WO2015081538A1 - Optical modulator and planar photonic device module - Google Patents
Optical modulator and planar photonic device module Download PDFInfo
- Publication number
- WO2015081538A1 WO2015081538A1 PCT/CN2013/088676 CN2013088676W WO2015081538A1 WO 2015081538 A1 WO2015081538 A1 WO 2015081538A1 CN 2013088676 W CN2013088676 W CN 2013088676W WO 2015081538 A1 WO2015081538 A1 WO 2015081538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor plate
- capacitor
- optical
- laser
- optical modulator
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 90
- 239000003990 capacitor Substances 0.000 claims abstract description 120
- 239000012792 core layer Substances 0.000 claims abstract description 39
- 229920000642 polymer Polymers 0.000 claims abstract description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 36
- 238000010521 absorption reaction Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 64
- 238000005253 cladding Methods 0.000 claims description 58
- 229920001940 conductive polymer Polymers 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000002861 polymer material Substances 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000010409 thin film Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 26
- 239000010408 film Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- -1 flexible PCBs Chemical class 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012789 electroconductive film Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/02—Materials and properties organic material
- G02F2202/022—Materials and properties organic material polymeric
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a light modulator and a planar photonic device module. Background technique
- the design of the currently used lithium niobate (LiNb0 3 ) electro-optic modulator generally follows the following procedure: based on the LiNb0 3 substrate material, cutting along the X and z directions of the crystal, and using Ti element diffusion to form a waveguide on the LiNb0 3 substrate, And designed the Mach-Zehnder (MZ) modulator structure.
- the modulation principle of the LiNb0 3 electro-optic modulator utilizes the nonlinear secondary electro-optic effect of the LiNb0 3 material to adjust the nonlinear refractive index of the material by voltage modulation, and converts the phase modulation of the signal into intensity modulation by the MZ interferometer structure.
- the first capacitor plate and the second capacitor plate are parallel to each other.
- the first capacitor plate is made of a graphene film
- the second capacitor plate is made of a conductive film.
- the material of the first contact electrode and the second contact electrode is gold, platinum, a conductive polymer, or indium tin oxide.
- the planar photonic device module includes a laser, a first driving circuit, a second driving circuit, and a light modulator according to various possible implementations, wherein the first driving circuit is configured to control and drive the laser to emit laser light, A second drive circuit is operative to apply a modulated voltage signal to the light modulator, the laser light from the laser being conducted to the light modulator, the light modulator for modulating the laser light.
- the field strength of the fundamental mode of the polymer waveguide is integrated into the fundamental mode of the polymer waveguide, which effectively enhances the interaction between the graphene and the optical mode field.
- the device size The reduction in the size of the light modulator will lead to further improvements in system integration.
- FIG. 3 is a schematic cross-sectional view of a light modulator according to a third preferred embodiment of the present invention.
- FIG. 4 is a block diagram of a preferred embodiment of a planar photonic device module provided by the present invention.
- the core layer 113 is covered by the upper cladding layer 111 and the lower cladding layer 112. Specifically, a portion of the core layer 113 is buried in the lower cladding layer 112, and the remaining portion is buried in the upper cladding layer 111.
- the lower cladding layer 112 has a larger cross-sectional area than the upper cladding layer 111.
- the polymer waveguide 110 composed of the upper cladding layer 111, the core layer 113, and the lower cladding layer 112 has a length of 10 ⁇ m to 200 ⁇ m.
- the core layer 113 is generally rectangular in cross section, and the cross section of the rectangle is generally 3 to 10 microns in length and width.
- the second contact electrode 122 is also disposed on the surface of the under cladding layer 112 and partially extends into the upper cladding layer 111 and the lower cladding layer 112.
- the first contact electrode 121 and the second contact electrode 122 are located on opposite sides of the core layer 113.
- a portion of the second contact electrode 122 located in the upper cladding layer 111 and the lower cladding layer 112 is connected to the second capacitor plate 132, respectively.
- the second capacitor plates 132 are each partially located within the upper cladding layer 111 and the lower cladding layer 112, with the remaining portions extending into the core layer 113. Further, the two second capacitor plates 132 are parallel to each other and are parallel to the first capacitor plate 131.
- the first capacitor plate 131 and the second capacitor plate 132 are graphene films.
- the graphene film may be a single layer of graphene or an oligographene (having an atomic layer of 2 to 10 layers).
- the material of the first contact electrode 121 and the second contact electrode 122 may be gold or platinum, and the first contact electrode 121 and the second contact electrode 122 may also be a conductive polymer film or an indium tin oxide film.
- the modulation principle of the light modulator 100 is based on the electrically tunable light absorption characteristics of graphene. Since graphene has ultra-high carrier mobility and ultra-fast carrier relaxation time, the combination of optical waveguide design can effectively enhance graphene. The interaction with the optical mode field, so theoretically can achieve a modulation bandwidth of 500 GHz. In addition, since the materials used in the light modulator 100 are polymers and graphene, the material cost of both and the preparation cost of the polymer waveguides are relatively low, and large-scale production is expected.
- a third preferred embodiment of the first technical solution of the present invention provides a light modulator 300.
- the optical modulator 300 provided in this embodiment is similar in structure to the optical modulator 200 provided in the second embodiment, and the working principle and the functions realized are similar.
- the light modulator 300 includes a substrate 301, a lower cladding layer 312, a first contact electrode 321, a second contact electrode 322, a first capacitor plate 331, a second capacitor plate 332, a core layer 313, and an upper cladding layer 311. The difference is that the second capacitor plate 332 of the light modulator 300 is made of a conductive film material.
- a preferred embodiment of the second technical solution of the present invention provides a planar photonic device (PLC) module 10, which includes a laser 20, a first driving circuit 30, and an optical waveguide. 40.
- PLC planar photonic device
- the second driving circuit 50 and the optical modulator provided by the first technical solution of the present invention.
- the optical modulator 100 provided in the first preferred embodiment of the first aspect is described as an example.
- the light modulator 100 as an on-chip light modulator, a monolithically integrated planar photonic device module 10 of small size, low power consumption, and large bandwidth can be designed.
- the optical waveguide 40 may not be connected between the laser 20 and the optical modulator 100, and the laser 20 is directly connected to the optical modulator 100, and the laser light emitted by the laser 20 is directly transmitted to the optical modulation. Inside the device 100.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
An optical modulator (100), comprising a polymer waveguide (110), at least one first capacitor plate (131), and at least one second capacitor plate (132); said polymer waveguide comprising a core layer (113); said first capacitor plate (131) and second capacitor plate (132) being separated from each other and extending into said core layer (113); the projection of said first capacitor plate (131) and the projection of said second capacitor plate (132) being at least partially coincident in the radial direction of the cross-section; said first capacitor plate (131) and/or second capacitor plate (132) being made of graphene thin film; when a modulated voltage signal is applied between said first capacitor plate (131) and second capacitor plate (132), the graphene optical absorption coefficient in the first capacitor plate (131) and/or the second capacitor plate (132) changing, thereby modulating the light of the polymer waveguide (110). The optical modulator (100) has a small integrated size, low power consumption, and large modulation bandwidth. Also provided is a planar photonic device module (10) comprising said optical modulator (100).
Description
一种光调制器及平面光子器件模组 Light modulator and planar photonic device module
技术领域 Technical field
本发明涉及通信技术领域, 尤其涉及一种光调制器及平面光子器件模组。 背景技术 The present invention relates to the field of communications technologies, and in particular, to a light modulator and a planar photonic device module. Background technique
光作为信息传输的载体具有低功耗、 低延迟和大传输带宽等一系列优点, 包括远距离的跨洋光缆传输到数据中心服务器间光互连的相关技术已相对成 熟并成功商业化。 目前研究显示, 在电路板间以及板上,乃至深入众核处理器 内核的片间和片上信号传输等应用场景使用光互连技术同样存在着巨大的优 势, 足以优化处理器芯片总体的功耗、 速度、 性能等参数指标。 As a carrier of information transmission, light has a series of advantages such as low power consumption, low delay and large transmission bandwidth. The related technologies including long-distance transoceanic cable transmission to data center server optical interconnection have been relatively mature and successfully commercialized. Current research shows that there are also huge advantages in using optical interconnect technology in inter-chip and on-chip signal transmission applications between boards and boards, and even in the core processor cores, which is sufficient to optimize the overall power consumption of the processor chip. , speed, performance and other parameter indicators.
在光电混合印刷电路板(PCB, 包括柔性 PCB等), 常用的光信号传输载 体为聚合物波导,在此应用场景中使用聚合物波导是因为聚合物材料具有种类 繁多、 制备流程简单、 成本低廉、 兼容性好(无定形态可集成)、 低光学传输 损耗(<1 dB/cm )、 低插入损耗(导波模场和光纤模场匹配)等优点, 所以在 集成度要求一般的光电混合 PCB的板上光互连等应用场景存在较大优势。 在 光电混合 PCB中, 一般包含光源、 调制器、 光学波导、 探测器等模块, 光调 制器作为将电信号转化为光信号的基本单元器件, 在光电混合 PCB上发挥着 不可替代的作用。此外,在一般基于二氧化硅波导或聚合物波导的平面光子器 件(PLC ) 中, 设计一种和现有 PLC兼容、 性能表现优异的光调制器模块也 具有相当的商业价值。 In opto-electric hybrid printed circuit boards (PCBs, including flexible PCBs, etc.), the commonly used optical signal transmission carrier is a polymer waveguide. The polymer waveguide is used in this application scenario because of the wide variety of polymer materials, simple preparation process, and low cost. Good compatibility (integral form can be integrated), low optical transmission loss (<1 dB/cm), low insertion loss (guided mode field and fiber mode field matching), so the general optoelectronic mixing is required in the integration degree. Application scenarios such as on-board optical interconnection of PCBs have great advantages. In opto-electric hybrid PCBs, modules such as light sources, modulators, optical waveguides, and detectors are generally included. As a basic unit device for converting electrical signals into optical signals, optical modulators play an irreplaceable role in opto-electric hybrid PCBs. In addition, in a planar photonic device (PLC) based on a silica waveguide or a polymer waveguide, it is also commercially valuable to design an optical modulator module that is compatible with existing PLCs and performs well.
目前通常使用的铌酸锂 ( LiNb03 ) 电光调制器的设计一般遵循以下流程: 基于 LiNb03基底材料, 沿晶体 X方向和 z方向切割, 并使用 Ti元素扩散, 在 LiNb03基底上形成波导, 并设计马赫 -曾德(M-Z )调制器结构。 LiNb03电光 调制器的调制原理利用 LiNb03材料的非线性二次电光效应, 通过调节电压调 制材料的非线性折射率, 并通过 M-Z干涉仪结构把信号的相位调制转化为强 度调制。 The design of the currently used lithium niobate (LiNb0 3 ) electro-optic modulator generally follows the following procedure: based on the LiNb0 3 substrate material, cutting along the X and z directions of the crystal, and using Ti element diffusion to form a waveguide on the LiNb0 3 substrate, And designed the Mach-Zehnder (MZ) modulator structure. The modulation principle of the LiNb0 3 electro-optic modulator utilizes the nonlinear secondary electro-optic effect of the LiNb0 3 material to adjust the nonlinear refractive index of the material by voltage modulation, and converts the phase modulation of the signal into intensity modulation by the MZ interferometer structure.
所述 LiNb03电光调制器具有如下不足: 首先, 由于 LiNb03材料较为昂 贵, 且波导的制作及结构的设计较为复杂, 因此, LiNb03电光调制器的生产 成本较高, 制作工艺较为复杂。 其次, LiNb03电光调制器的长度一般约为 1 毫米, 尺寸较大。 再者, 由 LiNb03材料决定的 LiNb03电光调制器的调制带
宽的上限约为 40GHz。 The LiNb0 3 electro-optic modulator has the following disadvantages: First, since the LiNb0 3 material is relatively expensive, and the fabrication of the waveguide and the design of the structure are complicated, the LiNb0 3 electro-optic modulator has a high production cost and a complicated manufacturing process. Second, the LiNb0 3 electro-optic modulator is typically about 1 mm in length and large in size. Furthermore, the modulation band of the LiNb0 3 electro-optic modulator determined by the LiNb0 3 material The upper limit of the width is about 40 GHz.
此外, 现有技术中还有采用垂直腔面发射激光器 (VCSEL ) 来实现利用 板上光互连技术实现光 PCB上各模块间的信号传输。 具体的光源及调制器方 案如下: 使用倒装封装的 VCSEL激光器, 利用内调制的方式把电信号调制到 光载波上 ,然后利用透镜耦合等方式将加载数据信息的光波耦合到片上聚合物 波导。 此种方法中, 携带数据信息的光载波是由内调制型 VCSEL激光器产生 的, 所述 VCSEL激光器通过倒装封装的方式与聚合物波导耦合, 实际生产中 存在下列问题: 1.内调制激光器和聚合物波导不在一个平面耦合, 耦合的对准 精度要求高; 2.光电混合 PCB在三维方向存在集成, 系统复杂度升高, 集成 度和稳定性降低; 3.光信号的质量和信号带宽受限于 VCSEL内调制激光器的 发展。 发明内容 In addition, vertical cavity surface emitting lasers (VCSELs) are used in the prior art to realize signal transmission between modules on an optical PCB by using on-board optical interconnect technology. The specific light source and modulator scheme is as follows: Using a flip-chip packaged VCSEL laser, the electrical signal is modulated onto the optical carrier by means of internal modulation, and then the optical wave loaded with the data information is coupled to the on-chip polymer waveguide by lens coupling or the like. In this method, the optical carrier carrying the data information is generated by an internal modulation type VCSEL laser. The VCSEL laser is coupled to the polymer waveguide by flip-chip packaging, and the following problems exist in actual production: 1. Internal modulation laser and The polymer waveguide is not coupled in one plane, and the alignment precision of the coupling is high. 2. The photoelectric hybrid PCB is integrated in the three-dimensional direction, the system complexity is increased, the integration degree and stability are reduced; 3. The quality and signal bandwidth of the optical signal are affected by Limited to the development of modulated lasers in VCSELs. Summary of the invention
本发明实施例所要解决的技术问题在于,提供一种光调制器及平面光子器 件模组, 所述光调制器具有较小集成尺寸并具有较高性能。 A technical problem to be solved by embodiments of the present invention is to provide an optical modulator and a planar photonic device module, the optical modulator having a small integrated size and high performance.
第一方面, 提供了一种光调制器。 In a first aspect, a light modulator is provided.
光调制器包括聚合物波导、至少一个第一电容器极板和至少一个第二电容 器极板, 所述聚合物波导包括芯层, 所述第一电容器极板和第二电容器极板相 互分离且均延伸至所述芯层内,在横截面的径向上, 所述第一电容器极板的投 影与所述第二电容器极板的投影至少部分重合, 所述第一电容器极板和 /或第 二电容器极板采用石墨烯薄膜制成,在所述第一电容器极板与第二电容器极板 之间施加调制电压信号, 改变第一电容器极板和 /或第二电容器极板内的石墨 烯光学吸收系数, 从而实现对聚合物波导中的导波光进行调制。 The light modulator includes a polymer waveguide, at least one first capacitor plate, and at least one second capacitor plate, the polymer waveguide including a core layer, the first capacitor plate and the second capacitor plate being separated from each other and Extending into the core layer, the projection of the first capacitor plate at least partially coincides with the projection of the second capacitor plate in a radial direction of the cross section, the first capacitor plate and/or the second The capacitor plate is made of a graphene film, and a modulation voltage signal is applied between the first capacitor plate and the second capacitor plate to change the graphene optical in the first capacitor plate and/or the second capacitor plate The absorption coefficient is such that modulation of the guided light in the polymer waveguide is achieved.
在第一方面的第一种可能的实现方式中,所述石墨烯薄膜为单层石墨烯或 者寡层石墨烯。 In a first possible implementation of the first aspect, the graphene film is a single layer graphene or an oligo graphene.
在第一方面的第二种可能的实现方式中,所述第一电容器极板与第二电容 器极板相互平行。 In a second possible implementation of the first aspect, the first capacitor plate and the second capacitor plate are parallel to each other.
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述第一电容器极板与与其相邻的第二电容器极板之间的距离为 10纳米至 100 纳米。
结合第一方面的第一种至第三种可能的实现方式,在第四种可能的实现方 式中, 所述聚合物波导还包括上包层和下包层, 所述上包层和下包层从所述芯 层的相对两侧包覆所述芯层, 所述芯层、 下包层及上包层均采用非导电聚合物 材料制成。 In conjunction with the second possible implementation of the first aspect, in a third possible implementation, the distance between the first capacitor plate and the second capacitor plate adjacent thereto is 10 nm to 100 nm. . In conjunction with the first to third possible implementations of the first aspect, in a fourth possible implementation, the polymer waveguide further includes an upper cladding layer and a lower cladding layer, the upper cladding layer and the lower cladding layer The layer covers the core layer from opposite sides of the core layer, and the core layer, the lower cladding layer and the upper cladding layer are all made of a non-conductive polymer material.
结合第一方面的第一种至第三种可能的实现方式,在第五种可能的实现方 式中,所述第一电容器极板的个数为一个,所述第二电容器极板的个数为两个, 所述第一电容器极板位于两个所述第二电容器极板之间。 With reference to the first to third possible implementation manners of the first aspect, in a fifth possible implementation, the number of the first capacitor plates is one, and the number of the second capacitor plates For two, the first capacitor plate is located between two of the second capacitor plates.
结合第一方面的第一种至第三种可能的实现方式,在第六种可能的实现方 式中,所述第一电容器极板的个数为一个,所述第二电容器极板的个数为一个。 With reference to the first to third possible implementations of the first aspect, in a sixth possible implementation, the number of the first capacitor plates is one, and the number of the second capacitor plates For one.
结合第一方面的第一种至第三种可能的实现方式,在第七种可能的实现方 式中, 所述第一电容器极板的个数为两个以上, 所述第二电容器的个数为两个 以上, 第一电容器极板和第二电容器极板在芯层的厚度方向上交替排列。 With reference to the first to third possible implementations of the first aspect, in a seventh possible implementation, the number of the first capacitor plates is two or more, and the number of the second capacitors For two or more, the first capacitor plate and the second capacitor plate are alternately arranged in the thickness direction of the core layer.
在第一方面的第八种可能的实现方式中,所述第一电容器极板采用石墨烯 薄膜制成, 所述第二电容器极板采用导电薄膜制成。 In an eighth possible implementation of the first aspect, the first capacitor plate is made of a graphene film, and the second capacitor plate is made of a conductive film.
在第一方面的第九种可能的实现方式中,所述光调制器还包括第一接触电 极和第二接触电极, 所述第一接触电极与所述第一电容器极板电连接, 所述第 二接触电极与所述第二电容器极板电连接,所述第一接触电极与第二接触电极 用于接入调制电压信号。 In a ninth possible implementation manner of the first aspect, the light modulator further includes a first contact electrode and a second contact electrode, wherein the first contact electrode is electrically connected to the first capacitor plate, The second contact electrode is electrically connected to the second capacitor plate, and the first contact electrode and the second contact electrode are used to access a modulation voltage signal.
结合第一方面的第九种可能的实现方式,在第十种可能的实现方式中, 所 述第一接触电极和第二接触电极的材料为金、 铂、 导电聚合物或者氧化铟锡。 In conjunction with the ninth possible implementation of the first aspect, in a tenth possible implementation, the material of the first contact electrode and the second contact electrode is gold, platinum, a conductive polymer, or indium tin oxide.
在第一方面的第十种可能的实现方式中, 所述聚合物波导的厚度为 10微 米至 20(H敖米, 所述芯层的横截面为矩形, 矩形横截面的长和宽均为 3 米至 10微米。 In a tenth possible implementation manner of the first aspect, the polymer waveguide has a thickness of 10 micrometers to 20 millimeters (H 敖m, the core layer has a rectangular cross section, and the rectangular cross section has a length and a width 3 meters to 10 microns.
另一方面, 提供一种平面光子器件模块。 In another aspect, a planar photonic device module is provided.
平面光子器件模块包括激光器、第一驱动电路、 第二驱动电路及以上各种 可能的实现方式所述的光调制器,所述第一驱动电路用于控制及驱动所述激光 器发出激光, 所述第二驱动电路用于向所述光调制器施加调制电压信号, 所述 激光器发出的激光传导至所述光调制器, 所述光调制器用于对激光进行调制。 The planar photonic device module includes a laser, a first driving circuit, a second driving circuit, and a light modulator according to various possible implementations, wherein the first driving circuit is configured to control and drive the laser to emit laser light, A second drive circuit is operative to apply a modulated voltage signal to the light modulator, the laser light from the laser being conducted to the light modulator, the light modulator for modulating the laser light.
在第二方面的第一种可能的实现方式中,所述平面光子器件模块还包括光 波导, 所述光波导连接于所述激光器与所述光调制器之间, 所述光波导用于将
所述激光器出射的激光传导至所述光调制器。 In a first possible implementation manner of the second aspect, the planar photonic device module further includes an optical waveguide, the optical waveguide is connected between the laser and the optical modulator, and the optical waveguide is used to The laser light emitted by the laser is conducted to the light modulator.
在第二方面的第二种可能的实现方式中,所述激光器为可调谐激光器或固 定波长激光器。 In a second possible implementation of the second aspect, the laser is a tunable laser or a fixed wavelength laser.
本发明中, 光调制器的调制原理基于石墨烯电可调的光吸收特性, 由于石 墨烯具有超高的载流子迁移率和超快的载流子弛豫时间 ,结合光波导设计可有 效增强石墨烯和光波模场的相互作用, 所以理论上可以达到 500 GHz的调制 带宽。 此外, 由于光调制器使用的材料为聚合物和石墨烯, 两者的材料成本以 及聚合物波导的制备成本都相对较低, 并有望实现大规模生产。 光调制器具有 很高的调制带宽,并且光语响应范围宽,可应用于波分复用的应用场景。此外, 由于光调制器基于聚合物波导, 聚合物波导的光波模场和单模光纤的模场相 近, 所以该光调制器和光纤通信器件间的耦合损耗几乎可以忽略。 因此, 单个 石墨烯聚合物波导光调制器可以作为单元光电子器件独立封装应用在光通信 领域。 光调制器和光纤通信系统具有艮好的兼容性, 并可以满足将来大带宽的 数据传送对光调制器的要求。 由于单层石墨烯对光的吸收已经达到了 2.3%, 将石墨烯集成到聚合物波导的基模光波模场场强极大处,有效增强了石墨烯和 光波模场的相互作用, 减小了器件尺寸。 光调制器尺寸的减小, 将会带来系统 集成度的进一步提高。 In the present invention, the modulation principle of the light modulator is based on the electrically tunable light absorption characteristics of graphene. Since graphene has ultra-high carrier mobility and ultra-fast carrier relaxation time, it can be effectively combined with optical waveguide design. Enhance the interaction between graphene and the optical mode field, so theoretically a modulation bandwidth of 500 GHz can be achieved. In addition, since the materials used in the light modulator are polymers and graphene, the material cost of both and the preparation cost of the polymer waveguide are relatively low, and large-scale production is expected. The optical modulator has a high modulation bandwidth and a wide optical response range, which can be applied to the application of wavelength division multiplexing. In addition, since the optical modulator is based on a polymer waveguide, the optical mode field of the polymer waveguide is similar to that of the single mode fiber, so the coupling loss between the optical modulator and the fiber optic communication device is almost negligible. Therefore, a single graphene polymer waveguide optical modulator can be used as a unit optoelectronic device for independent packaging applications in the field of optical communication. Optical modulators and fiber-optic communication systems have excellent compatibility and can meet the requirements of optical modulators for large-bandwidth data transmission in the future. Since the absorption of light by single-layer graphene has reached 2.3%, the field strength of the fundamental mode of the polymer waveguide is integrated into the fundamental mode of the polymer waveguide, which effectively enhances the interaction between the graphene and the optical mode field. The device size. The reduction in the size of the light modulator will lead to further improvements in system integration.
附图说明 DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。 In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings to be used in the embodiments will be briefly described below. Obviously, the drawings in the following description are only some of the present invention. For the embodiments, those skilled in the art can obtain other drawings according to the drawings without any creative work.
图 1是本发明第一较佳实施方式提供的光调制器的剖面示意图; 1 is a schematic cross-sectional view of a light modulator according to a first preferred embodiment of the present invention;
图 2是本发明第二较佳实施方式提供的光调制器的剖面示意图; 2 is a schematic cross-sectional view of a light modulator according to a second preferred embodiment of the present invention;
图 3是本发明第三较佳实施方式提供的光调制器的剖面示意图; 3 is a schematic cross-sectional view of a light modulator according to a third preferred embodiment of the present invention;
图 4是本发明提供的平面光子器件模组的一个较佳实施方式的框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 4 is a block diagram of a preferred embodiment of a planar photonic device module provided by the present invention. detailed description The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
请参阅图 1 , 为本发明第一技术方案的第一较佳实施方式提供的一种光调 制器 100。 所述光调制器 100包括衬底 101、 下包层 112、 第一接触电极 121、 第二接触电极 122、 第一电容器极板 131、 两个第二电容器极板 132、 芯层 113 及上包层 111。 所述上包层 111、 芯层 113及下包层 112构成聚合物波导 110。 Please refer to FIG. 1 , which is a light modulator 100 according to a first preferred embodiment of the first technical solution of the present invention. The light modulator 100 includes a substrate 101, a lower cladding layer 112, a first contact electrode 121, a second contact electrode 122, a first capacitor plate 131, two second capacitor plates 132, a core layer 113, and an upper package. Layer 111. The upper cladding layer 111, the core layer 113, and the lower cladding layer 112 constitute a polymer waveguide 110.
所述衬底 101用于承载所述聚合物波导 110, 其与下包层 112相接触, 所 述衬底 101的材料可以为硅等, 其具有平整的外表面。 所述衬底 101的材料可 以根据所述石墨婦 /聚合物光调制器 100使用的场景进行选择, 以与其应用场 景相匹配。 The substrate 101 is used to carry the polymer waveguide 110, which is in contact with the lower cladding layer 112. The material of the substrate 101 may be silicon or the like having a flat outer surface. The material of the substrate 101 can be selected according to the scene used by the graphite veneer/polymer light modulator 100 to match its application scene.
芯层 113被上包层 111和下包层 112包覆。具体的, 所述芯层 113的部分 埋入于下包层 112内, 其余部分埋入于上包层 111内。 所述下包层 112的横截 面积大于所述上包层 111的横截面积。 由所述上包层 111、 芯层 113及下包层 112构成的聚合物波导 110的长度为 10微米至 200微米。 所述芯层 113横截 面一般为矩形, 矩形的横截面的长及宽一般为 3微米至 10微米。 The core layer 113 is covered by the upper cladding layer 111 and the lower cladding layer 112. Specifically, a portion of the core layer 113 is buried in the lower cladding layer 112, and the remaining portion is buried in the upper cladding layer 111. The lower cladding layer 112 has a larger cross-sectional area than the upper cladding layer 111. The polymer waveguide 110 composed of the upper cladding layer 111, the core layer 113, and the lower cladding layer 112 has a length of 10 μm to 200 μm. The core layer 113 is generally rectangular in cross section, and the cross section of the rectangle is generally 3 to 10 microns in length and width.
所述上包层 111、 下包层 112及芯层 113均采用非导电聚合物材料制成, 红外光波长范围内, 对光基本无吸收。 并且, 所述上包层 111、 下包层 112及 芯层 113选用的材料应为光学特性随环境湿度及温度变化相对稳定的材料。上 包层 111和下包层 112可以采用相同的材料制成,也可以采用不同的材料制成。 所述上包层 111和下包层 112选用的材料的光学折射率比芯层 113的材料低。 具体地,可以作为芯层 113的材料为曱基丙烯酸曱酯(卩^1^1入)、聚苯乙婦(?8 )、 聚碳酸酯 (PC ) 、 聚硅氧烷或聚酰亚胺(PI )等。 折射率小于上述作为芯层 113的非导电有机聚合物材料均可以作为上包层 111及下包层 112。 具体的, 当传输激光波长为 1550 nm, 采用曱基丙烯酸曱酯(折射率为 1.49 )或聚苯乙 烯(折射率为 1.59 )作为芯层 113时, 可以采用聚二曱基硅氧烷(PDMS , 折 射率为 1.4 )作为上包层 111及下包层 112。 当采用聚碳酸酯(折射率为 1.61 ) 作为芯层 113的材料, 可以采用紫外固化胶 UV15(Master Bond Co., USA, 折
射率为 1.52 ) )作为上包层 111及下包层 112的材料。 The upper cladding layer 111, the lower cladding layer 112 and the core layer 113 are all made of a non-conductive polymer material, and have substantially no absorption of light in the wavelength range of infrared light. Moreover, the materials selected for the upper cladding layer 111, the lower cladding layer 112 and the core layer 113 should be materials whose optical characteristics are relatively stable with changes in environmental humidity and temperature. The upper cladding layer 111 and the lower cladding layer 112 may be made of the same material or may be made of different materials. The materials selected for the upper cladding layer 111 and the lower cladding layer 112 have a lower optical refractive index than the material of the core layer 113. Specifically, the material of the core layer 113 may be decyl decyl acrylate, polystyrene (?8), polycarbonate (PC), polysiloxane or polyimide. (PI) and so on. The non-conductive organic polymer material having a refractive index smaller than that of the core layer 113 described above can be used as the upper cladding layer 111 and the lower cladding layer 112. Specifically, when the transmission laser wavelength is 1550 nm, and decyl methacrylate (refractive index of 1.49) or polystyrene (refractive index of 1.59) is used as the core layer 113, polydidecyl siloxane (PDMS) can be used. The refractive index is 1.4) as the upper cladding layer 111 and the lower cladding layer 112. When polycarbonate (refractive index of 1.61) is used as the material of the core layer 113, UV curing adhesive UV15 (Master Bond Co., USA, The incident rate is 1.52)) as the material of the upper cladding layer 111 and the lower cladding layer 112.
所述第一接触电极 121和第一电容器极板 131相互连接,所述第二接触电 极 122与两个第二电容器极板 132相连接。 本实施例中, 所述第一接触电极 121设置于下包层 112的表面, 并且部分延伸至上包层 111与下包层 112内, 位于所述上包层 111及下包层 112内的部分第一接触电极 121与第一电容器极 板 131相互连接。所述第一电容器极板 131部分位于所述上包层 111和下包层 112内, 其余部分延伸至所述芯层 113内。 所述第二接触电极 122也设置于下 包层 112的表面, 且部分延伸至上包层 111及下包层 112内。 优选地, 所述第 一接触电极 121和第二接触电极 122位于芯层 113的相对两侧。位于所述上包 层 111及下包层 112内的部分第二接触电极 122与第二电容器极板 132分别相 连。 第二电容器极板 132均部分位于所述上包层 111和下包层 112内, 其余部 分延伸至所述芯层 113内。 并且, 两个第二电容器极板 132相互平行, 并与第 一电容器极板 131相互平行。 第一电容器极板 131位于两片第二电容器极板 132之间。 所述第一电容器极板 131与第二电容器极板 132之间的距离为 10 纳米至 100纳米。 优选地, 所述第一电容器极板 131、 第二电容器极板 132均 延伸过所述芯层 113的中心区域,在平行于所述芯层 113的横截面方向上, 所 述第一电容器极板 131 的投影于所述第二电容器极板 132的投影至少部分重 合。 优选地, 第一电容器极板 131、 第二电容器极板 132相互重叠的位置位于 所述芯层 113的中心, 即芯层 113中基模光场场强极大处, 以增加第一电容器 极板 131、 第二电容器极板 132与光波模场的相互作用。 The first contact electrode 121 and the first capacitor plate 131 are connected to each other, and the second contact electrode 122 is connected to the two second capacitor plates 132. In this embodiment, the first contact electrode 121 is disposed on the surface of the lower cladding layer 112, and partially extends into the upper cladding layer 111 and the lower cladding layer 112, and is located in the upper cladding layer 111 and the lower cladding layer 112. The first contact electrode 121 and the first capacitor plate 131 are connected to each other. The first capacitor plate 131 is partially located within the upper cladding layer 111 and the lower cladding layer 112, with the remainder extending into the core layer 113. The second contact electrode 122 is also disposed on the surface of the under cladding layer 112 and partially extends into the upper cladding layer 111 and the lower cladding layer 112. Preferably, the first contact electrode 121 and the second contact electrode 122 are located on opposite sides of the core layer 113. A portion of the second contact electrode 122 located in the upper cladding layer 111 and the lower cladding layer 112 is connected to the second capacitor plate 132, respectively. The second capacitor plates 132 are each partially located within the upper cladding layer 111 and the lower cladding layer 112, with the remaining portions extending into the core layer 113. Further, the two second capacitor plates 132 are parallel to each other and are parallel to the first capacitor plate 131. The first capacitor plate 131 is located between the two second capacitor plates 132. The distance between the first capacitor plate 131 and the second capacitor plate 132 is from 10 nm to 100 nm. Preferably, the first capacitor plate 131 and the second capacitor plate 132 both extend through a central region of the core layer 113, in a direction parallel to the cross section of the core layer 113, the first capacitor pole The projection of the projection of the plate 131 on the second capacitor plate 132 at least partially coincides. Preferably, the position where the first capacitor plate 131 and the second capacitor plate 132 overlap each other is located at the center of the core layer 113, that is, the field mode field intensity of the core layer 113 is extremely large to increase the first capacitor pole. The interaction of the plate 131, the second capacitor plate 132 and the optical mode field.
所述第一电容器极板 131、 第二电容器极板 132为石墨烯薄膜。 所述石墨 烯薄膜可以为单层石墨烯, 也可以为寡层石墨烯(原子层数为 2至 10层) 。 所述第一接触电极 121和第二接触电极 122的材料可以为金或者铂等,第一接 触电极 121和第二接触电极 122也可以为导电聚合物薄膜或者氧化铟锡薄膜。 The first capacitor plate 131 and the second capacitor plate 132 are graphene films. The graphene film may be a single layer of graphene or an oligographene (having an atomic layer of 2 to 10 layers). The material of the first contact electrode 121 and the second contact electrode 122 may be gold or platinum, and the first contact electrode 121 and the second contact electrode 122 may also be a conductive polymer film or an indium tin oxide film.
所述第一接触电极 121和第二接触电极 122用于与外加电压连接,从而与 第一接触电极 121连接的第一电容器极板 131作为电容器极板一极,与第二接 触电极 122连接的第二电容器极板 132作为电容器极板另一极,通过在第一接 触电极 121和第二接触电极 122施加调制信号的电压,实现对第一电容器极板 131、 第二电容器极板 132内的石墨烯的载流子掺杂, 改变石墨烯的光学吸收 系数, 从而实现对第一电容器极板 131、 第二电容器极板 132内的石墨烯的光
学系数的调制。 The first contact electrode 121 and the second contact electrode 122 are connected to an applied voltage, so that the first capacitor plate 131 connected to the first contact electrode 121 serves as a pole of the capacitor plate and is connected to the second contact electrode 122. The second capacitor plate 132 serves as the other pole of the capacitor plate. By applying a voltage of the modulation signal to the first contact electrode 121 and the second contact electrode 122, the first capacitor plate 131 and the second capacitor plate 132 are realized. The carrier doping of graphene changes the optical absorption coefficient of graphene, thereby realizing the light of graphene in the first capacitor plate 131 and the second capacitor plate 132. Modulation of the coefficient of learning.
可以理解的是,本实施方式提供的光调制器 100也可以不包括第一接触电 极 121和第二接触电极 122, 而直接将第一电容器极板 131、 第二电容器极板 132作为电极连接至电源的两极。 It can be understood that the optical modulator 100 provided by the embodiment may not directly include the first contact electrode 121 and the second contact electrode 122, and directly connect the first capacitor plate 131 and the second capacitor plate 132 as electrodes to the electrode. The two poles of the power supply.
本实施方式中的第一电容器极板 131、 第二电容器极板 132均采用石墨烯 薄膜制成,由于石墨烯材料本身具有的超快载流子迁移速率和极短的弛豫时间 ( 2 ps量级) 。 因此, 光调制器 100的调制带宽可以达到 500GHz。 并且, 本 实施例中的聚合物波导 110的长度为 10微米至 200微米, 因此, 聚合物波导 的长度对光调制器 100的调制带宽几乎没有影响。 当光源在所述光调制器 100 导波时,如果在两极之间施加调制电压信号, 就可以将数据信号调制到光信号 上。 The first capacitor plate 131 and the second capacitor plate 132 in the present embodiment are all made of a graphene film, because the graphene material itself has an ultra-fast carrier mobility and a very short relaxation time (2 ps). Magnitude). Therefore, the modulation bandwidth of the optical modulator 100 can reach 500 GHz. Also, the length of the polymer waveguide 110 in this embodiment is from 10 μm to 200 μm, and therefore, the length of the polymer waveguide has little influence on the modulation bandwidth of the optical modulator 100. When the light source is guided by the light modulator 100, the data signal can be modulated onto the optical signal if a modulated voltage signal is applied between the two poles.
光调制器 100的调制原理基于石墨烯电可调的光吸收特性,由于石墨烯具 有超高的载流子迁移率和超快的载流子弛豫时间,结合光波导设计可有效增强 石墨烯和光波模场的相互作用, 所以理论上可以达到 500 GHz的调制带宽。 此外, 由于光调制器 100使用的材料为聚合物和石墨烯, 两者的材料成本以及 聚合物波导的制备成本都相对较低, 并有望实现大规模生产。 The modulation principle of the light modulator 100 is based on the electrically tunable light absorption characteristics of graphene. Since graphene has ultra-high carrier mobility and ultra-fast carrier relaxation time, the combination of optical waveguide design can effectively enhance graphene. The interaction with the optical mode field, so theoretically can achieve a modulation bandwidth of 500 GHz. In addition, since the materials used in the light modulator 100 are polymers and graphene, the material cost of both and the preparation cost of the polymer waveguides are relatively low, and large-scale production is expected.
光调制器 100具有很高的调制带宽, 并且光语响应范围宽, 可应用于波分 复用的应用场景。 此外, 由于光调制器 100基于聚合物波导, 聚合物波导的光 波模场和单模光纤的模场相近,所以该光调制器和光纤通信器件间的耦合损耗 几乎可以忽略。 因此,单个石墨烯聚合物波导光调制器 100可以作为单元光电 子器件独立封装应用在光通信领域。光调制器 100和光纤通信系统具有 4艮好的 兼容性, 并可以满足将来大带宽的数据传送对光调制器的要求。 The optical modulator 100 has a high modulation bandwidth and a wide response range of the optical language, and can be applied to a wavelength division multiplexing application scenario. Furthermore, since the optical modulator 100 is based on a polymer waveguide, the optical mode field of the polymer waveguide is similar to that of the single mode fiber, so the coupling loss between the optical modulator and the fiber optic communication device is almost negligible. Therefore, the single graphene polymer waveguide optical modulator 100 can be used as a unit photonic device in a package independent application in the field of optical communication. The optical modulator 100 and the optical fiber communication system have a good compatibility and can meet the requirements of a large-bandwidth data transmission to the optical modulator in the future.
由于单层石墨烯对光的吸收已经达到了 2.3%, 将石墨烯集成到聚合物波 导的基模光波模场场强极大处,有效增强了石墨烯和光波模场的相互作用, 减 小了器件尺寸。 由于光调制器 100尺寸较小, 可以提高系统集成度。 Since the absorption of light by single-layer graphene has reached 2.3%, the field strength of the fundamental mode of the polymer waveguide is integrated into the fundamental mode of the polymer waveguide, which effectively enhances the interaction between the graphene and the optical mode field. The device size. Due to the small size of the light modulator 100, system integration can be improved.
请参阅图 2, 本发明第一技术方案第二较佳实施方式提供一种光调制器 200。 本实施方式提供的光调制器 200与第一实施方式提供的光调制器 100的 结构相近, 工作的原理及实现的功能也相近。 光调制器 200包括衬底 201、 下 包层 212、 第一接触电极 221、 第二接触电极 222、 第一电容器极板 231、 第二 电容器极板 232、 芯层 213及上包层 211。 不同之处在于, 光调制器 200的第
二电容器极板 232的个数为 1个。 Referring to FIG. 2, a second preferred embodiment of the first technical solution of the present invention provides a light modulator 200. The optical modulator 200 provided in this embodiment is similar to the optical modulator 100 provided in the first embodiment, and the working principle and the functions realized are similar. The light modulator 200 includes a substrate 201, a lower cladding layer 212, a first contact electrode 221, a second contact electrode 222, a first capacitor plate 231, a second capacitor plate 232, a core layer 213, and an upper cladding layer 211. The difference is that the light modulator 200 The number of the two capacitor plates 232 is one.
在其他实施方式中, 第一电容器极板 231 的个数可以为两个或者两个以 器极板 231和第二电容器极板 232的个数均为两个以上时, 第一电容器极板 231和第二电容器极板 232在芯层 213的厚度方向上交替排列且相互平行。 第 一电容器极板 231与其相邻的第二电容器极板 232之间的距离为 10纳米至 100 纳米。 In other embodiments, when the number of the first capacitor plates 231 is two or two, and the number of the second and second capacitor plates 231 and 232 is two or more, the first capacitor plate 231 The second capacitor plates 232 are alternately arranged in the thickness direction of the core layer 213 and are parallel to each other. The distance between the first capacitor plate 231 and its adjacent second capacitor plate 232 is from 10 nanometers to 100 nanometers.
请参阅图 3 , 本发明第一技术方案的第三较佳实施方式提供一种光调制器 300。 本实施方式提供的光调制器 300与第二实施方式提供的光调制器 200的 结构相近, 工作的原理及实现的功能也相近。 光调制器 300包括衬底 301、 下 包层 312、 第一接触电极 321、 第二接触电极 322、 第一电容器极板 331、 第二 电容器极板 332、 芯层 313及上包层 311。 不同之处在于, 光调制器 300的第 二电容器极板 332采用导电薄膜材料制成。 所述导电薄膜与所述芯层 313、 上 包层 311及下包层 312的材料具有相似的介电特性,且所述导电薄膜应具有较 快的载流子迁移速度和驰豫时间。 所述导电薄膜的材料具体可以为聚乙烯、 聚 苯胺、 聚吡咯、 聚噻吩和聚对苯乙烯撑等。 Referring to FIG. 3, a third preferred embodiment of the first technical solution of the present invention provides a light modulator 300. The optical modulator 300 provided in this embodiment is similar in structure to the optical modulator 200 provided in the second embodiment, and the working principle and the functions realized are similar. The light modulator 300 includes a substrate 301, a lower cladding layer 312, a first contact electrode 321, a second contact electrode 322, a first capacitor plate 331, a second capacitor plate 332, a core layer 313, and an upper cladding layer 311. The difference is that the second capacitor plate 332 of the light modulator 300 is made of a conductive film material. The conductive film has similar dielectric properties to the materials of the core layer 313, the upper cladding layer 311 and the lower cladding layer 312, and the conductive film should have a faster carrier migration speed and relaxation time. The material of the electroconductive film may specifically be polyethylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene.
请参阅图 4, 本发明的第二技术方案的一个较佳实施方式提供一种平面光 子器件(PLC )模块 10, 所述平面光子器件模块 10其包括激光器 20、 第一驱 动电路 30、光波导 40、第二驱动电路 50及本发明第一技术方案提供的光调制 器。 本实施方式中, 以第一技术方案的第一较佳实施方式提供的光调制器 100 为例来进行说明。 Referring to FIG. 4, a preferred embodiment of the second technical solution of the present invention provides a planar photonic device (PLC) module 10, which includes a laser 20, a first driving circuit 30, and an optical waveguide. 40. The second driving circuit 50 and the optical modulator provided by the first technical solution of the present invention. In the present embodiment, the optical modulator 100 provided in the first preferred embodiment of the first aspect is described as an example.
所述激光器 20 可以为可调谐激光器或固定波长激光器。 所述激光器 100 用于发射激光。 所述第一驱动电路 30与激光器 100电性连接, 用于控制并驱 动所述激光器 20发射激光。 所述光波导 40连接于激光器 20与光调制器 100 之间, 用于将激光器 20发出的激光传导至光调制器 100。 所述光调制器 100 将激光进行调制后输出。 所述第二驱动电路 50与光调制器 100电性连接, 用 于将电调制信号加载到光调制器 100上, 从而实现对导波激光的调制。 The laser 20 can be a tunable laser or a fixed wavelength laser. The laser 100 is used to emit laser light. The first driving circuit 30 is electrically connected to the laser 100 for controlling and driving the laser 20 to emit laser light. The optical waveguide 40 is connected between the laser 20 and the optical modulator 100 for conducting the laser light emitted from the laser 20 to the optical modulator 100. The light modulator 100 modulates the laser light and outputs it. The second driving circuit 50 is electrically connected to the optical modulator 100 for loading the electrical modulation signal onto the optical modulator 100, thereby realizing modulation of the guided laser light.
利用光调制器 100作为片上光调制器, 可设计小尺寸、 低功耗、 大带宽的 单片集成的平面光子器件模块 10。
可以理解的是,所述激光器 20与光调制器 100之间也可以不连接有光波导 40, 而将激光器 20直接与光调制器 100相连接, 激光器 20出射的激光直接传 导至所述光调制器 100内。 Using the light modulator 100 as an on-chip light modulator, a monolithically integrated planar photonic device module 10 of small size, low power consumption, and large bandwidth can be designed. It can be understood that the optical waveguide 40 may not be connected between the laser 20 and the optical modulator 100, and the laser 20 is directly connected to the optical modulator 100, and the laser light emitted by the laser 20 is directly transmitted to the optical modulation. Inside the device 100.
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员 在本发明揭露的技术范围内, 可轻易想到的变化或替换,都应涵盖在本发明的 保护范围之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。
It should be noted that the above embodiments are only for explaining the technical solutions of the present invention, and are not intended to be limiting; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art The scope of the protection is not limited thereto, and any changes or substitutions that are easily conceivable within the scope of the present invention are intended to be included within the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the claims.
Claims
1、 一种光调制器, 其包括聚合物波导、 至少一个第一电容器极板和至少 一个第二电容器极板, 所述聚合物波导包括芯层, 所述第一电容器极板和第二 电容器极板相互分离且均延伸至所述芯层内,在横截面的径向上, 所述第一电 容器极板的投影与所述第二电容器极板的投影至少部分重合,所述第一电容器 极板和 /或第二电容器极板采用石墨烯薄膜制成, 在所述第一电容器极板与第 二电容器极板之间施加调制电压信号, 改变第一电容器极板和 /或第二电容器 极板内的石墨烯光学吸收系数, 从而实现对聚合物波导中的导波光进行调制。 1. An optical modulator, which includes a polymer waveguide, at least one first capacitor plate and at least one second capacitor plate, the polymer waveguide includes a core layer, the first capacitor plate and the second capacitor The plates are separated from each other and extend into the core layer. In the radial direction of the cross-section, the projection of the first capacitor plate and the projection of the second capacitor plate at least partially overlap, and the first capacitor plate The plate and/or the second capacitor plate are made of graphene film, and a modulated voltage signal is applied between the first capacitor plate and the second capacitor plate to change the first capacitor plate and/or the second capacitor plate. The optical absorption coefficient of graphene in the plate is used to modulate the guided light in the polymer waveguide.
2、 如权利要求 1所述的光调制器, 其特征在于, 所述石墨烯薄膜为单层 石墨烯或者寡层石墨烯。 2. The light modulator according to claim 1, wherein the graphene film is single-layer graphene or oligo-layer graphene.
3、 如权利要求 1所述的光调制器, 其特征在于, 所述第一电容器极板与 第二电容器极板相互平行。 3. The light modulator according to claim 1, wherein the first capacitor plate and the second capacitor plate are parallel to each other.
4、 如权利要求 3所述的光调制器, 其特征在于, 所述第一电容器极板与 与其相邻的第二电容器极板之间的距离为 10纳米至 100纳米。 4. The light modulator according to claim 3, wherein the distance between the first capacitor plate and the adjacent second capacitor plate is 10 nanometers to 100 nanometers.
5、 如权利要求 1至 4任一项所述的光调制器, 其特征在于, 所述聚合物 波导还包括上包层和下包层,所述上包层和下包层从所述芯层的相对两侧包覆 所述芯层, 所述芯层、 下包层及上包层均采用非导电聚合物材料制成。 5. The optical modulator according to any one of claims 1 to 4, wherein the polymer waveguide further includes an upper cladding layer and a lower cladding layer, and the upper cladding layer and the lower cladding layer are formed from the core. Opposite sides of the layer cover the core layer, and the core layer, lower cladding layer and upper cladding layer are all made of non-conductive polymer materials.
6、 如权利要求 1至 4任一项所述的光调制器, 其特征在于, 所述第一电 容器极板的个数为一个, 所述第二电容器极板的个数为两个, 所述第一电容器 极板位于两个所述第二电容器极板之间。 6. The light modulator according to any one of claims 1 to 4, wherein the number of the first capacitor plates is one, and the number of the second capacitor plates is two, so The first capacitor plate is located between the two second capacitor plates.
7、 如权利要求 1至 4任一项所述的光调制器, 其特征在于, 所述第一电 容器极板的个数为一个, 所述第二电容器极板的个数为一个。 7. The optical modulator according to any one of claims 1 to 4, wherein the number of the first capacitor plates is one, and the number of the second capacitor plates is one.
8、 如权利要求 1至 4任一项所述的光调制器, 其特征在于, 所述第一电 容器极板的个数为两个以上, 所述第二电容器的个数为两个以上, 第一电容器 极板和第二电容器极板在芯层的厚度方向上交替排列。 8. The optical modulator according to any one of claims 1 to 4, wherein the number of first capacitor plates is more than two, and the number of second capacitors is more than two, The first capacitor plates and the second capacitor plates are alternately arranged in the thickness direction of the core layer.
9、 如权利要求 1所述的光调制器, 其特征在于, 所述第一电容器极板采 用石墨烯薄膜制成, 所述第二电容器极板采用导电薄膜制成。 9. The light modulator according to claim 1, wherein the first capacitor plate is made of graphene film, and the second capacitor plate is made of conductive film.
10、 根据权利要求 1所述的光调制器, 其特征在于, 所述光调制器还包括 第一接触电极和第二接触电极,所述第一接触电极与所述第一电容器极板电连
接, 所述第二接触电极与所述第二电容器极板电连接, 所述第一接触电极与第 二接触电极用于接入调制电压信号。 10. The light modulator according to claim 1, characterized in that, the light modulator further includes a first contact electrode and a second contact electrode, the first contact electrode is electrically connected to the first capacitor plate. The second contact electrode is electrically connected to the second capacitor plate, and the first contact electrode and the second contact electrode are used to receive a modulated voltage signal.
11、 如权利要求 10所述的光调制器, 其特征在于, 所述第一接触电极和 第二接触电极的材料为金、 铂、 导电聚合物或者氧化铟锡。 11. The light modulator according to claim 10, wherein the first contact electrode and the second contact electrode are made of gold, platinum, conductive polymer or indium tin oxide.
12、 如权利要求 1所述的光调制器, 其特征在于, 所述聚合物波导的厚度 为 10微米至 200微米, 所述芯层的横截面为矩形, 矩形横截面的长和宽均为 3微米至 10微米。 12. The optical modulator according to claim 1, wherein the thickness of the polymer waveguide is 10 microns to 200 microns, the cross section of the core layer is rectangular, and the length and width of the rectangular cross section are both 3 microns to 10 microns.
13、 一种平面光子器件模块, 包括激光器、 第一驱动电路、 第二驱动电路 及如权利要求 1至 12任一项所述的光调制器, 所述第一驱动电路用于控制及 驱动所述激光器发出激光 ,所述第二驱动电路用于向所述光调制器施加调制电 压信号, 所述激光器发出的激光传导至所述光调制器, 所述光调制器用于对所 述激光进行调制。 13. A planar photonic device module, including a laser, a first drive circuit, a second drive circuit and the optical modulator according to any one of claims 1 to 12, the first drive circuit being used to control and drive the optical modulator. The laser emits laser light, the second driving circuit is used to apply a modulation voltage signal to the optical modulator, the laser light emitted by the laser is transmitted to the optical modulator, and the optical modulator is used to modulate the laser light. .
14、 如权利要求 13所述的平面光子器件模块, 其特征在于, 所述平面光 子器件模块还包括光波导, 所述光波导连接于所述激光器与所述光调制器之 间, 所述光波导用于将所述激光器发出的激光传导至所述光调制器。 14. The planar photonic device module according to claim 13, wherein the planar photonic device module further includes an optical waveguide, the optical waveguide is connected between the laser and the optical modulator, and the optical waveguide The waveguide is used to conduct the laser light emitted by the laser to the light modulator.
15、 如权利要求 13所述的平面光子器件模块, 其特征在于, 所述激光器 为可调谐激光器或固定波长激光器。
15. The planar photonic device module according to claim 13, characterized in that the laser is a tunable laser or a fixed wavelength laser.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/088676 WO2015081538A1 (en) | 2013-12-05 | 2013-12-05 | Optical modulator and planar photonic device module |
CN201380002799.1A CN105264430B (en) | 2013-12-05 | 2013-12-05 | A kind of optical modulator and planar photonic device mould group |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/088676 WO2015081538A1 (en) | 2013-12-05 | 2013-12-05 | Optical modulator and planar photonic device module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015081538A1 true WO2015081538A1 (en) | 2015-06-11 |
Family
ID=53272762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/088676 WO2015081538A1 (en) | 2013-12-05 | 2013-12-05 | Optical modulator and planar photonic device module |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105264430B (en) |
WO (1) | WO2015081538A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017144462A1 (en) * | 2016-02-23 | 2017-08-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Circuit assembly and method for producing a circuit assembly |
CN108121091A (en) * | 2017-12-08 | 2018-06-05 | 武汉邮电科学研究院 | A kind of electrooptic modulator and preparation method thereof |
CN110147000A (en) * | 2019-07-05 | 2019-08-20 | 吉林大学 | A kind of organic polymer optical waveguide absorption-type optical modulator based on burial type Graphene electrodes |
CN110687695A (en) * | 2019-11-21 | 2020-01-14 | 吉林大学 | Trapezoidal graphene-based polarization-insensitive organic polymer absorption type optical modulator |
WO2020035695A1 (en) * | 2018-08-15 | 2020-02-20 | The University Of Manchester | Electrically controlled active waveguides |
DE202020104362U1 (en) | 2020-07-28 | 2021-10-29 | Gesellschaft für angewandte Mikro- und Optoelektronik mit beschränkter Haftung - AMO GmbH | Electro-optical device, semiconductor device and semiconductor device, electro-optical arrangement and use |
WO2021221206A1 (en) * | 2020-04-29 | 2021-11-04 | 엘지전자 주식회사 | Graphene photonic device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7124741B2 (en) * | 2019-02-06 | 2022-08-24 | 日本電信電話株式会社 | optical transmitter |
CN113093409A (en) * | 2021-04-09 | 2021-07-09 | 东南大学 | Two-dimensional material electro-optic modulator based on continuous medium bound state |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110101309A1 (en) * | 2009-11-04 | 2011-05-05 | International Business Machines Corporation | Graphene based switching device having a tunable bandgap |
CN102540506A (en) * | 2011-12-31 | 2012-07-04 | 泰州巨纳新能源有限公司 | D-type optical fiber based graphene electro-optical modulator and preparation method thereof |
CN102707378A (en) * | 2012-06-12 | 2012-10-03 | 华南师范大学 | Method for manufacturing silicone micro-nano optical structure by using imprinting technology |
WO2012145605A1 (en) * | 2011-04-22 | 2012-10-26 | The Regents Of The University Of California | Graphene based optical modulator |
CN103064200A (en) * | 2011-10-19 | 2013-04-24 | 三星电子株式会社 | Optical modulator including graphene |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003027736A1 (en) * | 2001-09-19 | 2003-04-03 | Matsushita Electric Industrial Co., Ltd. | Optical waveguide and method for fabricating the same |
CN1243286C (en) * | 2004-08-14 | 2006-02-22 | 浙江大学 | Method for producing polymer light wave guide device based on silicon lining |
CN100468103C (en) * | 2006-08-30 | 2009-03-11 | 中国科学院半导体研究所 | Three electric capacity MOS silicon based high speed high modulate efficiency electro optic modulator |
CN101517445A (en) * | 2006-09-22 | 2009-08-26 | 日立化成工业株式会社 | Process for manufacturing light guide |
CN103163600B (en) * | 2011-12-15 | 2016-03-09 | 鸿富锦精密工业(深圳)有限公司 | Optical coupler module and preparation method thereof |
CN103901638B (en) * | 2014-04-22 | 2016-06-08 | 电子科技大学 | There is the photomodulator of four layer graphene structures |
-
2013
- 2013-12-05 WO PCT/CN2013/088676 patent/WO2015081538A1/en active Application Filing
- 2013-12-05 CN CN201380002799.1A patent/CN105264430B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110101309A1 (en) * | 2009-11-04 | 2011-05-05 | International Business Machines Corporation | Graphene based switching device having a tunable bandgap |
WO2012145605A1 (en) * | 2011-04-22 | 2012-10-26 | The Regents Of The University Of California | Graphene based optical modulator |
CN103064200A (en) * | 2011-10-19 | 2013-04-24 | 三星电子株式会社 | Optical modulator including graphene |
CN102540506A (en) * | 2011-12-31 | 2012-07-04 | 泰州巨纳新能源有限公司 | D-type optical fiber based graphene electro-optical modulator and preparation method thereof |
CN102707378A (en) * | 2012-06-12 | 2012-10-03 | 华南师范大学 | Method for manufacturing silicone micro-nano optical structure by using imprinting technology |
Non-Patent Citations (3)
Title |
---|
KIM, J.T. ET AL.: "Graphene-based Polymer Waveguide Polarizer", OPTICS EXPRESS, vol. 20, no. 4, 30 January 2012 (2012-01-30), pages 3556 - 3562 * |
KIM, K. ET AL.: "A Role for Graphene in Silicon-based Semiconductor Devices", NATURE, vol. 479, 17 November 2011 (2011-11-17), pages 338 - 343 * |
LIU, MING ET AL.: "A Graphene-based Broadband Optical Modulator", NATURE, vol. 474, 2 June 2011 (2011-06-02), pages 64 - 66 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017144462A1 (en) * | 2016-02-23 | 2017-08-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Circuit assembly and method for producing a circuit assembly |
US10436980B2 (en) | 2016-02-23 | 2019-10-08 | Fraunhofer-Gesellschaf T Zur Förderung Der Angewandten Forschung E.V. | Circuit assembly and method for producing a circuit assembly |
CN108121091A (en) * | 2017-12-08 | 2018-06-05 | 武汉邮电科学研究院 | A kind of electrooptic modulator and preparation method thereof |
WO2020035695A1 (en) * | 2018-08-15 | 2020-02-20 | The University Of Manchester | Electrically controlled active waveguides |
CN110147000A (en) * | 2019-07-05 | 2019-08-20 | 吉林大学 | A kind of organic polymer optical waveguide absorption-type optical modulator based on burial type Graphene electrodes |
CN110687695A (en) * | 2019-11-21 | 2020-01-14 | 吉林大学 | Trapezoidal graphene-based polarization-insensitive organic polymer absorption type optical modulator |
WO2021221206A1 (en) * | 2020-04-29 | 2021-11-04 | 엘지전자 주식회사 | Graphene photonic device |
EP4145197A4 (en) * | 2020-04-29 | 2024-01-10 | LG Electronics, Inc. | Graphene photonic device |
US12066656B2 (en) | 2020-04-29 | 2024-08-20 | Lg Electronics Inc. | Graphene optical device |
DE202020104362U1 (en) | 2020-07-28 | 2021-10-29 | Gesellschaft für angewandte Mikro- und Optoelektronik mit beschränkter Haftung - AMO GmbH | Electro-optical device, semiconductor device and semiconductor device, electro-optical arrangement and use |
Also Published As
Publication number | Publication date |
---|---|
CN105264430B (en) | 2019-05-28 |
CN105264430A (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015081538A1 (en) | Optical modulator and planar photonic device module | |
US8244075B2 (en) | Optical device | |
Chen et al. | Broadband optical modulators: science, technology, and applications | |
US9568801B2 (en) | Optical modulator | |
US20060210215A1 (en) | Optical transceiver array | |
JP2007304427A (en) | Optical switching element | |
JP2009053499A (en) | Optical modulator and optical modulation module | |
WO2010048195A1 (en) | Organic electro-optic modulators with transparent conducting electrodes and related device structures | |
CN102495480A (en) | Electro-optic modulator with graphene and micronano optical fiber composite structure | |
EP1721210A1 (en) | Method and apparatus for polarization insensitive phase shifting of an optical beam in an optical device | |
CN105372851A (en) | Optical fiber absorption enhanced electro-optical modulator based on graphene/molybdenum disulfide heterojunction | |
JP2008046573A (en) | Optical modulator | |
CN110149153B (en) | Optical modulator, modulation method and optical modulation system | |
Yu et al. | Small form factor thin film polymer modulators for telecom applications | |
CN105676485B (en) | A kind of full fiber type electrooptic modulator based on D type twin-core fiber | |
Larocque et al. | Photonic crystal cavity IQ modulators in thin-film lithium niobate for coherent communications | |
Hoessbacher | Plasmonic Switches and Modulators for Optical Communications | |
CN115755442A (en) | O-waveband multi-mode interference type silicon-based optical switch based on antimony sulfide on waveguide | |
CN113325613B (en) | Optical modulator and related device | |
JP4997919B2 (en) | Optical branching coupler and optical communication system | |
CN106873192A (en) | The ultrafast spatial modulator of electric light based on silicon waveguide | |
CN106785905A (en) | A kind of electrooptic modulator based on Prague phase-shifted grating | |
CN206575013U (en) | A kind of electrooptic modulator based on Prague phase-shifted grating | |
Huang et al. | Simulation of hybrid silicon nitride/polymer Mach-Zehnder optical modulator beyond 170 GHz | |
CN220105455U (en) | Electro-optical modulator based on graphene electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380002799.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13898506 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13898506 Country of ref document: EP Kind code of ref document: A1 |