WO2015081755A1 - 具有双向成形微孔的片材及其制造方法 - Google Patents

具有双向成形微孔的片材及其制造方法 Download PDF

Info

Publication number
WO2015081755A1
WO2015081755A1 PCT/CN2014/088507 CN2014088507W WO2015081755A1 WO 2015081755 A1 WO2015081755 A1 WO 2015081755A1 CN 2014088507 W CN2014088507 W CN 2014088507W WO 2015081755 A1 WO2015081755 A1 WO 2015081755A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
bidirectionally
mold
extending along
shaped micropores
Prior art date
Application number
PCT/CN2014/088507
Other languages
English (en)
French (fr)
Inventor
谢荣雅
林永富
张源炘
Original Assignee
奇想创造事业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇想创造事业股份有限公司 filed Critical 奇想创造事业股份有限公司
Priority to US15/039,320 priority Critical patent/US20170165886A1/en
Publication of WO2015081755A1 publication Critical patent/WO2015081755A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8409Sound-absorbing elements sheet-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0001Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties
    • B29K2995/0002Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/001Flat articles, e.g. films or sheets having irregular or rough surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8414Sound-absorbing elements with non-planar face, e.g. curved, egg-crate shaped
    • E04B2001/8419Acoustical cones or the like, e.g. for anechoic chambers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8495Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the openings going through from one face to the other face of the element

Definitions

  • the present invention relates to a sheet having bidirectionally shaped micropores and a method of manufacturing the same, and more particularly to a sheet for sound absorbing or breathable waterproofing.
  • the building In the modern urban living environment, the building is adjacent to the building, and there are few open and quiet places such as parks, green spaces or campuses. In the metropolis where the land is large, the living space is compressed to the extreme, there is almost no buffer space in the house, and the noise of the environment is always involved in people's lives. Especially in houses on the roads, highways or on both sides of the railway, the noise of the car has a particularly serious impact on the quality of life. And most of the apartment houses, the wall sound insulation is not good, the sound of the neighboring room, TV volume or children's voices will become the noise next door, destroying the tranquility of personal space. Therefore, relevant personnel continue to develop the sound absorbing structure, but at present most of the sound absorbing structures are more complicated to process, and a layer of sound absorbing layer is required in the sound absorbing panel, and the manufacturing cost is also high.
  • the metal sheet is machined such that one side is a fine multi-curved surface 11 and the other side is a fine geometric hole 12.
  • the tapered surface of the micro-geometry hole 12 can bounce back and forth with sound waves and introduce sound waves into the fine geometric holes 12.
  • the fine geometric hole 12 has a point in the groove bottom which must face the point between the four squares of the fine multi-surface appearance surface 11 and the two points are aligned with each other to produce a perforation.
  • the acoustic waves are captured by the solid surface of the micro-geometry slot 12 and are guided through the perforation.
  • the hole has a certain depth, it is formed by press working once, and at least one side of the molds on both sides needs a sharp and solid structure to penetrate the metal plate to form the perforation. And in the process of processing metal, the loss will be more serious than the general mold; obviously affecting the cost of processing.
  • the material used in the mold In order to prevent the mold from breaking or bending during the collision and perforation, the material used in the mold must meet certain requirements, and the part for perforation should not be too sharp, and must have a certain width to reduce the probability of damage and maintain the life of the mold. . In contrast, such a structure also reversely limits the size of the aperture of the sound absorbing aperture and does not exceed a particular size to produce finer microholes.
  • the split processing method is used instead, not only the output efficiency is low, but also more time cost is required to be processed, and the problem of the alignment is still not handled. Since the sound-absorbing aperture of this type is not large, it is only about tens of micrometers to hundreds of micrometers. If it is processed twice, the two sides of the mold are required to be precisely aligned in two separate processes, and the difficulty is difficult. Higher, the test will be more severe, the chance of the perforation position deviating from the expected will be greatly increased, and the product yield will be greatly reduced.
  • the present invention has been made in an effort to provide a sheet having bidirectionally shaped micropores and a method of manufacturing the same, which not only greatly simplifies the conventional mold, but also produces a finer sound absorbing hole, and simultaneously supports the method of primary forming and fractional forming, It greatly reduces the risk of mold collisions and completely solves the problem of coordinated alignment during processing, while improving product yield and output efficiency.
  • An object of the present invention is to provide a method for producing a sheet having bidirectionally shaped micropores, which can reduce manufacturing cost by simplifying the mold structure.
  • Another object of the present invention is to provide a method for producing a sheet having bidirectionally shaped micropores, so that finer pores can be produced, thereby improving the sound insulating effect.
  • Another object of the present invention is to provide a method for producing a sheet having bidirectionally shaped micropores, which greatly reduces the difficulty of alignment and effectively improves product yield and output efficiency.
  • Another object of the present invention is to provide a method for producing a sheet having biaxially shaped micropores, which can select a single processing and separate processing procedures on both sides to increase the flexibility of the manufacturing process.
  • Another object of the present invention is to provide a sheet material having bidirectionally shaped micropores, which allows the bidirectional mold to be positioned and formed with perforations by angularly interlacing the lines and the line clips, instead of aligning the points with the dots, so that a more subtle shape can be produced.
  • the hole is to provide a sheet material having bidirectionally shaped micropores, which allows the bidirectional mold to be positioned and formed with perforations by angularly interlacing the lines and the line clips, instead of aligning the points with the dots, so that a more subtle shape can be produced.
  • Another object of the present invention is to provide a sheet having biaxially shaped micropores which achieves a breathable and waterproof effect via a hydrophobic treatment.
  • the present invention provides a method of manufacturing a sheet having bidirectionally shaped micropores, comprising the steps of: a) providing a sheet; and b) processing both sides of the sheet to form protrusions, respectively.
  • a half side and a base half side wherein the base half side is formed with a plurality of recesses extending along the first direction; and the convex half side is extended by the base half and forms a plurality of extending along the second direction a second portion extending along an angle that is angular with the first direction, and a bottom edge is formed at an intersection of the edge and the adjacent edge; Holes are formed in the staggered positions of the depressed portions, respectively.
  • a sheet having bidirectionally shaped micropores comprising: a base half side formed with a plurality of recesses extending along a first direction; a convex half extending from the base half, Having a plurality of ridges extending along a second direction, the second direction extending along an angle that is angular with the first direction, and the intersection of the ridges and adjacent ridges are respectively formed a bottom edge; a hole is formed in each of the staggered positions of the bottom edge and the recess.
  • the invention discloses a sheet material with bidirectionally shaped micropores and a manufacturing method thereof.
  • the convex half side and the base half side are manufactured by a simple mold staggered structure, and fine holes are naturally formed at the staggered positions of the bottom edge and the concave portion.
  • the mold structure be simplified, the selection flexibility of the manufacturing process can be increased, the manufacturing cost can be reduced, the manufacturing yield and the output efficiency can be improved, and the finer holes can be manufactured to improve the sound insulation effect, thereby achieving the above objective.
  • FIG. 1 is a perspective view of a prior art, illustrating a situation in which a fine geometric hole groove and a fine multi-curved surface are formed to face a perforation;
  • FIG. 2 is a perspective view of the prior art for explaining a situation in which a fine geometric hole groove and a fine multi-curved surface face forming a perforation;
  • FIG. 3 is a perspective view of a first preferred embodiment of the present invention for explaining a case where a line intersects a line to form a hole;
  • Figure 4 is a side elevational view of a first preferred embodiment of the present invention for presenting a recessed valley having a triangular cross section;
  • Figure 5 is a side view of a first preferred embodiment of the present invention, showing a section of the rib having a triangular prism shape;
  • Figure 6 is a flow chart showing a first preferred embodiment of the present invention for explaining a step of forming a sheet at a time
  • Figure 7 is a flow chart showing a second preferred embodiment of the present invention for explaining the steps of sheet forming and hydrophobization
  • Figure 8 is a flow chart showing a third preferred embodiment of the present invention for explaining the steps of manufacturing the biaxially shaped microporous sheet according to the present invention
  • Figure 9 is a plan view showing a third preferred embodiment of the present invention for illustrating that the bottom edge and the ridge are curved;
  • Figure 10 is a side elevational view of a third preferred embodiment of the present invention for illustrating the structure of the mold set and the dome shape in which the ribs are flared.
  • a sheet having bidirectionally shaped micropores according to a first preferred embodiment of the present invention is as shown in Figs. 3 and 4, and the two side faces of the sheet are formed by rolling to form a base half 32 and a convex half 31, respectively.
  • the outer edges of the upper and lower rolls are respectively formed with parallel protruding beadings, and the upper rolls and the lower rolls are arranged at right angles. Therefore, after rolling, the base half 32 is formed with a plurality of recessed portions 320.
  • the recessed portion 320 is recessed downward from the plane of the base half 32, and has a triangular-shaped extended valley in cross section.
  • the recess 320 extends along a first course.
  • each of the recesses 320 is straight and the recesses 320 are parallel to each other.
  • a convex half 31 is formed on the other side of the sheet opposite to the base half 32. It can be seen that the convex half 31 is integrally connected with the aforementioned base half 32, and is formed from the same sheet, such as from The base half 32 extends out.
  • the convex half 31 is formed with a plurality of protrusions.
  • a ridge 311 it is defined herein as a ridge 311, and each of the ridges 311 extends along a second direction.
  • the strips are distributed in the Y direction 34 parallel to each other.
  • the ridge 311 of this example has a triangular prism shape and an outer shape like a mountain ridge; if viewed from a plan view of Fig. 3, it is a mountain ridge that runs parallel to each other. Due to the simple structure of the rolled roller, the cost of manufacturing the mold can be greatly reduced, and the rolling process does not need to be deliberately aligned, and the output efficiency can be effectively improved.
  • the ridge portion 311 has a convex shape, a minimum portion is formed between the rib portion 311 and the ridge portion 311, which is located at the boundary between the two rib portions 311, such as two paths. The bottom of the valley between the mountains. Further, since the ridge portion 311 is linear, the boundary between the two rib portions 311 is also linear and extends in the Y direction 34 in FIG. The aforementioned minimum is defined as a bottom edge 310 in consideration of the appearance and convenience of explanation.
  • the base half 32 and the convex half 31 of the present invention are respectively formed on opposite side faces of each other, so that the concave portion from the surface of the base half 32 gradually approaches the convex half 31 of the other side; The lowest point of the out half 31 will also be closer to the base half 32 of the opposite side. Therefore, when the X direction 33 and the Y direction 34 intersect each other at an angle, the bottom edge 310 and the recessed portion 320 also intersect each other from a plan view. At the time of processing, if the bottom edge 310 and the recessed portion 320 having the triangular cross section are cut to a sufficient depth and slightly penetrate the convex half side 31 and the base half side 32, any two linear intersections may pass through to form. A hole 30 that penetrates the entire sheet.
  • the machined two sides of the mold need only be staggered in a line extending direction to form the hole 30; thus, the alignment forming hole 30 is Very easy thing.
  • the method of the present invention greatly reduces the manufacturing difficulty of the hole 30, and the product yield is greatly improved.
  • the mold for forming the perforations is not too sharp, and the aperture of the perforations is limited.
  • the conventional mold must be a sharp pyramid, and in the present invention, it is a steep columnar structure, which also makes the sound-absorbing hole of the small aperture more feasible. It is easy to manufacture.
  • the manufacturing method is as shown in Fig. 6.
  • This example is manufactured by roll pressing.
  • a sheet for processing is provided.
  • the sheet is rolled, and the structure of the two sides of the sheet is simultaneously formed in a bidirectional processing manner, so that one of the side rollers is pressed out of the convex half side; the opposite side is the same
  • the step roller presses out the aforementioned base half.
  • the projecting half of the structure extends along the second course, and the structure of the base half is formed along the first course.
  • the second course extends in a direction that is at an angle to the first course such that the plurality of bottom edges and the plurality of depressions intersect each other. Therefore, after the rolling is completed, a plurality of penetrating holes are naturally formed on the sheet.
  • the sound absorbing effect can be further improved accordingly.
  • the cross-sections of the aforementioned ridges and recesses may be adjusted to various shapes depending on the requirements, and are not limited to the simple triangular-shaped cylinders or extended valleys. If the triangular shape is changed to be concave or convex on both sides of the waist, it is still a possible application range of the present invention.
  • the sheet with bidirectionally shaped micropores provided by the present invention not only solves the problems in the prior art, but also reduces the diameter of the narrowest portion of the sound absorbing hole to 0.2 mm or less, and can also be manufactured according to requirements. Fine holes to enhance sound insulation and ensure quality of living. Even in accordance with the above, it is conceivable to continuously reduce the pore diameter of such a sheet having bidirectionally shaped micropores to 0.1 ⁇ m, so that the size at which water droplets cannot easily penetrate can be achieved.
  • a second preferred embodiment of the invention is the application of the structure from the field of sound insulation to the field of waterproof and breathable.
  • breathable raincoats or waterproof jackets, umbrellas, etc. need to prevent the infiltration of water droplets, but also to maintain the circulation of air inside and outside, to avoid sultry conditions.
  • the manufacturing method of the present invention can also be applied to a manufacturing method of fractional processing. As shown in Fig. 7, the process of the second preferred embodiment of the present invention is such that a sheet is provided in step 21', and in step 221', one side of the sheet is first pressed and the other side is stamped.
  • step 222' the sheet is changed into a face and pressed against a side surface which is still unmachined so that the convex half side and the base half side are formed in a divided manner. It is worth noting that there is no fixed forming sequence for the convex half and the base half, which can be adjusted according to the needs.
  • first direction and the second direction of the example are orthogonal to each other, so the ridges and the recesses are perpendicular to each other and have a mesh-like interlaced structure.
  • the sheet formed by steps 221' and 222' has a pore diameter at the narrowest point of the pores of not more than 0.1 ⁇ m. This predetermined pore size is used to block water droplets to prevent water droplets from penetrating.
  • step 23' the surface of the sheet is subjected to a hydrophobizing treatment. Through the processing of this step, the material of the sheet is incompatible with the water droplets.
  • the water droplets stay on the holes for a long time, and no water droplets gradually infiltrate into the holes; thereby improving the waterproof effect.
  • the air can easily penetrate the sheet, so that the structure of the present invention can achieve the waterproof perspiration effect that the sweat of the body is carried by the air and the external rainwater cannot drip.
  • the third preferred embodiment of the present invention forms the second course 34" into a non-linear curve in a manner of injection molding.
  • a mold set is provided, the mold components being a convex half mold 41" and a base half mold 42".
  • the base half mold 42" is formed with a plurality of first along a first direction 33" extended projections 420", and the convex half molds 41" have a plurality of valleys 411" extending along a second strike 34", which are curved here.
  • the convex half mold 41" and the base half mold 42" are combined to form a cavity.
  • the combined mold set will form a top edge 410" where each valley portion 411" and the adjacent valley portion 411" meet each other.
  • step 26" A molten substrate of plastic material is injected into the cavity of the mold set to form a biaxially shaped microporous sheet.
  • step 27 the plastic is subjected to demolding after being condensed, and the surface of the sheet may be hydrophobized as described above.
  • the ridge portion 311" is formed into a creeping curve as it is formed in accordance with the curved valley portion 411".
  • the bottom edge 310" recessed between the two ribs 311" is kept equidistant from the ridge 311", so that the bottom edge 310" and the ridge 311" are parallel to each other as viewed from the top view 9.
  • the recessed portion 320" on the other side of the sheet is linear in this example. Of course, this is not a limitation, and may be other non-linear lines.
  • the recessed portion 320" and the bottom edge 310" are interlaced to form the hole 30" of the present invention. Referring particularly to the side view 10, the edge portion 311" of the present example is not triangular, but a circle having a slight outer curvature. Top shape.
  • the manufacturing method of the present invention can be applied to processing methods such as primary molding and fractional molding.
  • the linear bottom edge and the linear recesses intersect each other.
  • the hole is required to be aligned with the point, the invention can be formed only by the intersection of the line and the line, the manufacture is simple and easy, and the perforation rate can be improved; They can be staggered with each other, so the mold is not easy to be damaged; it can also be made into smaller micropores to enhance the sound absorption and waterproof effects.
  • the above description is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, but all the equivalent equivalent changes and modifications made according to the contents of the claims and the description of the present invention belong to the present invention. Coverage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种具有双向成形微孔的片材及其制造方法。该片材包括基础半侧(32)和由基础半侧(32)延伸的凸出半侧(31),基础半侧(32)包括多个沿第一走向(33)延伸的凹陷部(320),凸出半侧(31)具有多个沿第二走向(34)延伸的棱部(311),第一走向(33)与第二走向(34)之间有夹角,相邻棱部(311)的交会处为底缘(310),底缘(310)与凹陷部(320)的交错位置形成有孔洞(30)。该片材通过对原料片材辊压或冲压成形或者向模具组内射入熔融基材成形制得。该制造方法简单、成品率高、成本低,制造出的片材具有更细微的微孔结构。

Description

具有双向成形微孔的片材及其制造方法
相关申请的交叉引用
本申请要求享有于2013年12月6日提交的名称为“具有双向成形微孔的片材及其制造方法”的中国专利申请CN201310659072.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及一种具有双向成形微孔的片材及其制造方法,尤其涉及用于吸音或透气防水的片材。
背景技术
在现代的都市生活环境中,楼与楼紧邻,而少有公园、绿地或校园等空旷、静逸的场所。在寸土寸金的大都市里,居住空间被压缩到极致,挨家挨户几乎没有缓冲空间,环境制造的噪音时时刻刻地介入人们的生活。尤其是位于马路、高速公路或铁道两侧的住宅,车子的噪音对生活质量的影响特别严重。且大部分的公寓房子,墙壁隔音效果并不佳,左邻右舍的音响、电视音量或小孩嗓门等声音,都会成为隔壁的噪音,破坏个人空间的宁静。因此相关人员不断进行吸音结构的研发,但目前多数吸音结构的加工都较为复杂,且吸音板内又须多加一层吸音薄层,制造成本也较高。
对此,有人提出了一种一体成形的吸音结构,如图1、2所示,将金属片材加工,使其一侧为微细多曲面外观面11,另一侧为微细几何孔槽12。微细几何孔槽12的锥状表面可以来回反弹声波,并将声波导入微细几何孔槽12之中。微细几何孔槽12的槽底中具有一个点,该点必须正对微细多曲面外观面11四个方形中间的点,两点彼此对位才能产生穿孔。声波被微细几何孔槽12的立体表面捕捉,并被导引穿通过此一穿孔。
观察其结构,不难发现该方案的制造难度高。若采用一次成形的冲压加工,制造时正反两面的模具必须精密对位,不能有些许的偏离,否则微细几何孔槽12 的槽底凹点会错开微细多曲面外观面11的谷底凹点。两凹点错位将使穿孔无法穿透,此种加工误差也难以补救。一方面使得良率不易提高而造成材料与时间的浪费,另一方面还必须再重新加工制造。
尤其当孔洞具有一定深度时,要以冲压加工一次成形,两侧的模具中,至少一侧需要有尖锐且坚实的结构,以穿透金属板成形穿孔。且在加工金属的过程中,损耗将比一般的模具严重;明显影响加工的成本。且为防止模具在冲撞穿孔的过程中断裂或弯折,模具使用的材质必须达到一定要求,用以穿孔的部分也不能太过尖细,必须保有一定宽度,以降低损坏的机率而保持模具寿命。然而相对地,这样的结构也反向限制住吸音孔孔径的大小,无法超越特定尺寸而制造更细小的微孔。
最后,考虑双向同时的单次加工或正反面两次加工。若利用同时加工的方式,负责穿孔的模具必须穿透被加工的金属板,还必须精确对位,才能确保穿孔确实贯穿金属板,穿至另一侧。突出侧的模具将可能冲撞到另一侧的模具,而造成模具损伤;相反地,要避免模具间冲撞的风险,就会留下穿孔未曾贯穿的可能性,造成鱼与熊掌的取舍难题。
若改为采用分次加工方式,不仅产出效率较低,需要在加工上投注更多时间成本,且仍无法处理所述对位的问题。由于这一类的吸音孔孔径并不大,仅约数十微米至数百微米,若分两次加工,在两段独立的工序中要求两侧模具精密对位,所面临的难题,难度将更高、考验将更严峻、穿孔位置偏离预期的机率也会大幅提升,产品良率因而大幅降低。
发明内容
因此,本发明试图提供一种具有双向成形微孔的片材及其制造方法,不仅大幅简化以往的模具,可以制造出更细微的吸音孔洞,且同时支持一次成形与分次成形的方法,又大幅降低了模具互相冲撞的风险,并彻底解决了加工时协调对位的问题,同时提升产品良率及产出效率。
本发明的一个目的在于,提供一种具有双向成形微孔的片材的制造方法,通过简化模具结构来降低制造成本。
本发明的另一个目的在于,提供一种具有双向成形微孔的片材的制造方法,使得可以制造出更细微的孔洞,借此提升隔音效果。
本发明的另一个目的在于,提供一种具有双向成形微孔的片材的制造方法,大幅降低对位困难,有效提升产品良率及产出效率。
本发明的另一个目的在于,提供一种具有双向成形微孔的片材的制造方法,可选择单次加工与两侧分别加工程序,增加制造流程的弹性。
本发明的另一个目的在于,提供一种具有双向成形微孔的片材,让双向模具以线与线夹有角度交错而定位形成穿孔,取代点与点的对位,使得可以制造出更细微的孔洞。
本发明的另一个目的在于,提供一种具有双向成形微孔的片材,经由疏水处理,达成透气且防水的效果。
为了达到上述目的,本发明提供了一种制造具有双向成形微孔的片材的方法,包括下列步骤:a)提供片材;及b)加工该片材的两侧面,使其分别形成凸出半侧以及基础半侧,其中该基础半侧形成有多个沿第一走向延伸的凹陷部;以及该凸出半侧是由所述基础半侧延伸,并形成多个沿第二走向延伸的棱部,该第二走向是沿着与所述第一走向间夹有角度的方向延伸,且所述棱部与相邻所述棱部的交会处分别形成有底缘;使得所述底缘与所述凹陷部的交错位置分别形成有孔洞。
通过所述方法,制造出一种具有双向成形微孔的片材,包括:基础半侧,形成有多个沿第一走向延伸的凹陷部;由所述基础半侧延伸的凸出半侧,具有多个沿第二走向延伸的棱部,该第二走向是沿着与所述第一走向间夹有角度的方向延伸,且所述棱部与相邻所述棱部的交会处分别形成有底缘;使得所述底缘与所述凹陷部的交错位置分别形成有孔洞。
本发明公开了具有双向成形微孔的片材及其制造方法,通过简单的模具交错结构,制造出凸出半侧以及基础半侧,底缘与凹陷部的交错位置自然形成有微细的孔洞,不仅可以简化模具结构、增加制造流程的选择弹性、降低制造成本,也可以提升制造良率及产出效率,更可以制造出更细小的孔洞而提升隔音效果,一举达成所述目的。
附图说明
图1为现有技术的立体图,用以说明微细几何孔槽与微细多曲面外观面对位成形穿孔的情况;
图2为现有技术的立体图,用以说明微细几何孔槽与微细多曲面外观面对位成形穿孔的情况;
图3为本发明第一优选实施例的立体图,用以说明线与线相交,成形孔洞的情形;
图4为本发明第一优选实施例的侧视图,用以呈现凹陷部的截面为三角形状的延伸凹谷;
图5为本发明第一优选实施例的侧视图,用以呈现棱部的截面为三角柱体状;
图6为本发明第一优选实施例的流程图,用以说明片材一次加工成形的步骤;
图7为本发明第二优选实施例的流程图,用以说明片材分次加工成形、以及疏水化处理的步骤;
图8为本发明第三优选实施例的流程图,用以说明射出成形根据本发明的双向成形微孔片材的制造步骤;
图9为本发明第三优选实施例的俯视图,用以说明底缘与棱部呈曲线状;
图10为本发明第三优选实施例的侧视图,用以说明模具组的结构以及棱部呈外扩的圆顶状。
具体实施方式
有关本发明的前述内容及其他技术内容、特点与功效,在下面结合附图的优选实施例的详细说明中,将可清楚呈现;此外,在各实施例中,相同的组件将以相似的标号表示。
本发明第一优选实施例的具有双向成形微孔的片材如图3及图4所示,片材的两个侧面通过辊压的方式,分别形成基础半侧32以及凸出半侧31,在本例中,上下两侧的辊筒外缘,分别形成有平行的突出压条,且上方辊筒与下方辊筒的压条走向呈直角排列。因此,经过辊压后,基础半侧32上形成有多道凹陷部320,顾名思义,凹陷部320是从基础半侧32的平面向下凹陷而成,其截面呈三角形状的延伸凹谷。凹陷部320是沿着一个第一走向延伸,在本例中,第一走向被例释为X方向33,因此每一道凹陷部320皆为直条状,且各凹陷部320彼此平行。片材上相反于基础半侧32的另一侧面则形成凸出半侧31,从图中可见凸出半侧31与前述的基础半侧32一体相连,皆成形自同一个片材,如从基础半侧32延伸而出。
请同时参考图5所示,其中的凸出半侧31形成有多个凸出状物,为说明方便,在此定义为棱部311,每一道棱部311沿着一个第二走向延伸,在本例中即彼此平行的Y方向34的条状分布。以侧视的角度观测,本例的棱部311截面为三角柱体状,外状如山棱;若由图3的俯视角度观察,则如一道道彼此平行绵延的山峦。由于辊压的辊筒结构简单,制造模具的成本可以大幅降低,且辊压过程不需刻意对位,也可以有效提升产出效率。
从图3与图5中皆可发现,由于棱部311为凸起状,因此棱部311与棱部311之间便形成有一个最低处,正位于两个棱部311的交界,如两道山岳之间的低洼谷底。且棱部311为直线状,故两条棱部311的交界处亦为线状,并沿着图3中的Y方向34延伸。考虑到外观以及解说的方便,将前述的最低处定义为一道底缘310。
本发明的基础半侧32及凸出半侧31分别成形在彼此相反的两侧面上,所以从基础半侧32的表面下凹,便会逐渐接近另一侧的凸出半侧31;而凸出半侧31的最低处,也会较接近相反侧面的基础半侧32。因此,当X方向33与Y方向34彼此夹一角度相交时,从俯视的角度来看,底缘310与凹陷部320也会彼此相交。加工时,只要将所述截面为三角状的底缘310与凹陷部320切至足够的深度,稍微贯穿凸出半侧31及基础半侧32,则任两条线形相交处就会贯通,形成穿透整个片材的孔洞30。
由于本发明的基础半侧32及凸出半侧31皆为线状,加工的两侧模具只需在线形的延伸走向上彼此交错,便能成形孔洞30;如此一来对位成形孔洞30是十分轻易的事情。相较过往的技术,本发明的方法大幅降低孔洞30的制造难度,产品良率从而大幅提升。
尤其,在上述现有技术中,受限于用以形成穿孔的模具不能太尖细,让穿孔的孔径受到限制,通过本发明的记述,即使上下两处辊筒的突出压条斜率陡峭,也可以因为是呈平行的山棱状分布而不致轻易损坏,简言之,以往的模具必须是尖锐的角锥,本发明中则是陡峭的柱状结构,这也使小孔径的吸音孔变得更可行而容易制造。
加工制造的方法如图6所示,本例以辊压的方式进行制造,首先在步骤21,提供一块加工用的片材。并于步骤22中辊压片材,以双向加工的方式,同时形塑片材两侧面的结构,使其中一侧面辊压出前述的凸出半侧;相反的另一侧面同 步辊压出前述的基础半侧。凸出半侧的结构沿着第二走向延伸成形,基础半侧的结构则是沿着第一走向延伸成形。第二走向是沿着与第一走向间夹一个角度的方向延伸,使得多道底缘与多道凹陷部彼此相交。因此,辊压结束后,片材上便自然形成多个穿透的孔洞。
依照实际测试,当所述孔洞最狭处的孔径不大于0.2mm时,可以据此更进一步提升吸音的效果。值得注意的是,前述的棱部与凹陷部的截面,依需求不同也可调整为各种形状,并不受限于所述的简单三角形状的柱体或延伸凹谷。若将三角形状变化为两侧腰部内凹或外凸,仍属于本发明可能的应用范围。
经由前述的制造方法,本发明提供的具有双向成形微孔的片材,不仅可以解决现有技术中的困扰,使吸音孔洞最狭窄处的孔径缩减至0.2mm以下,还可依需求制造出更细微的孔洞,借此提升隔音效果、确保居住质量。甚至依照所述内容,可以考虑将此种具有双向成形微孔的片材的孔径持续缩小至0.1μm,即可达到水滴无法轻易穿透的大小。
本发明的第二优选实施例,就是将所述的结构从隔音领域应用到防水透气的领域。例如透气雨衣或是防水外套、雨伞等,既需要防止水滴渗入,又要能够保持内外的空气流通,避免闷热的情况发生。而本发明的制造方法,亦可适用于分次加工的制造方式。如图7所示,本发明的第二优选实施例的制程为,于步骤21’中提供片材,于步骤221’中,先抵住片材的一个侧面,冲压制造另一侧面。冲压完毕后再于步骤222’中,将片材换面并抵住,冲压仍未加工的一侧面,使凸出半侧与基础半侧分次成形。值得注意的是,凸出半侧与基础半侧并没有固定的成形顺序,可依照需求自行调整。
其中,本例的第一走向与第二走向彼此正交,所以棱部与凹陷部互相垂直,呈网状交织的结构。而通过步骤221’与222’所成形的片材,其孔洞最狭处的孔径不会大于0.1μm,此预设的孔径是用来阻挡水滴,以免水滴穿透。并于步骤23’中,将片材的表面进行疏水化处理。通过该步骤的处理,片材的材质与水滴互不兼容。尽管使用者长期保持静止状态,使水滴长期停留在孔洞上,也不会有水滴逐渐渗入孔洞的情形发生;据此提升防水效果。相反地,由于所述微孔的存在,空气可以轻易穿透片材,使得本发明的结构可以达到让人体的汗水由空气携出,外部雨水无法滴入的防水排汗效果。
当然,如本领域技术人员所能轻易理解,以辊压方式成形并非本发明的必要 限制,若以塑料材料或掺入其他混合物方式射出成形,亦可达成相同效果,尤其更可依照成形模具的形状,使得本例中第一走向及第二走向比起所述X方向及Y方向的单一走向更为复杂。因此,请一并参考图8、9、10所示,本发明的第三优选实施例是以射出成形的方式,将前述第二走向34”成形为非直线型的曲线。
首先于步骤24”中,提供一种模具组,将模具组分为凸出半侧模具41”及基础半侧模具42”。其中的基础半侧模具42”形成有多道沿一第一走向33”延伸的凸出部420”,而凸出半侧模具41”则具有多道沿一第二走向34”延伸的谷部411”,在此释例为曲线状。随后在步骤25”,组合凸出半侧模具41”及基础半侧模具42”,形成一个模穴。组合出的模具组会使每一道谷部411”与相邻的谷部411”彼此交会处形成一道顶缘410”。当凸出半侧模具41”与基础半侧模具42”组装成模具组时,其中凸出半侧模具41”的顶缘410”与基础半侧模具42”的凸出部420”交错接触,每一个交错的位置都会形成有一个接触交点。接着于步骤26”将一个塑料材质的熔融基材射入模具组的模穴,以成形双向成形微孔片材。并在最后的步骤27”中,待塑料冷凝后进行脱模。并可依据需求,如前所述在片材表面进行疏水化处理。
本例所成形的双向成形微孔片材,其中的棱部311”制造时,对应所述曲线状的谷部411”,故亦成形为爬蛇状的曲线。两个棱部311”之间凹陷的底缘310”与棱部311”保持等距,故从俯视图9观测,底缘310”与棱部311”之间呈彼此平行的曲线状。而形成于片材另一侧的凹陷部320”,在本例中为直线状,当然此并非限制,亦可为其他非直线的线条状。凹陷部320”与底缘310”两线交错处,形成本发明的孔洞30”。其中请特别参考侧视图10,本例的棱部311”并非三角状,而是稍具外扩弧度的圆顶状。
总之,本发明的制造方式可适用于一次成形与分次成形等加工方式。通过第一走向与第二走向夹一角度相交,使得线状的底缘与线状的凹陷部彼此相交。相较于现有技术中成形孔洞需要点与点的对位,本发明只需线与线的相交就可以成形,制造精简又容易,且能提升穿孔率;模具两侧各需数道棱状,彼此交错即可,故模具不易损坏;还可制成更为细小的微孔洞,提升吸音、防水效果。以上所述内容,仅为本发明的优选实施例而已,不能以此限定本发明的实施范围,但凡根据本发明的权利要求及说明书的内容所作的简单的等效变化与修饰,均属于本发明的涵盖范围。
附图标号列表:
步骤  21、21’、22、221’、222’、23’、24”、25”、26”、27”
孔洞  30、30”
凸出半侧  31
底缘  310、310”
棱部  311、311”
基础半侧  32
凹陷部  320、320”
X方向  33
Y方向  34
凸出半侧模具  41”
谷部  411”
顶缘  410”
基础半侧模具  42”
凸出部  420”
第一走向  33”
第二走向  34”
微细几何孔槽  12
微细多曲面外观面  11

Claims (10)

  1. 一种具有双向成形微孔的片材,包括:
    基础半侧,形成有多个沿第一走向延伸的凹陷部;
    由所述基础半侧延伸的凸出半侧,具有多个沿第二走向延伸的棱部,所述第二走向是沿着与所述第一走向间夹有角度的方向延伸,且所述棱部与相邻所述棱部的交会处分别形成有底缘,使得所述底缘与所述凹陷部的交错位置分别形成有孔洞。
  2. 根据权利要求1所述的具有双向成形微孔的片材,其特征在于,所述孔洞最狭处的孔径不大于0.2mm。
  3. 根据权利要求1所述的具有双向成形微孔的片材,其特征在于,所述孔洞最狭处的孔径不大于0.1μm。
  4. 根据权利要求1到3中任一项所述的具有双向成形微孔的片材,其特征在于,所述第一走向与所述第二走向彼此正交。
  5. 根据权利要求1到3中任一项所述的具有双向成形微孔的片材,其特征在于,所述棱部分别为截面呈三角形的柱体。
  6. 根据权利要求1到3中任一项所述的具有双向成形微孔的片材,其特征在于,所述第一走向与所述第二走向中的至少一个为曲线。
  7. 一种制造具有双向成形微孔的片材的方法,包括下列步骤:
    a)提供片材;及
    b)加工所述片材的两侧面,使其分别形成凸出半侧以及基础半侧,其中所述基础半侧形成有多个沿第一走向延伸的凹陷部;以及所述凸出半侧是由所述基础半侧延伸,并形成多个沿第二走向延伸的棱部,所述第二走向是沿着与所述第一走向间夹有角度的方向延伸,且所述棱部与相邻所述棱部的交会处分别形成有底缘;使得所述底缘与所述凹陷部的交错位置分别形成有孔洞。
  8. 一种制造具有双向成形微孔的片材的方法,包括下列步骤:
    c)提供一种模具组,所述模具组被分为凸出半侧模具及基础半侧模具;其中所述基础半侧模具形成有多个沿第一走向延伸的凸出部,且所述凸出半侧模具则具有多个沿第二走向延伸的谷部;
    d)组合所述凸出半侧模具及所述基础半侧模具,形成模穴,使得所述谷部与 相邻所述谷部的交会处分别形成有顶缘;以及所述顶缘与所述凸出部的交错位置分别形成有接触交点;
    e)将熔融基材射入所述模穴,成形所述具有双向成形微孔的片材;及
    f)脱模。
  9. 根据权利要求8所述的制造具有双向成形微孔的片材的方法,其特征在于,所述基材是塑料。
  10. 根据权利要求7到9中任一项所述的制造具有双向成形微孔的片材的方法,其特征在于,还包括一个表面疏水化的处理步骤g)。
PCT/CN2014/088507 2013-12-06 2014-10-13 具有双向成形微孔的片材及其制造方法 WO2015081755A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/039,320 US20170165886A1 (en) 2013-12-06 2014-10-13 Sheet material having bi-directionally formed micropores and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310659072.2 2013-12-06
CN201310659072.2A CN104695570A (zh) 2013-12-06 2013-12-06 具有双向成形微孔的片材及其制造方法

Publications (1)

Publication Number Publication Date
WO2015081755A1 true WO2015081755A1 (zh) 2015-06-11

Family

ID=53272849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088507 WO2015081755A1 (zh) 2013-12-06 2014-10-13 具有双向成形微孔的片材及其制造方法

Country Status (3)

Country Link
US (1) US20170165886A1 (zh)
CN (1) CN104695570A (zh)
WO (1) WO2015081755A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926437B1 (ja) * 2015-11-17 2016-05-25 加川 清二 微多孔プラスチックフィルムの製造方法及び製造装置
CN106759998A (zh) * 2016-11-10 2017-05-31 徐州乐泰机电科技有限公司 一种复合吸音板
TWI673415B (zh) * 2017-08-11 2019-10-01 泰奇想股份有限公司 具有拉伸凸部和整平凸部的複合整平擴張式吸音板
CN113216025B (zh) * 2021-05-06 2022-06-10 北京交通大学 一种道路声屏障降噪装置及其结构设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203301A (zh) * 1998-06-08 1998-12-30 支洋波 一种新型吸音天花板及其生产技术
JP2006161416A (ja) * 2004-12-07 2006-06-22 Sekisui Chem Co Ltd 吸音板および吸音方法
CN101008191A (zh) * 2006-01-23 2007-08-01 许灿辉 一种双面开槽的吸声板及其构成的复合吸声板
CN200943267Y (zh) * 2006-07-04 2007-09-05 温天佑 一种全频带吸声板
CN101137487A (zh) * 2005-03-07 2008-03-05 普瑞曼聚合物有限公司 吸音体的制造方法和通过该制造方法得到的吸音体以及吸音结构体
EP2540926A1 (de) * 2011-07-01 2013-01-02 Akusik & Innovation GmbH Schallabsorbierendes Element und Verfahren zur Herstellung desselben

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20319319U1 (de) * 2003-12-12 2005-04-28 Carcoustics Tech Center Gmbh Schallabsorbierendes Hitzeschild
CN201215039Y (zh) * 2008-07-15 2009-04-01 王玉亮 一种隔热消音板
CN102110442B (zh) * 2009-12-23 2012-06-27 华为技术有限公司 一种通信设备单板区消声装置
CN203026356U (zh) * 2012-12-26 2013-06-26 宁波高云电气有限公司 一种电力电容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203301A (zh) * 1998-06-08 1998-12-30 支洋波 一种新型吸音天花板及其生产技术
JP2006161416A (ja) * 2004-12-07 2006-06-22 Sekisui Chem Co Ltd 吸音板および吸音方法
CN101137487A (zh) * 2005-03-07 2008-03-05 普瑞曼聚合物有限公司 吸音体的制造方法和通过该制造方法得到的吸音体以及吸音结构体
CN101008191A (zh) * 2006-01-23 2007-08-01 许灿辉 一种双面开槽的吸声板及其构成的复合吸声板
CN200943267Y (zh) * 2006-07-04 2007-09-05 温天佑 一种全频带吸声板
EP2540926A1 (de) * 2011-07-01 2013-01-02 Akusik & Innovation GmbH Schallabsorbierendes Element und Verfahren zur Herstellung desselben

Also Published As

Publication number Publication date
CN104695570A (zh) 2015-06-10
US20170165886A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2015081755A1 (zh) 具有双向成形微孔的片材及其制造方法
US9771714B2 (en) Vacuum insulation panel
DE102014011775A1 (de) Faltstruktur, Bauelement-Verbindung, Sandwichplatte, sowie Faltverfahren und -werkzeug
DE102007060358A1 (de) Dampfdurchlässiges Laminat
EP2236333B1 (de) Abdeckung, insbesondere für ein Instrumententafelbauteil, sowie Spritzgusswerkzeug zu dessen Herstellung
AT520524B1 (de) Thermisches Isolationselement
EP0239057B1 (de) Verfahren zum Herstellen eines Bauelements aus Kunststoff-Hartschaum und nach diesem Verfahren hergestelltes Bauelement
EP1598168B1 (en) Method and device for the manufacture of a three-dimensional structure
EP1589523A2 (de) Vorrichtung zum Abschirmen, Dämmen und/oder Dämpfen von Schall und Verfahren zur Herstellung derselben
DE10034341C2 (de) Ziegel mit in Lochkammer eingestecktem Dämmmaterial
JP5566728B2 (ja) 外壁目地交叉部の乾式止水構造
CN203603417U (zh) 一种锁扣地板
CN206337665U (zh) 保温板及保温板互锁式挂件
KR20210071344A (ko) 재활용 플라스틱을 이용한 흡음재, 이를 구비하는 방음판 및 재활용 플라스틱을 이용한 흡음재의 제조방법
CN109386065A (zh) 具有拉伸凸部和整平凸部的复合整平扩张式吸音板
JP7245500B2 (ja) 中空構造体及び中空構造体の製造方法
EP1406792B1 (de) Schallabschirmelement
JP7166588B2 (ja) 中空構造体、及び中空構造体の製造方法
KR20000030328A (ko) 프레임부재에 치장벽돌이 결합된 흡음형 방음벽용복합소재 방음블럭
JP2001098847A (ja) 断熱形材
EP1430473A1 (de) Vorrichtung zum abschirmen, dämmen und/oder dämpfen von schall sowie verwendung und verfahren zur herstellung derselben
DE202010007944U1 (de) Isoliermaterial
JP4357307B2 (ja) 断熱残存型枠パネルの製造方法
JP6252898B2 (ja) 断熱材
JP2016102364A (ja) パネル体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039320

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867476

Country of ref document: EP

Kind code of ref document: A1