WO2015083525A1 - インダクタ素子及び電子機器 - Google Patents

インダクタ素子及び電子機器 Download PDF

Info

Publication number
WO2015083525A1
WO2015083525A1 PCT/JP2014/080305 JP2014080305W WO2015083525A1 WO 2015083525 A1 WO2015083525 A1 WO 2015083525A1 JP 2014080305 W JP2014080305 W JP 2014080305W WO 2015083525 A1 WO2015083525 A1 WO 2015083525A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
conductor pattern
material layer
coil
conductor
Prior art date
Application number
PCT/JP2014/080305
Other languages
English (en)
French (fr)
Inventor
用水邦明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201490000619.6U priority Critical patent/CN205080957U/zh
Priority to JP2015513910A priority patent/JP5765507B1/ja
Publication of WO2015083525A1 publication Critical patent/WO2015083525A1/ja
Priority to US14/863,790 priority patent/US9324491B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10189Non-printed connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets

Definitions

  • the present invention relates to an inductor element and an electronic device in which a coil is formed on a laminate in which a base material layer is laminated.
  • Patent Document 1 discloses a surface mount coil in which a plurality of wiring layers on which a coil wiring pattern is formed are stacked and the stacking direction is the winding axis direction of the coil.
  • This surface mount coil has a lowermost outer surface (bottom surface) as a mounting surface, and the connection electrode connected to the lowermost coil wiring and the connection electrode connected to the uppermost coil wiring are the lowermost layer. Is provided on the outer surface (bottom surface).
  • the uppermost coil wiring is connected to a connection electrode formed on the outer surface of the lowermost layer via a connection portion extending along the coil winding axis direction (stacking direction) in the vicinity of the side of the coil.
  • connection portion that connects the end portion of the uppermost coil wiring and the lowermost connection electrode has a coil winding axis direction (lamination) in the vicinity of the side of the coil. Therefore, there is a problem that an eddy current is generated in the connection portion due to the magnetic flux generated from the coil, resulting in power loss.
  • an object of the present invention is to provide an inductor element and an electronic device that can suppress eddy currents and reduce power loss.
  • the present invention provides an inductor element including a laminate in which a base material layer is laminated and a coil formed in the laminate and having a winding direction as a winding axis, and the laminate has one end in the lamination direction.
  • One end of the coil is connected to a first terminal portion formed in the thin portion, and the other end of the coil located on the other end side of the laminate is disposed on the other end side of the laminate.
  • the first terminal portion and the second terminal portion are connected to a second terminal portion formed in the base material layer, and are arranged at different positions in the stacking direction.
  • the first terminal portion and the second terminal portion connected to both ends of the coil are respectively formed on the end portions side of the laminate in the stacking direction, so that both ends of the coil, the first terminal portion, and the second terminal portion are formed.
  • the length of the conductor line connecting the terminal part so as not to be arranged along the coil winding axis in the vicinity of the coil side or along the coil winding axis in the vicinity of the coil side. Therefore, it is possible to suppress the generation of eddy current due to the magnetic field generated from the coil in the conductor line, and as a result, it is possible to reduce power loss.
  • each of the conductor lines connecting both ends of the coil and the first terminal portion and the second terminal portion is near the side of the coil in the thick portion. It is preferably formed at a position where the coil is not disposed along the winding axis direction.
  • first terminal portion and the second terminal portion are arranged at positions that do not overlap the coil in a plan view of the laminate.
  • the thin portion has flexibility, and a connector is connected to the first terminal portion formed in the thin portion.
  • the thin portion where the first terminal portion is formed has flexibility, the flexibility of the thin portion is used when connecting the connector connected to the first terminal portion to another substrate or the like. Thus, connection work can be easily performed.
  • the laminate has a plurality of the thin portions, and the thin portions are disposed on both end sides of the laminate in the stacking direction.
  • the first terminal portion is formed on the outermost layer on one end side of the stacked body in the stacking direction, and the second terminal portion is formed on the outermost layer on the other end side of the stacked body in the stacking direction.
  • the first terminal portion is formed on the outermost layer on one end side of the stacked body in the stacking direction
  • the second terminal portion is formed on the outermost layer on the other end side of the stacked body in the stacking direction.
  • it is.
  • the first terminal portion and the second terminal portion connected to both ends of the coil are formed on the end portions of the laminate in the stacking direction, both ends of the coil, the first terminal portion,
  • the conductor line connecting the second terminal portion is not disposed along the coil winding axis in the vicinity of the coil side, or is disposed along the coil winding axis in the vicinity of the coil side. Since the length can be shortened, generation of eddy current due to the magnetic field generated from the coil in the conductor line can be suppressed, and as a result, power loss can be reduced.
  • FIG. 1 is an exploded perspective view of an inductor element according to Embodiment 1.
  • FIG. 4 is an exploded perspective view of an inductor element according to Embodiment 2.
  • FIG. 6 is an exploded perspective view of an inductor element according to Embodiment 3.
  • 4 is an exploded perspective view of an inductor element according to Embodiment 4.
  • FIG. FIG. 6 is an exploded perspective view of an inductor element according to Embodiment 5.
  • FIG. 5 The figure for demonstrating the mounting aspect of the inductor element which concerns on Embodiment 5.
  • FIG. 1 is an exploded perspective view of the inductor element according to the first embodiment.
  • FIG. 1 shows a partially transparent view.
  • the inductor element 1 includes a laminated body 10 on which a coil 1A is formed.
  • the laminate 10 is formed by hot pressing the base layers 11, 12, 13, 14, 15, 16 of a thermoplastic resin having flexibility such as LCP resin (liquid crystal polymer resin).
  • the base material layers 11 to 14 have a substantially square shape.
  • the base material layers 15 and 16 have a rectangular shape having a short side having the same length as one side of the base material layers 11 to 14 and a long side longer than the short side.
  • the laminated body 10 can reduce the line capacitance of the coil 1A by using a low dielectric constant LCP resin for each of the layers 11 to 16, and can reduce the line capacitance of the coil 1A at a relatively low temperature. Molding becomes possible.
  • the thermoplastic resin include PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), PI (polyimide), and these may be used instead of the liquid crystal polymer resin. .
  • a rectangular conductor pattern 11 ⁇ / b> A is formed on one main surface (the lower surface in FIG. 1) of the base material layer 11.
  • the base material layer 11 is the outermost layer of the multilayer body 10, and the inductor element 1 is mounted on the substrate with the main surface on which the conductor pattern 11 ⁇ / b> A of the base material layer 11 is formed as a mounting surface. Therefore, the conductor pattern 11 ⁇ / b> A is used as a mounting electrode for the inductor element 1.
  • This conductor pattern 11A is an example of the “second terminal portion” according to the present invention.
  • via conductors 11B are formed at positions overlapping the conductor patterns 11A in plan view.
  • the via conductor 11B connects the conductor pattern 11A and the other end of the coil 1A.
  • the via conductor 11B is an example of the “conductor line” according to the present invention.
  • a conductor pattern 12A is formed on one main surface (the lower surface in FIG. 1) of the base material layer 12.
  • the base material layer 12 is laminated on the base material layer 11 with the main surface on which the conductor pattern 12A is formed facing the base material layer 11 side.
  • the conductor pattern 12A has a strip shape and is wound so as to form a space inside.
  • One end of the conductor pattern 12 ⁇ / b> A is connected to the conductor pattern 11 ⁇ / b> A via a via conductor formed in the base material layer 11.
  • a conductive pattern 13A is formed on one main surface (the lower surface in FIG. 1) of the base material layer 13.
  • the base material layer 13 is laminated on the base material layer 12 with the main surface on which the conductor pattern 13A is formed facing the base material layer 12 side.
  • the conductor pattern 13A has a strip shape and is wound so as to form a space inside.
  • the conductor pattern 13A is provided so as to overlap the conductor pattern 12A in plan view.
  • One end of the conductor pattern 13A is connected to one end of the conductor pattern 12A through a via conductor formed in the base material layer 12.
  • a conductive pattern 14 ⁇ / b> A is formed on one main surface (the lower surface in FIG. 1) of the base material layer 14.
  • the base material layer 14 is laminated on the base material layer 13 with the main surface on which the conductor pattern 14 ⁇ / b> A is formed facing the base material layer 13.
  • the conductor pattern 14A has a strip shape and is wound so as to form a space inside.
  • the conductor pattern 14A is provided so as to overlap the conductor patterns 12A and 13A in plan view.
  • One end of the conductor pattern 14 ⁇ / b> A is connected to one end of the conductor pattern 13 ⁇ / b> A via a via conductor formed in the base material layer 13.
  • Conductor patterns 15 ⁇ / b> A and 15 ⁇ / b> B are formed on one main surface (the lower surface in FIG. 1) of the base material layer 15.
  • the base material layer 15 is laminated on the base material layer 14 with the main surface on which the conductor patterns 15A and 15B are formed facing the base material layer 14 side. Since the base material layer 15 has a long side longer than one side of the base material layers 11 to 14, the base material layer 15 is aligned with the base material layer 14 at one end side thereof. When stacked on 14, the base material layer 15 has a portion that overlaps with the base material layers 11 to 14 and a portion that does not overlap in plan view.
  • the conductor pattern 15A is formed in a portion of the base material layer 15 that overlaps the base material layers 11 to 14.
  • the conductor pattern 15A has a strip shape and is wound so as to form a space inside.
  • the conductor pattern 15A is provided so as to overlap the conductor patterns 12A to 14A in plan view.
  • One end of the conductor pattern 15 ⁇ / b> A is connected to one end of the conductor pattern 14 ⁇ / b> A via a via conductor formed in the base material layer 14.
  • the coil 1A is formed by connecting these conductor patterns 12A, 13A, 14A, and 15A via via conductors.
  • the conductor pattern 15B is formed in a portion of the base material layer 15 that does not overlap with the base material layers 11 to 14. Therefore, the conductor pattern 15B is formed in a portion that does not overlap the coil 1A in plan view. A portion of the base material layer 15 that does not overlap with the base material layers 11 to 14 and where the conductor pattern 15B is formed is a mounting surface of the inductor element 1. Therefore, the conductor pattern 15B is used as a mounting electrode of the inductor element 1.
  • the conductor pattern 15B is an example of the “first terminal portion” according to the present invention.
  • via conductors 15C and 15D are formed in the base material layer 15.
  • the via conductor 15C overlaps the conductor pattern 15A in plan view, and the via conductor 15D is formed at a position overlapping the conductor pattern 15B in plan view.
  • a conductive pattern 16 ⁇ / b> A is formed on one main surface (the lower surface in FIG. 1) of the base material layer 16.
  • the base material layer 16 is laminated on the base material layer 15 with the main surface on which the conductor pattern 16A is formed facing the base material layer 15 side.
  • the conductor pattern 16 ⁇ / b> A has a strip shape extending along the longitudinal direction of the base material layer 16.
  • One end of the conductor pattern 16A is connected to one end of the conductor pattern 15A via a via conductor 15C formed on the base material layer 15, and the other end is connected to the conductor pattern 15B as a mounting electrode via the via conductor 15D. Connected.
  • the via conductors 15C and 15D and the conductor pattern 16A connect the conductor pattern 15B and one end of the coil 1A.
  • the via conductors 15C and 15D and the conductor pattern 16A are examples of the “conductor line” according to the present invention.
  • a portion (six layers) where the base material layers 11 to 14 and the base material layers 15 and 16 overlap in the laminated body 10 is referred to as a thick portion 10A.
  • the part (2 layer part) in which the base material layers 15 and 16 overlap in the laminated body 10 is called thin part 10B. That is, the thin portion 10B is arranged on one end portion side of the stacked body 10 in the stacking direction.
  • the coil 1A is formed in the thick portion 10A.
  • the conductor pattern 15B is formed in the thin portion 10B.
  • the inductor element 1 is mounted on a substrate using the conductor patterns 11A and 15B as mounting electrodes.
  • the connector 100 is connected to the conductor pattern 15B.
  • the conductor pattern 11 ⁇ / b> A is connected to the substrate by solder, and the conductor pattern 15 ⁇ / b> B is connected to the substrate via the connector 100.
  • the conductor patterns 11A and 15B which are mounting electrodes of the inductor element 1, are arranged on the end side of the multilayer body 10 in the laminating direction. That is, via conductor 15C, conductor pattern 16A and via conductor 15D drawn from one end of coil 1A in the stacking direction, and via conductor 11B drawn from the other end of coil 1A are formed in base material layers 12-14. It has not been. If the via conductors 11B, 15C, 15D and the conductor pattern 16A are formed in the vicinity of the coil 1A along the stacking direction, the via conductors 11B, 15C, 15D and the conductor pattern 16A are vortexed by the magnetic field generated from the coil 1A. Electric current is generated, and power loss occurs.
  • the mounting surface on which the conductor pattern 11A, which is the mounting electrode of the inductor element 1, and the conductor pattern 15B are formed is orthogonal to the stacking direction of the multilayer body 10, and is in the plane direction and the height direction (lamination of the multilayer body 10). Position) is different. For this reason, the inductor element 1 can be mounted on a substrate having a step.
  • FIG. 2 is a diagram showing a state in which the inductor element 1 is mounted on a stepped substrate. In FIG. 2, a cross section of the inductor element 1 is shown.
  • the substrate 110 is formed by a flat plate portion 110A and a step portion 110B having different heights.
  • a mounting electrode for mounting the inductor element 1 is formed on each of the flat plate portion 110A and the step portion 110B.
  • the mounting electrodes of the inductor element 1 are the conductor patterns 11A and 15B.
  • the conductor pattern 15B is formed at a position higher than the conductor pattern 11A. Therefore, when the inductor element 1 is mounted on the substrate 110, the conductor pattern 11A of the inductor element 1 is mounted on the mounting electrode of the flat plate portion 110A, and the conductor pattern 15B is connected to the mounting electrode of the step portion 110B via the connector 100.
  • the inductor element 1 is mounted on the board
  • the conductor pattern 11A and the conductor pattern 15B connected to both ends of the coil 1A are formed on both ends of the multilayer body 10 in the stacking direction.
  • the via conductors 15C and 15D and the conductor pattern 16A that connect one end of the coil 1A and the conductor pattern 15B, and the via conductor 11B that connects the other end of the coil 1A and the conductor pattern 11A are provided on the side of the coil 1A. It is not arranged along the winding axis of the coil 1A in the vicinity.
  • the inductor element 1 is mounted on the substrate 110 via the connector 100.
  • the inductor element 1 is mounted on the substrate 110 having a step, one of the inductor elements 1 is mounted by the connector 100, so that the other The mounting electrode (conductor pattern 11A) can be easily soldered.
  • the base material layers 11 to 16 are flexible, the inductor element 1 can be prevented from being damaged when the connector 100 is connected to the substrate 110, and the connection work is facilitated.
  • the conductor pattern 15B may be directly soldered to the substrate without providing the connector 100.
  • the normal direction of the mounting surface of the inductor element 1 on which the conductor patterns 11A and 15B are formed coincides with the stacking direction of the multilayer body 10.
  • the stacking direction of the multilayer body 10 coincides with the normal direction of the mounting surface of the substrate 110. Therefore, since the coil 1A uses the stacking direction of the multilayer body 10 as a coil winding axis, even if the inductor element 1 is mounted on the substrate 110, the coil 1A is not deformed. Thereby, the possibility that the coil characteristics may vary can be suppressed.
  • the manufacturing process of the inductor element 1 described above is as follows.
  • the base material layers 11 to 16 are sequentially stacked.
  • the base material layer 12 overlaid on the base material layer 11 has the main surface on which the conductor pattern 12A is formed as the base material layer 11 side, and the main conductor layer 11A in the base material layer 11 is not formed. Overlay on the surface.
  • the alignment is performed in consideration of the positional relationship between the via conductor 11B formed in the base material layer 11 and the conductor pattern 12A.
  • the heated substrate layers 11 to 16 are heated and pressurized, and these are bonded. Since the resin sheet is thermoplastic as described above, it is not necessary to use an adhesive. Further, the via conductor and the corresponding conductor are joined during the heating and pressurizing treatment. Thus, the inductor element 1 can be manufactured by a simple process.
  • all of the base material layers 11 to 16 are made of a thermoplastic resin having flexibility, but it is sufficient that at least the thin portion 10B of the inductor element 1 has flexibility. If the thin portion 10B has flexibility, when connecting the connector 100 connected to the conductor pattern 15B to a substrate or the like, the connection work can be easily performed using the flexibility of the thin portion 10B. Can do.
  • FIG. 3 is a diagram illustrating a modification of the inductor element according to the first embodiment.
  • a base material layer 151 having the same size and shape as the base material layers 11 to 14 is laminated on the base material layer 14.
  • a conductor pattern 15A is formed on one main surface (the lower surface in FIG. 3) of the base material layer 151.
  • the base material layer 151 is provided with a via conductor 15C that connects the conductor pattern 15A and one end of the conductor pattern 16A.
  • the base material layer 152 is laminated on the base material layer 16 on the base material layer 14 side (the lower side in FIG. 3) so as to overlap with the other end of the conductor pattern 16A in plan view.
  • a conductor pattern 15 ⁇ / b> B is formed on one main surface (the lower surface in FIG. 3) of the base material layer 152.
  • the base material layer 152 is formed with a via conductor 15D that connects the conductor pattern 15B and the other end of the conductor pattern 16A.
  • the inductor element 1 may have such a configuration.
  • the part where the base material layers 11, 12, 13, 14, 151 and the base material layer 16 all overlap is the thick part 10 ⁇ / b> A.
  • a portion having only the base material layer 16 (one layer portion) and a portion in which the base material layer 16 and the base material layer 152 overlap are the thin-walled portion 10 ⁇ / b> B. That is, the thin portion 10B is arranged on one end portion side of the stacked body 10 in the stacking direction.
  • the coil 1A is formed in the thick portion 10A.
  • the conductor pattern 15B which is an example of the “first terminal portion” according to the present invention, is provided in the thin portion 10B.
  • the inductor element according to the second embodiment will be described below.
  • the inductor element according to the present embodiment is different from the first embodiment in that the two mounting electrodes of the inductor element are configured not to overlap the coil in plan view. Since the mounting electrode and the coil do not overlap, generation of stray capacitance between them can be suppressed.
  • FIG. 4 is an exploded perspective view of the inductor element according to the second embodiment.
  • FIG. 5 is a plan view of the inductor element according to the second embodiment viewed from the mounting surface side. 4 and 5 are partially transparent views.
  • the inductor element 2 includes a laminated body 20 in which a coil 2A is formed.
  • the laminate 20 is formed by heat-pressing the base layers 21, 22, 23, 24, 25, and 26 of flexible thermoplastic resin such as LCP resin (liquid crystal polymer resin). .
  • the base material layer 21 has a rectangular shape having a short side and a long side.
  • a rectangular conductor pattern 21 ⁇ / b> A is formed on one main surface (lower surface in FIG. 4) of the base material layer 21.
  • the base material layer 21 is the outermost layer of the multilayer body 20, and the inductor element 2 is mounted on the substrate with the main surface on which the conductor pattern 21A of the base material layer 21 is formed as the mounting surface. Therefore, the conductor pattern 21 ⁇ / b> A is used as a mounting electrode for the inductor element 2.
  • This conductor pattern 21A is an example of the “second terminal portion” according to the present invention.
  • via conductors 21B are formed at positions overlapping the conductor patterns 21A in plan view.
  • the base material layer 22 has the same size and the same shape as the base material layer 21, and conductor patterns 22A and 22B are formed on one main surface (the lower surface in FIG. 4).
  • the conductor pattern 22A has a band shape and is wound so as to form a space inside.
  • the conductor pattern 22 ⁇ / b> A is formed on one end side in the longitudinal direction of the base material layer 22.
  • the conductor pattern 22B is drawn from one end of the conductor pattern 22A and extends along the longitudinal direction of the base material layer 22.
  • the base material layer 22 is laminated on the base material layer 21 so that one main surface on which the conductor patterns 22A and 22B are formed is on the base material layer 21 side, and one end of the conductor pattern 22B overlaps the conductor pattern 21A. Yes.
  • One end of the conductor pattern 22B is connected to the conductor pattern 21A via a via conductor 21B formed in the base material layer 21.
  • the conductor pattern 22A constitutes a part (outermost part) of the coil 2A, and the via conductor 21B and the conductor pattern 22B connect the conductor pattern 21A and one end of the conductor pattern 22A, that is, the other end of the coil 2A.
  • the via conductor 21B and the conductor pattern 22B are examples of the “conductor line” according to the present invention.
  • the base material layer 23 has the same size and the same shape as the base material layers 21 and 22, and a conductor pattern 23 ⁇ / b> A is formed on one main surface (the lower surface in FIG. 4).
  • the conductor pattern 23A has a strip shape and is wound so as to form a space inside.
  • the conductor pattern 23 ⁇ / b> A is formed on one end side in the longitudinal direction of the base material layer 23.
  • the base material layer 23 is laminated on the base material layer 22 with the one main surface on which the conductor pattern 23A is formed facing the base material layer 22 side.
  • the conductor pattern 23 ⁇ / b> A is provided so as to overlap the conductor pattern 22 ⁇ / b> A in plan view.
  • One end of the conductor pattern 23 ⁇ / b> A is connected to one end of the conductor pattern 22 ⁇ / b> A via a via conductor formed in the base material layer 22.
  • the base material layer 24 has the same size and the same shape as the base material layers 21 to 23, and a conductor pattern 24A is formed on one main surface (the lower surface in FIG. 4).
  • the conductor pattern 24A has a strip shape and is wound so as to form a space inside.
  • the conductor pattern 24 ⁇ / b> A is formed on one end side in the longitudinal direction of the base material layer 24.
  • the base material layer 24 is laminated on the base material layer 23 with the one main surface on which the conductor pattern 24A is formed facing the base material layer 23 side.
  • the conductor pattern 24A is provided so as to overlap the conductor patterns 22A and 23A in plan view.
  • One end of the conductor pattern 24A is connected to one end of the conductor pattern 23A through a via conductor formed in the base material layer 23.
  • the base material layer 25 has a rectangular shape having a short side having the same length as the short sides of the base material layers 21 to 24 and a long side longer than the long sides of the base material layers 21 to 24.
  • Conductive patterns 25 ⁇ / b> A and 25 ⁇ / b> B are formed on one main surface (the lower surface in FIG. 4) of the base material layer 25.
  • 25 A of conductor patterns are formed in the one end part side of the longitudinal direction of the base material layer 25, and the conductor pattern 25B is formed in the other end part side.
  • the base material layer 25 is laminated on the base material layer 24 with the one main surface on which the conductor patterns 25A and 25B are formed facing the base material layer 24 side.
  • the base material layer 25 has a longer longitudinal direction than one side of the base material layer 24, when the base material layer 25 is laminated on the base material layer 24, the base material layer 25 is viewed from above in the base material layers 21 to 24. Has an overlapping part and a non-overlapping part.
  • the conductor pattern 25A is a portion of the base material layer 25 that overlaps the base material layers 21 to 24, and is formed to overlap the conductor patterns 22A to 24A in plan view.
  • the conductor pattern 25A has a strip shape and is wound so as to form a space inside.
  • One end of the conductor pattern 25 ⁇ / b> A is connected to one end of the conductor pattern 24 ⁇ / b> A via a via conductor formed in the base material layer 24.
  • the coil 2A is formed by connecting these conductor patterns 22A, 23A, 24A, and 25A via via conductors.
  • the conductor pattern 25B is formed in a portion of the base material layer 25 that does not overlap with the base material layers 21 to 24. Therefore, the conductor pattern 25B is formed in a portion that does not overlap the coil 2A in plan view. A portion of the base material layer 25 that does not overlap with the base material layers 21 to 24 and where the conductor pattern 25B is formed is a mounting surface of the inductor element 1. Therefore, the conductor pattern 25 ⁇ / b> B is used as a mounting electrode for the inductor element 1.
  • the conductor pattern 25B is an example of the “first terminal portion” according to the present invention.
  • via conductors 25C and 25D are formed in the base material layer 25, via conductors 25C and 25D are formed.
  • the via conductor 25C overlaps with the conductor pattern 25A in plan view, and the via conductor 25D is formed at a position overlapping with the conductor pattern 25B in plan view.
  • the base material layer 26 has the same size and the same shape as the base material layer 25, and a conductor pattern 26A is formed on one main surface (the lower surface in FIG. 4).
  • the base material layer 26 is laminated on the base material layer 25 with the main surface on which the conductor pattern 26 ⁇ / b> A is formed facing the base material layer 25.
  • the conductor pattern 26 ⁇ / b> A has a strip shape extending along the longitudinal direction of the base material layer 26.
  • One end of the conductor pattern 26A is connected to one end of the conductor pattern 25A via a via conductor 25C formed in the base material layer 25, and the other end is connected to the conductor pattern 25B as a mounting electrode via the via conductor 25D. Connected.
  • the via conductors 25C and 25D and the conductor pattern 26A connect the conductor pattern 25B and one end of the coil 2A.
  • the via conductors 25C and 25D and the conductor pattern 26A are examples of the “conductor line” according to the present invention.
  • a portion (six layers) where the base material layers 21 to 24 and the base material layers 25 and 26 overlap in the multilayer body 20 is referred to as a thick portion 20A.
  • the part (2 layer part) which only the base material layers 25 and 26 overlap in the laminated body 20 is called the thin part 20B. That is, the thin portion 20B is disposed on one end portion side of the stacked body 20 in the stacking direction.
  • the coil 2A is formed in the thick portion 20A.
  • the conductor pattern 25B is formed in the thin portion 20B.
  • the inductor element 2 is mounted on the substrate using the conductor patterns 21A and 25B as mounting electrodes.
  • the connector 100 is mounted on the conductor pattern 25B.
  • the conductor pattern 21 ⁇ / b> A is mounted on the substrate by solder, and the conductor pattern 25 ⁇ / b> B is connected to the substrate via the connector 100.
  • the conductor patterns 21A and 25B which are mounting electrodes of the inductor element 2, are disposed on both end sides of the multilayer body 20 in the lamination direction. That is, the via conductor 21B drawn from one end of the coil 2A in the stacking direction and the via conductor 25C, the conductor pattern 26A, and the via conductor 25D drawn from the other end of the coil 2A are located in the vicinity of the coil 2A along the stacking direction. Not formed. Therefore, as in the first embodiment, it is possible to suppress the occurrence of power loss due to the magnetic field generated from the coil 2A. Further, as shown in FIG.
  • the inductor element 2 can be mounted on a substrate having a step as described with reference to FIG. Since the base material layers 21 to 26 are flexible, when the conductor pattern 21A is soldered to the substrate and the connector 100 mounted on the conductor pattern 25B is connected to the substrate, the base material layer 21 The risk of damaging ⁇ 26 can be suppressed. Furthermore, even when the inductor element 2 is mounted on a stepped substrate, the coil 2A is not deformed, and the possibility that the coil characteristics may vary can be suppressed.
  • all of the base material layers 21 to 26 are made of a thermoplastic resin having flexibility, but it is sufficient that at least the thin portion 20B of the inductor element 2 has flexibility. If the thin-walled portion 20B has flexibility, when connecting the connector 100 connected to the conductor pattern 25B to a substrate or the like, the connection work can be easily performed using the flexibility of the thin-walled portion 20B. Can do.
  • the inductor element according to Embodiment 3 will be described below.
  • the inductor element according to the present embodiment has a configuration in which the laminated body of inductor elements according to the second embodiment is downsized.
  • one of the two mounting electrodes is connected to the substrate with solder and the other is connected to the substrate through the connector, whereas the inductor according to the present embodiment.
  • both of the two mounting electrodes are connected to the substrate by a connector.
  • FIG. 6 is an exploded perspective view of the inductor element according to the third embodiment.
  • FIG. 6 is a partially transparent illustration.
  • the inductor element 3 includes a laminated body 30 in which a coil 3A is formed.
  • the laminate 30 is formed by heat-pressing the base material layers 31, 32, 33, 34, 35, and 36 of a flexible thermoplastic resin such as an LCP resin.
  • the base material layers 31 and 32 are the same as the base material layers 21 and 22 described in the second embodiment. Further, the conductor patterns 31A, 32A, 32B formed on one main surface (the lower surface in FIG. 6) of the base material layers 31, 32 and the via conductor 31B formed on the base material layer 31 will be described in the second embodiment. The same as the conductor patterns 21A, 22A, 22B and the via conductor 21B. In the present embodiment, the connector 101 is provided on the conductor pattern 31A.
  • the conductor pattern 31A is an example of the “second terminal portion” according to the present invention.
  • the via conductor 31B and the conductor pattern 32B are examples of the “conductor line” according to the present invention.
  • the base material layer 33 has a substantially square shape, and one side has the same length as the short sides of the base material layers 31 and 32.
  • a conductor pattern 33 ⁇ / b> A is formed on one main surface (the lower surface in FIG. 6) of the base material layer 33.
  • the conductor pattern 33A has a strip shape and is wound so as to form a space inside.
  • the base material layer 33 is laminated on the base material layer 32 so that the main surface on which the conductor pattern 33A is formed is on the base material layer 32 side, and the conductor pattern 33A overlaps the conductor pattern 32A.
  • the conductor pattern 33A is provided so as to overlap the conductor pattern 32A in plan view.
  • One end of the conductor pattern 33A is connected to one end of the conductor pattern 32A via a via conductor formed in the base material layer 32.
  • the base material layer 33 is aligned with one end portion side of the base material layers 31 and 32. Is laminated on the base material layers 31 and 32, the base material layers 31 and 32 have a portion that overlaps with the base material layer 33 and a portion that does not overlap in the plan view.
  • One end of the conductor pattern 32B opposite to the conductor pattern 32A is located in a portion of the base material layer 32 that does not overlap the base material layer 33. Therefore, the base material layer does not exist immediately above the stacking direction of the conductor pattern 31A that is the mounting electrode.
  • the base material layer 34 has the same size and the same shape as the base material layer 33, and a conductor pattern 34A is formed on one main surface (the lower surface in FIG. 6).
  • the base material layer 34 is laminated on the base material layer 33 with one main surface thereof facing the base material layer 33.
  • the conductor pattern 34A has a belt shape and is wound so as to form a space inside.
  • the conductor pattern 34A is provided so as to overlap the conductor pattern 33A in plan view.
  • One end of the conductor pattern 34 ⁇ / b> A is connected to one end of the conductor pattern 33 ⁇ / b> A via a via conductor formed in the base material layer 33.
  • the base material layer 35 has a rectangular shape having a short side having the same length as one side of the base material layers 33 and 34 and a long side longer than the short side.
  • Conductive patterns 35 ⁇ / b> A and 35 ⁇ / b> B are formed on one main surface (the lower surface in FIG. 6) of the base material layer 35.
  • the conductor pattern 35A is formed on one end side in the longitudinal direction of the base material layer 35, and the conductor pattern 35B is formed on the other end side.
  • the base material layer 35 is laminated on the base material layer 34 so that one main surface on which the conductor patterns 35A and 35B are formed faces the base material layer 34, and the conductor pattern 35A faces the conductor pattern 34A.
  • the base material layer 35 has a longer longitudinal direction than one side of the base material layers 33 and 34, when the base material layer 35 is laminated on the base material layer 34, the base material layer 35 is viewed in plan view. , 34 have overlapping portions and non-overlapping portions.
  • the conductor pattern 35A is a portion of the base material layer 35 that overlaps the base material layers 33 and 34, and is formed to overlap the conductor patterns 32A to 34A in plan view.
  • the conductor pattern 35A has a strip shape and is wound so as to form a space inside. One end of the conductor pattern 35A is connected to one end of the conductor pattern 34A via a via conductor formed in the base material layer 34.
  • the coil 3A is formed by connecting these conductor patterns 32A, 33A, 34A, and 35A via via conductors.
  • the conductor pattern 35B has a rectangular shape and is formed in a portion that does not overlap the base material layers 33 and 34. Therefore, the conductor pattern 35B is formed in a portion that does not overlap the coil 3A in plan view. A portion of the base material layer 35 that does not overlap with the base material layers 33 and 34 and where the conductor pattern 35 ⁇ / b> B is formed becomes a mounting surface of the inductor element 3. Therefore, the conductor pattern 35 ⁇ / b> B is used as a mounting electrode for the inductor element 3.
  • the conductor pattern 35B is an example of the “first terminal portion” according to the present invention.
  • via conductors 35C and 35D are formed in the base material layer 35.
  • the via conductor 35C overlaps the conductor pattern 35A in a plan view, and the via conductor 35D is formed at a position overlapping the conductor pattern 35B in a plan view.
  • the base material layer 36 has the same size and the same shape as the base material layer 35, and a conductor pattern 36A is formed on one main surface (the lower surface in FIG. 6).
  • the base material layer 36 is laminated on the base material layer 35 with one main surface thereof facing the base material layer 35.
  • the conductor pattern 36 ⁇ / b> A has a strip shape extending along the longitudinal direction of the base material layer 36.
  • One end of the conductor pattern 36A is connected to one end of the conductor pattern 35A via a via conductor 35C formed on the base layer 35, and the other end is connected to the conductor pattern 35B which is a mounting electrode via the via conductor 35D. Connected.
  • the via conductors 35C and 35D and the conductor pattern 36A connect the conductor pattern 35B and one end of the coil 3A.
  • the via conductors 35C and 35D and the conductor pattern 36A are examples of the “conductor line” according to the present invention.
  • a portion where all the base material layers 31 to 36 overlap (a portion of six layers) is referred to as a thick portion 30A.
  • a portion where only the base material layers 31, 32 overlap (a portion of two layers) is referred to as a thin portion 30B, and a portion where only the base material layers 35, 36 overlap (a portion of two layers) is a thin portion.
  • 30C a portion where only the base material layers 30B and 30C are disposed at both ends of the stacked body 30 in the stacking direction.
  • the coil 3A is formed in the thick portion 30A.
  • the conductor patterns 31A and 35B are formed in the thin portions 30B and 30C.
  • the inductor element 3 is mounted on the substrate using the conductor patterns 31A and 35B as mounting electrodes.
  • the connectors 101 and 100 are mounted on the conductor patterns 31A and 35B.
  • the inductor element 3 is connected to the substrate via the connectors 101 and 100. Since the inductor element 3 can be connected to the substrate via the connectors 101 and 100, it is not necessary to solder and the connection work is facilitated.
  • the conductor patterns 31A and 35B which are mounting electrodes of the inductor element 3 are arranged on both end sides of the multilayer body 30 in the lamination direction. That is, the via conductor 35C, the conductor pattern 36A, and the via conductor 35D drawn from one end of the coil 3A in the stacking direction, and the via conductor 31B and the conductor pattern 32B drawn from the other end of the coil 3A are along the stacking direction. It is not formed near the coil 3A. Therefore, as in the first and second embodiments, it is possible to suppress power loss from being generated by the magnetic field generated from the coil 3A.
  • the inductor element 3 can be mounted on a substrate having a step as in the first and second embodiments.
  • the inductor element 3 has no base material layer in a region facing the conductor pattern 31A.
  • the size of the base material layers 33 to 36 is smaller than that of the base material layers 23 to 26 according to the second embodiment.
  • the multilayer body 30 is smaller than the multilayer body 20 according to the second embodiment. As a result, the inductor element 3 can be reduced in size, and the mounting area of the inductor element 3 can be saved.
  • the inductor element according to Embodiment 4 will be described below.
  • the inductor element according to the present embodiment has a configuration in which the number of stacked layers of the inductor element according to the third embodiment is reduced.
  • differences from the third embodiment will be described.
  • FIG. 7 is an exploded perspective view of the inductor element according to the fourth embodiment.
  • FIG. 7 is a partially transparent view.
  • the inductor element 4 includes a laminated body 40 on which a coil 4A is formed.
  • the laminate 40 is formed by hot pressing the base material layers 41, 42, 43, 44, and 45 of thermoplastic resin such as LCP resin.
  • the base material layers 41, 42, and 43 are the same as the base material layers 32, 33, and 34 according to the third embodiment.
  • the conductor patterns 41A, 41B, 42A, 43A formed on one main surface of the base material layers 41, 42, 43 are conductor patterns 31A formed on one main surface of the base material layers 32, 33, 34. , 32A, 32B, 33A.
  • the conductor patterns 41A and 41B formed on one main surface (the lower surface in FIG. 7) of the base material layer 41 are exposed, and the conductor pattern 41A and a portion excluding a part of the conductor pattern 41B are exposed.
  • a resist is formed.
  • a part of the conductor pattern 41B where the resist is not formed is exposed, and the connector 101 is provided in that part.
  • One end portion of the exposed conductor pattern 41B is an example of the “second terminal portion” according to the present invention.
  • the conductor pattern 41B is an example of the “conductor line” according to the present invention.
  • the base material layer 44 has a substantially square shape having the same size as the base material layers 42 and 43, and a conductor pattern 44A is formed on one main surface (the lower surface in FIG. 7).
  • the base material layer 44 is laminated on the base material layer 43 with one main surface thereof facing the base material layer 43 side.
  • the conductor pattern 44A has a strip shape and is wound so as to form a space inside.
  • One end of the conductor pattern 4 ⁇ / b> A is connected to one end of the conductor pattern 43 ⁇ / b> A via a via conductor formed in the base material layer 43.
  • the coil 4A is formed by connecting these conductor patterns 41A, 42A, 43A, and 44A via via conductors.
  • via conductors 44B are formed at positions overlapping the conductor patterns 44A in plan view.
  • the base material layer 45 has a rectangular shape having a short side having the same length as one side of the base material layers 42 to 44 and a long side longer than the short side.
  • a conductor pattern 45A is formed on one main surface (the lower surface in FIG. 7) of the base material layer 45.
  • the conductor pattern 45 ⁇ / b> A has a strip shape extending along the longitudinal direction of the base material layer 45.
  • the base material layer 45 is laminated on the base material layer 44 with the one main surface on which the conductor pattern 45 ⁇ / b> A is formed facing the base material layer 44.
  • the base material layer 45 has a longitudinal direction longer than one side of the base material layer 44. For this reason, when the base material layer 45 is laminated on the base material layer 44 with the one end side of the base material layer 45 aligned with the base material layer 44, the base material layer 45 has the base material layers 42 to 44 in plan view. Has an overlapping part and a non-overlapping part.
  • the conductor pattern 45A is formed over both the portion that overlaps the base material layers 42 to 44 and the portion that does not overlap, and the conductor pattern 45A formed in the portion that does not overlap is exposed.
  • a resist is formed on the exposed portion of the conductor pattern 45A. At this time, a resist is not formed on the end portion of the conductor pattern 45A but is exposed.
  • a connector 100 is provided at the end of the exposed conductor pattern 45A.
  • One end portion of the exposed conductor pattern 45A is an example of the “first terminal portion” according to the present invention.
  • the other end of the conductor pattern 45A is connected to one end of the conductor pattern 44A, that is, one end of the coil 4A through the via conductor 44B.
  • the via conductor 44B and the conductor pattern 45A are an example of the “conductor path” according to the present invention.
  • a portion (a portion of five layers) in which the base material layers 41 to 45 overlap in the multilayer body 40 is referred to as a thick portion 40A.
  • the part (1 layer part) only of the base material layer 41 is called the thin part 40B
  • the part (1 layer part) only of the base material layer 45 is called the thin part 40C. That is, the thin-walled portions 40B and 40C are disposed at both end portions of the stacked body 40 in the stacking direction.
  • the coil 4A is formed in the thick portion 40A.
  • One end of the conductor pattern 41B, which is a mounting electrode, is formed in the thin portion 40B, and one end of the conductor pattern 45A is formed in the thin portion 40C.
  • the inductor element 4 is mounted on the substrate using one end of the conductor patterns 41B and 45A as a mounting electrode.
  • connectors 101 and 100 are mounted on the mounting electrodes.
  • the inductor element 4 is connected to the substrate via the connectors 101 and 100. Since the inductor element 4 can be connected to the substrate via the connectors 101 and 100, it is not necessary to solder and the connection work is facilitated.
  • each of the conductor patterns 41B and 45A which are mounting electrodes of the inductor element 4, is disposed on each of both end portions of the multilayer body 40 in the lamination direction. That is, the via conductor 44B and the conductor pattern 45A drawn from one end of the coil 4A in the lamination direction and the conductor pattern 41B drawn from the other end of the coil 4A are formed in the vicinity of the coil 4A along the lamination direction. Absent. Therefore, as in the first to third embodiments, it is possible to suppress the occurrence of power loss due to the magnetic field generated from the coil 4A.
  • the inductor element 4 can be mounted on a substrate having a step as in the first and second embodiments.
  • the number of base material layers is small without changing the number of coil windings. Therefore, the inductor element 4 can be reduced in height.
  • each of the two mounting electrodes is provided on one main surface (the lower surface in each drawing) of the base material layer, whereas in the present embodiment, one of the two mounting electrodes. Is formed on one main surface (for example, the front surface) of the base material layer, and the other is formed on the other main surface (for example, the back surface) of the base material layer.
  • FIG. 8 is an exploded perspective view of the inductor element according to the fifth embodiment.
  • FIG. 8 is a partially transparent view.
  • the inductor element 5 includes a laminated body 50 in which a coil 5A is formed.
  • the laminated body 50 is formed by heat-pressing the base material layers 51, 52, 53, 54, 55, and 56 of a thermoplastic resin such as an LCP resin.
  • the base material layers 51, 52, 53, and 54 are the same as the base material layers 31, 32, 33, and 34 according to the third embodiment.
  • the conductor patterns 51A, 52A, 52B, 53A, 54A formed on the lower surfaces of the base material layers 51, 52, 53, 54 are the same as the conductor patterns 31A, 32A, 32B, 33A, 34A according to the third embodiment. It is.
  • the conductor pattern 51A is an example of the “second terminal portion” according to the present invention.
  • the via conductor 51B formed at a position overlapping the conductor pattern 51A in plan view and the conductor pattern 52B are examples of the “conductor path” according to the present invention.
  • the base material layer 55 has the same size and the same shape as the base material layers 53 and 54, and a conductor pattern 55A is formed on one main surface (the lower surface in FIG. 8).
  • the base material layer 55 is laminated on the base material layer 54 with one main surface thereof facing the base material layer 54.
  • the conductor pattern 55A has a strip shape and is wound so as to form a space inside.
  • the conductor pattern 55A is formed so as to overlap the conductor pattern 54A when the base material layer 55 is laminated on the base material layer 54.
  • One end of the conductor pattern 55A is connected to one end of the conductor pattern 54A through a via conductor formed in the base material layer 54.
  • the coil 5A is formed by connecting these conductor patterns 52A, 53A, 54A, and 55A via via conductors.
  • a via conductor 55B is formed at a position overlapping the conductor pattern 55A in plan view.
  • the base material layer 56 has a rectangular shape having a short side having the same length as one side of the base material layers 53 to 55 and a long side longer than the short side.
  • a conductor pattern 56A is formed on one main surface (the upper surface in FIG. 8) of the base material layer 56.
  • the conductor pattern 56 ⁇ / b> A has a strip shape extending along the longitudinal direction of the base material layer 56.
  • the base material layer 56 is laminated on the base material layer 55 with the other main surface facing the one main surface on which the conductor pattern 56 ⁇ / b> A is formed facing the base material layer 55.
  • the base material layer 56 when the base material layer 56 is laminated on the base material layer 55 so that the one end side of the base material layer 56 is aligned with the base material layer 55, the base material layer 56 has the base material layers 53 to 55 in a plan view. It has an overlapping part and a non-overlapping part.
  • the conductor pattern 56A is formed over a portion where the base material layers 53 to 55 overlap and a portion where they do not overlap.
  • a via conductor 56B is formed in the base material layer 56 at a position that overlaps the conductor pattern 56A in a plan view and at a position that overlaps the via conductor 55B when the base material layer 56 is overlapped with the base material layer 55. Yes.
  • One end of the conductor pattern 56A is connected to one end of the conductor pattern 55A via via conductors 55B and 56B formed in the base material layers 55 and 56, respectively.
  • the conductor pattern 56A is exposed and a resist is formed on the conductor pattern 56A. At this time, the resist is not formed on the other end of the conductor pattern 56A opposite to the one end connected to the conductor pattern 55A, and is exposed.
  • This exposed portion is an example of the “first terminal portion” according to the present embodiment.
  • the via conductors 55B and 56B and the conductor pattern 56A are examples of the “conductor path” according to the present embodiment.
  • a portion (six layers) where the base material layers 51 to 56 overlap in the multilayer body 50 is referred to as a thick portion 50A.
  • a portion where only the base material layers 51 and 52 overlap (a portion of two layers) is referred to as a thin portion 50B, and a portion only of the base material layer 56 (a portion of one layer) is referred to as a thin portion 50C. That is, the thin portions 50B and 50C are disposed at both ends of the stacked body 50 in the stacking direction.
  • the coil 5A is formed in the thick portion 50A.
  • One end of the conductor pattern 51A and the conductor pattern 56A is formed in the thin portions 50B and 50C.
  • the conductor pattern 51A which is a mounting electrode of the inductor element 5, and the other end of the conductor pattern 56A are disposed on both ends of the multilayer body 30 in the laminating direction. That is, in the lamination direction, the via conductors 55B and 56B and the conductor pattern 56A drawn from one end of the coil 5A, and the conductor pattern 52B and the via conductor 51B drawn from the other end of the coil 5A are along the lamination direction. It is not formed near the coil 5A. Therefore, as in the first to fourth embodiments, it is possible to suppress the occurrence of power loss due to the magnetic field generated from the coil 5A.
  • the conductor pattern 51A and the other end of the conductor pattern 56A do not overlap with the coil 5A in a plan view, the stray capacitance is prevented from being generated between the conductor pattern 51A and the other end of the conductor pattern 56A and the coil 5A. it can. For this reason, the possibility that the characteristics of the coil 5A fluctuate due to the generation of stray capacitance can be suppressed.
  • the inductor element 5 can be mounted on a substrate having a step as described with reference to FIG. Is possible. Further, the inductor element 5 includes one main surface (hereinafter referred to as a lower surface) of the lowermost base material layer 51 of the multilayer body 50 and the other main surface (hereinafter referred to as an upper surface) of the uppermost base material layer 56. Has mounting electrodes. For this reason, the inductor element 5 can be mounted across the two substrates provided with the mounting surfaces facing each other at a distance.
  • FIG. 9 is a view for explaining a mounting mode of the inductor element 5 according to the fifth embodiment.
  • the two substrates 111 and 112 on which the inductor element 5 is mounted are provided so that the mounting surfaces are spaced apart from each other.
  • the connector 100 provided on the upper surface of the uppermost base material layer 56 of the multilayer body 50 is connected to the substrate 112, and the lowermost base material layer.
  • the inductor element 5 can be mounted on the substrates 111 and 112 by connecting the connector 101 provided on the lower surface of 51 to the substrate 111.
  • the base material layer 56 of the inductor element 5 has a portion that does not overlap with other base material layers, the mounting component 113 is mounted on the substrate 111, and the mounting of the substrate 112 is directly above the mounting component 113. Even when the electrodes are positioned, the inductor element 5 can be mounted on the substrates 111 and 112 as shown in FIG.
  • the inductor element 5 can be mounted on a stepped substrate as in the first to fourth embodiments, and can be mounted on a different substrate disposed oppositely as shown in FIG. is there.
  • the inductor elements according to the first to fifth embodiments may be used as a common mote choke coil or an antenna. Further, the inductor element included in the electronic device may be the inductor element according to the first to fifth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 基材層(11~16)が積層された積層体(10)と、積層体(10)に形成された、積層方向を巻回軸とするコイル(1A)とを備えるインダクタ素子(1)において、積層体(10)は、積層方向の一端部側に位置する薄肉部(10B)、及び、薄肉部(10B)よりも基材層の積層数が多い厚肉部(10A)を含む。コイル(1A)は厚肉部(10A)に形成されている。積層体(10)の一端部側に位置するコイル(1A)の一方端は、薄肉部(10B)に形成された導体パターン(15B)に接続され、積層体(10)の他端部側に位置するコイル(1A)の他方端は、積層体(10)の他端部側に配置された基材層(11)に形成された導体パターン(11A)に接続されている。導体パターン(11A,15B)は、積層方向において互いに異なる位置に配置されている。これにより、渦電流を抑制して電力損失を低減できるインダクタ素子及び電子機器を提供する。

Description

インダクタ素子及び電子機器
 本発明は、基材層が積層された積層体にコイルが形成されたインダクタ素子及び電子機器に関する。
 特許文献1には、コイル配線パターンが形成された複数の配線層が積層されていて、積層方向をコイルの巻回軸方向とする表面実装コイルが開示されている。この表面実装コイルは、最下層の外表面(底面)が実装面となっており、最下層のコイル配線に接続された接続電極と最上層のコイル配線に接続された接続電極とは、最下層の外表面(底面)に設けられている。最上層のコイル配線は、コイルの側方近傍でコイルの巻回軸方向(積層方向)に沿って延びる接続部を介して、最下層の外表面に形成された接続電極に接続されている。
特開2007-317838号公報
 しかしながら、特許文献1に記載の表面実装コイルは、最上層のコイル配線の端部と、最下層の接続電極とを接続する接続部が、コイルの側方近傍でコイルの巻回軸方向(積層方向)に沿って延びているため、コイルから生じる磁束により、接続部に渦電流が発生して、電力損失が生じるといった問題がある。
 そこで、本発明の目的は、渦電流を抑制して電力損失を低減できるインダクタ素子及び電子機器を提供することにある。
 本発明は、基材層が積層された積層体と、前記積層体に形成された、積層方向を巻回軸とするコイルとを備えるインダクタ素子において、前記積層体は、前記積層方向の一端部側に位置する薄肉部、及び、前記薄肉部よりも基材層の積層数が多い厚肉部を含み、前記コイルは前記厚肉部に形成され、前記積層体の一端部側に位置する前記コイルの一方端は、前記薄肉部に形成された第1端子部に接続され、前記積層体の他端部側に位置する前記コイルの他方端は、前記積層体の他端部側に配置された基材層に形成された第2端子部に接続され、前記第1端子部及び前記第2端子部は、前記積層方向において互いに異なる位置に配置されていることを特徴とする。
 この構成では、コイルの両端に接続される第1端子部及び第2端子部は、積層方向における積層体の端部側それぞれに形成されているため、コイルの両端と第1端子部及び第2端子部とを接続する導体線路が、コイルの側方近傍でコイルの巻回軸に沿って配置されないように、または、コイルの側方近傍でコイルの巻回軸に沿って配置される長さが短くなるようにすることできるので、その導体線路にコイルから生じる磁界による渦電流が発生するのを抑制することができ、その結果、電力損失を低減することができる。
 前記第1端子部及び前記第2端子部は、前記コイルの両端と前記第1端子部及び前記第2端子部とを接続する導体線路のそれぞれが前記厚肉部において前記コイルの側方近傍でコイルの巻回軸方向に沿って配置されない位置に形成されていることが好ましい。
 この構成では、コイルの両端と第1端子部及び第2端子部とを接続する導体線路のそれぞれに、コイルから生じる磁界による渦電流が発生するのをより抑制することができるので、電力損失をより低減できる。また、導体線路がコイルの近傍でコイルに沿って形成されると、それらの間に容量が生じ、コイルの特性が変わるおそれがあるが、コイルに沿って導体線路が配置されないため、そのおそれを抑制できる。
 前記第1端子部及び前記第2端子部は、前記積層体の平面視で、前記コイルと重ならない位置に配置されていることが好ましい。
 この構成では、第1端子部及び第2端子部がコイルと重ならないため、第1端子部及び第2端子部とコイルとの間に生じる浮遊容量を抑制できる。
 前記薄肉部は可撓性を有し、前記薄肉部に形成された前記第1端子部にはコネクタが接続されていることが好ましい。
 この構成では、第1端子部が形成された薄肉部が可撓性を有するため、第1端子部に接続されたコネクタを他の基板等に接続する際に、薄肉部の可撓性を利用して容易に接続作業を行うことができる。
 前記積層体は前記薄肉部を複数有し、前記薄肉部は、前記積層方向における前記積層体の両端部側それぞれに配置されていることが好ましい。
 この構成では、積層体の両端部側に薄肉部を配置することで、インダクタ素子の省スペース化が可能となる。
 前記第1端子部は、前記積層方向における前記積層体の一方端側の最外層に形成され、前記第2端子部は、前記積層方向における前記積層体の他方端側の最外層に形成されていることが好ましい。
 この構成では、コイルの両端と第1端子部及び第2端子部とを接続する導体線路にコイルから生じる磁界による渦電流が発生することを抑制できる。また、導体線路とコイルとの間で生じた容量によりコイルの特性が変わることを防止できる。
 本発明によれば、コイルの両端に接続される第1端子部及び第2端子部は、積層方向における積層体の端部側それぞれに形成されているため、コイルの両端と第1端子部及び第2端子部とを接続する導体線路が、コイルの側方近傍でコイルの巻回軸に沿って配置されないように、または、コイルの側方近傍でコイルの巻回軸に沿って配置される長さが短くなるようにすることできるので、その導体線路にコイルから生じる磁界による渦電流が発生するのを抑制することができ、その結果、電力損失を低減することができる。
実施形態1に係るインダクタ素子の分解斜視図 段差のある基板に、インダクタ素子を実装した状態を示す図 実施形態1のインダクタ素子の変形例を示す図 実施形態2に係るインダクタ素子の分解斜視図 実施形態2に係るインダクタ素子の実装面側から視た平面図 実施形態3に係るインダクタ素子の分解斜視図 実施形態4に係るインダクタ素子の分解斜視図 実施形態5に係るインダクタ素子の分解斜視図 実施形態5に係るインダクタ素子の実装態様を説明するための図
(実施形態1)
 図1は、実施形態1に係るインダクタ素子の分解斜視図である。図1では、一部を透過した図を示している。
 インダクタ素子1は、コイル1Aが形成された積層体10を備えている。積層体10は、LCP樹脂(液晶ポリマ樹脂)等の可撓性を有する熱可塑性樹脂の基材層11,12,13,14,15,16が加熱プレスされることで形成されたものである。基材層11~14は略正方形状である。基材層15,16は、基材層11~14の一辺と同じ長さの短辺と、その短辺より長い長辺とを有する矩形状である。
 積層体10は、各層11~16に、低誘電率のLCP樹脂を用いることで、セラミック等を用いた場合と比べて、コイル1Aの線間容量を小さくすることができ、また、比較的低温で成形が可能となる。熱可塑性樹脂としては、例えばPEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、PI(ポリイミド)等があり、液晶ポリマ樹脂に代えてこれらを用いてもよい。
 基材層11の一方主面(図1において下面)には、矩形状の導体パターン11Aが形成されている。基材層11は積層体10の最外層であり、インダクタ素子1は、その基材層11の導体パターン11Aが形成された主面を実装面として、基板に実装される。したがって、導体パターン11Aは、インダクタ素子1の実装電極として用いられる。この導体パターン11Aは、本発明に係る「第2端子部」の一例である。
 また、基材層11には、平面視で導体パターン11Aと重なる位置にビア導体11Bが形成されている。このビア導体11Bは、導体パターン11Aとコイル1Aの他方端とを接続する。ビア導体11Bは、本発明に係る「導体線路」の一例である。
 基材層12の一方主面(図1において下面)には、導体パターン12Aが形成されている。基材層12は、導体パターン12Aが形成された主面を基材層11側にして、基材層11に積層されている。導体パターン12Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン12Aの一端は、基材層11に形成されたビア導体を介して、導体パターン11Aに接続している。
 基材層13の一方主面(図1において下面)には、導体パターン13Aが形成されている。基材層13は、導体パターン13Aが形成された主面を基材層12側にして、基材層12に積層されている。導体パターン13Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン13Aは、平面視で導体パターン12Aに重なるように設けられている。導体パターン13Aの一端は、基材層12に形成されたビア導体を介して、導体パターン12Aの一端に接続している。
 基材層14の一方主面(図1において下面)には、導体パターン14Aが形成されている。基材層14は、導体パターン14Aが形成された主面を基材層13側にして、基材層13に積層されている。導体パターン14Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン14Aは、平面視で導体パターン12A及び13Aに重なるように設けられている。導体パターン14Aの一端は、基材層13に形成されたビア導体を介して、導体パターン13Aの一端に接続している。
 基材層15の一方主面(図1において下面)には、導体パターン15A,15Bが形成されている。基材層15は、導体パターン15A,15Bが形成された主面を基材層14側にして、基材層14に積層されている。基材層15は、基材層11~14の一辺よりも長い長辺を有しているため、基材層15の一端部側を基材層14に揃えて基材層15を基材層14に積層した場合、基材層15は、平面視で、基材層11~14とは重なる部分と重ならない部分とを有する。
 導体パターン15Aは、基材層15において、基材層11~14と重なる部分に形成されている。導体パターン15Aは、帯状であって、内側に空間を形成するよう、巻回されている。導体パターン15Aは、平面視で導体パターン12A~14Aに重なるように設けられている。導体パターン15Aは、一端が、基材層14に形成されたビア導体を介して、導体パターン14Aの一端に接続している。
 これら導体パターン12A,13A,14A,15Aがビア導体を介して接続されることで、コイル1Aが形成される。
 導体パターン15Bは、基材層15において、基材層11~14と重ならない部分に形成されている。したがって、導体パターン15Bは、平面視で、コイル1Aとは重ならない部分に形成されている。基材層15における基材層11~14と重ならない部分であって、導体パターン15Bが形成されている部分は、インダクタ素子1の実装面となる。したがって、導体パターン15Bは、インダクタ素子1の実装電極として用いられる。この導体パターン15Bは、本発明に係る「第1端子部」の一例である。
 また、基材層15には、ビア導体15C,15Dが形成されている。ビア導体15Cは、平面視で導体パターン15Aと重なり、ビア導体15Dは、平面視で導体パターン15Bと重なる位置に形成されている。
 基材層16の一方主面(図1において下面)には、導体パターン16Aが形成されている。基材層16は、導体パターン16Aが形成された主面を基材層15側にして、基材層15に積層されている。導体パターン16Aは基材層16の長手方向に沿って延びる帯状である。導体パターン16Aの一端は、基材層15に形成されたビア導体15Cを介して、導体パターン15Aの一端に接続し、他端は、ビア導体15Dを介して、実装電極である導体パターン15Bに接続している。
 このように、ビア導体15C,15D及び導体パターン16Aは、導体パターン15Bと、コイル1Aの一端とを接続する。これらビア導体15C,15D及び導体パターン16Aは、本発明に係る「導体線路」の一例である。
 このように形成されたインダクタ素子1において、積層体10のうち、基材層11~14及び基材層15,16の全てが重なる部分(6層の部分)を厚肉部10Aという。また、積層体10のうち、基材層15,16のみが重なる部分(2層の部分)を薄肉部10Bという。すなわち、薄肉部10Bは、積層方向における積層体10の一端部側に配置されている。そして、コイル1Aは、厚肉部10Aに形成されている。導体パターン15Bは、薄肉部10Bに形成されている。
 このインダクタ素子1は、導体パターン11A,15Bを実装電極として基板に実装される。本実施形態では、導体パターン15Bにはコネクタ100が接続されている。そして、インダクタ素子1は、導体パターン11Aがはんだにより基板に接続され、導体パターン15Bがコネクタ100を介して基板に接続されるようになっている。
 インダクタ素子1の実装電極である導体パターン11A,15Bは、積層方向における積層体10の端部側それぞれに配置されている。すなわち、積層方向においてコイル1Aの一方端から引き出されたビア導体15C、導体パターン16A及びビア導体15Dと、コイル1Aの他方端から引き出されたビア導体11Bとは、基材層12~14に形成されていない。仮に積層方向に沿ってコイル1A近傍にビア導体11B,15C,15D及び導体パターン16Aが形成されている場合、そのビア導体11B,15C,15D及び導体パターン16Aには、コイル1Aから生じる磁界により渦電流が発生し、電力損失が生じる。
 また、ビア導体11B,15C,15D及び導体パターン16Aがコイル1Aに沿って形成された場合、そのビア導体11B,15C,15D及び導体パターン16Aとコイル1Aとの間に不要な容量が生じる。しかしながら、ビア導体11B,15C,15D及び導体パターン16Aがコイル1Aに近傍(外側)に存在しないため、コイル1Aの外側に不要な容量が生じることがない。このため、コイルの特性の変動を防止できる。
 さらに、インダクタ素子1の実装電極である導体パターン11Aと、導体パターン15Bとが形成された実装面は、積層体10の積層方向に直交し、平面方向、及び高さ方向(積層体10の積層方向)での位置が異なる。このため、インダクタ素子1は、段差のある基板に対し、実装することが可能である。
 図2は、段差のある基板に、インダクタ素子1を実装した状態を示す図である。なお、図2では、インダクタ素子1の断面を示している。
 基板110は、高さが異なる平板部110Aと段差部110Bとにより形成されている。そして、平板部110Aと段差部110Bとのそれぞれには、インダクタ素子1を実装する実装電極が形成されている。
 上述したように、インダクタ素子1の実装電極は、導体パターン11A,15Bである。そして、導体パターン15Bは、導体パターン11Aよりも高い位置に形成されている。このため、インダクタ素子1を基板110に実装する場合、インダクタ素子1の導体パターン11Aは、平板部110Aの実装電極に実装し、導体パターン15Bは、コネクタ100を介して段差部110Bの実装電極に実装する。これにより、インダクタ素子1は、段差を跨いで、基板110に実装される。このように段差を有する基板110にインダクタ素子1を実装した場合でも、コイル1Aが形成された部分を変形させることなく実装することが可能である。
 本実施形態に係るインダクタ素子1は、コイル1Aの両端に接続される導体パターン11A及び導体パターン15Bは、積層方向における積層体10の両端部側それぞれに形成されている。そして、コイル1Aの一方端と導体パターン15Bとを接続するビア導体15C,15D及び導体パターン16A、並びに、コイル1Aの他方端と導体パターン11Aとを接続するビア導体11Bは、コイル1Aの側方近傍でコイル1Aの巻回軸に沿って配置されていない。このため、ビア導体11B,15C,15D及び導体パターン16Aにコイル1Aから生じる磁界による渦電流が発生するのを抑制することができる。その結果、電力損失を低減することができる。
 また、本実施形態では、インダクタ素子1は、コネクタ100を介して基板110に実装しているが、段差がある基板110に実装する際、一方をコネクタ100で実装しておくことで、他方の実装電極(導体パターン11A)のはんだ付けが行いやすくなる。特に基材層11~16は可撓性を有するため、コネクタ100を基板110に接続する際の、インダクタ素子1の破損を防止でき、接続作業が容易となる。なお、コネクタ100を設けず、導体パターン15Bを直接基板にはんだ付けするようにしてもよい。
 また、導体パターン11A,15Bが形成されたインダクタ素子1の実装面は、その法線方向が積層体10の積層方向と一致する。このため、インダクタ素子1を基板110に実装した場合、積層体10の積層方向は、基板110の実装面の法線方向と一致する。したがって、コイル1Aは、積層体10の積層方向をコイル巻回軸としているため、インダクタ素子1を基板110に実装しても、そのコイル1Aが変形することはない。これにより、コイル特性がばらつくおそれを抑制できる。
 上述したインダクタ素子1の製造工程は以下のとおりである。
 樹脂シートの一方主面に銅箔を貼り付ける、又は片面銅貼シートを用意する。そして、形成する導体パターンに応じて、銅箔上にレジスト膜のパターニングを行う。エッチングを行って導体パターンを形成し、レジスト膜を除去する。基材層11~15については、樹脂シートの他方の面(銅箔を貼り付けていない面)から、各箇所(上記のエッチングで銅箔を除去した箇所)にレーザ光を照射して穴開けを行い、この穴(ビアホール)に導電性ペーストを充填する。これにより、基材層11~16ができる。
 次に、基材層11~16を順に重ねる。このとき、例えば、基材層11に重ねる基材層12は、導体パターン12Aを形成している主面を基材層11側にして、基材層11における導体パターン11Aが形成していない主面に重ねる。また、基材層11に形成したビア導体11Bと、導体パターン12Aとの位置関係を考慮して、位置合わせを行っている。
 積み重ねた基材層11~16に対して、加熱及び加圧処理を行い、これらを接着する。樹脂シートは、上述したように熱可塑性であるので、接着剤を使用しなくてもよい。また、この加熱及び加圧処理の際に、ビア導体とそれに対応する導体とが接合される。このように、簡単な工程で、インダクタ素子1を製造できる。
 なお、本実施形態では、基材層11~16すべてが可撓性を有する熱可塑性樹脂としているが、インダクタ素子1は、少なくとも薄肉部10Bが可撓性を有していればよい。薄肉部10Bが可撓性を有していれば、導体パターン15Bに接続されたコネクタ100を基板等に接続する際に、薄肉部10Bの可撓性を利用して容易に接続作業を行うことができる。
 また、導体パターン15A,15Bは一つの基材層15に形成されているが、基材層15は、導体パターン15A,15Bが設けられた部分の間で分割されていてもよい。図3は、実施形態1のインダクタ素子の変形例を示す図である。この例では、基材層11~14と同じ大きさで同形状の基材層151を基材層14に積層している。この基材層151の一方主面(図3の下面)には導体パターン15Aが形成されている。また、基材層151には、導体パターン15Aと導体パターン16Aの一端とを接続するビア導体15Cが形成されている。また、基材層14側(図3の下側)であって、平面視で導体パターン16Aの他端と重なる位置に、基材層152が基材層16に積層されている。この基材層152の一方主面(図3の下面)には導体パターン15Bが形成されている。また、基材層152には、導体パターン15Bと導体パターン16Aの他端とを接続するビア導体15Dが形成されている。インダクタ素子1は、このような構成であってもよい。
 この図3に示す例の場合、積層体10のうち、基材層11,12,13,14,151、及び、基材層16の全てが重なる部分(6層の部分)が厚肉部10Aであり、積層体10のうち、基材層16のみの部分(1層の部分)と基材層16及び基材層152が重なる部分(2層の部分)とが薄肉部10Bである。すなわち、薄肉部10Bは、積層方向における積層体10の一端部側に配置されている。そして、コイル1Aは厚肉部10Aに形成されている。また、本発明に係る「第1端子部」の一例である導体パターン15Bは、薄肉部10Bに設けられている。
(実施形態2)
 以下に、実施形態2に係るインダクタ素子について説明する。本実施形態に係るインダクタ素子は、インダクタ素子の二つの実装電極が、平面視でコイルと重ならない構成としてある点で、実施形態1と相違する。実装電極とコイルとが重ならないことにより、その間での浮遊容量の発生を抑制できる。
 図4は、実施形態2に係るインダクタ素子の分解斜視図である。図5は、実施形態2に係るインダクタ素子の実装面側から視た平面図である。図4及び図5は一部が透過した図である。
 インダクタ素子2は、コイル2Aが形成された積層体20を備えている。積層体20は、LCP樹脂(液晶ポリマ樹脂)等の可撓性を有する熱可塑性樹脂の基材層21,22,23,24,25,26が加熱プレスされることで形成されたものである。
 基材層21は、短辺及び長辺を有する矩形状である。基材層21の一方主面(図4において下面)には、矩形状の導体パターン21Aが形成されている。基材層21は積層体20の最外層であり、インダクタ素子2は、その基材層21の導体パターン21Aが形成された主面を実装面として、基板に実装される。したがって、導体パターン21Aは、インダクタ素子2の実装電極として用いられる。この導体パターン21Aは、本発明に係る「第2端子部」の一例である。
 また、基材層21には、平面視で導体パターン21Aと重なる位置にビア導体21Bが形成されている。
 基材層22は、基材層21と同じ大きさで同形状であり、その一方主面(図4において下面)には、導体パターン22A,22Bが形成されている。導体パターン22Aは帯状であって、内側に空間を形成するよう巻回されている。導体パターン22Aは、基材層22の長手方向における一端部側に形成されている。導体パターン22Bは、導体パターン22Aの一端から引き出され、基材層22の長手方向に沿って延びている。
 基材層22は、導体パターン22A,22Bが形成された一方主面を基材層21側にし、かつ、導体パターン22Bの一端が、導体パターン21Aと重なるように基材層21に積層されている。導体パターン22Bの一端は、基材層21に形成されたビア導体21Bを介して、導体パターン21Aに接続している。導体パターン22Aはコイル2Aの一部(最外部)を構成していて、ビア導体21B及び導体パターン22Bは、導体パターン21Aと、導体パターン22Aの一端、すなわちコイル2Aの他方端とを接続する。ビア導体21B及び導体パターン22Bは、本発明に係る「導体線路」の一例である。
 基材層23は、基材層21,22と同じ大きさで同形状であり、その一方主面(図4において下面)には、導体パターン23Aが形成されている。導体パターン23Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン23Aは、基材層23の長手方向における一端部側に形成されている。基材層23は、導体パターン23Aが形成された一方主面を基材層22側にして、基材層22に積層されている。導体パターン23Aは、基材層23を基材層22に積層した場合、平面視で導体パターン22Aに重なるように設けられている。そして、導体パターン23Aの一端は、基材層22に形成されたビア導体を介して、導体パターン22Aの一端に接続している。
 基材層24は、基材層21~23と同じ大きさで同形状であり、その一方主面(図4において下面)には、導体パターン24Aが形成されている。導体パターン24Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン24Aは、基材層24の長手方向における一端部側に形成されている。基材層24は、導体パターン24Aが形成された一方主面を基材層23側にして、基材層23に積層されている。導体パターン24Aは、基材層24を基材層23に積層した場合、平面視で導体パターン22A,23Aに重なるように設けられている。そして、導体パターン24Aの一端は、基材層23に形成されたビア導体を介して、導体パターン23Aの一端に接続している。
 基材層25は、基材層21~24の短辺と同じ長さの短辺と、基材層21~24の長辺より長い長辺とを有する矩形状である。基材層25の一方主面(図4において下面)には、導体パターン25A,25Bが形成されている。導体パターン25Aは、基材層25の長手方向の一端部側に形成され、導体パターン25Bは他端部側に形成されている。基材層25は、導体パターン25A,25Bが形成された一方主面を基材層24側にして、基材層24に積層されている。
 基材層25は、長手方向が基材層24の一辺よりも長いため、基材層25を基材層24に積層した場合、基材層25は、平面視で、基材層21~24とは重なる部分と重ならない部分とを有する。導体パターン25Aは、基材層25において、基材層21~24と重なる部分であって、平面視で導体パターン22A~24Aに重なるように形成されている。導体パターン25Aは、帯状であって、内側に空間を形成するよう、巻回されている。導体パターン25Aは、一端が、基材層24に形成されたビア導体を介して、導体パターン24Aの一端に接続している。
 これら導体パターン22A,23A,24A,25Aがビア導体を介して接続されることで、コイル2Aが形成される。
 導体パターン25Bは、基材層25において、基材層21~24と重ならない部分に形成されている。したがって、導体パターン25Bは、平面視で、コイル2Aとは重ならない部分に形成されている。基材層25における基材層21~24と重ならない部分であって、導体パターン25Bが形成されている部分は、インダクタ素子1の実装面となる。したがって、導体パターン25Bは、インダクタ素子1の実装電極として用いられる。この導体パターン25Bは、本発明に係る「第1端子部」の一例である。
 また、基材層25には、ビア導体25C,25Dが形成されている。ビア導体25Cは、平面視で導体パターン25Aと重なり、ビア導体25Dは、平面視で導体パターン25Bと重なる位置に形成されている。
 基材層26は、基材層25と同じ大きさで同形状であり、その一方主面(図4において下面)には、導体パターン26Aが形成されている。基材層26は、導体パターン26Aが形成された主面を基材層25側にして、基材層25に積層されている。導体パターン26Aは基材層26の長手方向に沿って延びる帯状である。導体パターン26Aの一端は、基材層25に形成されたビア導体25Cを介して、導体パターン25Aの一端に接続し、他端は、ビア導体25Dを介して、実装電極である導体パターン25Bに接続している。
 このように、ビア導体25C,25D及び導体パターン26Aは、導体パターン25Bと、コイル2Aの一端とを接続する。これらビア導体25C,25D及び導体パターン26Aは、本発明に係る「導体線路」の一例である。
 このように形成されたインダクタ素子2において、積層体20のうち、基材層21~24及び基材層25,26の全てが重なる部分(6層の部分)を厚肉部20Aという。また、積層体20のうち、基材層25,26のみが重なる部分(2層の部分)は、薄肉部20Bという。すなわち、薄肉部20Bは、積層方向における積層体20の一端部側に配置されている。そして、コイル2Aは、厚肉部20Aに形成されている。導体パターン25Bは、薄肉部20Bに形成されている。
 このインダクタ素子2は、導体パターン21A,25Bを実装電極として基板に実装される。本実施形態では、導体パターン25Bにはコネクタ100が実装されている。そして、インダクタ素子2は、導体パターン21Aがはんだにより基板に実装され、導体パターン25Bがコネクタ100を介して基板に接続されるようになっている。
 インダクタ素子2の実装電極である導体パターン21A,25Bは、積層方向における積層体20の両端部側それぞれに配置されている。すなわち、積層方向においてコイル2Aの一端から引き出されたビア導体21Bと、コイル2Aの他端から引き出されたビア導体25C、導体パターン26A及びビア導体25Dとは、積層方向に沿ってコイル2A近傍に形成されていない。したがって、実施形態1と同様、コイル2Aから生じる磁界により電力損失が生じることを抑制できる。また、図5に示すように、平面視で、導体パターン21A,25Bは、コイル2Aと重ならないため、導体パターン21A,25Bとコイル2Aとの間で浮遊容量が生じることを抑制できる。このため、浮遊容量が生じることでコイル2Aの特性が変動するおそれを抑制できる。
 また、このインダクタ素子2は、実装電極である導体パターン21A,25Bが積層方向において異なる位置にあるため、図2で説明したように、段差のある基板に対し、実装することが可能である。そして、基材層21~26は可撓性を有しているため、導体パターン21Aを基板にはんだ付けし、導体パターン25Bに実装されたコネクタ100を基板に接続する際に、基材層21~26が破損するおそれを抑制できる。さらに、インダクタ素子2を段差のある基板に実装した場合であっても、コイル2Aが変形することはなく、コイル特性がばらつくおそれを抑制できる。
 なお、本実施形態では、基材層21~26すべてが可撓性を有する熱可塑性樹脂としているが、インダクタ素子2は、少なくとも薄肉部20Bが可撓性を有していればよい。薄肉部20Bが可撓性を有していれば、導体パターン25Bに接続されたコネクタ100を基板等に接続する際に、薄肉部20Bの可撓性を利用して容易に接続作業を行うことができる。
(実施形態3)
 以下に、実施形態3に係るインダクタ素子について説明する。本実施形態に係るインダクタ素子は、実施形態2に係るインダクタ素子の積層体を小型化した構成である。また、実施形態1,2に係るインダクタ素子では、2つの実装電極の一方をはんだで基板に接続し、他方を、コネクタを介して基板に接続しているのに対し、本実施形態に係るインダクタ素子では、2つの実装電極の両方をコネクタで基板に接続している。以下、実施形態2との相違点について説明する。
 図6は、実施形態3に係るインダクタ素子の分解斜視図である。図6は、一部が透過した図示である。
 インダクタ素子3は、コイル3Aが形成された積層体30を備えている。積層体30は、LCP樹脂等の可撓性の熱可塑性樹脂の基材層31,32,33,34,35,36が加熱プレスされることで形成されたものである。
 基材層31,32は、実施形態2で説明した基材層21,22と同じである。また、基材層31,32の一方主面(図6において下面)に形成されている導体パターン31A,32A,32B、及び基材層31に形成されたビア導体31Bは、実施形態2で説明した導体パターン21A,22A,22B、及びビア導体21Bと同じである。本実施形態では、導体パターン31Aには、コネクタ101が設けられている。なお、導体パターン31Aは、本発明に係る「第2端子部」の一例である。また、ビア導体31B及び導体パターン32Bは、本発明に係る「導体線路」の一例である。
 基材層33は、略正方形状であり、一辺が基材層31,32の短辺と同じ長さである。基材層33の一方主面(図6において下面)には、導体パターン33Aが形成されている。この導体パターン33Aは帯状であって、内側に空間を形成するよう、巻回されている。基材層33は、導体パターン33Aが形成された主面を基材層32側にし、その導体パターン33Aが導体パターン32Aと重なるように、基材層32に積層される。導体パターン33Aは、基材層33を基材層32に積層した場合に、平面視で導体パターン32Aに重なるように設けられている。導体パターン33Aの一端は、基材層32に形成されたビア導体を介して、導体パターン32Aの一端に接続している。
 なお、基材層31,32は、基材層33の一辺よりも長い長辺を有しているため、基材層33を基材層31,32の一端部側に揃えて基材層33を基材層31,32に積層した場合、基材層31,32は、平面視で、基材層33とは重なる部分と重ならない部分とを有する。導体パターン32Aと反対側の導体パターン32Bの一端は、基材層32における基材層33と重ならない部分に位置している。したがって、実装電極である導体パターン31Aの積層方向上に沿った直上には、基材層が存在しない。
 基材層34は、基材層33と同じ大きさで同形状であり、その一方主面(図6において下面)には、導体パターン34Aが形成されている。基材層34は、その一方主面を基材層33側にして、基材層33に積層されている。導体パターン34Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン34Aは、基材層34を基材層33に積層した場合に、平面視で導体パターン33Aに重なるように設けられている。導体パターン34Aの一端は、基材層33に形成されたビア導体を介して、導体パターン33Aの一端に接続している。
 基材層35は、基材層33,34の一辺と同じ長さの短辺と、その短辺より長い長辺とを有する矩形状である。基材層35の一方主面(図6において下面)には、導体パターン35A,35Bが形成されている。導体パターン35Aは、基材層35の長手方向の一端部側に形成され、導体パターン35Bは他端部側に形成されている。基材層35は、導体パターン35A,35Bが形成された一方主面を基材層34側にし、導体パターン35Aが導体パターン34Aと対向するよう基材層34に積層されている。
 基材層35は、長手方向が基材層33,34の一辺よりも長いため、基材層35を基材層34に積層した場合、基材層35は、平面視で、基材層33,34とは重なる部分と重ならない部分とを有する。導体パターン35Aは、基材層35において、基材層33,34と重なる部分であって、平面視で導体パターン32A~34Aに重なるように形成されている。導体パターン35Aは、帯状であって、内側に空間を形成するよう、巻回されている。導体パターン35Aは、一端が、基材層34に形成されたビア導体を介して、導体パターン34Aの一端に接続している。
 これら導体パターン32A,33A,34A,35Aがビア導体を介して接続されることで、コイル3Aが形成される。
 導体パターン35Bは矩形状であり、基材層33,34と重ならない部分に形成されている。したがって、導体パターン35Bは、平面視で、コイル3Aとは重ならない部分に形成されている。基材層35における基材層33,34と重ならない部分であって、導体パターン35Bが形成されている部分は、インダクタ素子3の実装面となる。したがって、導体パターン35Bは、インダクタ素子3の実装電極として用いられる。この導体パターン35Bは、本発明に係る「第1端子部」の一例である。
 また、基材層35には、ビア導体35C,35Dが形成されている。ビア導体35Cは、平面視で導体パターン35Aと重なり、ビア導体35Dは、平面視で導体パターン35Bと重なる位置に形成されている。
 基材層36は、基材層35と同じ大きさで同形状であり、その一方主面(図6において下面)には、導体パターン36Aが形成されている。基材層36は、その一方主面が基材層35側にして、基材層35に積層されている。導体パターン36Aは、基材層36の長手方向に沿って延びる帯状である。導体パターン36Aの一端は、基材層35に形成されたビア導体35Cを介して、導体パターン35Aの一端に接続し、他端は、ビア導体35Dを介して、実装電極である導体パターン35Bに接続している。
 このように、ビア導体35C,35D及び導体パターン36Aは、導体パターン35Bと、コイル3Aの一方端とを接続する。これらビア導体35C,35D及び導体パターン36Aは、本発明に係る「導体線路」の一例である。
 このように形成されたインダクタ素子3において、
積層体30のうち、基材層31~36のすべてが重なる部分(6層の部分)を厚肉部30Aという。また、積層体30のうち、基材層31,32のみが重なる部分(2層の部分)を薄肉部30Bといい、基材層35,36のみが重なる部分(2層の部分)を薄肉部30Cという。すなわち、薄肉部30B,30Cは、積層方向における積層体30の両端部それぞれに配置されている。そして、コイル3Aは、厚肉部30Aに形成されている。導体パターン31A,35Bは、薄肉部30B,30Cに形成されている。
 このインダクタ素子3は、導体パターン31A,35Bを実装電極として基板に実装される。本実施形態では、導体パターン31A,35Bにはコネクタ101,100が実装されている。そして、インダクタ素子3は、コネクタ101,100を介して基板に接続されるようになっている。インダクタ素子3は、コネクタ101,100を介して基板に接続できるため、はんだ付けする必要がなく、接続作業が容易となる。
 また、インダクタ素子3の実装電極である導体パターン31A,35Bは、積層方向における積層体30の両端部側それぞれに配置されている。すなわち、積層方向においてコイル3Aの一方端から引き出されたビア導体35C、導体パターン36A及びビア導体35D、並びに、コイル3Aの他方端から引き出されたビア導体31B及び導体パターン32Bは、積層方向に沿ってコイル3A近傍に形成されていない。したがって、実施形態1,2と同様、コイル3Aから生じる磁界により電力損失が生じることを抑制できる。また、平面視で、導体パターン31A,35Bは、コイル3Aと重ならないため、導体パターン31A,35Bとコイル3Aとの間で浮遊容量が生じることを抑制できる。このため、浮遊容量が生じることでコイル3Aの特性が変動するおそれを抑制できる。
 さらに、インダクタ素子3は、実施形態1,2と同様に、段差のある基板に対し、実装することが可能である。
 インダクタ素子3は、実施形態2と異なり、導体パターン31Aに対向する領域に基材層が存在しない。換言すれば、基材層33~36のサイズは、実施形態2に係る基材層23~26よりも小さい。このため、積層体30は、実施形態2に係る積層体20よりも小さく、その結果、インダクタ素子3を小型化でき、インダクタ素子3の実装領域の省スペース化が可能である。
(実施形態4)
 以下に、実施形態4に係るインダクタ素子について説明する。本実施形態に係るインダクタ素子は、実施形態3に係るインダクタ素子の積層体の積層数を減らした構成である。以下、実施形態3との相違点について説明する。
 図7は、実施形態4に係るインダクタ素子の分解斜視図である。図7は、一部が透過した図である。
 インダクタ素子4は、コイル4Aが形成された積層体40を備えている。積層体40は、LCP樹脂等の熱可塑性樹脂の基材層41,42,43,44,45が加熱プレスされることで形成されたものである。
 基材層41、42,43は、実施形態3に係る基材層32,33,34と同じである。また、基材層41,42,43の一方主面に形成されている導体パターン41A,41B,42A,43Aは、基材層32,33,34の一方主面に形成されている導体パターン31A,32A,32B,33Aと同じである。
 本実施形態では、基材層41の一方主面(図7において下面)に形成された導体パターン41A,41Bは露出していて、導体パターン41Aと、導体パターン41Bの一部を除く部分とにはレジストが形成されている。レジストが形成されていない導体パターン41Bの一部は露出していて、その部分にコネクタ101が設けられている。この露出した導体パターン41Bの一端部は、本発明に係る「第2端子部」の一例である。また、この導体パターン41Bは、本発明に係る「導体線路」の一例である。
 基材層44は、基材層42,43と同じ大きさの略正方形状であり、一方主面(図7において下面)には、導体パターン44Aが形成されている。基材層44は、その一方主面を基材層43側にし、基材層43に積層されている。導体パターン44Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン4Aの一端は、基材層43に形成されたビア導体を介して、導体パターン43Aの一端に接続している。
 これら導体パターン41A,42A,43A,44Aがビア導体を介して接続されることで、コイル4Aが形成される。
 また、基材層44には、平面視で導体パターン44Aと重なる位置にビア導体44Bが形成されている。
 基材層45は、基材層42~44の一辺と同じ長さの短辺と、その短辺より長い長辺とを有する矩形状である。基材層45の一方主面(図7において下面)には、導体パターン45Aが形成されている。導体パターン45Aは、基材層45の長手方向に沿って延びる帯状である。基材層45は、導体パターン45Aが形成された一方主面を基材層44側にし、基材層44に積層されている。
 基材層45は、長手方向が基材層44の一辺よりも長い。このため、基材層45の一端部側を基材層44に揃えて基材層45を基材層44に積層した場合、基材層45は、平面視で、基材層42~44とは重なる部分と重ならない部分とを有する。導体パターン45Aは、基材層42~44とは重なる部分と重ならない部分との両方に亘って形成されていて、重ならない部分に形成されている導体パターン45Aは露出している。そして、導体パターン45Aの露出する部分にはレジストが形成されている。このとき、導体パターン45Aの端部にはレジストが形成されず、露出している。この露出した導体パターン45Aの端部には、コネクタ100が設けられている。この露出した導体パターン45Aの一端部は、本発明に係る「第1端子部」の一例である。
 導体パターン45Aの他端部は、ビア導体44Bを通じて、導体パターン44Aの一端、すなわち、コイル4Aの一方端に接続している。このビア導体44Bと導体パターン45Aとは、本発明に係る「導体経路」の一例である。
 このように形成されたインダクタ素子4において、積層体40のうち、基材層41~45のすべてが重なる部分(5層の部分)を厚肉部40Aという。また、基材層41のみの部分(1層の部分)を薄肉部40Bといい、基材層45のみの部分(1層の部分)を薄肉部40Cという。すなわち、薄肉部40B,40Cは、積層方向における積層体40の両端部それぞれに配置されている。そして、コイル4Aは、厚肉部40Aに形成されている。実装電極である導体パターン41Bの一端は、薄肉部40Bに形成され、導体パターン45Aの一端は、薄肉部40Cに形成されている。
 このインダクタ素子4は、導体パターン41B,45Aの一端を実装電極として基板に実装される。本実施形態では、実装電極にはコネクタ101,100が実装されている。そして、インダクタ素子4は、コネクタ101,100を介して基板に接続されるようになっている。インダクタ素子4は、コネクタ101,100を介して基板に接続できるため、はんだ付けする必要がなく、接続作業が容易となる。
 また、インダクタ素子4の実装電極である導体パターン41B,45Aの一端は、積層方向における積層体40の両端部側それぞれに配置されている。すなわち、積層方向においてコイル4Aの一方端から引き出されたビア導体44B及び導体パターン45Aと、コイル4Aの他方端から引き出された導体パターン41Bとは、積層方向に沿ってコイル4A近傍に形成されていない。したがって、実施形態1~3と同様、コイル4Aから生じる磁界により電力損失が生じることを抑制できる。
 また、実施形態2,3と同様に、平面視で、実装電極である導体パターン41B,45Aの一端は、コイル4Aと重なっていないため、導体パターン41B,45Aの一端とコイル4Aとの間で浮遊容量が生じることを抑制できる。このため、浮遊容量が生じることでコイル4Aの特性が変動するおそれを抑制できる。
 さらに、インダクタ素子4は、実施形態1,2と同様に、段差のある基板に対し、実装することが可能である。
 また、実施形態3と比べて、コイル巻線数が変わることなく基材層の積層数は少ない。したがって、インダクタ素子4の低背化が可能である。
(実施形態5)
 以下に、実施形態5に係るインダクタ素子について説明する。実施形態1~4では、2つの実装電極の何れもが、基材層の一方主面(各図において下面)に設けられているのに対し、本実施形態では、2つの実装電極のうち一方が基材層の一方主面(例えば表面)に形成され、他方が基材層の他方主面(例えば裏面)に形成されている。
 図8は、実施形態5に係るインダクタ素子の分解斜視図である。図8は、一部が透過した図である。
 インダクタ素子5は、コイル5Aが形成された積層体50を備えている。積層体50は、LCP樹脂等の熱可塑性樹脂の基材層51,52,53,54,55,56が加熱プレスされることで形成されたものである。
 基材層51,52,53,54は、実施形態3に係る基材層31,32,33,34と同じである。また、基材層51,52,53,54の下面に形成されている導体パターン51A,52A,52B,53A,54Aは、実施形態3に係る導体パターン31A,32A,32B,33A,34Aと同じである。導体パターン51Aは、本発明に係る「第2端子部」の一例である。また、基材層51において、平面視で導体パターン51Aと重なる位置に形成されたビア導体51Bと、導体パターン52Bとは、本発明に係る「導体経路」の一例である。
 基材層55は、基材層53,54と同じ大きさで同形状であり、その一方主面(図8において下面)には、導体パターン55Aが形成されている。基材層55は、その一方主面を基材層54側にし、基材層54に積層されている。導体パターン55Aは帯状であって、内側に空間を形成するよう、巻回されている。導体パターン55Aは、基材層55を基材層54に積層した場合に、導体パターン54Aと重なるように形成されている。導体パターン55Aの一端は、基材層54に形成されたビア導体を介して、導体パターン54Aの一端に接続している。
 これら導体パターン52A,53A,54A,55Aがビア導体を介して接続されることで、コイル5Aが形成される。
 また、基材層55には、平面視で導体パターン55Aと重なる位置にビア導体55Bが形成されている。
 基材層56は、基材層53~55の一辺と同じ長さの短辺と、その短辺より長い長辺とを有する矩形状である。基材層56の一方主面(図8において上面)には、導体パターン56Aが形成されている。導体パターン56Aは、基材層56の長手方向に沿って延びた帯状である。基材層56は、導体パターン56Aが形成された一方主面に対向する他方主面を基材層55側にして、基材層55に積層される。このとき、基材層55に基材層56の一端部側を揃えて基材層56を基材層55に積層した場合、基材層56は、平面視で、基材層53~55が重なる部分と重ならない部分とを有する。導体パターン56Aは、基材層53~55が重なる部分と重ならない部分とに亘って形成されている。
 基材層56には、平面視で導体パターン56Aと重なる位置であって、基材層56を基材層55に重ねたときに、ビア導体55Bと重なる位置に、ビア導体56Bが形成されている。
 導体パターン56Aの一端は、基材層55,56それぞれに形成されたビア導体55B,56Bを介して、導体パターン55Aの一端に接続している。また、導体パターン56Aは露出していて、導体パターン56Aにはレジストが形成されている。このとき、導体パターン55Aに接続されている一端と反対側の導体パターン56Aの他端は、レジストが形成されず、露出している。この露出部分は、本実施形態に係る「第1端子部」の一例である。また、ビア導体55B,56B及び導体パターン56Aは、本実施形態に係る「導体経路」の一例である。
 このように形成されたインダクタ素子5において、積層体50のうち、基材層51~56のすべてが重なる部分(6層の部分)を厚肉部50Aという。また、積層体50のうち、基材層51,52のみが重なる部分(2層の部分)を薄肉部50Bといい、基材層56のみの部分(1層の部分)を薄肉部50Cという。すなわち、薄肉部50B,50Cは、積層方向における積層体50の両端部それぞれに配置されている。そして、コイル5Aは、厚肉部50Aに形成されている。導体パターン51A、及び、導体パターン56Aの一端は、薄肉部50B,50Cに形成されている。
 インダクタ素子5の実装電極である導体パターン51Aと、導体パターン56Aの他端とは、積層方向における積層体30の両端部側それぞれに配置されている。すなわち、積層方向において、コイル5Aの一方端から引き出されたビア導体55B,56B及び導体パターン56A、及び、コイル5Aの他方端から引き出された導体パターン52B及びビア導体51Bは、積層方向に沿ってコイル5A近傍に形成されていない。したがって、実施形態1~4と同様、コイル5Aから生じる磁界により電力損失が生じることを抑制できる。
 また、平面視で、導体パターン51Aと導体パターン56Aの他端とは、コイル5Aと重ならないため、導体パターン51A及び導体パターン56Aの他端とコイル5Aとの間で浮遊容量が生じることを抑制できる。このため、浮遊容量が生じることでコイル5Aの特性が変動するおそれを抑制できる。
 また、インダクタ素子5は、実装電極である導体パターン51Aと導体パターン56Aの他端が積層方向において異なる位置にあるため、図2で説明したように、段差のある基板に対し、実装することが可能である。さらに、インダクタ素子5は、積層体50の最下層の基材層51の一方主面(以下、下面と言う)と、最上層の基材層56の他方主面(以下、上面と言う)とに実装電極を有している。このため、実装面同士が距離を置いて対向して設けられた二つの基板に跨ってインダクタ素子5を実装することができる。
 図9は、実施形態5に係るインダクタ素子5の実装態様を説明するための図である。インダクタ素子5を実装する2つの基板111,112は、実装面同士が距離を置いて対向して設けられている。この二つの基板111,112に対してインダクタ素子5を実装する場合、積層体50の最上層の基材層56の上面に設けられたコネクタ100を基板112に接続し、最下層の基材層51の下面に設けられたコネクタ101を基板111に接続することで、インダクタ素子5を基板111,112に対して実装できる。
 また、インダクタ素子5の基材層56は、他の基材層と重ならない部分を有しているため、基板111上に実装部品113が実装され、その実装部品113の直上に基板112の実装電極が位置している場合であっても、図9に示すように、インダクタ素子5を基板111,112に対して実装できる。
 以上のように、インダクタ素子5は、実施形態1~4と同様に、段差のある基板に対し、実装可能であり、また、図9に示す、対向配置された異なる基板に対し、実装可能である。
 なお、上記実施形態1~5に係るインダクタ素子は、コモンモートチョークコイルやアンテナとして用いてもよい。また、電子機器が備えるインダクタ素子を、実施形態1~5に係るインダクタ素子としてもよい。
1,2,3,4,5…インダクタ素子
1A,2A,3A,4A,5A…コイル
10,20,30,40,50…積層体
10A…厚肉部
10B…薄肉部
11,12,13,14,15,16…基材層
151,152…基材層
11A,12A,13A,14A,15A,15B…導体パターン
11B,15C,15D…ビア導体
20A…厚肉部
20B…薄肉部
21,22,23,24,25,26…基材層
21A,22A,22B,23A,24A,25A,26A…導体パターン
21B,25C,25D…ビア導体
30A…厚肉部
30B,30C…薄肉部
31,32,33,34,35,36…基材層
31A,32A,32B,33A,34A,35A,35B,36A…導体パターン
31B,35C,35D…ビア導体
40…積層体
40A…厚肉部
40B,40C…薄肉部
41,42,43,44,45…基材層
41A,41B,42A,43A,44A,45A…導体パターン
44B…ビア導体
50…積層体
50A…厚肉部
50B,50C…薄肉部
51,52,53,54,55,56…基材層
51A,52A,52B,53A,54A,55A,56A…導体パターン
51B,55B,56B…ビア導体
101,100…コネクタ
110,111,112…基板
110A…平板部
110B…段差部
113…実装部品

Claims (7)

  1.  基材層が積層された積層体と、前記積層体に形成された、積層方向を巻回軸とするコイルとを備えるインダクタ素子において、
     前記積層体は、前記積層方向の一端部側に位置する薄肉部、及び、前記薄肉部よりも基材層の積層数が多い厚肉部を含み、
     前記コイルは前記厚肉部に形成され、
     前記積層体の一端部側に位置する前記コイルの一方端は、前記薄肉部に形成された第1端子部に接続され、
     前記積層体の他端部側に位置する前記コイルの他方端は、前記積層体の他端部側に配置された基材層に形成された第2端子部に接続され、
     前記第1端子部及び前記第2端子部は、前記積層方向において互いに異なる位置に配置されている、
     インダクタ素子。
  2.  前記第1端子部及び前記第2端子部は、前記コイルの両端と前記第1端子部及び前記第2端子部とを接続する導体線路のそれぞれが前記厚肉部において前記コイルの側方近傍でコイルの巻回軸方向に沿って配置されない位置に形成されている、
     請求項1に記載のインダクタ素子。
  3.  前記第1端子部及び前記第2端子部は、前記積層体の平面視で、前記コイルと重ならない位置に配置されている、
     請求項1又は2に記載のインダクタ素子。
  4.  前記薄肉部は可撓性を有し、
     前記薄肉部に形成された前記第1端子部にはコネクタが接続されている、
     請求項1から3の何れかに記載のインダクタ素子。
  5.  前記積層体は前記薄肉部を複数有し、
     前記薄肉部は、前記積層方向における前記積層体の両端部側それぞれに配置されている、
     請求項1から4の何れかに記載のインダクタ素子。
  6.  前記第1端子部は、前記積層方向における前記積層体の一方端側の最外層に形成され、
     前記第2端子部は、前記積層方向における前記積層体の他方端側の最外層に形成されている、
     請求項1から5の何れかに記載のインダクタ素子。
  7.  請求項1から6の何れかに記載のインダクタ素子を備えた電子機器。
PCT/JP2014/080305 2013-12-06 2014-11-17 インダクタ素子及び電子機器 WO2015083525A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201490000619.6U CN205080957U (zh) 2013-12-06 2014-11-17 电感元件及电子设备
JP2015513910A JP5765507B1 (ja) 2013-12-06 2014-11-17 インダクタ素子及び電子機器
US14/863,790 US9324491B2 (en) 2013-12-06 2015-09-24 Inductor device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013252586 2013-12-06
JP2013-252586 2013-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/863,790 Continuation US9324491B2 (en) 2013-12-06 2015-09-24 Inductor device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2015083525A1 true WO2015083525A1 (ja) 2015-06-11

Family

ID=53273292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080305 WO2015083525A1 (ja) 2013-12-06 2014-11-17 インダクタ素子及び電子機器

Country Status (4)

Country Link
US (1) US9324491B2 (ja)
JP (1) JP5765507B1 (ja)
CN (1) CN205080957U (ja)
WO (1) WO2015083525A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016742A (ja) * 2017-07-10 2019-01-31 株式会社村田製作所 多層基板
JP2019016743A (ja) * 2017-07-10 2019-01-31 株式会社村田製作所 多層基板
JP2019053271A (ja) * 2017-09-12 2019-04-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. カメラモジュール
US11043626B2 (en) 2016-10-24 2021-06-22 Murata Manufacturing Co., Ltd. Multilayer substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170291372A1 (en) * 2016-04-09 2017-10-12 Velo3D, Inc. Generating three-dimensional objects by three-dimensional printing with rotation
WO2018008573A1 (ja) * 2016-07-06 2018-01-11 株式会社村田製作所 電子機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144360A1 (ja) * 2011-04-20 2012-10-26 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
WO2014129279A1 (ja) * 2013-02-19 2014-08-28 株式会社村田製作所 インダクタブリッジおよび電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608361B2 (en) * 2001-07-31 2003-08-19 G-Plus, Inc. On-chip inductor using active magnetic energy recovery
JP3792635B2 (ja) * 2001-12-14 2006-07-05 富士通株式会社 電子装置
KR101161361B1 (ko) * 2004-03-26 2012-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
JP4544181B2 (ja) * 2006-03-03 2010-09-15 セイコーエプソン株式会社 電子基板、半導体装置および電子機器
JP2007317838A (ja) 2006-05-25 2007-12-06 Sanyo Electric Co Ltd 回路装置および表面実装コイル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144360A1 (ja) * 2011-04-20 2012-10-26 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
WO2014129279A1 (ja) * 2013-02-19 2014-08-28 株式会社村田製作所 インダクタブリッジおよび電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043626B2 (en) 2016-10-24 2021-06-22 Murata Manufacturing Co., Ltd. Multilayer substrate
JP2019016742A (ja) * 2017-07-10 2019-01-31 株式会社村田製作所 多層基板
JP2019016743A (ja) * 2017-07-10 2019-01-31 株式会社村田製作所 多層基板
JP2019053271A (ja) * 2017-09-12 2019-04-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. カメラモジュール
JP7135258B2 (ja) 2017-09-12 2022-09-13 サムソン エレクトロ-メカニックス カンパニーリミテッド. カメラモジュール

Also Published As

Publication number Publication date
JPWO2015083525A1 (ja) 2017-03-16
US9324491B2 (en) 2016-04-26
CN205080957U (zh) 2016-03-09
JP5765507B1 (ja) 2015-08-19
US20160012963A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5765507B1 (ja) インダクタ素子及び電子機器
JP6070895B2 (ja) 積層型コイル素子、アンテナモジュール、および、無線通信モジュール
JP2015088753A (ja) コイル部品とその製造方法、コイル部品内蔵基板、及びこれを含む電圧調節モジュール
US10051730B2 (en) Multilayer substrate manufacturing method and multilayer substrate
WO2017018134A1 (ja) 多層基板および電子機器
JP6259813B2 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
WO2019107131A1 (ja) 多層基板、多層基板の実装構造、多層基板の製造方法、および電子機器の製造方法
JP2010103388A (ja) 積層フレキシブル配線基板、その製造方法、及びそれを用いたrfid用電子タグのアンテナ
WO2017104309A1 (ja) 積層型コイル
JPWO2019188287A1 (ja) 樹脂多層基板、アクチュエータ、および樹脂多層基板の製造方法
KR102444844B1 (ko) 자기 결합 장치 및 이를 포함하는 평판 디스플레이 장치
JP5945801B2 (ja) フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法
KR101664092B1 (ko) 코일 조립형 트랜스포머
JP6699805B2 (ja) インダクタブリッジおよび電子機器
JP2013207151A (ja) トランス
JP6583560B2 (ja) 電子機器
JP2020145370A (ja) プレーナトランス
TW201526044A (zh) 模組化線圈板、其線圈板組件及包含該線圈板或線圈組件的平面變壓器
JP2002008922A (ja) コイル部品
JP2016213437A (ja) コイル内蔵素子、コイルアンテナ、電子機器およびコイル内蔵素子の製造方法
WO2018147398A1 (ja) 基板組込み型インダクタ
JP6303440B2 (ja) インダクタ素子
JP2004172361A (ja) 電源装置用コイル部品の基板実装構造
JP2020038863A (ja) プレーナトランス
KR20190111867A (ko) 연성코일과 그 제조방법 및 이를 포함하는 전자부품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201490000619.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015513910

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867733

Country of ref document: EP

Kind code of ref document: A1