WO2015081538A1 - Modulateur optique et module de dispositif photonique planaire - Google Patents

Modulateur optique et module de dispositif photonique planaire Download PDF

Info

Publication number
WO2015081538A1
WO2015081538A1 PCT/CN2013/088676 CN2013088676W WO2015081538A1 WO 2015081538 A1 WO2015081538 A1 WO 2015081538A1 CN 2013088676 W CN2013088676 W CN 2013088676W WO 2015081538 A1 WO2015081538 A1 WO 2015081538A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor plate
capacitor
optical
laser
optical modulator
Prior art date
Application number
PCT/CN2013/088676
Other languages
English (en)
Chinese (zh)
Inventor
孟超
杨迎春
刘耀达
郝沁汾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/088676 priority Critical patent/WO2015081538A1/fr
Priority to CN201380002799.1A priority patent/CN105264430B/zh
Publication of WO2015081538A1 publication Critical patent/WO2015081538A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a light modulator and a planar photonic device module. Background technique
  • the design of the currently used lithium niobate (LiNb0 3 ) electro-optic modulator generally follows the following procedure: based on the LiNb0 3 substrate material, cutting along the X and z directions of the crystal, and using Ti element diffusion to form a waveguide on the LiNb0 3 substrate, And designed the Mach-Zehnder (MZ) modulator structure.
  • the modulation principle of the LiNb0 3 electro-optic modulator utilizes the nonlinear secondary electro-optic effect of the LiNb0 3 material to adjust the nonlinear refractive index of the material by voltage modulation, and converts the phase modulation of the signal into intensity modulation by the MZ interferometer structure.
  • the first capacitor plate and the second capacitor plate are parallel to each other.
  • the first capacitor plate is made of a graphene film
  • the second capacitor plate is made of a conductive film.
  • the material of the first contact electrode and the second contact electrode is gold, platinum, a conductive polymer, or indium tin oxide.
  • the planar photonic device module includes a laser, a first driving circuit, a second driving circuit, and a light modulator according to various possible implementations, wherein the first driving circuit is configured to control and drive the laser to emit laser light, A second drive circuit is operative to apply a modulated voltage signal to the light modulator, the laser light from the laser being conducted to the light modulator, the light modulator for modulating the laser light.
  • the field strength of the fundamental mode of the polymer waveguide is integrated into the fundamental mode of the polymer waveguide, which effectively enhances the interaction between the graphene and the optical mode field.
  • the device size The reduction in the size of the light modulator will lead to further improvements in system integration.
  • FIG. 3 is a schematic cross-sectional view of a light modulator according to a third preferred embodiment of the present invention.
  • FIG. 4 is a block diagram of a preferred embodiment of a planar photonic device module provided by the present invention.
  • the core layer 113 is covered by the upper cladding layer 111 and the lower cladding layer 112. Specifically, a portion of the core layer 113 is buried in the lower cladding layer 112, and the remaining portion is buried in the upper cladding layer 111.
  • the lower cladding layer 112 has a larger cross-sectional area than the upper cladding layer 111.
  • the polymer waveguide 110 composed of the upper cladding layer 111, the core layer 113, and the lower cladding layer 112 has a length of 10 ⁇ m to 200 ⁇ m.
  • the core layer 113 is generally rectangular in cross section, and the cross section of the rectangle is generally 3 to 10 microns in length and width.
  • the second contact electrode 122 is also disposed on the surface of the under cladding layer 112 and partially extends into the upper cladding layer 111 and the lower cladding layer 112.
  • the first contact electrode 121 and the second contact electrode 122 are located on opposite sides of the core layer 113.
  • a portion of the second contact electrode 122 located in the upper cladding layer 111 and the lower cladding layer 112 is connected to the second capacitor plate 132, respectively.
  • the second capacitor plates 132 are each partially located within the upper cladding layer 111 and the lower cladding layer 112, with the remaining portions extending into the core layer 113. Further, the two second capacitor plates 132 are parallel to each other and are parallel to the first capacitor plate 131.
  • the first capacitor plate 131 and the second capacitor plate 132 are graphene films.
  • the graphene film may be a single layer of graphene or an oligographene (having an atomic layer of 2 to 10 layers).
  • the material of the first contact electrode 121 and the second contact electrode 122 may be gold or platinum, and the first contact electrode 121 and the second contact electrode 122 may also be a conductive polymer film or an indium tin oxide film.
  • the modulation principle of the light modulator 100 is based on the electrically tunable light absorption characteristics of graphene. Since graphene has ultra-high carrier mobility and ultra-fast carrier relaxation time, the combination of optical waveguide design can effectively enhance graphene. The interaction with the optical mode field, so theoretically can achieve a modulation bandwidth of 500 GHz. In addition, since the materials used in the light modulator 100 are polymers and graphene, the material cost of both and the preparation cost of the polymer waveguides are relatively low, and large-scale production is expected.
  • a third preferred embodiment of the first technical solution of the present invention provides a light modulator 300.
  • the optical modulator 300 provided in this embodiment is similar in structure to the optical modulator 200 provided in the second embodiment, and the working principle and the functions realized are similar.
  • the light modulator 300 includes a substrate 301, a lower cladding layer 312, a first contact electrode 321, a second contact electrode 322, a first capacitor plate 331, a second capacitor plate 332, a core layer 313, and an upper cladding layer 311. The difference is that the second capacitor plate 332 of the light modulator 300 is made of a conductive film material.
  • a preferred embodiment of the second technical solution of the present invention provides a planar photonic device (PLC) module 10, which includes a laser 20, a first driving circuit 30, and an optical waveguide. 40.
  • PLC planar photonic device
  • the second driving circuit 50 and the optical modulator provided by the first technical solution of the present invention.
  • the optical modulator 100 provided in the first preferred embodiment of the first aspect is described as an example.
  • the light modulator 100 as an on-chip light modulator, a monolithically integrated planar photonic device module 10 of small size, low power consumption, and large bandwidth can be designed.
  • the optical waveguide 40 may not be connected between the laser 20 and the optical modulator 100, and the laser 20 is directly connected to the optical modulator 100, and the laser light emitted by the laser 20 is directly transmitted to the optical modulation. Inside the device 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

La présente invention concerne un modulateur optique (100), comportant un guide d'ondes polymère (110), au moins une première plaque de condensateur (131), et au moins une seconde plaque de condensateur (132); ledit guide d'ondes polymère comprenant une couche d'âme (113); ladite première plaque de condensateur (131) et la seconde plaque de condensateur (132) étant séparées l'une de l'autre et s'étendant dans la couche d'âme (113); la projection de ladite première plaque de condensateur (131) et la projection de ladite seconde plaque de condensateur (132) étant au moins en partie coïncidentes dans la direction radiale de la section transversale; ladite première plaque de condensateur (131) et/ou la seconde plaque de condensateur (132) étant réalisées en film mince de graphène; lors de l'application d'un signal de tension modulé entre ladite première plaque de condensateur (131) et la seconde plaque de condensateur (132), le coefficient d'absorption optique de graphène dans la première plaque de condensateur (131) et/ou la seconde plaque de condensateur (132) se modifie, entraînant ainsi la modulation de la lumière du guide d'ondes polymère (110). Le modulateur optique (100) possède une petite dimension intégrée, une faible consommation d'énergie, et une large bande passante de modulation. L'invention concerne également un module de dispositif photonique (10) comportant ledit modulateur optique (100).
PCT/CN2013/088676 2013-12-05 2013-12-05 Modulateur optique et module de dispositif photonique planaire WO2015081538A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/088676 WO2015081538A1 (fr) 2013-12-05 2013-12-05 Modulateur optique et module de dispositif photonique planaire
CN201380002799.1A CN105264430B (zh) 2013-12-05 2013-12-05 一种光调制器及平面光子器件模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088676 WO2015081538A1 (fr) 2013-12-05 2013-12-05 Modulateur optique et module de dispositif photonique planaire

Publications (1)

Publication Number Publication Date
WO2015081538A1 true WO2015081538A1 (fr) 2015-06-11

Family

ID=53272762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088676 WO2015081538A1 (fr) 2013-12-05 2013-12-05 Modulateur optique et module de dispositif photonique planaire

Country Status (2)

Country Link
CN (1) CN105264430B (fr)
WO (1) WO2015081538A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144462A1 (fr) * 2016-02-23 2017-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ensemble circuit de commutation et procédé de fabrication d'un ensemble circuit de commutation
CN108121091A (zh) * 2017-12-08 2018-06-05 武汉邮电科学研究院 一种电光调制器及其制备方法
CN110147000A (zh) * 2019-07-05 2019-08-20 吉林大学 一种基于掩埋型石墨烯电极的有机聚合物光波导吸收型光调制器
CN110687695A (zh) * 2019-11-21 2020-01-14 吉林大学 一种基于梯形石墨烯的偏振不敏感的有机聚合物吸收型光调制器
WO2020035695A1 (fr) * 2018-08-15 2020-02-20 The University Of Manchester Guides d'ondes actifs à commande électrique
DE202020104362U1 (de) 2020-07-28 2021-10-29 Gesellschaft für angewandte Mikro- und Optoelektronik mit beschränkter Haftung - AMO GmbH Elektro-optische Einrichtung, Halbleitereinrichtung und Halbleitervorrichtung, elektro-optische Anordnung und Verwendung
WO2021221206A1 (fr) * 2020-04-29 2021-11-04 엘지전자 주식회사 Dispositif photonique au graphène

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124741B2 (ja) * 2019-02-06 2022-08-24 日本電信電話株式会社 光送信器
CN113093409A (zh) * 2021-04-09 2021-07-09 东南大学 一种基于连续介质束缚态的二维材料电光调制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110101309A1 (en) * 2009-11-04 2011-05-05 International Business Machines Corporation Graphene based switching device having a tunable bandgap
CN102540506A (zh) * 2011-12-31 2012-07-04 泰州巨纳新能源有限公司 基于d型光纤的石墨烯电光调制器及其制备方法
CN102707378A (zh) * 2012-06-12 2012-10-03 华南师范大学 一种应用压印技术制作硅酮微纳光学结构的方法
WO2012145605A1 (fr) * 2011-04-22 2012-10-26 The Regents Of The University Of California Modulateur optique à base de graphène
CN103064200A (zh) * 2011-10-19 2013-04-24 三星电子株式会社 包括石墨烯的光学调制器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664174B2 (ja) * 2001-09-19 2005-06-22 松下電器産業株式会社 光導波路およびその製造方法
CN1243286C (zh) * 2004-08-14 2006-02-22 浙江大学 基于硅衬底的聚合物光波导器件的制作方法
CN100468103C (zh) * 2006-08-30 2009-03-11 中国科学院半导体研究所 三电容mos硅基高速高调制效率电光调制器
CN101517445A (zh) * 2006-09-22 2009-08-26 日立化成工业株式会社 光波导的制造方法
CN103163600B (zh) * 2011-12-15 2016-03-09 鸿富锦精密工业(深圳)有限公司 光耦合模块及其制备方法
CN103901638B (zh) * 2014-04-22 2016-06-08 电子科技大学 具有四层石墨烯结构的光调制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110101309A1 (en) * 2009-11-04 2011-05-05 International Business Machines Corporation Graphene based switching device having a tunable bandgap
WO2012145605A1 (fr) * 2011-04-22 2012-10-26 The Regents Of The University Of California Modulateur optique à base de graphène
CN103064200A (zh) * 2011-10-19 2013-04-24 三星电子株式会社 包括石墨烯的光学调制器
CN102540506A (zh) * 2011-12-31 2012-07-04 泰州巨纳新能源有限公司 基于d型光纤的石墨烯电光调制器及其制备方法
CN102707378A (zh) * 2012-06-12 2012-10-03 华南师范大学 一种应用压印技术制作硅酮微纳光学结构的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM, J.T. ET AL.: "Graphene-based Polymer Waveguide Polarizer", OPTICS EXPRESS, vol. 20, no. 4, 30 January 2012 (2012-01-30), pages 3556 - 3562 *
KIM, K. ET AL.: "A Role for Graphene in Silicon-based Semiconductor Devices", NATURE, vol. 479, 17 November 2011 (2011-11-17), pages 338 - 343 *
LIU, MING ET AL.: "A Graphene-based Broadband Optical Modulator", NATURE, vol. 474, 2 June 2011 (2011-06-02), pages 64 - 66 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144462A1 (fr) * 2016-02-23 2017-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ensemble circuit de commutation et procédé de fabrication d'un ensemble circuit de commutation
US10436980B2 (en) 2016-02-23 2019-10-08 Fraunhofer-Gesellschaf T Zur Förderung Der Angewandten Forschung E.V. Circuit assembly and method for producing a circuit assembly
CN108121091A (zh) * 2017-12-08 2018-06-05 武汉邮电科学研究院 一种电光调制器及其制备方法
WO2020035695A1 (fr) * 2018-08-15 2020-02-20 The University Of Manchester Guides d'ondes actifs à commande électrique
CN110147000A (zh) * 2019-07-05 2019-08-20 吉林大学 一种基于掩埋型石墨烯电极的有机聚合物光波导吸收型光调制器
CN110687695A (zh) * 2019-11-21 2020-01-14 吉林大学 一种基于梯形石墨烯的偏振不敏感的有机聚合物吸收型光调制器
WO2021221206A1 (fr) * 2020-04-29 2021-11-04 엘지전자 주식회사 Dispositif photonique au graphène
EP4145197A4 (fr) * 2020-04-29 2024-01-10 LG Electronics, Inc. Dispositif photonique au graphène
US12066656B2 (en) 2020-04-29 2024-08-20 Lg Electronics Inc. Graphene optical device
DE202020104362U1 (de) 2020-07-28 2021-10-29 Gesellschaft für angewandte Mikro- und Optoelektronik mit beschränkter Haftung - AMO GmbH Elektro-optische Einrichtung, Halbleitereinrichtung und Halbleitervorrichtung, elektro-optische Anordnung und Verwendung

Also Published As

Publication number Publication date
CN105264430A (zh) 2016-01-20
CN105264430B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2015081538A1 (fr) Modulateur optique et module de dispositif photonique planaire
US8244075B2 (en) Optical device
Chen et al. Broadband optical modulators: science, technology, and applications
US9568801B2 (en) Optical modulator
US20060210215A1 (en) Optical transceiver array
JP2007304427A (ja) 光スイッチング素子
JP2009053499A (ja) 光変調器および光変調モジュール
WO2010048195A1 (fr) Modulateurs électro-optiques organiques à électrodes conductrices transparentes et structures connexes de dispositif
CN102495480A (zh) 石墨烯-微纳光纤复合结构电光调制器
EP1721210A1 (fr) Procede et appareil destines au dephasage insensible a la polarisation d'un faisceau optique dans un dispositif optique
CN105372851A (zh) 基于石墨烯二硫化钼异质结光纤吸收增强型电光调制器
JP2008046573A (ja) 光変調器
CN110149153B (zh) 光调制器、调制方法及光调制系统
Yu et al. Small form factor thin film polymer modulators for telecom applications
CN105676485B (zh) 一种基于d型双芯光纤的全光纤型电光调制器
Hoessbacher Plasmonic Switches and Modulators for Optical Communications
CN115755442A (zh) 一种基于波导上硫化锑的o波段多模干涉型硅基光开关
CN113325613B (zh) 一种光学调制器以及相关装置
JP4997919B2 (ja) 光分岐結合器および光通信システム
CN106873192A (zh) 基于硅波导的电光超快空间调制器
CN106785905A (zh) 一种基于布拉格相移光栅的电光调制器
CN206575013U (zh) 一种基于布拉格相移光栅的电光调制器
Huang et al. Simulation of hybrid silicon nitride/polymer Mach-Zehnder optical modulator beyond 170 GHz
CN220105455U (zh) 一种基于石墨烯电极的电光调制器
KR102320441B1 (ko) 광 변조기 및 이를 이용한 광 모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380002799.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898506

Country of ref document: EP

Kind code of ref document: A1