前記アウターリングの径方向外側から径方向内側に貫通して配設されることが好ましい。
 この構成によれば、アウターリングを貫通してスペーサを配設することで、簡単にスペーサを設置させることができ、加工コストの抑制を図ることができる。
 この場合、前記連結部材は、軸方向に沿って設けられると共に、前記回転軸の周方向に所定の間隔を空けて複数設けられ、複数の前記連結部材は、前記荷重方向側における数が、前記荷重方向の反対側における数に比して少ないことが好ましい。
 この構成によれば、インナーリングとアウターリングとは、荷重方向側に接触することから、インナーリングは、アウターリングによって荷重が支持される。このため、荷重方向側の剛性を高くできることから、荷重方向側に設けられる連結部材の数を少なくすることができる。よって、連結部材の数を削減できることから、加工コストの抑制を図ることができる。
 本発明の他のスクイズフィルムダンパは、回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、前記インナーリングと前記アウターリングとは、軸方向に直交する断面において、荷重方向における前記隙間が、前記荷重方向に直交する直交方向における前記隙間に比して、大きくなっていることを特徴とする。
 この構成によれば、連結部材の長さが長くなった場合であっても、荷重方向におけるインナーリングとアウターリングとの隙間が狭くなることはない。このため、荷重方向においてインナーリングとアウターリングとの隙間を好適に維持することができ、スクイズフィルムによるダンパ効果が低減することを抑制することができる。一方で、直交方向において、インナーリングとアウターリングとの隙間は、荷重によって狭くなることがないため、インナーリングとアウターリングとの隙間を好適に維持することができる。このため、直交方向においてスクイズフィルムによるダンパ効果を好適に発揮することができる。
 この場合、前記アウターリングは、前記インナーリングと対向する内周面に対して、窪んで形成される溝部を有し、前記溝部は、前記軸方向に直交する断面において、前記荷重方向の両側に形成されることが好ましい。
 この構成によれば、溝部を形成することで、荷重方向におけるインナーリングとアウターリングとの隙間を簡単に確保することができ、加工コストの抑制を図ることができる。
 本発明の他のスクイズフィルムダンパは、回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、前記インナーリングは、軸方向に直交する断面において、荷重方向における剛性が、前記荷重方向に直交する直交方向における剛性に比して高くなっていることを特徴とする。
 この構成によれば、インナーリングは、直交方向に対して、荷重方向における変形がし難くなる。このため、荷重方向において、インナーリングとアウターリングとの隙間を好適に維持することができることから、スクイズフィルムによるダンパ効果が低減することを抑制することができる。また、直交方向において、インナーリングとアウターリングとの隙間は、荷重によって狭くなることがないため、インナーリングとアウターリングとの隙間を好適に維持することができる。このため、直交方向においてスクイズフィルムによるダンパ効果を好適に発揮することができる。
 この場合、前記インナーリングは、前記荷重方向の両側に形成される欠損部を有することが好ましい。
 この構成によれば、インナーリングの荷重方向の両側に欠損部を形成することで、簡単に直交方向におけるインナーリングの剛性を低くすることができ、相対的に荷重方向におけるインナーリングの剛性を高くすることができることから、加工コストの抑制を図ることができる。
 この場合、前記軸受は、前記回転軸の周囲に所定の間隔をあけて設けられる複数のパッドと、複数の前記パッドを保持し、複数の前記パッドの径方向外側の周囲に亘って設けられる軸受ハウジングと、を有するティルティングパッド軸受であり、前記軸受ハウジングと前記インナーリングとは、一体となっていることが好ましい。
 この構成によれば、軸受ハウジングとインナーリングとを一体にすることができるため、部品点数を削減することができ、製造コストを低減することができる。
 本発明の軸受ユニットは、回転軸を軸支する軸受と、前記軸受の径方向外側の周囲に設けられる上記のスクイズフィルムダンパと、を備えることを特徴とする。
 この構成によれば、スクイズフィルムダンパに対して荷重が与えられる場合であっても、スクイズフィルムのダンパ効果により、回転軸及び軸受の振動を好適に抑制することができる。
 本発明のタービンは、上記の軸受ユニットと、前記軸受ユニットにより軸支される前記回転軸と、を備えることを特徴とする。
 この構成によれば、軸受ユニットにより回転軸の振動を抑制しつつ、回転軸を好適に回転させることができる。
図1は、実施例1に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に沿って切ったときの断面図である。 図2は、実施例1に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときのA-A断面図である。 図3は、実施例1に係るスクイズフィルムダンパの連結ピンを模式的に表した斜視図である。 図4は、実施例1に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。 図5は、変形例1に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。 図6は、実施例2に係るスクイズフィルムダンパの連結ピンを模式的に表した斜視図である。 図7は、実施例2に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。 図8は、変形例2に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。 図9は、実施例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。 図10は、実施例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に沿って切ったときのB-B断面図である。 図11は、実施例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に沿って切ったときのC-C断面図である。 図12は、実施例4に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。 図13は、実施例5に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。 図14は、変形例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。 図15は、実施例6に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。 図16は、実施例7に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。 図17は、実施例8に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。
 以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図1は、実施例1に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に沿って切ったときの断面図である。図2は、実施例1に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図であり、図1のA-A断面図である。図3は、実施例1に係るスクイズフィルムダンパの連結ピンを模式的に表した斜視図である。図4は、実施例1に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。図5は、変形例1に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。
 図1に示すように、実施例1に係るスクイズフィルムダンパ11は、軸受ユニット1に設けられ、回転軸5を軸支する軸受10と一体に構成されている。つまり、軸受ユニット1は、回転軸5を軸支する軸受10と、軸受10を支持するスクイズフィルムダンパ11とで一体に構成されている。
 回転軸5は、タービン6に設けられるタービンロータであり、その軸方向が水平方向となるように配置される。回転軸5が回転すると、回転軸5周りには、回転による振動が発生すると共に、回転軸5及び軸受10を含む回転部品の固有振動が発生する。このとき、固有振動の周波数(固有振動数)は、回転振動の周波数(回転振動数)よりも低くなる低周波振動となっている。軸受10は、回転軸5を回転自在に軸支し、スクイズフィルムダンパ11は、回転軸5を制振している。なお、タービン6は、蒸気タービンであってもよいし、ガスタービンであってもよく、特に限定されない。
 軸受10は、例えば、ティルティングパッド軸受であり、回転軸5の周囲に複数設けられるパッド21と、パッド21の周りに設けられる軸受ハウジング22とを有している。
 パッド21は、回転軸5の外周に、所定の間隔をあけて周方向に複数設けられており、実施例1では、例えば、4つ設けられている。各パッド21は、円弧状に形成されており、その内周面が、回転軸5の外周面と対向する湾曲面となっている。
 ハウジング22は、周方向に並べられるパッド21の外周に、円環状に設けられている。図1に示すように、ハウジング22は、パッド21の外周側に位置する環状部22aと、環状部22aの軸方向の両側に形成される一対の内周側フランジ部22bと、環状部22aの軸方向の両側に形成される一対の外周側フランジ部22cとを含む構成となっている。
 一対の内周側フランジ部22bは、環状部22aの軸方向の両側にそれぞれ設けられ、径方向の内側に突出して設けられている。一対の内周側フランジ部22bの軸方向における間には、パッド21が設けられており、一対の内周側フランジ部22bは、パッド21の軸方向への移動を規制している。
 一対の外周側フランジ部22cは、環状部22aの軸方向の両側にそれぞれ設けられ、径方向の外側に突出して設けられることで、その内部に、後述するスクイズフィルムダンパ11のアウターリング31を収容可能となっている。つまり、一対の外周側フランジ部22cは、後述するスクイズフィルムダンパ11のアウターリング31と軸方向において重複するオーバーラップ部となっている。
 環状部22aは、径方向外側から径方向内側のパッド21へ向けて潤滑油を供給する第1油路24が形成されている。このため、潤滑油は、環状部22aの外周面から第1油路24に流入し、環状部22aの内周面へ向かって流通した後、環状部22aの内周側へ流出する。環状部22aの内周側には、パッド21があることから、潤滑油は、パッド21周りに充填され、また、回転軸5のパッド21との間にも充填される。
 また、図2に示すように、環状部22aの内周面には、各パッド21を位置決めするためのピボット25がパッド21の設置数に応じて複数形成されている。ピボット25は、環状部22aの内周面から径方向の内側へ突出する突起部となっている。一方で、パッド21の径方向外側の外周面には、ピボット25に係合する係合穴26が、凹状に窪んで形成されている。このため、環状部22aのピボット25に、パッド21の係合穴26が係合することで、軸受ハウジング22に対し、パッド21が位置決めされる。
 このように構成された軸受10は、回転軸5とパッド21との間に潤滑油を介在させた状態で、回転軸5を回転自在に軸支している。
 軸受10の径方向外側の周囲に設けられるスクイズフィルムダンパ11は、インナーリングと、アウターリング31と、インナーリング及びアウターリング31を連結する連結ピン(連結部材)32とを含んで構成されている。ここで、インナーリングは、軸受ハウジング22と一体となっていることから、軸受ハウジング22の一部がインナーリングとして機能している。
 アウターリング31は、環状部22aの軸方向の両側に設けられる一対の外周側フランジ部22cの間に設けられ、軸方向への移動が規制されている。また、アウターリング31は、環状に設けられており、軸方向において一対の外周側フランジ部22cと重複している。このアウターリング31は、その外周面が固定部材38によって支持される。
 また、アウターリング31は、その内周面が、軸受ハウジング22の環状部22aの外周面と対向している。このアウターリング31は、径方向外側から径方向内側の軸受ハウジング22の環状部22aへ向けて潤滑油を供給する第2油路33が形成されている。このため、潤滑油は、アウターリング31の外周面から第2油路33に流入し、アウターリング31の内周面へ向かって流通した後、環状部22aの外周側へ流出する。このため、アウターリング31と環状部22aとの間には、粘性流体としての潤滑油が介在することで、環状のスクイズフィルム35が形成される。なお、環状部22aの外周側において流通する潤滑油は、第1油路25に流入する。
 環状に形成されるスクイズフィルム35は、アウターリング31と軸受ハウジング22との径方向における相対的な変位に対してダンパ効果を発揮することで、回転軸5周りで発生する振動を抑制する。
 連結ピン32は、アウターリング31と環状部22aとの間に潤滑材を流通させるための隙間を形成しつつ、軸受ハウジング22とアウターリング31とを連結する部材となっている。連結ピン32は、長手方向に長い棒状となっており、長手方向が回転軸5の軸方向となるように配置されている。
 軸受ハウジング22の一対の外周側フランジ部22cには、連結ピン32を挿通するためのインナー側連結孔41が、軸方向に貫通形成されている。また、アウターリング31には、連結ピン32を挿通するためのアウター側連結孔42が、軸方向に貫通形成されている。インナー側連結孔41とアウター側連結孔42とは、軸方向に重複して配置され、その断面が円形となっている。また、インナー側連結孔41及びアウター側連結孔42の内径は、同じ径となっている。
 図2に示すように、このインナー側連結孔41及びアウター側連結孔42は、アウターリング31の周方向に沿って所定の間隔を空けて複数形成されており、実施例1では、例えば、12個形成されている。
 再び、図1を参照して、棒状の連結ピン32は、一方の外周側フランジ部22cのインナー側連結孔41に挿通され、アウターリング31のアウター側連結孔42を経て、他方の外周側フランジ部22cのインナー側連結孔41に挿通される。この連結ピン32は、長手方向の両側端部に設けられる一対のインナー側嵌合部51と、一対のインナー側嵌合部51の間に設けられるアウター側嵌合部52と、各インナー側嵌合部51とアウター側嵌合部52との間に設けられる一対の変形ダンパ部53とを含んで構成されている。
 図1及び図3に示すように、一対のインナー側嵌合部51は、一対のインナー側連結孔41にそれぞれ嵌め合わされる。このため、各インナー側嵌合部51は、断面円形状となる各インナー側連結孔41に嵌め合わされるよう、各インナー側連結孔41の内径とほぼ同径となる円柱形状に形成されている。
 また、アウター側嵌合部52は、アウター側連結孔42に嵌め合わされる。このため、アウター側嵌合部52は、インナー側嵌合部51と同様に、断面円形状となるアウター側連結孔42に嵌め合わされるよう、アウター側連結孔42の内径とほぼ同径となる円柱形状に形成されている。また、アウター側嵌合部52の軸方向における長さは、アウター側連結孔42の軸方向における長さよりも短くなっており、アウター側嵌合部52は、アウター側連結孔42の軸方向の中央に位置するように形成される。
 一対の変形ダンパ部53は、一方のインナー側嵌合部51とアウター側嵌合部52との間、及び他方のインナー側嵌合部51とアウター側嵌合部52との間にそれぞれ設けられ、アウター側連結孔42に挿通される。各変形ダンパ部53は、アウターリング31と軸受ハウジング22との径方向における相対的な変位に応じて変形可能となっている。
 ここで、図3及び図4に示すように、変形ダンパ部53は、長手方向(軸方向)に直交する面で切った断面が長方形状となっている。変形ダンパ部53の断面は、インナー側嵌合部51及びアウター側嵌合部52の断面よりも小さな大きさとなっており、インナー側嵌合部51及びアウター側嵌合部52の断面に収まる大きさとなっている。このとき、変形ダンパ部53は、長方形状となる断面の長辺が鉛直方向となり、長方形状となる断面の短辺が水平方向となっている。変形ダンパ部53は、このような断面長方形状に形成されることで、鉛直方向における剛性が、水平方向における剛性に比して高くなる。このため、連結ピン32は、鉛直方向から連結ピン32に荷重が与えられても撓み難くなる。
 以上のように、実施例1の構成によれば、連結ピン32の長さが長くなった場合であっても、連結ピン32の鉛直方向における剛性を高くすることができる。このため、荷重方向となる鉛直方向においてアウターリング31と軸受ハウジング22の環状部22aとの隙間を好適に維持することができることから、隙間が狭くなることによって、スクイズフィルム35によるダンパ効果が低減することを抑制することができる。一方で、連結ピン32の水平方向における剛性を、鉛直方向における剛性に比して低くすることができる。このとき、水平方向において、アウターリング31と軸受ハウジング22の環状部22aとの隙間は、荷重によって狭くなることがないため、アウターリング31と軸受ハウジング22の環状部22aとの隙間を好適に維持することができる。また、水平方向におけるアウターリング31と軸受ハウジング22の環状部22aとの隙間の変形を、鉛直方向におけるアウターリング31と軸受ハウジング22の環状部22aとの隙間の変形に比して変形し易いものとすることができる。このため、水平方向においてスクイズフィルム35によるダンパ効果を好適に発揮することができる。
 また、実施例1の構成によれば、連結ピン32の長手方向を軸方向となるように配置する場合、軸方向に直交する断面において、連結ピン32の変形ダンパ部53の鉛直方向における剛性を、水平方向における剛性に比して高くすることができるため、連結ピン32の配置に応じた適切な剛性とすることができる。
 また、実施例1の構成によれば、変形ダンパ部53の断面形状を長方形状にするという簡易な構成で、鉛直方向における剛性を、水平方向における剛性に比して高くすることができる。
 また、実施例1の構成によれば、軸受ハウジング22とインナーリングとを一体にすることができるため、部品点数を削減することができ、軸受ユニット1の製造コストを低減することができる。
 また、実施例1の構成によれば、スクイズフィルムダンパ11に対して、鉛直方向の荷重が与えられる場合であっても、スクイズフィルム35のダンパ効果を発揮することができる。このため、軸受ユニット1により回転軸5の振動を好適に抑制しつつ、回転軸5を好適に回転させることができる。
 なお、実施例1において、軸受10は、ティルティングパッド軸受としたが、すべり軸受けまたは転がり軸受であってもよく、特に限定されない。また、実施例1では、粘性流体として潤滑油を用いたが、空気であってもよく、特に限定されない。
 また、実施例1において、連結ピン32の変形ダンパ部53の断面形状は、長方形状としたが、図5に示す形状であってもよい。図5は、変形例1に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。図5に示すように、変形例1の連結ピン32の断面形状は、鉛直方向の上方側及び下方側が円弧となり、水平方向の左右両側が鉛直方向に延びる直線となる断面形状となっている。このとき、連結ピン32は、実施例1と同様に、鉛直方向における長さが長く、水平方向における長さが短い断面形状となっている。このため、連結ピン32の長手方向を軸方向となるように配置する場合、軸方向に直交する断面において、連結ピン32の変形ダンパ部53の鉛直方向における剛性を、水平方向における剛性に比して高くすることができるため、連結ピン32の配置に応じた適切な剛性とすることができる。
 なお、変形ダンパ部53は、実施例1及び変形例1の断面形状に限定されず、鉛直方向(荷重方向)における長さが長く、水平方向における長さが短い断面形状であればいずれであってもよく、例えば、楕円形状または長円形状等の断面形状としてもよい。
 次に、図6及び図7を参照して、実施例2に係る軸受ユニットについて説明する。図3は、実施例2に係るロウ付方法で用いられる容器の模式図である。図6は、実施例2に係るスクイズフィルムダンパの連結ピンを模式的に表した斜視図であり、図7は、実施例2に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。なお、実施例2では、重複した記載を避けるべく、実施例1と異なる部分について説明すると共に、実施例1と同様の構成である部分については、同じ符号を付して説明する。
 図6及び図7に示すように、実施例2に係る軸受ユニットは、その連結ピン71の変形ダンパ部73の位置が、実施例1の軸受ユニット1における連結ピン32の変形ダンパ部53の位置と異なる位置となっている。
 具体的に、変形ダンパ部73は、長手方向(軸方向)に直交する面で切った断面が、実施例1と同様に、長方形状となっている。このとき、変形ダンパ部73は、その鉛直方向の下方部が、より具体的には、下方側の角部が、変形ダンパ部73が挿通されるアウター側連結孔42の下面に当接するように配置されている。つまり、実施例2の変形ダンパ部73は、実施例1の変形ダンパ部53に比して、鉛直方向の下方側に位置して設けられる。
 以上のように、実施例2の構成によれば、連結ピン71の変形ダンパ部73を、インナー側連結孔42の下面(鉛直方向の下側の内面)に当接させることで、変形ダンパ部73の荷重方向(鉛直方向の下方向)における変形を規制することができる。このため、荷重によるアウターリング31と軸受ハウジング22の環状部22aとの隙間の変形を規制することができ、隙間をより好適に維持することができる。
 なお、実施例2において、連結ピン71の変形ダンパ部73の断面形状は、長方形状としたが、図8に示す形状であってもよい。図8は、変形例2に係るスクイズフィルムダンパの連結ピンを軸方向に直交する面で切ったときの断面図である。図8に示すように、変形例2の連結ピン71における変形ダンパ部73の断面形状は、断面長方形状となる実施例2の変形ダンパ部73の下方側の短辺を、アウター側連結孔42の内面に沿って湾曲する円弧とした断面形状となっている。このため、連結ピン71の変形ダンパ部73を、インナー側連結孔42の下面(鉛直方向の下側の内面)に対して、接触面積を大きくして当接させることができる。このため、変形ダンパ部73の荷重方向(鉛直方向の下方向)における変形をより強固に規制することができる。
 なお、変形ダンパ部73は、実施例2及び変形例2の断面形状に限定されず、連結ピン71の変形ダンパ部73を、インナー側連結孔42の下面に当接可能な断面形状であればいずれであってもよく、特に限定されない。
 次に、図9から図11を参照して、実施例3に係る軸受ユニット101について説明する。図9は、実施例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。図10は、実施例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に沿って切ったときの断面図であり、図9のB-B断面図である。図11は、実施例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に沿って切ったときの断面図であり、図9のC-C断面図である。なお、実施例3でも、重複した記載を避けるべく、実施例1及び2と異なる部分について説明すると共に、実施例1及び2と同様の構成である部分については、同じ符号を付して説明する。実施例1及び2では、連結ピン32,71の長手方向を、回転軸5の軸方向と同じ方向としたが、実施例3では、連結ピン121の長手方向を、鉛直方向と同じ方向としている。
 図9に示すように、連結ピン121は、アウターリング31と環状部22aとの間に潤滑材を流通させるための隙間を形成しつつ、軸受ハウジング22とアウターリング31とを連結する部材となっている。連結ピン121は、長手方向に長い棒状となっており、長手方向が鉛直方向となるように配置されている。
 軸受ハウジング22には、連結ピン121を挿通するためのインナー側連結孔111が、鉛直方向に貫通形成されている。このインナー側連結孔111は、軸受ハウジング22の外周面から内部を経て再び外周面へ貫通される孔となっている。インナー側連結孔111は、回転軸5を挟んで、環状となる軸受ハウジング22の水平方向の両側に一対形成されている。このため、一対のインナー側連結孔111は、平行に配置される。
 また、アウターリング31には、連結ピン121を挿通するためのアウター側連結孔112が、鉛直方向に貫通形成されている。このアウター側連結孔112は、アウターリング31の外周面から内周面まで貫通されると共に、アウターリング31の内周面から外周面まで貫通されることから、鉛直方向に連なって2つ形成される。鉛直方向に連なる2つ一組のアウター側連結孔112は、回転軸5を挟んで、環状となるアウターリング31の水平方向の両側に一対形成されている。このため、一対のアウター側連結孔112は、平行に配置される。
 そして、一組のアウター側連結孔112とインナー側連結孔111とは、鉛直方向に重複して配置され、その断面が円形となっている。また、インナー側連結孔41及びアウター側連結孔42の内径は、同じ径となっている。このとき、インナー側連結孔111は、鉛直方向において、一組のアウター側連結孔112の間に配置されている。
 また、アウターリング31には、アウター側連結孔112の径方向の外側に形成され、連結ピン121の長手方向の端部が収容される収容部113が形成されている。この収容部113には、後述する抜止め部材128が当接しており、これにより、連結ピン121の位置を規制している。
 図10及び図11に示すように、このインナー側連結孔111及び一組のアウター側連結孔112は、回転軸5の軸方向に沿って所定の間隔を空けて複数形成されている。なお、図10及び図11では、軸受ハウジング22の内部に設けられるパッド21及び回転軸の図示を省略している。
 再び、図9を参照して、棒状の連結ピン121は、一方のアウターリング31のアウター側連結孔112に挿通され、軸受ハウジング22のインナー側連結孔111を経て、他方のアウターリング31のアウター側連結孔112に挿通される。この連結ピン121は、長手方向の両側端部に設けられる一対のアウター側嵌合部126と、一対のアウター側嵌合部126の間に設けられるインナー側嵌合部125と、各アウター側嵌合部126とインナー側嵌合部125との間に設けられる一対の変形ダンパ部127とを含んで構成されている。
 図10に示すように、一対のアウター側嵌合部126は、一対のアウター側連結孔112にそれぞれ嵌め合わされる。このため、各アウター側嵌合部126は、断面円形状となる各アウター側連結孔112に嵌め合わされるよう、各アウター側連結孔112の内径とほぼ同径となる円柱形状に形成されている。ここで、図9に示すように、各アウター側嵌合部126は、長手方向の端部が、アウター側連結孔112から突出して挿通されている。突出するアウター側嵌合部126の端部には、連結ピン121の位置を規制するための抜止め部材128が設けられている。この抜止め部材128は、アウター側嵌合部126の径方向に貫通形成された貫通穴に挿通され、この状態で収容部113に当接することで、連結ピン121が抜け止めされる。
 図11に示すように、インナー側嵌合部125は、インナー側連結孔111に嵌め合わされる。このため、インナー側嵌合部125は、断面円形状となるインナー側連結孔111に嵌め合わされるよう、インナー側連結孔111の内径とほぼ同径となる円柱形状に形成されている。
 図9に示すように、一対の変形ダンパ部127は、一方のアウター側嵌合部126とインナー側嵌合部125との間、及び他方のアウター側嵌合部126とインナー側嵌合部125との間にそれぞれ設けられ、インナー側連結孔111及びアウター側連結孔112に亘って挿通される。各変形ダンパ部127は、アウターリング31と軸受ハウジング22との径方向における相対的な変位に応じて変形可能となっている。この変形ダンパ部127は、インナー側連結孔111及びアウター側連結孔112の内径よりも小径となる円柱形状に形成されている。
 以上のように、実施例3の構成によれば、連結ピン121を鉛直方向(荷重方向)に沿って設けることで、連結ピン121の長さを鉛直方向に長くできることから、連結ピン121の変形ダンパ部127の鉛直方向における剛性を、水平方向における剛性に比して高くすることができる。このため、連結ピン121の形状を変えることなく、連結ピン121の配置を変更するだけで、連結ピン121の水平方向における剛性を、鉛直方向における剛性に比して低くすることができる。
 次に、図12を参照して、実施例4に係る軸受ユニット131について説明する。図12は、実施例4に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。なお、実施例4でも、重複した記載を避けるべく、実施例1から3と異なる部分について説明すると共に、実施例1から3と同様の構成である部分については、同じ符号を付して説明する。実施例4の軸受ユニット131では、軸受ハウジング22とアウターリング31とを、鉛直方向の下方側において接触させている。
 図12に示すように、実施例4の軸受ユニット131において、アウターリング31は、鉛直方向の下方側における部位31aの内周面と、鉛直方向の下方側以外の部位31bの内周面とが、異なる曲率半径となっている。具体的に、下方側の部位31aの内周面は、下方側以外の部位31bの内周面よりも大きな曲率半径となっている。そして、下方側の部位31aは、鉛直方向の下方側において、回転軸5を中心として、所定の角度分に亘る範囲に形成されている。このように形成される下方側の部位31aは、軸受ハウジング22側に突出することで、アウターリング31の下方側の内周面が、軸受ハウジング22の下方側の外周面に接触する。
 また、軸受ハウジング22とアウターリング31とを連結する連結ピン32は、長手方向に長い棒状となっており、長手方向が回転軸5の軸方向となるように配置されている。この連結ピン32は、アウターリング31の周方向に沿って所定の間隔空けて複数設けられている。このとき、複数の連結ピン32は、鉛直方向の下方側における数が、鉛直方向の上方側における数に比して少なくなっている。具体的に、複数の連結ピン32は、アウターリング31の鉛直方向の下方側の半部において設けられておらず、一方で、アウターリング31の鉛直方向の上方側の半部において設けられている。
 以上のように、実施例4によれば、連結ピン32の長さが長くなった場合であっても、軸受ハウジング22とアウターリング31とを鉛直方向の下方側において接触させることで、スクイズフィルムダンパ11の鉛直方向の下方側における変形を規制することができ、鉛直方向の下方側における剛性を高くすることができる。一方で、水平方向におけるスクイズフィルムダンパ11の剛性は、鉛直方向における剛性に比して低くなる。このとき、水平方向において、軸受ハウジング22とアウターリング31との隙間は、荷重によって狭くなることがないため、軸受ハウジング22とアウターリング31との隙間は、好適に維持することができる。このため、水平方向において、スクイズフィルム11によるダンパ効果を好適に発揮することができる。
 また、実施例4によれば、軸受ハウジング22とアウターリング31とは、鉛直方向の下方側において接触することから、軸受ハウジング22は、アウターリング31によって荷重が支持される。このため、鉛直方向の下方側の剛性を高くできることから、鉛直方向の下方側に設けられる連結ピン32の数を少なくすることができる。よって、連結ピン32の数を削減できることから、加工コストの抑制を図ることができる。
 なお、実施例4では、アウターリング31の内周面が、軸受ハウジング22側に突出することで、軸受ハウジング22に接触したが、この構成に限定されない。例えば、軸受ハウジング22の外周面が、アウターリング31側に突出することで、アウターリング31の内周面に接触する構成であってもよい。
 次に、図13を参照して、実施例5に係る軸受ユニット141について説明する。図13は、実施例5に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。なお、実施例5でも、重複した記載を避けるべく、実施例1から4と異なる部分について説明すると共に、実施例1から4と同様の構成である部分については、同じ符号を付して説明する。実施例5の軸受ユニット141では、軸受ハウジング22とアウターリング31と間にスペーサ145を設けている。
 図13に示すように、実施例5の軸受ユニット141において、鉛直方向の下方側における軸受ハウジング22とアウターリング31と間には、スペーサ145が設けられている。具体的に、スペーサ145は、アウターリング31の鉛直方向の下方側における内周面に敷設され、アウターリング31の内周面に取り付けられている。このスペーサ145は、鉛直方向の下方側がアウターリング31の内周面に接触し、鉛直方向の上方側が軸受ハウジング22の外周面に接触する。このため、軸受ハウジング22とアウターリング31とは、スペーサ145を介して接触する。
 また、軸受ハウジング22とアウターリング31とを連結する連結ピン32は、長手方向に長い棒状となっており、長手方向が回転軸5の軸方向となるように配置されている。この連結ピン32は、アウターリング31の周方向に沿って所定の間隔空けて複数設けられている。このとき、複数の連結ピン32は、鉛直方向の下方側における数が、鉛直方向の上方側における数に比して少なくなっている。具体的に、複数の連結ピン32は、アウターリング31の鉛直方向の下方側の半部において設けられておらず、一方で、アウターリング31の鉛直方向の上方側の半部において設けられている。
 以上のように、実施例5によれば、連結ピン32の長さが長くなった場合であっても、鉛直方向の下方側において、軸受ハウジング22とアウターリング31とをスペーサ145を介して接触させることで、スクイズフィルムダンパ11の鉛直方向の下方側における変形を規制することができ、鉛直方向の下方側における剛性を高くすることができる。一方で、水平方向におけるスクイズフィルムダンパ11の剛性は、鉛直方向における剛性に比して低くなる。このとき、水平方向において、軸受ハウジング22とアウターリング31との隙間は、荷重によって狭くなることがないため、軸受ハウジング22とアウターリング31との隙間は、好適に維持することができる。このため、水平方向において、スクイズフィルム11によるダンパ効果を好適に発揮することができる。
 また、実施例5によれば、軸受ハウジング22とアウターリング31とは、スペーサ145を介して、鉛直方向の下方側において接触することから、軸受ハウジング22は、アウターリング31によって荷重が支持される。このため、鉛直方向の下方側の剛性を高くできることから、鉛直方向の下方側に設けられる連結ピン32の数を少なくすることができる。よって、連結ピン32の数を削減できることから、加工コストの抑制を図ることができる。
 また、実施例5によれば、アウターリング31の内周面にスペーサ145を敷設することで、簡単にスペーサ145を設置させることができるため、加工コストの抑制を図ることができる。
 なお、実施例5において、スペーサ145を、アウターリング31の外周面に取り付けたが、この構成に限定されず、軸受ハウジング22の外周面に取り付けてもよい。
 また、実施例5では、スペーサ145を、軸受ハウジング22とアウターリング31との間において、アウターリング31の鉛直方向の下方側における内周面に敷設したが、図14の変形例3に示す構成としてもよい。図14は、変形例3に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。図14に示す変形例3では、スペーサ145を、アウターリング31の径方向外側から径方向内側に貫通して配設している。
 図14に示すように、変形例3の軸受ユニット141において、鉛直方向の下方側における軸受ハウジング22とアウターリング31と間には、スペーサ145が設けられている。このスペーサ145は、スペーサ本体145aと、固定部145bとを有している。スペーサ本体145aは、アウターリング31の外周面から内周面に亘って設けられる。そして、アウターリング31には、スペーサ本体145aが挿通されるスペーサ貫通孔が貫通形成されている。
 固定部145bは、スペーサ本体145aのアウターリング31側(鉛直方向の下方側)に設けられ、アウターリング31の外周面に取り付けられる。固定部145bは、アウターリング31の外周面に取り付けられることで、スペーサ本体145aを固定する。固定されたスペーサ本体145aは、アウターリング31の内周面から突出して、軸受ハウジング22の外周面に接触する。
 以上のように、変形例3によれば、アウターリング31を貫通してスペーサ145を配設することができるため、簡単にスペーサ145を設置させることができ、加工コストの抑制を図ることができる。
 次に、図15を参照して、実施例6に係る軸受ユニット151について説明する。図15は、実施例6に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。なお、実施例6でも、重複した記載を避けるべく、実施例1から5と異なる部分について説明すると共に、実施例1から5と同様の構成である部分については、同じ符号を付して説明する。実施例6の軸受ユニット151では、複数の連結ピン32を、鉛直方向の両側に寄せて配置している。
 図15に示すように、実施例6の軸受ユニット151において、軸受ハウジング22とアウターリング31とを連結する連結ピン32は、長手方向に長い棒状となっており、長手方向が回転軸5の軸方向となるように配置されている。この連結ピン32は、アウターリング31の周方向に沿って所定の間隔空けて複数設けられている。このとき、複数の連結ピン32は、周方向における間隔が、鉛直方向の両側(上方側及び下方側)において短く、水平方向の両側(左方側及び右方側)において長くなっている。このため、複数の連結ピン32は、鉛直方向の上方側及び下方側のそれぞれに集めて配置される一方で、水平方向の左方側及び右方側のそれぞれに広がって配置される。
 以上のように、実施例6によれば、鉛直方向の両側において、連結ピン32同士の間隔が狭くなる一方で、水平方向の両側において、連結ピン32同士の間隔が広くなるため、複数の連結ピン32の鉛直方向における剛性を、水平方向における剛性に比して高めることができる。このため、複数の連結ピン32の配置によって、スクイズフィルムダンパ11を適切な剛性とすることができる。
 次に、図16を参照して、実施例7に係る軸受ユニット161について説明する。図16は、実施例7に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。なお、実施例7でも、重複した記載を避けるべく、実施例1から6と異なる部分について説明すると共に、実施例1から6と同様の構成である部分については、同じ符号を付して説明する。実施例7の軸受ユニット161では、アウターリング31の内周面に溝部165が形成されている。
 図16に示すように、実施例7の軸受ユニット161において、アウターリング31は、鉛直方向の下方側における内周面に溝部165が形成され、溝部165は、アウターリング31の内周面から窪んで形成されている。溝部165は、アウターリング31の内周面に沿って形成され、また、所定の深さに形成されている。この溝部165は、鉛直方向の両側において、回転軸5を中心として、所定の角度分に亘る範囲に形成されている。また、溝部165は、鉛直方向の両側(上方側及び下方側)にそれぞれ形成されている。このため、軸受ハウジング22とアウターリング31との間は、鉛直方向の両側における隙間が、水平方向の両側における隙間に比して大きくなっている。
 以上のように、実施例7によれば、連結ピン32の長さが長くなった場合であっても、鉛直方向の両側において、軸受ハウジング22とアウターリング31との隙間が狭くなることはない。このため、鉛直方向の両側において軸受ハウジング22とアウターリング31との隙間を好適に維持することができ、スクイズフィルム11によるダンパ効果が低減することを抑制することができる。一方で、水平方向において、軸受ハウジング22とアウターリング31との隙間は、荷重によって狭くなることがないため、軸受ハウジング22とアウターリング31との隙間を好適に維持することができる。このため、水平方向においてスクイズフィルムによるダンパ効果を好適に発揮することができる。
 また、実施例7によれば、溝部165を形成することで、鉛直方向の両側における軸受ハウジング22とアウターリング31との隙間を簡単に確保することができ、加工コストの抑制を図ることができる。
なお、実施例7では、アウターリング31の内周面に溝部165を形成したが、軸受ハウジング22の外周面に溝部165を形成してもよいし、または、アウターリング31の内周面及び軸受ハウジング22の外周面に溝部165を形成してもよく、特に限定されない。
 次に、図17を参照して、実施例8に係る軸受ユニット171について説明する。図17は、実施例8に係るスクイズフィルムダンパを備える軸受ユニットを軸方向に直交する面で切ったときの断面図である。なお、実施例8でも、重複した記載を避けるべく、実施例1から7と異なる部分について説明すると共に、実施例1から7と同様の構成である部分については、同じ符号を付して説明する。実施例8の軸受ユニット171では、軸受ハウジング22の内周面に欠損部175が形成されている。
 図17に示すように、実施例8の軸受ユニット171において、軸受ハウジング22は、鉛直方向の下方側における内周面に欠損部175が形成され、欠損部175は、軸受ハウジング22の内周面から窪んで形成されている。欠損部175は、軸受ハウジング22を切り欠いて、所定の深さに形成されている。また、欠損部175は、鉛直方向の両側(上方側及び下方側)にそれぞれ形成されている。このため、軸受ハウジング22は、鉛直方向における剛性が、水平方向における剛性に比して高くなる。
 以上のように、実施例8によれば、軸受ハウジング22は、水平方向に対して、鉛直方向における変形がし難くなる。このため、鉛直方向において、軸受ハウジング22とアウターリング31との隙間を好適に維持することができることから、スクイズフィルム35によるダンパ効果が低減することを抑制することができる。また、水平方向において、軸受ハウジング22とアウターリング31との隙間は、荷重によって狭くなることがないため、軸受ハウジング22とアウターリング31との隙間を好適に維持することができる。このため、水平方向においてスクイズフィルム35によるダンパ効果を好適に発揮することができる。
 また、実施例8によれば、軸受ハウジング22の鉛直方向の両側に欠損部175を形成することで、水平方向における軸受ハウジング22の剛性を簡単に低くすることができ、相対的に鉛直方向における軸受ハウジング22の剛性を高くすることができることから、加工コストの抑制を図ることができる。
 なお、実施例7では、軸受ハウジング22の内周面に欠損部175を形成したが、軸受ハウジング22の外周面に欠損部175を形成してもよいし、または、軸受ハウジング22の内周面及び外周面に欠損部175を形成してもよく、特に限定されない。
1 軸受ユニット
5 回転軸
6 タービン
10 軸受
11 スクイズフィルムダンパ
21 パッド
22 軸受ハウジング
22a 環状部
22b 内周側フランジ部
22c 外周側フランジ部
31 アウターリング
32 連結ピン
35 スクイズフィルム
41 インナー側連結孔
42 アウター側連結孔
51 インナー側嵌合部
52 アウター側嵌合部
53 変形ダンパ部
71 連結ピン(実施例2)
73 変形ダンパ部(実施例2)
101 軸受ユニット(実施例3)
121 連結ピン(実施例3)
111 インナー側連結孔(実施例3)
112 アウター側連結孔(実施例3)
113 収容部
125 インナー側嵌合部(実施例3)
126 アウター側嵌合部(実施例3)
127 変形ダンパ部(実施例3)
128 抜止め部材
131 軸受ユニット(実施例4)
141 軸受ユニット(実施例5)
145 スペーサ
151 軸受ユニット(実施例6)
161 軸受ユニット(実施例7)
165 溝部
171 軸受ユニット(実施例8)
175 欠損部

Claims (19)

  1.  回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、
     前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、
     前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、
     前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、
     前記連結部材は、軸方向に直交する断面において、荷重方向における剛性が、前記荷重方向に直交する直交方向における剛性に比して高くなっていることを特徴とするスクイズフィルムダンパ。
  2.  前記インナーリングと前記アウターリングとは、前記軸方向に重ね合わせられたオーバーラップ部をそれぞれ有し、
     前記連結部材は、軸方向に沿って設けられて、前記インナーリングの前記オーバーラップ部と前記アウターリングの前記オーバーラップ部とを連結しており、
     前記連結部材の一部は、前記変位に応じて変形可能な変形ダンパ部となっており、
     前記変形ダンパ部は、軸方向に直交する断面において、荷重方向における剛性が、前記荷重方向に直交する直交方向における剛性に比して高くなっていることを特徴とする請求項1に記載のスクイズフィルムダンパ。
  3.  前記変形ダンパ部は、前記断面において、前記荷重方向における長さが長く、前記直交方向における長さが短い断面形状となっていることを特徴とする請求項2に記載のスクイズフィルムダンパ。
  4.  前記インナーリングの前記オーバーラップ部には、前記連結部材が挿通されるインナー側連結孔が形成され、
     前記アウターリングの前記オーバーラップ部には、前記連結部材が挿通されるアウター側連結孔が形成され、
     前記連結部材は、
     前記インナー側連結孔に嵌め合わされるインナー側嵌合部と、
     前記アウター側連結孔に嵌め合わされるアウター側嵌合部と、
     前記インナー側嵌合部と前記アウター側嵌合部との間に設けられ、前記インナー側連結孔に収容される前記変形ダンパ部と、を有し、
     前記変形ダンパ部は、前記インナー側連結孔の前記荷重方向側の内面に当接していることを特徴とする請求項2または3に記載のスクイズフィルムダンパ。
  5.  前記インナーリングと前記アウターリングとは、荷重方向に重ね合わせられたオーバーラップ部をそれぞれ有し、
     前記連結部材は、前記荷重方向に沿って設けられて、前記インナーリングの前記オーバーラップ部と前記アウターリングの前記オーバーラップ部とを連結しており、
     前記連結部材の一部は、前記変位に応じて変形する変形ダンパ部となっていることを特徴とする請求項1に記載のスクイズフィルムダンパ。
  6.  前記連結部材は、軸方向に沿って設けられると共に、前記回転軸の周方向に所定の間隔を空けて複数設けられ、
     複数の前記連結部材は、周方向における前記間隔が、前記荷重方向の両側において短く、前記直交方向の両側において長くなっていることを特徴とする請求項1に記載のスクイズフィルムダンパ。
  7.  回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、
     前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、
     前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、
     前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、
     前記インナーリングと前記アウターリングとは、軸方向に直交する断面において、荷重方向側を接触させて配置されることを特徴とするスクイズフィルムダンパ。
  8.  前記アウターリングは、前記インナーリングと対向する内周面が、前記荷重方向側において、前記インナーリングの外周面と接触し、
     前記アウターリングの前記内周面は、軸方向に直交する断面において、前記荷重方向側の部位における曲率半径が、前記荷重方向側以外の部位における曲率半径に比して、大きくなっていることを特徴とする請求項7に記載のスクイズフィルムダンパ。
  9.  回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、
     前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、
     前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、
     前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、
     前記インナーリングと前記アウターリングとの間において、荷重方向側に設けられ、前記インナーリング及び前記アウターリングに接触するスペーサと、を備えることを特徴とするスクイズフィルムダンパ。
  10.  前記スペーサは、前記アウターリングの前記インナーリングと対向する内周面に敷設されることを特徴とする請求項9に記載のスクイズフィルムダンパ。
  11.  前記スペーサは、前記アウターリングの径方向外側から径方向内側に貫通して配設されることを特徴とする請求項9に記載のスクイズフィルムダンパ。
  12.  前記連結部材は、軸方向に沿って設けられると共に、前記回転軸の周方向に所定の間隔を空けて複数設けられ、
     複数の前記連結部材は、前記荷重方向側における数が、前記荷重方向の反対側における数に比して少ないことを特徴とする請求項7から11のいずれか1項に記載のスクイズフィルムダンパ。
  13.  回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、
     前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、
     前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、
     前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、
     前記インナーリングと前記アウターリングとは、軸方向に直交する断面において、荷重方向における前記隙間が、前記荷重方向に直交する直交方向における前記隙間に比して、大きくなっていることを特徴とするスクイズフィルムダンパ。
  14.  前記アウターリングは、前記インナーリングと対向する内周面に対して、窪んで形成される溝部を有し、
     前記溝部は、前記軸方向に直交する断面において、前記荷重方向の両側に形成されることを特徴とする請求項13に記載のスクイズフィルムダンパ。
  15.  回転軸を軸支する軸受の径方向外側の周囲に亘って設けられるインナーリングと、
     前記インナーリングの径方向外側の周囲に亘って設けられるアウターリングと、
     前記インナーリングと前記アウターリングとの径方向における隙間に粘性流体を流通させて形成されるスクイズフィルムと、
     前記インナーリングと前記アウターリングとを連結し、前記アウターリングと前記インナーリングとの径方向における相対的な変位に応じて変形可能な連結部材と、を備え、
     前記インナーリングは、軸方向に直交する断面において、荷重方向における剛性が、前記荷重方向に直交する直交方向における剛性に比して高くなっていることを特徴とするスクイズフィルムダンパ。
  16.  前記インナーリングは、前記荷重方向の両側に形成される欠損部を有することを特徴とする請求項15に記載のスクイズフィルムダンパ。
  17.  前記軸受は、
     前記回転軸の周囲に所定の間隔をあけて設けられる複数のパッドと、
     複数の前記パッドを保持し、複数の前記パッドの径方向外側の周囲に亘って設けられる軸受ハウジングと、を有するティルティングパッド軸受であり、
     前記軸受ハウジングと前記インナーリングとは、一体となっていることを特徴とする請求項1から16のいずれか1項に記載のスクイズフィルムダンパ。
  18.  回転軸を軸支する軸受と、
     前記軸受の径方向外側の周囲に設けられる、請求項1から17のいずれか1項に記載のスクイズフィルムダンパと、を備えることを特徴とする軸受ユニット。
  19.  請求項18に記載の軸受ユニットと、
     前記軸受ユニットにより軸支される前記回転軸と、を備えることを特徴とするタービン。
PCT/JP2014/081864 2013-12-04 2014-12-02 スクイズフィルムダンパ、軸受ユニット及びタービン WO2015083697A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/100,059 US9890810B2 (en) 2013-12-04 2014-12-02 Squeeze film damper, bearing unit, and turbine
CN201480065340.0A CN105793585B (zh) 2013-12-04 2014-12-02 挤压膜阻尼器、轴承单元及涡轮
KR1020167013864A KR101861028B1 (ko) 2013-12-04 2014-12-02 스퀴즈 필름 댐퍼, 베어링 유닛 및 터빈
EP14867562.2A EP3061981B1 (en) 2013-12-04 2014-12-02 Squeeze film damper, bearing unit, and turbine
JP2015551516A JP6117377B2 (ja) 2013-12-04 2014-12-02 スクイズフィルムダンパ、軸受ユニット及びタービン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251380 2013-12-04
JP2013251380 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083697A1 true WO2015083697A1 (ja) 2015-06-11

Family

ID=53273459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081864 WO2015083697A1 (ja) 2013-12-04 2014-12-02 スクイズフィルムダンパ、軸受ユニット及びタービン

Country Status (6)

Country Link
US (1) US9890810B2 (ja)
EP (1) EP3061981B1 (ja)
JP (1) JP6117377B2 (ja)
KR (1) KR101861028B1 (ja)
CN (1) CN105793585B (ja)
WO (1) WO2015083697A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112324800A (zh) * 2019-11-30 2021-02-05 房堂均 用于汽车的平稳减震轴承装置
US11111956B2 (en) * 2019-02-27 2021-09-07 Mitsubishi Heavy Industries, Ltd. Squeeze film damper bearing and rotary machine including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121914B1 (ko) 2018-05-10 2020-06-11 한국과학기술연구원 발전 댐퍼링 장치
US11940032B2 (en) 2018-08-14 2024-03-26 General Electric Company Damping device for damping shaft vibration
CN111005937B (zh) 2018-10-04 2021-11-19 三菱重工业株式会社 挤压油膜阻尼器以及旋转机械
US11143234B2 (en) * 2019-03-02 2021-10-12 Superturbo Technologies, Inc. Fluid damping system for traction drive
US10808755B2 (en) 2019-03-04 2020-10-20 Pratt & Whitney Canada Corp. Method to seal damper cavity of multi-film oil damper
US11067121B2 (en) 2019-03-18 2021-07-20 Pratt & Whitney Canada Corp. Multi-film oil damper with tapered damper rings
US11125110B2 (en) 2019-03-18 2021-09-21 Pratt & Whitney Canada Corp. Method and system to supply oil to a multi-film oil damper
US11971054B2 (en) 2020-10-19 2024-04-30 General Electric Company Damping device for damping shaft vibration
US11891906B2 (en) 2022-02-22 2024-02-06 Pratt & Whitney Canada Corp. Bearing housing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132029A (ja) * 1983-11-30 1985-07-13 ベー・ベー・ツエー・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ 排気ターボ過給器のタンデム式のころがり軸受を有する軸受装置
JPS61133121U (ja) * 1985-02-07 1986-08-20
JPS62215124A (ja) * 1986-03-13 1987-09-21 Mitsubishi Heavy Ind Ltd 回転機械の軸受兼シ−ル装置
JPS6364922U (ja) * 1986-10-16 1988-04-28
JPH11504417A (ja) * 1996-04-30 1999-04-20 ドレッサー―ランド・カンパニー シャフト支承装置のための吊り下げ式ばね支持スクイズフィルムダンピングシステム
US20060008188A1 (en) * 2004-07-09 2006-01-12 Nicholas John C Disc spring centering device for squeeze film dampers
JP4963916B2 (ja) 2005-09-28 2012-06-27 エリオット・カンパニー 軸受アセンブリ及び軸受配置方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994541A (en) * 1975-10-03 1976-11-30 Carrier Corporation Bearing assembly
DE3328362A1 (de) * 1983-08-04 1985-02-21 Siemens AG, 1000 Berlin und 8000 München Flexible gedaempfte wellenlageranordnung, insbesondere fuer elektrische maschinen
JPS61133121A (ja) 1984-12-03 1986-06-20 Dowa Mining Co Ltd 化学工場排出ガスの処理方法
JPH0712933B2 (ja) 1986-09-05 1995-02-15 日本ゼオン株式会社 磁気記録用磁性粉
JP2008138779A (ja) 2006-12-01 2008-06-19 Ntn Corp 軸支持装置及び円筒ころ軸受の予圧法
US7731426B2 (en) * 2007-04-27 2010-06-08 Honeywell International Inc. Rotor supports and systems
US8894286B2 (en) * 2010-11-23 2014-11-25 Lufkin Industries, Llc Bridge spring centering device for squeeze film dampers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132029A (ja) * 1983-11-30 1985-07-13 ベー・ベー・ツエー・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ 排気ターボ過給器のタンデム式のころがり軸受を有する軸受装置
JPS61133121U (ja) * 1985-02-07 1986-08-20
JPS62215124A (ja) * 1986-03-13 1987-09-21 Mitsubishi Heavy Ind Ltd 回転機械の軸受兼シ−ル装置
JPS6364922U (ja) * 1986-10-16 1988-04-28
JPH11504417A (ja) * 1996-04-30 1999-04-20 ドレッサー―ランド・カンパニー シャフト支承装置のための吊り下げ式ばね支持スクイズフィルムダンピングシステム
US20060008188A1 (en) * 2004-07-09 2006-01-12 Nicholas John C Disc spring centering device for squeeze film dampers
JP4963916B2 (ja) 2005-09-28 2012-06-27 エリオット・カンパニー 軸受アセンブリ及び軸受配置方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111956B2 (en) * 2019-02-27 2021-09-07 Mitsubishi Heavy Industries, Ltd. Squeeze film damper bearing and rotary machine including the same
CN112324800A (zh) * 2019-11-30 2021-02-05 房堂均 用于汽车的平稳减震轴承装置
CN112324800B (zh) * 2019-11-30 2022-05-13 江苏申瑞梁精密工业有限公司 用于汽车的平稳减震轴承装置

Also Published As

Publication number Publication date
EP3061981A4 (en) 2017-08-09
EP3061981B1 (en) 2021-01-20
KR20160078412A (ko) 2016-07-04
CN105793585A (zh) 2016-07-20
KR101861028B1 (ko) 2018-05-24
US20170002863A1 (en) 2017-01-05
CN105793585B (zh) 2018-03-30
JPWO2015083697A1 (ja) 2017-03-16
US9890810B2 (en) 2018-02-13
JP6117377B2 (ja) 2017-04-19
EP3061981A1 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6117377B2 (ja) スクイズフィルムダンパ、軸受ユニット及びタービン
JP5449553B2 (ja) ジャーナルフォイルエアベアリング
JP6644855B2 (ja) 空気フォイルジャーナル軸受
JP2012207584A (ja) ターボチャージャおよびフローティングブッシュ製造方法
JP6783534B2 (ja) ラジアル軸受装置、及び、回転機械
JP5922809B1 (ja) ティルティングパッド軸受および回転機械
JP6452010B2 (ja) 軸受装置、及び回転機械
AU2019339800B2 (en) Damper bearing and damper
JP2018013162A (ja) フォイル軸受
JP2010203504A (ja) スクイーズフィルムダンパ軸受
JP2013139789A (ja) インペラチューブ組立体
KR102340555B1 (ko) 틸팅 패드 베어링
JP5829397B2 (ja) ターボチャージャの回転軸の軸受方法及び装置
KR102316120B1 (ko) 회전 기계, 저널 베어링
JP7146353B2 (ja) 軸受装置
KR102189135B1 (ko) 회전체 지지장치
JP6786230B2 (ja) ジャーナル軸受
WO2016129092A1 (ja) 静圧軸受
JP7331275B2 (ja) 回転軸の制振機構
WO2021241042A1 (ja) ジャーナル軸受および回転機械
JP2019100413A (ja) 軸受装置及び回転機械
JP6921060B2 (ja) 流体軸受によって支持されたシャフトの温度を均一化するための方法、軸受システム、およびターボ機械
JP2015113884A (ja) 静圧軸受
JP2016035303A (ja) 内燃機関のクランク軸用軸受装置
JP2017155772A (ja) 歯車装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013864

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014867562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15100059

Country of ref document: US

Ref document number: 2014867562

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015551516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE