WO2015080136A1 - Device and method for conveying and inspecting panels having optical members applied thereto - Google Patents

Device and method for conveying and inspecting panels having optical members applied thereto Download PDF

Info

Publication number
WO2015080136A1
WO2015080136A1 PCT/JP2014/081193 JP2014081193W WO2015080136A1 WO 2015080136 A1 WO2015080136 A1 WO 2015080136A1 JP 2014081193 W JP2014081193 W JP 2014081193W WO 2015080136 A1 WO2015080136 A1 WO 2015080136A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
optical
bonding
conveyor
inspection
Prior art date
Application number
PCT/JP2014/081193
Other languages
French (fr)
Japanese (ja)
Inventor
達也 土岡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2015080136A1 publication Critical patent/WO2015080136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to a conveyance inspection device and a conveyance inspection method for an optical member bonding panel that performs optical inspection while conveying the optical member bonding panel.
  • the manufacturing apparatus of patent document 1 or patent document 2 is known as a manufacturing apparatus which manufactures optical member bonding panels, such as a liquid crystal display.
  • An optical member bonding panel is obtained by bonding an optical member such as a polarizing film to an optical display component such as a liquid crystal panel.
  • an optical inspection device that performs an overview inspection of the optical member bonding panel is provided while the optical member bonding panel is conveyed.
  • light is irradiated from one side of the optical member bonding panel, and the transmitted light or reflected light is imaged.
  • the display component itself is inspected for defects (such as alignment defects).
  • a light source and An inspection optical system (automatic inspection apparatus) having a line CCD (line sensor) is installed.
  • the inspection optical system scans the inspection surface of the liquid crystal panel, and performs imaging and image processing to detect product defects such as defects and poor bonding.
  • a conveyance inspection apparatus described in Patent Document 3 is known as one that utilizes conveyance means other than a roller conveyor.
  • a rotating frame transport conveyor is used as a transport means for a panel (panel to be inspected such as a liquid crystal panel).
  • This rotating frame type conveyor conveys a pair of rotating frames in a direction orthogonal to the panel conveying direction, and engages the rotating frames so that both ends of the connecting plate can move along the rotating frames. It has been made.
  • the rotating frame type conveyor conveys the panel gripped by the gripping body by attaching a gripping body for gripping the leading edge of the panel to the connecting plate and moving the connecting plate along the rotating frame by the wire drive mechanism. Transport in the direction.
  • the present invention has been made in view of the above circumstances, and when performing an optical inspection while transporting the optical member bonding panel, it suppresses false detection of defect detection due to vibration of the optical member bonding panel, and performs an efficient inspection. It aims at providing the conveyance inspection apparatus and conveyance inspection method of an optical member bonding panel which can be implemented.
  • a transport inspection device for an optical member bonding panel that inspects the optical member bonding panel by an optical inspection device arranged in the middle of the transport path while transporting the optical member bonding panel in a certain direction by the transport device.
  • the upstream conveying conveyor that conveys the optical member bonding panel to the optical inspection position by the optical inspection device, and the downstream conveying that conveys the optical member bonding panel immediately after the optical inspection position An optical member bonding panel characterized in that at least the downstream conveying conveyor is composed of a flat belt conveyor in which a conveying surface on which the optical member bonding panel is placed is constituted by a flat flat belt. Transport inspection device.
  • the upstream conveyor is composed of a flat belt conveyor similar to the downstream conveyor, and at least in the layout area of the flat belt conveyor constituting the upstream conveyor, the optical inspection by the optical inspection device is possible.
  • a transport inspection method for an optical member bonding panel in which the optical member bonding panel is inspected by an optical inspection device arranged in the middle of the transport path while transporting the optical member bonding panel in a certain direction,
  • the conveyance process of an optical member bonding panel conveys the said optical member bonding panel from the upstream conveyance process which conveys the said optical member bonding panel to the optical inspection position by the said optical inspection apparatus, and immediately after the said optical inspection position.
  • a downstream conveying step, and at least the downstream conveying step is a conveying step by a flat belt conveyor in which a conveying surface on which the optical member bonding panel is placed is configured by a flat flat belt.
  • the conveyance inspection method of the optical member bonding panel to do. *
  • optical inspection position refers to a position on the downstream side in the transport direction of the optical member bonding panel from the optical inspection position and in the vicinity of the optical inspection position.
  • the optical member bonding panel immediately after the front end of the optical member bonding panel passes through the optical inspection position, the optical member bonding panel is immediately connected to the flat belt, and while the optical member bonding panel is conveyed by the flat belt, vibration due to the connection is caused. Almost disappears. Thereby, like the case where a roller conveyor is used, it is suppressed that a defect occurs by generating a vibration whenever the front end of an optical member bonding panel transfers on a roller.
  • FIG. 1 It is a schematic diagram which shows the manufacturing apparatus of the optical member bonding panel containing the conveyance inspection apparatus of the optical member bonding panel which concerns on one Embodiment of this invention. It is A arrow directional view of FIG. It is a top view of a liquid crystal panel. It is sectional drawing of a polarizing film sheet. It is a side view which shows typically the conveyance inspection apparatus of embodiment. It is a top view which shows typically the conveyance inspection apparatus of embodiment. It is a side view which shows the structure of the flat belt conveyor in a conveyance inspection apparatus. It is a side view which shows an optical inspection apparatus typically.
  • the transport direction of the liquid crystal panel which is an optical display component
  • the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, X direction, and Y direction.
  • the direction orthogonal to the Z direction is taken as the Z direction.
  • the X direction and the Y direction are in the horizontal plane
  • the Z direction is the vertical direction (vertical direction).
  • Drawing 1 is a figure showing the schematic structure of film pasting system 1 of this embodiment.
  • the film bonding system 1 bonds a film-shaped optical member such as a polarizing film, an antireflection film, or a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
  • liquid crystal panel P is illustrated as said optical display component, and double-sided bonding panel P12 formed by bonding the bonding sheet
  • the size of the liquid crystal panel P is preferably 30 inches (457 mm ⁇ 609 mm) or more, and usually 100 inches (1524 mm ⁇ 2032 mm or less.) Further, the thickness of the liquid crystal panel P is usually 1.2 mm or less. And usually 0.5 mm or more.
  • the film bonding system 1 of this embodiment is provided as one process of the production line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by the control part 40 as an electronic control apparatus.
  • FIG. 2 is a view taken in the direction of arrow A shown in FIG.
  • the film bonding system 1 of this embodiment reverses 90 degree
  • the film bonding system 1 bonds the polarizing film (optical member F1 shown in FIG. 4) with the polarization axes in directions orthogonal to each other on the front and back surfaces of the liquid crystal panel P.
  • FIG. 3 is a plan view of the liquid crystal panel P as viewed from the thickness direction of the liquid crystal layer P3.
  • the liquid crystal panel P includes a first substrate P1 having a rectangular shape in a plan view, a second substrate P2 having a rectangular shape smaller than the first substrate P1, which is disposed opposite to the first substrate P1, and a first substrate P1.
  • a liquid crystal layer P3 enclosed between the substrate P1 and the second substrate P2 is provided.
  • the liquid crystal panel P has a rectangular shape along the outer shape of the first substrate P1 having a long side and a short side in plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in plan view is defined as a display region P4.
  • FIG. 4 is a cross-sectional view of the optical sheet F including the optical member F1 bonded to the liquid crystal panel P.
  • hatching of each layer in the cross-sectional view is omitted for convenience.
  • the optical sheet F is optically formed through the film-like optical member F1, the adhesive layer F2 provided on one surface (the upper surface in FIG. 4) of the optical member F1, and the adhesive layer F2. It has the separator F3 laminated
  • the optical member F1 functions as a polarizing plate and is bonded over the entire display area P4 of the liquid crystal panel P and the peripheral area.
  • the optical member F1 is bonded to the liquid crystal panel P via the adhesive layer F2 in a state where the separator F3 is separated while leaving the adhesive layer F2 on one surface thereof.
  • excluding the separator F3 from the optical sheet F is called the bonding sheet
  • the separator F3 protects the adhesive layer F2 and the optical member F1 until it is separated from the adhesive layer F2.
  • the surface protective film F4 is bonded to the liquid crystal panel P together with the optical member F1.
  • the surface protective film F4 is disposed on the side opposite to the liquid crystal panel P with respect to the optical member F1, protects the optical member F1, and is separated from the optical member F1 at a predetermined timing.
  • the optical sheet F may be configured not to include the surface protective film F4, or the surface protective film F4 may be configured not to be separated from the optical member F1.
  • the optical member F1 includes a sheet-like polarizer F6, a first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and a first film F7 bonded to the other surface of the polarizer F6 with an adhesive or the like. 2 film F8.
  • the first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
  • the optical member F1 may have a single-layer structure including a single optical layer, or a stacked structure in which a plurality of optical layers are stacked on each other.
  • the optical layer may be a retardation film, a brightness enhancement film, or the like.
  • At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment including an antiglare treatment.
  • the optical member F1 may not include at least one of the first film F7 and the second film F8.
  • the separator F3 may be bonded to one surface of the optical member F1 via the adhesive layer F2.
  • the film laminating system 1 of the present embodiment has a downstream side in the transport direction of the liquid crystal panel P on the left side in the drawing from the upstream side in the transport direction of the liquid crystal panel P on the right side (plus X direction side) (Minus X direction side), and a transport conveyor (transport device) 5 for transporting the liquid crystal panel P in a horizontal state is provided.
  • a transport conveyor (transport device) 5 for transporting the liquid crystal panel P in a horizontal state is provided.
  • most of the conveyor 5 is composed of a roller conveyor up to the optical inspection position, and a portion of the conveyor 5 is composed of a flat belt conveyor immediately after the optical inspection position.
  • the transport conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a first reversing device 15 described later as a boundary.
  • the liquid crystal panel P is transported such that the short side (or long side) of the display region P4 is along the transport direction.
  • the downstream conveyor 7 the liquid crystal panel P is transported such that the long side (or short side) of the display area P ⁇ b> 4 is along the transport direction.
  • a bonding sheet F5 cut out to a predetermined length from the belt-shaped optical sheet F is bonded to the front and back surfaces of the liquid crystal panel P.
  • the upstream conveyor 6 is provided with the independent free roller conveyor 24 in the downstream in the 1st adsorption
  • the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
  • the film bonding system 1 of this embodiment is the 1st adsorption
  • suction apparatus 20, the defect inspection apparatus (optical inspection apparatus) 30, and the control part 40 are provided.
  • the first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P.
  • the first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and performs alignment of the liquid crystal panel P.
  • the panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction.
  • the panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P.
  • the panel holding unit 11a releases the suction holding and transfers the liquid crystal panel P to the free roller conveyor 24 when the conveyance is finished.
  • the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a operates to align the liquid crystal panel P with the free roller conveyor 24 at the transport destination.
  • the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the deviation in the turning direction around the vertical axis of the liquid crystal panel P.
  • the liquid crystal panel P conveyed on the rail R by the panel holding portion 11a is sandwiched between the leading end portion and the sandwiching sheet F5, which will be described later, while being attracted to the suction pad 26.
  • the 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13.
  • FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption
  • FIG. The 1st bonding apparatus 13 bonds the bonding sheet
  • the first bonding device 13 includes a transport device 22 and a pinching roll 23.
  • the conveying device 22 conveys the optical sheet F along the longitudinal direction while unwinding the optical sheet F from the original roll R1 around which the optical sheet F is wound.
  • the conveyance apparatus 22 conveys the bonding sheet
  • the conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
  • the roll holding unit 22a holds the original roll R1 around which the belt-shaped optical sheet F is wound, and feeds the optical sheet F along its longitudinal direction.
  • the plurality of guide rollers 22b wind the optical sheet F so as to guide the optical sheet F unwound from the original roll R1 along a predetermined conveyance path.
  • the cutting device 22c performs a half cut on the optical sheet F on the conveyance path.
  • the knife edge 22d supplies the bonding sheet F5 to the bonding position while winding the optical sheet F subjected to the half cut at an acute angle to separate the bonding sheet F5 from the separator F3.
  • the winding unit 22e holds a separator roll R2 that winds up the separator F3 that has become independent through the knife edge 22d.
  • the roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example. Thereby, the winding unit 22e winds up the separator F3 that has passed through the knife edge 22d while the roll holding unit 22a feeds the optical sheet F in the transport direction.
  • the upstream side in the transport direction of the optical sheet F (separator F3) in the transport device 22 is referred to as a sheet transport upstream side
  • the downstream side in the transport direction is referred to as a sheet transport downstream side.
  • Each guide roller 22b changes the traveling direction of the optical sheet F being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b is movable so as to adjust the tension of the optical sheet F being conveyed. .
  • a dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c.
  • the dancer roller absorbs the feeding amount of the optical sheet F conveyed from the roll holding unit 22a while the optical sheet F is cut by the cutting device 22c.
  • the cutting device 22c performs a half cut that cuts a part in the thickness direction of the optical sheet F over the entire width in the width direction orthogonal to the longitudinal direction of the optical sheet F when the optical sheet F is fed out by a predetermined length.
  • the cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical sheet F (separator F3) is not broken by the tension acting during the conveyance of the optical sheet F (so that a predetermined thickness remains in the separator F3).
  • the half cut is performed up to the vicinity of the interface between the adhesive layer F2 and the separator F3.
  • a laser device may be used instead of the cutting blade.
  • the optical member F1 and the surface protection film F4 are cut in the thickness direction, whereby a cut line extending over the entire width of the optical sheet F is formed.
  • a plurality of cutting lines are formed so as to be arranged in the longitudinal direction of the belt-shaped optical sheet F.
  • a plurality of score lines are formed at equal intervals in the longitudinal direction of optical sheet F.
  • the optical sheet F is divided into a plurality of sections in the longitudinal direction by the plurality of cut lines. Each section sandwiched between a pair of cut lines adjacent in the longitudinal direction in the optical sheet F is a sheet piece in the bonding sheet F5.
  • the knife edge 22d is arranged below the upstream conveyor 6 and extends in the width direction of the optical sheet F at least over its entire width.
  • the knife edge 22d is wound so as to be in sliding contact with the separator F3 side of the optical sheet F after half-cutting.
  • the knife edge 22d is seen from the width direction of the optical sheet F above the first surface, and the first surface arranged in an inclined position when viewed from the width direction of the optical sheet F (width direction of the upstream conveyor 6). It has the 2nd surface arrange
  • the knife edge 22d winds the optical sheet F at an acute angle at the tip.
  • the optical sheet F separates the sheet piece of the bonding sheet F5 from the separator F3 when turning back at an acute angle at the tip of the knife edge 22d.
  • the knife edge 22d is disposed on the panel conveyance upstream side of the narrow pressure roll 23, and the tip portion of the knife edge 22d is disposed in proximity to the panel conveyance downstream side of the pinching roll 23.
  • the bonding sheet F5 separated from the separator F3 by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pressure roll 23 while overlapping the lower surface of the liquid crystal panel P in the state of being sucked by the first suction device 11.
  • the pinching roll 23 bonds the bonding sheet F5 having a predetermined length separated from the optical sheet F by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6.
  • the pinching roll 23 has a pair of bonding rollers 23a and 23a arranged in parallel with each other in the axial direction (the upper bonding roller 23a moves in the vertical direction).
  • a predetermined gap is formed between the pair of bonding rollers 23 a and 23 a, and the inside of this gap is the bonding position of the first bonding apparatus 13.
  • the liquid crystal panel P and the bonding sheet F5 are overlapped and introduced into the gap.
  • difference inspection apparatus 14 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13.
  • the first misalignment inspection apparatus 14 includes a pair of cameras 14a and 14a that capture images of the edge of the bonding sheet F5 on the upstream side and the downstream side of the single-sided bonding panel P11, for example.
  • Image data obtained by the pair of cameras 14a and 14a is transmitted to the control unit 40, and it is determined whether or not the relative positions of the bonding sheet F5 and the liquid crystal panel P are appropriate based on the image data.
  • the single-sided bonding panel P11 determined to have an inappropriate relative position is discharged out of the system by a not-shown payout means.
  • the first reversing device 15 is provided on the downstream side of the panel conveyance with respect to the first deviation inspection device 14 and conveys the liquid crystal panel P that has reached the end position of the upstream conveyor 6 to the starting position of the downstream conveyor 7.
  • the first reversing device 15 includes, for example, a rotation shaft 15a inclined at 45 ° in a plan view with respect to the transport direction of the liquid crystal panel P, and an end position of the upstream conveyor 6 and the downstream conveyor 7 via the rotation shaft 15a. And a reversing arm 15b supported between the first starting positions.
  • the reverse arm 15b holds the single-sided bonding panel P11 that has reached the end position of the upstream conveyor 6 via the first misalignment inspection device 14 by suction or sandwiching.
  • the reversing arm 15b reverses the front and back of the single-sided bonding panel P11 by rotating 180 ° around the rotating shaft 15a.
  • the reversing arm 15b is configured so that, for example, the single-sided bonding panel P11 transported in parallel with the short side (or long side) of the display region P4 is transported in parallel with the long side (or short side) of the display region P4. Turn around.
  • the reversal is performed when the optical members F1 to be bonded to the front and back surfaces of the liquid crystal panel P are arranged so that the directions of the polarization axes are perpendicular to each other.
  • the direction from the right side to the left side in FIG. 1 is the transport direction of the liquid crystal panel P.
  • the side conveyor 7 is offset by a predetermined amount in plan view.
  • a reversing device having a reversing arm having a rotation axis parallel to the transport direction may be used.
  • the polarization axis directions are perpendicular to each other on the front and back surfaces of the liquid crystal panel P.
  • the optical member F1 made can be pasted.
  • the reversing arm 15b has the same alignment function as the panel holding portion 11a of the first suction device 11.
  • the first reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
  • the second adsorption device 20 has the same configuration as that of the first adsorption device 11, the same reference numerals are given to the same portions for explanation.
  • suction apparatus 20 adsorbs the single-sided bonding panel P11, conveys it to the downstream conveyor 7, and performs alignment (positioning) of the single-sided bonding panel P11.
  • the second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
  • the panel holding unit 11a holds the single-sided bonding panel P11 that is in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction, and performs alignment of the single-sided bonding panel P11.
  • maintenance part 11a adsorbs and hold
  • maintenance part 11a moves on the rail R in the state which adsorbed and hold
  • the alignment camera 11b holds the single-sided bonding panel P11 in contact with the stopper S by the panel holding part 11a, and images the alignment mark, the tip shape, etc. of the single-sided bonding panel P11 in the raised state.
  • Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a is operated to align the single-sided bonding panel P11 with respect to the free roller conveyor 24 at the transport destination. That is, the single-sided bonding panel P11 is in a state in which the amount of misalignment in the conveying direction with respect to the free roller conveyor 24, the direction orthogonal to the conveying direction, and the turning direction around the vertical axis of the single-sided bonding panel P11 is taken into account. It is conveyed to.
  • the 2nd dust collector 16 is arrange
  • FIG. The second dust collecting device 16 removes static electricity and collects dust in order to remove dust around the single-sided bonding panel P11 before being introduced to the bonding position, particularly dust on the lower surface side.
  • the 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16.
  • FIG. The 2nd bonding apparatus 17 bonds the bonding sheet
  • the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the said 1st bonding apparatus 13.
  • the single-sided bonding panel P11 and the bonding sheet F5 are introduced in an overlapping state, and the single-sided bonding is performed.
  • a bonding sheet F5 is integrally bonded to the lower surface of the combined panel P11.
  • the panel after this bonding is called double-sided bonding panel P12 (optical member bonding panel).
  • the second misalignment inspection device 18 is provided on the panel transport downstream side of the second bonding device 17.
  • the second misalignment inspection device 18 inspects whether or not the position of the bonding sheet F5 with respect to the single-sided bonding panel P11 is appropriate (whether the positional deviation is within the tolerance range) in the double-sided bonding panel P12.
  • inspection apparatus 18 has a pair of cameras 18a and 18a which image the edge of the bonding sheet
  • Imaging data from the pair of cameras 18a, 18a is transmitted to the control unit 40, and based on this imaging data, it is determined whether or not the relative positions of the bonding sheet F5 and the liquid crystal panel P are appropriate.
  • the double-sided bonded panel P12 determined to have an inappropriate relative position is discharged out of the system by a not-shown payout means.
  • the second reversing device 19 is provided on the downstream side of the panel conveyance with respect to the second misalignment inspection device 18.
  • the second reversing device 19 reverses the front and back of the liquid crystal panel P (double-sided bonding panel P12) with the backlight side facing upward via the first reversing device 15 and the liquid crystal is the same as when carrying into the film bonding system 1.
  • the display surface side of the panel P is turned upward.
  • the defect inspection device (optical inspection device) 30 is provided on the downstream side of the panel conveyance with respect to the second reversing device 19.
  • the defect inspection apparatus 30 inspects the presence / absence of a defect (such as bonding failure) of the double-sided bonding panel P12.
  • a defect such as bonding failure
  • Examples of the defects to be inspected include defects such as biting of foreign matter or bubbles when the liquid crystal panel and the bonding sheet are bonded, scratches on the surface of the bonding sheet, and alignment defects inherent in the liquid crystal panel.
  • control part 40 as an electronic control apparatus which performs overall control of each part of the film bonding system 1 is comprised including the computer system.
  • This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
  • the control unit 40 of the present embodiment includes an interface that can execute communication with an external device of the computer system.
  • An input device that can input an input signal may be connected to the control unit 40.
  • the input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system.
  • the control unit 40 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film bonding system 1 or may be connected to the display device.
  • the storage unit of the control unit 40 includes a program that causes the arithmetic processing unit to control each unit of the film bonding system 1 to execute processing for causing each unit of the film bonding system 1 to accurately convey the optical sheet F. It is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control unit 40.
  • the control unit 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film bonding system 1.
  • the storage unit is a concept including a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium.
  • the storage unit functionally includes a first adsorption device 11, a first dust collecting device 12, a first pasting device 13, a first displacement inspection device 14, a first reversing device 15, a second dust collecting device 16, and a first. 2 bonding device 17, second misalignment inspection device 18, second reversing device 19, second suction device 20, a storage area for storing program software describing operation control procedures of defect inspection device 30, and other various memories An area is set.
  • FIG. 5 is a side view schematically showing the transport inspection apparatus
  • FIG. 6 is a plan view schematically showing only the transport apparatus in the transport inspection apparatus
  • FIG. 7 is a side view showing the configuration of the flat belt conveyor in the transport apparatus
  • FIG. 8 is a side view schematically showing the defect inspection apparatus.
  • this conveyance inspection apparatus 50 is carrying out the conveyance path
  • the double-sided bonded panel is optically inspected by the arranged defect inspection device (optical inspection device) 30.
  • symbol Sf1 is a lower surface (first main surface) of a double-sided bonding panel (optical member bonding panel) P12, for example, a surface to which a backlight is attached.
  • symbol Sf2 is the upper surface (second main surface) of the double-sided bonding panel P12, for example, an image display surface.
  • the defect inspection apparatus 30 in the transport inspection apparatus 50 of the present embodiment includes a first inspection unit 31 for bottom surface reflection inspection, and a second inspection unit 32 for top surface reflection inspection.
  • the third inspection unit 33 for transmission inspection is provided in order from the upstream side to the downstream side in the transport direction.
  • the first inspection unit 31 on the most upstream side includes an illumination light source 311 and an imaging device 312 arranged on the lower side of the panel conveyance line.
  • the first inspection unit 31 emits light obliquely from the illumination light source 311 to the first main surface (lower surface) Sf1 with respect to the double-sided bonding panel P12 with the display surface side facing upward through the second reversing device 19.
  • the light reflected by the first main surface Sf1 is imaged by the imaging device 312.
  • the presence or absence of the defect of the lower surface (surface on the opposite side to an image display surface) of the double-sided bonding panel P12 is test
  • the second inspection unit 32 includes an illumination light source 321 and an imaging device 322 disposed on the upper side of the panel conveyance line.
  • the second inspection unit 32 emits light obliquely from the illumination light source 321 to the second main surface (upper surface) Sf2 with respect to the double-sided bonding panel P12 with the display surface side facing upward through the second reversing device 19.
  • the light reflected by the second main surface Sf2 is imaged by the imaging device 322. And based on this imaging data, the presence or absence of the defect of the upper surface (image display surface) of the double-sided bonding panel P12 is test
  • the third inspection unit 33 on the most downstream side illuminates the double-sided bonding panel P12 from the first main surface (lower surface) Sf1 side, and the double-sided bonding panel P12 illuminated by the illumination light source 331.
  • the two imaging devices (the first imaging device 332 and the second imaging device 333) that capture the image of (2) from the second main surface (upper surface) Sf2 side.
  • the illumination light source 331 causes the first light to be incident substantially perpendicular to the first main surface Sf1.
  • the first imaging device 332 is arranged on the optical axis of the illumination light source 321 with the double-sided bonding panel P12 interposed therebetween, and is substantially straight upward in the vertical direction out of the light emitted from the illumination light source 331 and transmitted through the double-sided bonding panel P12. An image of the traveling light is taken.
  • the 2nd imaging device 333 is arrange
  • the third inspection unit 33 detects the distribution of transmittance in a plane parallel to the second main surface Sf2 when viewed from the optical axis direction based on the imaging result of the first imaging device 332, and has a large transmittance. The part is detected as a defective part. If the double-sided bonded panel P12 has an orientation failure or has a scratch on the surface of the optical member, the transmittance of that portion will be higher than that of the other portions, so transmission when viewed from the direction of the optical axis. If the distribution of the rate is detected, it is possible to detect the presence of orientation failure and scratches on the optical member.
  • the third inspection unit 33 detects the distribution of transmittance in a plane parallel to the second main surface Sf2 when viewed from an oblique direction with respect to the optical axis, based on the imaging result of the second imaging device 333. Then, a portion having a high transmittance is detected as a defective portion. If there is a foreign substance or a bubble on the double-sided bonding panel P12, the light emitted from the illumination light source 331 is scattered by the foreign substance or the bubble, and a part of the scattered light is incident on the second imaging device 333. On the other hand, when there is no foreign object or bubble, scattered light is not generated, and the captured image of the second imaging device 333 becomes dark. Therefore, the presence or absence of foreign matter or bubbles can be detected by detecting the transmittance distribution when viewed from an oblique direction with respect to the optical axis.
  • the light emitted from the illumination light source 331 is not only in the case where there is a foreign object or bubble on the second main surface Sf2 side, but also in the case where there is a foreign object or bubble on the first main surface Sf1 side. Scattered. Therefore, according to the third inspection unit 33, it is possible to detect the presence or absence of foreign matters or bubbles on both sides of the second main surface Sf2 side and the first main surface Sf1 side.
  • the rectangular double-sided bonded panel P12 is positioned particularly at the front and rear ends in the transport direction, and the short side is in the transport direction.
  • the roller conveyor is transported at a certain speed or more in a posture positioned in parallel with the sensor, false detection of defect detection due to light leakage may occur. That is, when it conveys with a roller conveyor, when the front end of the double-sided bonding panel P12 transfers on a roller one after another, the double-sided bonding panel P12 may vibrate in a Z direction. As a result, false detection of defect detection due to light leakage may occur.
  • the upstream transport conveyor 61 that transports the double-sided bonding panel P ⁇ b> 12 to the optical inspection position K by the third inspection unit 33.
  • the roller conveyor 61A is used.
  • the downstream side conveyance conveyor 62 which conveys the double-sided bonding panel P12 immediately after the optical inspection position K, it comprises the flat belt conveyor 62A using the flat belt 71 in which the conveyance surface where the double-sided bonding panel P12 rests is flat.
  • the roller conveyor 61A which is the upstream side conveyor 61 corresponds to a part of the downstream side of the conveyor 5 (downstream conveyor 7) described above.
  • the roller conveyor 61 ⁇ / b> A has a large number of rollers 61 ⁇ / b> B arranged at a predetermined interval, and there is a lot of extra space in the layout area of the roller conveyor 61 ⁇ / b> A. Therefore, the transmission type third inspection unit 33 can be easily arranged in those extra spaces.
  • the flat belt conveyor 62A is arranged so that the double-sided bonding panel P12 can be transferred immediately after the inspection position K by the third inspection unit 33 for transmission inspection.
  • a plurality of flat belt conveyors 62A having a width smaller than the panel to be conveyed are arranged in parallel with the conveying direction S1 with an appropriate space between adjacent flat belt conveyors 62A. Yes.
  • Various sensors are arranged in the space between the adjacent flat belt conveyors 62A as necessary.
  • the plurality of flat belt conveyors 62A arranged in parallel with each other can be driven in synchronization to horizontally transport the double-sided bonding panel P12 in the transport direction S1.
  • the flat belt conveyor 62A hangs an endless flat belt 71 on front and rear rollers 72, 73, a driving roller 74, a support roller 75, a tension roller 76, and the like that are spaced apart in the conveying direction.
  • the motor 77 is driven and the driving roller 74 is rotated, the flat belt 71 rotates in a certain direction.
  • the to-be-conveyed object mounted in the linear movement area above the flat belt to circulate is conveyed in a fixed direction.
  • the tension mechanism 78 applies force to the tension roller 76 to apply tension to the flat belt 71, thereby stably supporting and transporting the object to be conveyed in a horizontal state.
  • the upstream conveyance process which conveys the double-sided bonding panel P12 to the optical inspection position K becomes a conveyance process by the roller conveyor 61A, and the downstream which conveys the double-sided bonding panel P12 from the optical inspection position K.
  • a side conveyance process turns into a conveyance process by a flat belt conveyor.
  • the double-sided bonding panel P12 immediately after the front end of the double-sided bonding panel P12 passes through the optical inspection position K, it is immediately transferred onto the flat belt 71. And while being transported by the flat belt 71, vibration due to the transfer is less likely to occur on the double-sided bonding panel P12, and the double-sided bonding panel P12 receives the buffering action and the stable support action of the flat belt 71. As in the case of use, it is possible to suppress the generation of a false alarm by generating a vibration every time a transfer is made on the roller. As a result, the conveyance speed of the double-sided bonding panel P12 can be increased, and the production efficiency can be improved.
  • the 50-inch size panel is set to the posture of the long side opening (the direction in which the long side is directed to the front end and the rear end in the conveyance direction) at a conveyance speed of 250 mm / sec. Transmission inspection can be performed while transporting.
  • the upstream conveyor 61 is composed of a roller conveyor 61A in which a gap is secured between the rollers, an optical inspection by an optical inspection device (the third inspection unit 33 or the like) is performed using the space between the rollers. It can be carried out.
  • an optical inspection device the third inspection unit 33 or the like
  • double-sided bonding panel P12 is conveyed with a separate roller, the freedom degree on conveyance, such as temporarily stopping conveyance of double-sided bonding panel P12, can be ensured highly.
  • the upstream conveyor 61 may be configured by a flat belt conveyor similar to the downstream conveyor 62. is there. In that case, it is preferable that a space capable of optical inspection by the third inspection unit 33 for light transmission inspection is secured in the layout region of the flat belt conveyor constituting the upstream side conveyor 61.
  • the upstream side conveyor 61 is constituted by a flat belt conveyor, it is possible to suppress vibrations caused by transit during the transportation until the optical inspection position K is reached. The reliability can be further improved.
  • both the upstream side conveyor 61 and the downstream side conveyor 62 are constituted by flat belt conveyors, it is also possible to constitute a common flat belt conveyor using a flat belt in which both are integrally continuous.
  • the vibration suppressing effect can be further enhanced.
  • the downstream-side transport conveyor 62 that transports the panel at least immediately after the optical inspection position K is constituted by a flat belt conveyor.
  • the conveyance inspection device and conveyance inspection method of the optical member bonding panel according to the present invention suppresses false detection of defect detection due to vibration of the optical member bonding panel when performing an optical inspection while conveying the optical member bonding panel. Since efficient inspection can be performed, a conveyance inspection device and a conveyance inspection method excellent in production efficiency can be provided.
  • Defect inspection equipment (optical inspection equipment) 33 Third inspection unit (optical inspection device) 331 Illumination light source 332 1st imaging device 333 2nd imaging device 50 Conveyance inspection device 60 Conveying device 61 Upstream conveying conveyor 61A Roller conveyor 62 Downstream conveying conveyor 62A Flat belt conveyor 71 Flat belt P12 Double-sided bonding panel (Optical member bonding) panel) Sf1 first main surface Sf2 second main surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Structure Of Belt Conveyors (AREA)

Abstract

This device (60) for conveying and inspecting panels having optical members applied thereto, which performs optical inspections on said panels (P12) while conveying said panels (P12) in a given direction, has an upstream-side conveyor (61) that conveys the panels to an optical-inspection position (K) and a downstream-side conveyor (62) that conveys the panels from immediately after said optical-inspection position (K). The upstream-side conveyor (61) is a roller conveyor (61A), and the downstream-side conveyor (62) is a flat belt conveyor (62A) in which the conveyance surface on which the panels are placed is a flat belt (71).

Description

光学部材貼合パネルの搬送検査装置及び搬送検査方法Transport inspection device and transport inspection method for optical member bonding panel
 本発明は、光学部材貼合パネルを搬送しつつ光学検査を行う光学部材貼合パネルの搬送検査装置及び搬送検査方法に関する。
 本出願は、2013年11月28日に日本に出願された特願2013-246551号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a conveyance inspection device and a conveyance inspection method for an optical member bonding panel that performs optical inspection while conveying the optical member bonding panel.
This application claims priority based on Japanese Patent Application No. 2013-246551 filed in Japan on November 28, 2013, the contents of which are incorporated herein by reference.
 従来、液晶ディスプレイなどの光学部材貼合パネルを製造する製造装置として、特許文献1または特許文献2に記載の製造装置が知られている。光学部材貼合パネルは、液晶パネルなどの光学表示部品に偏光フィルムなどの光学部材が貼合されたものである。光学表示部品と光学部材とを貼合する貼合装置の下流側には、光学部材貼合パネルを搬送しながら、この光学部材貼合パネルの概観検査を行う光学検査装置が設けられている。光学検査装置では、光学部材貼合パネルの一面側から光を照射し、その透過光または反射光を撮像することによって、貼合時の気泡のかみ込みや光学部材の表面の傷の有無、光学表示部品自体の欠陥(配向不良など)の有無などが検査される。 Conventionally, the manufacturing apparatus of patent document 1 or patent document 2 is known as a manufacturing apparatus which manufactures optical member bonding panels, such as a liquid crystal display. An optical member bonding panel is obtained by bonding an optical member such as a polarizing film to an optical display component such as a liquid crystal panel. On the downstream side of the bonding device that bonds the optical display component and the optical member, an optical inspection device that performs an overview inspection of the optical member bonding panel is provided while the optical member bonding panel is conveyed. In the optical inspection device, light is irradiated from one side of the optical member bonding panel, and the transmitted light or reflected light is imaged. The display component itself is inspected for defects (such as alignment defects).
 上記従来技術では、液晶パネルのTFT等の液晶部の欠損や、偏光フィルムと液晶パネルとの間に異物が入り込むこと等による貼合不良等を検出するために、搬送ラインの途中に、光源及びラインCCD(ラインセンサ)を有する検査光学系(自動検査装置)を設置している。検査光学系は、液晶パネルの検査面を走査し、その撮像と画像処理とを行うことで、前記欠損や貼合不良等の製品不良を検出する。 In the above prior art, in order to detect a defect in a liquid crystal part such as a TFT of a liquid crystal panel or a bonding failure due to foreign matter entering between the polarizing film and the liquid crystal panel, a light source and An inspection optical system (automatic inspection apparatus) having a line CCD (line sensor) is installed. The inspection optical system scans the inspection surface of the liquid crystal panel, and performs imaging and image processing to detect product defects such as defects and poor bonding.
 この検査工程では、多くの場合、液晶パネルをローラコンベアで搬送しながら製品不良を検出しているが、液晶基板は硬質のガラス板であることと、ローラコンベアのローラは適当な間隔をおいて配列されていることから、液晶パネルの前端がローラ上に乗り継ぐときに、液晶パネルの前端がローラに当たって振動が発生しやすい。その結果、特に透過光を使用する検査部では、振動に伴う光抜けによる欠陥検出の虚報が発生しやすくなるという問題がある。一方、前記振動の発生を抑えるために液晶パネルの搬送速度を低下させることが考えられるが、この場合には検査工程の効率が低下するという問題がある。 In this inspection process, product defects are often detected while the liquid crystal panel is conveyed by a roller conveyor, but the liquid crystal substrate is a hard glass plate and the rollers of the roller conveyor are spaced at an appropriate interval. Due to the arrangement, when the front end of the liquid crystal panel is transferred onto the roller, the front end of the liquid crystal panel hits the roller and vibration is likely to occur. As a result, there is a problem that a false detection of defect detection due to light leakage due to vibration is likely to occur particularly in an inspection unit that uses transmitted light. On the other hand, it is conceivable to reduce the transport speed of the liquid crystal panel in order to suppress the occurrence of the vibration, but in this case, there is a problem that the efficiency of the inspection process is lowered.
 また、ローラコンベア以外の搬送手段を利用するものとして、特許文献3に記載された搬送検査装置が公知である。この搬送検査装置では、パネル(液晶パネル等の被検査パネル)の搬送手段として、回転フレーム式の搬送コンベアを用いている。この回転フレーム式の搬送コンベアとは、パネルの搬送方向と直交する方向に一対の回転フレームを配置し、これら回転フレームに対して連結板の両端を、回転フレームに沿って移動できるように係合させたものである。そして、回転フレーム式の搬送コンベアは、連結板にパネルの先端縁を把持する把持体を取り付け、連結板をワイヤ駆動機構によって回転フレームに沿って移動させることにより、把持体で把持したパネルを一定方向に搬送する。 Also, a conveyance inspection apparatus described in Patent Document 3 is known as one that utilizes conveyance means other than a roller conveyor. In this transport inspection apparatus, a rotating frame transport conveyor is used as a transport means for a panel (panel to be inspected such as a liquid crystal panel). This rotating frame type conveyor conveys a pair of rotating frames in a direction orthogonal to the panel conveying direction, and engages the rotating frames so that both ends of the connecting plate can move along the rotating frames. It has been made. The rotating frame type conveyor conveys the panel gripped by the gripping body by attaching a gripping body for gripping the leading edge of the panel to the connecting plate and moving the connecting plate along the rotating frame by the wire drive mechanism. Transport in the direction.
日本国特許第4079716号公報Japanese Patent No. 4079716 日本国特許第4307510号公報Japanese Patent No. 4307510 特開2001-305062号公報JP 2001-305062 A
 ところで、ローラコンベアで液晶パネルを搬送しながら光学検査を行う場合は、前述したように、ローラ上にパネルの前端が乗り継ぐときに振動が発生し、これによって欠陥検出の虚報が発生する問題がある。また、ローラコンベア以外の搬送手段として、特許文献3に示されるような回転フレーム式の搬送コンベアを用いた場合も、液晶パネルの支持状態が不安定となりやすいために、光学検査の際に欠陥検出の虚報が発生しやくなるおそれがある。 By the way, when performing an optical inspection while transporting a liquid crystal panel with a roller conveyor, as described above, there is a problem that vibration is generated when the front end of the panel is transferred onto the roller, thereby causing false detection of defect detection. . In addition, when a rotating frame type conveyor as shown in Patent Document 3 is used as a conveyor means other than the roller conveyor, the liquid crystal panel support state is likely to be unstable, so that defects are detected during optical inspection. There is a risk that false information will be generated easily.
 本発明は上記事情に鑑みてなされたもので、光学部材貼合パネルを搬送しつつ光学検査を行う際に、光学部材貼合パネルの振動による欠陥検出の虚報を抑えて、効率の良い検査を実施することのできる光学部材貼合パネルの搬送検査装置及び搬送検査方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when performing an optical inspection while transporting the optical member bonding panel, it suppresses false detection of defect detection due to vibration of the optical member bonding panel, and performs an efficient inspection. It aims at providing the conveyance inspection apparatus and conveyance inspection method of an optical member bonding panel which can be implemented.
 上記の課題を解決するために、本発明の光学部材貼合パネルの搬送検査装置及び搬送検査方法は、以下に示す構成を有する。
[1] 搬送装置によって光学部材貼合パネルを一定方向に搬送しつつ搬送経路途中に配された光学検査装置によって前記光学部材貼合パネルの検査を行う光学部材貼合パネルの搬送検査装置であって、前記搬送装置が、前記光学検査装置による光学検査位置まで前記光学部材貼合パネルを搬送する上流側搬送コンベアと、前記光学検査位置の直後から前記光学部材貼合パネルを搬送する下流側搬送コンベアとを備えており、少なくとも前記下流側搬送コンベアが、前記光学部材貼合パネルの載る搬送面がフラットな平ベルトで構成された平ベルトコンベアからなることを特徴とする光学部材貼合パネルの搬送検査装置。   
In order to solve the above-described problems, the conveyance inspection device and conveyance inspection method for the optical member bonding panel of the present invention have the following configurations.
[1] A transport inspection device for an optical member bonding panel that inspects the optical member bonding panel by an optical inspection device arranged in the middle of the transport path while transporting the optical member bonding panel in a certain direction by the transport device. The upstream conveying conveyor that conveys the optical member bonding panel to the optical inspection position by the optical inspection device, and the downstream conveying that conveys the optical member bonding panel immediately after the optical inspection position An optical member bonding panel characterized in that at least the downstream conveying conveyor is composed of a flat belt conveyor in which a conveying surface on which the optical member bonding panel is placed is constituted by a flat flat belt. Transport inspection device.
[2] 前記上流側搬送コンベアがローラコンベアからなることを特徴とする[1]に記載の光学部材貼合パネルの搬送検査装置。 [2] The transport inspection device for an optical member bonding panel according to [1], wherein the upstream transport conveyor is a roller conveyor.
[3] 前記上流側搬送コンベアが前記下流側搬送コンベアと同様の平ベルトコンベアからなり、少なくとも前記上流側搬送コンベアを構成する平ベルトコンベアのレイアウト領域に、前記光学検査装置による光学検査が可能なスペースが確保されていることを特徴とする[1]に記載の光学部材貼合パネルの搬送検査装置。 [3] The upstream conveyor is composed of a flat belt conveyor similar to the downstream conveyor, and at least in the layout area of the flat belt conveyor constituting the upstream conveyor, the optical inspection by the optical inspection device is possible. The transport inspection device for an optical member bonding panel according to [1], wherein a space is secured.
[4] 光学部材貼合パネルを一定方向に搬送しつつ搬送経路途中に配された光学検査装置によって前記光学部材貼合パネルの検査を行う光学部材貼合パネルの搬送検査方法であって、前記光学部材貼合パネルの搬送工程が、前記光学検査装置による光学検査位置まで前記光学部材貼合パネルを搬送する上流側搬送工程と、前記光学検査位置の直後から前記光学部材貼合パネルを搬送する下流側搬送工程と、を含んでおり、少なくとも前記下流側搬送工程が、前記光学部材貼合パネルの載る搬送面がフラットな平ベルトで構成された平ベルトコンベアによる搬送工程であることを特徴とする光学部材貼合パネルの搬送検査方法。    [4] A transport inspection method for an optical member bonding panel, in which the optical member bonding panel is inspected by an optical inspection device arranged in the middle of the transport path while transporting the optical member bonding panel in a certain direction, The conveyance process of an optical member bonding panel conveys the said optical member bonding panel from the upstream conveyance process which conveys the said optical member bonding panel to the optical inspection position by the said optical inspection apparatus, and immediately after the said optical inspection position. A downstream conveying step, and at least the downstream conveying step is a conveying step by a flat belt conveyor in which a conveying surface on which the optical member bonding panel is placed is configured by a flat flat belt. The conveyance inspection method of the optical member bonding panel to do. *
なお、本発明において説明する、光学検査位置の直後とは、光学検査位置よりも光学部材貼合パネルの搬送方向下流側であって、且つ、光学検査位置の近傍の位置をいう。 The term “immediately after the optical inspection position” described in the present invention refers to a position on the downstream side in the transport direction of the optical member bonding panel from the optical inspection position and in the vicinity of the optical inspection position.
 本発明によれば、光学部材貼合パネルの前端が、光学検査位置を通過した直後に、ただちに平ベルト上に乗り継ぎ、その平ベルトで光学部材貼合パネルが搬送される間は、乗り継ぎによる振動がほとんど生じなくなる。これによりローラコンベアを用いた場合のように、光学部材貼合パネルの前端がローラ上に乗り継ぐたびに振動が発生することで欠陥虚報を生じるのが抑制される。 According to the present invention, immediately after the front end of the optical member bonding panel passes through the optical inspection position, the optical member bonding panel is immediately connected to the flat belt, and while the optical member bonding panel is conveyed by the flat belt, vibration due to the connection is caused. Almost disappears. Thereby, like the case where a roller conveyor is used, it is suppressed that a defect occurs by generating a vibration whenever the front end of an optical member bonding panel transfers on a roller.
本発明の一実施形態に係る光学部材貼合パネルの搬送検査装置を含む光学部材貼合パネルの製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the optical member bonding panel containing the conveyance inspection apparatus of the optical member bonding panel which concerns on one Embodiment of this invention. 図1のA矢視図である。It is A arrow directional view of FIG. 液晶パネルの平面図である。It is a top view of a liquid crystal panel. 偏光フィルムシートの断面図である。It is sectional drawing of a polarizing film sheet. 実施形態の搬送検査装置を模式的に示す側面図である。It is a side view which shows typically the conveyance inspection apparatus of embodiment. 実施形態の搬送検査装置を模式的に示す平面図である。It is a top view which shows typically the conveyance inspection apparatus of embodiment. 搬送検査装置の中の平ベルトコンベアの構成を示す側面図である。It is a side view which shows the structure of the flat belt conveyor in a conveyance inspection apparatus. 光学検査装置を模式的に示す側面図である。It is a side view which shows an optical inspection apparatus typically.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせている。また、以下の説明及び図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In all the following drawings, the dimensions and ratios of the respective components are appropriately changed in order to make the drawings easy to see. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 以下の説明においては、必要に応じてXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。本実施形態においては、光学表示部品である液晶パネルの搬送方向をX方向としており、液晶パネルの面内においてX方向に直交する方向(液晶パネルの幅方向)をY方向、X方向及びY方向に直交する方向をZ方向としている。ここでは、X方向とY方向が水平面内にあり、Z方向が鉛直方向(上下方向)である。 In the following description, an XYZ orthogonal coordinate system is set as necessary, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the present embodiment, the transport direction of the liquid crystal panel, which is an optical display component, is the X direction, and the direction orthogonal to the X direction (the width direction of the liquid crystal panel) in the plane of the liquid crystal panel is the Y direction, X direction, and Y direction. The direction orthogonal to the Z direction is taken as the Z direction. Here, the X direction and the Y direction are in the horizontal plane, and the Z direction is the vertical direction (vertical direction).
 以下、本発明の一実施形態に係る搬送検査装置を含む光学部材貼合パネルの製造装置であるフィルム貼合システム1について図面を参照して説明する。
 図1は、本実施形態のフィルム貼合システム1の概略構成を示す図である。
 フィルム貼合システム1は、例えば液晶パネルや有機ELパネルなどのパネル状の光学表示部品に、偏光フィルムや反射防止フィルム、光拡散フィルムなどのフィルム状の光学部材を貼合するものである。
Hereinafter, the film bonding system 1 which is a manufacturing apparatus of the optical member bonding panel containing the conveyance inspection apparatus which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
Drawing 1 is a figure showing the schematic structure of film pasting system 1 of this embodiment.
The film bonding system 1 bonds a film-shaped optical member such as a polarizing film, an antireflection film, or a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel.
 なお、本実施形態では、前記光学表示部品として液晶パネルPを例示し、光学部材貼合パネルとして、液晶パネルPの表裏両面に貼合シートF5を貼合してなる両面貼合パネルP12を例示しているが、本発明はこれに限定されるものではない。また、液晶パネルPのサイズとしては、好ましくは30インチ(457mm×609mm)以上で、通常は100インチ(1524mm×2032mm以下である。さらに、液晶パネルPの厚みは、通常は1.2mm以下で、かつ通常は0.5mm以上である。 In addition, in this embodiment, liquid crystal panel P is illustrated as said optical display component, and double-sided bonding panel P12 formed by bonding the bonding sheet | seat F5 on both front and back surfaces of liquid crystal panel P is illustrated as an optical member bonding panel. However, the present invention is not limited to this. In addition, the size of the liquid crystal panel P is preferably 30 inches (457 mm × 609 mm) or more, and usually 100 inches (1524 mm × 2032 mm or less.) Further, the thickness of the liquid crystal panel P is usually 1.2 mm or less. And usually 0.5 mm or more.
 図1に示すように、本実施形態のフィルム貼合システム1は、液晶パネルPの製造ラインの一工程として設けられている。フィルム貼合システム1の各部は、電子制御装置としての制御部40により統括制御される。 As shown in FIG. 1, the film bonding system 1 of this embodiment is provided as one process of the production line of liquid crystal panel P. As shown in FIG. Each part of the film bonding system 1 is comprehensively controlled by the control part 40 as an electronic control apparatus.
 図2は、図1に示したA矢視図である。
 図2に示すように、本実施形態のフィルム貼合システム1は、液晶パネルPの搬送方向に対して、液晶パネルPの姿勢を途中で90°反転する。フィルム貼合システム1は、液晶パネルPの表裏面に、偏光軸を互いに直交する方向に向けた偏光フィルム(図4に示す光学部材F1)を貼り合わせる。
FIG. 2 is a view taken in the direction of arrow A shown in FIG.
As shown in FIG. 2, the film bonding system 1 of this embodiment reverses 90 degree | times of the attitude | position of the liquid crystal panel P with respect to the conveyance direction of the liquid crystal panel P on the way. The film bonding system 1 bonds the polarizing film (optical member F1 shown in FIG. 4) with the polarization axes in directions orthogonal to each other on the front and back surfaces of the liquid crystal panel P.
 図3は、液晶パネルPを、その液晶層P3の厚さ方向から見た平面図である。液晶パネルPは、平面視で長方形状をなす第1基板P1と、第1基板P1に対向して配置される、第1基板P1よりも小形の長方形状をなす第2基板P2と、第1基板P1と第2基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で長辺と短辺を有する第1基板P1の外形状に沿う長方形状をなし、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とする。 FIG. 3 is a plan view of the liquid crystal panel P as viewed from the thickness direction of the liquid crystal layer P3. The liquid crystal panel P includes a first substrate P1 having a rectangular shape in a plan view, a second substrate P2 having a rectangular shape smaller than the first substrate P1, which is disposed opposite to the first substrate P1, and a first substrate P1. A liquid crystal layer P3 enclosed between the substrate P1 and the second substrate P2 is provided. The liquid crystal panel P has a rectangular shape along the outer shape of the first substrate P1 having a long side and a short side in plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in plan view is defined as a display region P4.
 図4は、液晶パネルPに貼合する光学部材F1を含む光学シートFの断面図である。図4においては、便宜上、断面図の各層のハッチングを省略している。
 図4に示すように、光学シートFは、フィルム状の前記光学部材F1と、光学部材F1の一方の面(図4では上面)に設けられた粘着層F2と、粘着層F2を介して光学部材F1の一方の面に分離可能に積層されたセパレータF3と、光学部材F1の他方の面(図4では下面)に積層された表面保護フィルムF4とを有する。光学部材F1は偏光板として機能し、液晶パネルPの表示領域P4の全域と、その周辺領域とにわたって貼合される。
FIG. 4 is a cross-sectional view of the optical sheet F including the optical member F1 bonded to the liquid crystal panel P. In FIG. 4, hatching of each layer in the cross-sectional view is omitted for convenience.
As shown in FIG. 4, the optical sheet F is optically formed through the film-like optical member F1, the adhesive layer F2 provided on one surface (the upper surface in FIG. 4) of the optical member F1, and the adhesive layer F2. It has the separator F3 laminated | stacked on one side of the member F1 so that isolation | separation was possible, and the surface protection film F4 laminated | stacked on the other surface (lower surface in FIG. 4) of the optical member F1. The optical member F1 functions as a polarizing plate and is bonded over the entire display area P4 of the liquid crystal panel P and the peripheral area.
 光学部材F1は、その一方の面に粘着層F2を残しつつセパレータF3を分離した状態で、液晶パネルPに粘着層F2を介して貼合される。以下、光学シートFからセパレータF3を除いた部分を貼合シートF5という。 The optical member F1 is bonded to the liquid crystal panel P via the adhesive layer F2 in a state where the separator F3 is separated while leaving the adhesive layer F2 on one surface thereof. Hereinafter, the part remove | excluding the separator F3 from the optical sheet F is called the bonding sheet | seat F5.
 セパレータF3は、粘着層F2から分離されるまでの間、粘着層F2及び光学部材F1を保護する。表面保護フィルムF4は、光学部材F1とともに液晶パネルPに貼合される。表面保護フィルムF4は、光学部材F1に対して液晶パネルPと反対側に配置されて光学部材F1を保護すると共に、所定のタイミングで光学部材F1から分離される。なお、光学シートFが表面保護フィルムF4を含まない構成であったり、表面保護フィルムF4が光学部材F1から分離されない構成であったりしてもよい。 The separator F3 protects the adhesive layer F2 and the optical member F1 until it is separated from the adhesive layer F2. The surface protective film F4 is bonded to the liquid crystal panel P together with the optical member F1. The surface protective film F4 is disposed on the side opposite to the liquid crystal panel P with respect to the optical member F1, protects the optical member F1, and is separated from the optical member F1 at a predetermined timing. The optical sheet F may be configured not to include the surface protective film F4, or the surface protective film F4 may be configured not to be separated from the optical member F1.
 光学部材F1は、シート状の偏光子F6と、偏光子F6の一方の面に接着剤等で接合される第1フィルムF7と、偏光子F6の他方の面に接着剤等で接合される第2フィルムF8とを有する。第1フィルムF7及び第2フィルムF8は、例えば偏光子F6を保護する保護フィルムである。 The optical member F1 includes a sheet-like polarizer F6, a first film F7 bonded to one surface of the polarizer F6 with an adhesive or the like, and a first film F7 bonded to the other surface of the polarizer F6 with an adhesive or the like. 2 film F8. The first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
 なお、光学部材F1は、一層の光学層からなる単層構造でもよく、複数の光学層が互いに積層された積層構造でもよい。前記光学層は、偏光子F6の他に、位相差フィルムや輝度向上フィルム等であってもよい。第1フィルムF7と第2フィルムF8の少なくとも一方は、液晶表示素子の最外面を保護するハードコート処理や、アンチグレア処理を含む防眩などの効果が得られる表面処理が施されてもよい。光学部材F1は、第1フィルムF7と第2フィルムF8の少なくとも一方を含まなくてもよい。例えば第1フィルムF7を省略した場合、セパレータF3を光学部材F1の一方の面に粘着層F2を介して貼り合わせてもよい。 Note that the optical member F1 may have a single-layer structure including a single optical layer, or a stacked structure in which a plurality of optical layers are stacked on each other. In addition to the polarizer F6, the optical layer may be a retardation film, a brightness enhancement film, or the like. At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment including an antiglare treatment. The optical member F1 may not include at least one of the first film F7 and the second film F8. For example, when the first film F7 is omitted, the separator F3 may be bonded to one surface of the optical member F1 via the adhesive layer F2.
 次に、本実施形態のフィルム貼合システム1について、詳しく説明する。
 図1に示すように、本実施形態のフィルム貼合システム1は、図中右側の液晶パネルPの搬送方向上流側(プラスX方向側)から図中左側の液晶パネルPの搬送方向下流側(マイナスX方向側)に至り、液晶パネルPを水平状態で搬送する搬送コンベア(搬送装置)5を備えている。搬送コンベア5は、後で詳述するが、光学検査位置までは、ほとんどの部分がローラコンベアで構成され、光学検査位置の直後から一部が平ベルトコンベアで構成されている。   
Next, the film bonding system 1 of this embodiment is demonstrated in detail.
As shown in FIG. 1, the film laminating system 1 of the present embodiment has a downstream side in the transport direction of the liquid crystal panel P on the left side in the drawing from the upstream side in the transport direction of the liquid crystal panel P on the right side (plus X direction side) (Minus X direction side), and a transport conveyor (transport device) 5 for transporting the liquid crystal panel P in a horizontal state is provided. As will be described in detail later, most of the conveyor 5 is composed of a roller conveyor up to the optical inspection position, and a portion of the conveyor 5 is composed of a flat belt conveyor immediately after the optical inspection position.
 搬送コンベア5は、後述する第1反転装置15を境に、上流側コンベア6と下流側コンベア7とに分かれる。図2に示すように、上流側コンベア6では、液晶パネルPは表示領域P4の短辺(または長辺)が搬送方向に沿うようにして搬送される。一方、下流側コンベア7では、液晶パネルPは表示領域P4の長辺(または短辺)が搬送方向に沿うようにして搬送される。この液晶パネルPの表裏面に対して、帯状の前記光学シートFから所定長さに切り出した貼合シートF5が貼合される。 The transport conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a first reversing device 15 described later as a boundary. As shown in FIG. 2, in the upstream conveyor 6, the liquid crystal panel P is transported such that the short side (or long side) of the display region P4 is along the transport direction. On the other hand, on the downstream conveyor 7, the liquid crystal panel P is transported such that the long side (or short side) of the display area P <b> 4 is along the transport direction. A bonding sheet F5 cut out to a predetermined length from the belt-shaped optical sheet F is bonded to the front and back surfaces of the liquid crystal panel P.
 なお、上流側コンベア6は、後述する第1吸着装置11では、下流側に独立したフリーローラコンベア24を備えている。一方、下流側コンベア7は、後述する第2吸着装置20では、下流側に独立したフリーローラコンベア24を備えている。 In addition, the upstream conveyor 6 is provided with the independent free roller conveyor 24 in the downstream in the 1st adsorption | suction apparatus 11 mentioned later. On the other hand, the downstream conveyor 7 includes an independent free roller conveyor 24 on the downstream side in the second suction device 20 described later.
 本実施形態のフィルム貼合システム1は、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1ズレ検査装置14、第1反転装置15、第2集塵装置16、第2貼合装置17、第2ズレ検査装置18、第2反転装置19、第2吸着装置20、欠陥検査装置(光学検査装置)30、及び制御部40を備えている。 The film bonding system 1 of this embodiment is the 1st adsorption | suction apparatus 11, the 1st dust collector 12, the 1st bonding apparatus 13, the 1st deviation inspection apparatus 14, the 1st inversion apparatus 15, and the 2nd dust collection apparatus 16. The 2nd bonding apparatus 17, the 2nd shift inspection apparatus 18, the 2nd inversion apparatus 19, the 2nd adsorption | suction apparatus 20, the defect inspection apparatus (optical inspection apparatus) 30, and the control part 40 are provided.
 第1吸着装置11は、液晶パネルPを吸着して上流側コンベア6に搬送すると共に液晶パネルPのアライメント(位置決め)を行う。第1吸着装置11は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 The first suction device 11 sucks and transports the liquid crystal panel P to the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P. The first suction device 11 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、上流側コンベア6により下流側のストッパSに当接した液晶パネルPを上下方向及び水平方向に移動可能に保持すると共に、液晶パネルPのアライメントを行う。パネル保持部11aは、ストッパSに当接した液晶パネルPの上面を真空吸着によって吸着保持する。パネル保持部11aは、液晶パネルPを吸着保持した状態でレールR上を移動して液晶パネルPを搬送する。パネル保持部11aは、上記の搬送が終わると前記吸着保持を解除して液晶パネルPをフリーローラコンベア24に受け渡す。 The panel holding unit 11a holds the liquid crystal panel P in contact with the downstream stopper S by the upstream conveyor 6 so as to be movable in the vertical direction and the horizontal direction, and performs alignment of the liquid crystal panel P. The panel holding part 11a sucks and holds the upper surface of the liquid crystal panel P in contact with the stopper S by vacuum suction. The panel holding part 11a moves on the rail R in a state where the liquid crystal panel P is sucked and held, and transports the liquid crystal panel P. The panel holding unit 11a releases the suction holding and transfers the liquid crystal panel P to the free roller conveyor 24 when the conveyance is finished.
 アライメントカメラ11bは、ストッパSに当接した液晶パネルPをパネル保持部11aが保持し、上昇した状態で液晶パネルPのアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御部40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する液晶パネルPのアライメントが行われる。つまり、液晶パネルPは、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び液晶パネルPの垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。
 ここで、パネル保持部11aによりレールR上を搬送された液晶パネルPは、吸着パッド26に吸着された状態で後述する貼合シートF5と共に先端部を挟圧ロール23に挟持される。
In the alignment camera 11b, the panel holding unit 11a holds the liquid crystal panel P in contact with the stopper S, and images the alignment mark, tip shape, and the like of the liquid crystal panel P in the raised state. Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a operates to align the liquid crystal panel P with the free roller conveyor 24 at the transport destination. In other words, the liquid crystal panel P is transported to the free roller conveyor 24 in consideration of the transport direction with respect to the free roller conveyor 24, the direction orthogonal to the transport direction, and the deviation in the turning direction around the vertical axis of the liquid crystal panel P. .
Here, the liquid crystal panel P conveyed on the rail R by the panel holding portion 11a is sandwiched between the leading end portion and the sandwiching sheet F5, which will be described later, while being attracted to the suction pad 26.
 第1集塵装置12は、第1貼合装置13の貼合位置である挟圧ロール23の、液晶パネルPの搬送上流側に設けられている。第1集塵装置12は、貼合位置に導入される前の液晶パネルPの周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 1st dust collector 12 is provided in the conveyance upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 1st bonding apparatus 13. FIG. The first dust collector 12 removes static electricity and collects dust in order to remove dust around the liquid crystal panel P before being introduced to the bonding position, particularly dust on the lower surface side.
 第1貼合装置13は、第1吸着装置11よりもパネル搬送下流側に設けられている。第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5の貼合を行う。 The 1st bonding apparatus 13 is provided in the panel conveyance downstream rather than the 1st adsorption | suction apparatus 11. FIG. The 1st bonding apparatus 13 bonds the bonding sheet | seat F5 cut into the predetermined size with respect to the lower surface of liquid crystal panel P introduced into the bonding position.
 第1貼合装置13は、搬送装置22と、挟圧ロール23とを備えている。
 搬送装置22は、光学シートFが巻回された原反ロールR1から光学シートFを巻き出しつつ光学シートFをその長手方向に沿って搬送する。搬送装置22は、セパレータF3をキャリアとして貼合シートF5を搬送する。搬送装置22は、ロール保持部22aと、複数のガイドローラ22bと、切断装置22cと、ナイフエッジ22dと、巻き取り部22eと、を有する。
The first bonding device 13 includes a transport device 22 and a pinching roll 23.
The conveying device 22 conveys the optical sheet F along the longitudinal direction while unwinding the optical sheet F from the original roll R1 around which the optical sheet F is wound. The conveyance apparatus 22 conveys the bonding sheet | seat F5 by using the separator F3 as a carrier. The conveyance device 22 includes a roll holding portion 22a, a plurality of guide rollers 22b, a cutting device 22c, a knife edge 22d, and a winding portion 22e.
 ロール保持部22aは、帯状の光学シートFを巻回した原反ロールR1を保持すると共に光学シートFをその長手方向に沿って繰り出す。
 複数のガイドローラ22bは、原反ロールR1から巻き出した光学シートFを所定の搬送経路に沿って案内するべく光学シートFを巻きかける。
 切断装置22cは、搬送経路上の光学シートFにハーフカットを施す。
 ナイフエッジ22dは、ハーフカットを施した光学シートFを鋭角に巻きかけてセパレータF3から貼合シートF5を分離させつつ、この貼合シートF5を貼合位置に供給する。
 巻き取り部22eは、ナイフエッジ22dを経て単独となったセパレータF3を巻き取るセパレータロールR2を保持する。
The roll holding unit 22a holds the original roll R1 around which the belt-shaped optical sheet F is wound, and feeds the optical sheet F along its longitudinal direction.
The plurality of guide rollers 22b wind the optical sheet F so as to guide the optical sheet F unwound from the original roll R1 along a predetermined conveyance path.
The cutting device 22c performs a half cut on the optical sheet F on the conveyance path.
The knife edge 22d supplies the bonding sheet F5 to the bonding position while winding the optical sheet F subjected to the half cut at an acute angle to separate the bonding sheet F5 from the separator F3.
The winding unit 22e holds a separator roll R2 that winds up the separator F3 that has become independent through the knife edge 22d.
 搬送装置22の始点に位置するロール保持部22aと搬送装置22の終点に位置する巻き取り部22eとは、例えば互いに同期して駆動する。これにより、ロール保持部22aが光学シートFをその搬送方向へ繰り出しつつ、巻き取り部22eがナイフエッジ22dを経たセパレータF3を巻き取る。以下、搬送装置22における光学シートF(セパレータF3)の搬送方向上流側をシート搬送上流側、搬送方向下流側をシート搬送下流側という。 The roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example. Thereby, the winding unit 22e winds up the separator F3 that has passed through the knife edge 22d while the roll holding unit 22a feeds the optical sheet F in the transport direction. Hereinafter, the upstream side in the transport direction of the optical sheet F (separator F3) in the transport device 22 is referred to as a sheet transport upstream side, and the downstream side in the transport direction is referred to as a sheet transport downstream side.
 各ガイドローラ22bは、搬送中の光学シートFの進行方向を搬送経路に沿って変化させると共に、複数のガイドローラ22bの少なくとも一部が搬送中の光学シートFのテンションを調整するように可動する。 Each guide roller 22b changes the traveling direction of the optical sheet F being conveyed along the conveyance path, and at least a part of the plurality of guide rollers 22b is movable so as to adjust the tension of the optical sheet F being conveyed. .
 なお、ロール保持部22aと切断装置22cとの間には、図示しないダンサローラが配置されていてもよい。ダンサローラは、光学シートFが切断装置22cで切断される間に、ロール保持部22aから搬送される光学シートFの繰り出し量を吸収する。 It should be noted that a dancer roller (not shown) may be disposed between the roll holding unit 22a and the cutting device 22c. The dancer roller absorbs the feeding amount of the optical sheet F conveyed from the roll holding unit 22a while the optical sheet F is cut by the cutting device 22c.
 切断装置22cは、光学シートFが所定長さで繰り出された際、光学シートFの長手方向と直交する幅方向の全幅にわたって、光学シートFの厚さ方向の一部を切断するハーフカットを行う。 The cutting device 22c performs a half cut that cuts a part in the thickness direction of the optical sheet F over the entire width in the width direction orthogonal to the longitudinal direction of the optical sheet F when the optical sheet F is fed out by a predetermined length. .
 切断装置22cは、光学シートFの搬送中に働くテンションによって光学シートF(セパレータF3)が破断しないように(所定の厚さがセパレータF3に残るように)、切断刃の進退位置を調整し、粘着層F2とセパレータF3との界面の近傍まで前記ハーフカットを施す。なお、切断刃に代えてレーザー装置を用いてもよい。 The cutting device 22c adjusts the advancing / retreating position of the cutting blade so that the optical sheet F (separator F3) is not broken by the tension acting during the conveyance of the optical sheet F (so that a predetermined thickness remains in the separator F3). The half cut is performed up to the vicinity of the interface between the adhesive layer F2 and the separator F3. A laser device may be used instead of the cutting blade.
 ハーフカット後の光学シートFには、その厚さ方向で光学部材F1及び表面保護フィルムF4が切断されることにより、光学シートFの幅方向の全幅にわたる切込線が形成される。切込線は、帯状の光学シートFの長手方向で複数並ぶように形成される。例えば同一サイズの液晶パネルPを搬送する貼合工程の場合、複数の切り込み線は光学シートFの長手方向で等間隔に形成される。光学シートFは、前記複数の切込線によって長手方向で複数の区画に分けられる。光学シートFにおける長手方向で隣り合う一対の切込線に挟まれる区画は、それぞれ貼合シートF5における一つのシート片とされる。 In the optical sheet F after half-cutting, the optical member F1 and the surface protection film F4 are cut in the thickness direction, whereby a cut line extending over the entire width of the optical sheet F is formed. A plurality of cutting lines are formed so as to be arranged in the longitudinal direction of the belt-shaped optical sheet F. For example, in the case of the bonding process which conveys liquid crystal panel P of the same size, a plurality of score lines are formed at equal intervals in the longitudinal direction of optical sheet F. The optical sheet F is divided into a plurality of sections in the longitudinal direction by the plurality of cut lines. Each section sandwiched between a pair of cut lines adjacent in the longitudinal direction in the optical sheet F is a sheet piece in the bonding sheet F5.
 ナイフエッジ22dは、上流側コンベア6の下方に配置されて、光学シートFの幅方向で少なくともその全幅にわたって延在する。ナイフエッジ22dは、ハーフカット後の光学シートFのセパレータF3側に摺接するように、これを巻きかける。 The knife edge 22d is arranged below the upstream conveyor 6 and extends in the width direction of the optical sheet F at least over its entire width. The knife edge 22d is wound so as to be in sliding contact with the separator F3 side of the optical sheet F after half-cutting.
 ナイフエッジ22dは、光学シートFの幅方向(上流側コンベア6の幅方向)から見て伏せた姿勢に配置される第1面と、第1面の上方で光学シートFの幅方向から見て第1面に対して鋭角に配置される第2面と、第1面及び第2面が交わる先端部とを有する。 The knife edge 22d is seen from the width direction of the optical sheet F above the first surface, and the first surface arranged in an inclined position when viewed from the width direction of the optical sheet F (width direction of the upstream conveyor 6). It has the 2nd surface arrange | positioned at an acute angle with respect to a 1st surface, and the front-end | tip part where a 1st surface and a 2nd surface cross.
 ナイフエッジ22dは、その先端部に光学シートFを鋭角に巻きかける。光学シートFは、ナイフエッジ22dの先端部で鋭角に折り返す際、セパレータF3から貼合シートF5のシート片を分離させる。ナイフエッジ22dは、狭圧ロール23のパネル搬送上流側に配置されるともに、ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送下流側に近接して配置される。ナイフエッジ22dによりセパレータF3から分離した貼合シートF5は、第1吸着装置11に吸着された状態の液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。 The knife edge 22d winds the optical sheet F at an acute angle at the tip. The optical sheet F separates the sheet piece of the bonding sheet F5 from the separator F3 when turning back at an acute angle at the tip of the knife edge 22d. The knife edge 22d is disposed on the panel conveyance upstream side of the narrow pressure roll 23, and the tip portion of the knife edge 22d is disposed in proximity to the panel conveyance downstream side of the pinching roll 23. The bonding sheet F5 separated from the separator F3 by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pressure roll 23 while overlapping the lower surface of the liquid crystal panel P in the state of being sucked by the first suction device 11. The
 挟圧ロール23は、搬送装置22が光学シートFから分離させた所定長さの貼合シートF5を、上流側コンベア6により搬送される液晶パネルPの下面に貼合する。挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23a,23aを有する(上の貼合ローラ23aは上下方向に移動する)。一対の貼合ローラ23a,23a間には所定の間隙が形成され、この間隙内が第1貼合装置13の貼合位置となる。前記間隙内には、液晶パネルP及び貼合シートF5が重なり合って導入される。これら液晶パネルP及び貼合シートF5が、各貼合ローラ23aに挟圧されつつ上流側コンベア6のパネル搬送下流側に送り出される。これにより、液晶パネルPの下面に貼合シートF5が一体的に貼合される。
 以下、この貼合後のパネルを片面貼合パネルP11という。
The pinching roll 23 bonds the bonding sheet F5 having a predetermined length separated from the optical sheet F by the conveying device 22 to the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6. The pinching roll 23 has a pair of bonding rollers 23a and 23a arranged in parallel with each other in the axial direction (the upper bonding roller 23a moves in the vertical direction). A predetermined gap is formed between the pair of bonding rollers 23 a and 23 a, and the inside of this gap is the bonding position of the first bonding apparatus 13. The liquid crystal panel P and the bonding sheet F5 are overlapped and introduced into the gap. These liquid crystal panels P and the bonding sheet | seat F5 are sent out to the panel conveyance downstream of the upstream conveyor 6, being pinched by each bonding roller 23a. Thereby, the bonding sheet | seat F5 is integrally bonded by the lower surface of liquid crystal panel P. FIG.
Hereinafter, the panel after this bonding is called single-sided bonding panel P11.
 第1ズレ検査装置14は、第1貼合装置13よりもパネル搬送下流側に設けられている。第1ズレ検査装置14は、片面貼合パネルP11において、液晶パネルPに対する貼合シートF5の位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第1ズレ検査装置14は、例えば片面貼合パネルP11のパネル搬送上流側及び下流側における貼合シートF5の端縁を撮像する一対のカメラ14a,14aを有する。これら一対のカメラ14a,14aによる撮像データは制御部40に送信され、この撮像データに基づき貼合シートF5及び液晶パネルPの相対位置が適正か否かが判定される。前記相対位置が適正ではないと判定された片面貼合パネルP11は、不図示の払い出し手段によりシステム外に排出される。 The 1st shift | offset | difference inspection apparatus 14 is provided in the panel conveyance downstream rather than the 1st bonding apparatus 13. FIG. The 1st shift | offset | difference test | inspection apparatus 14 test | inspects whether the position of the bonding sheet | seat F5 with respect to liquid crystal panel P is appropriate in the single-sided bonding panel P11 (whether a position shift exists in a tolerance range). The first misalignment inspection apparatus 14 includes a pair of cameras 14a and 14a that capture images of the edge of the bonding sheet F5 on the upstream side and the downstream side of the single-sided bonding panel P11, for example. Image data obtained by the pair of cameras 14a and 14a is transmitted to the control unit 40, and it is determined whether or not the relative positions of the bonding sheet F5 and the liquid crystal panel P are appropriate based on the image data. The single-sided bonding panel P11 determined to have an inappropriate relative position is discharged out of the system by a not-shown payout means.
 第1反転装置15は、第1ズレ検査装置14よりもパネル搬送下流側に設けられて上流側コンベア6の終着位置に達した液晶パネルPを下流側コンベア7の始発位置まで搬送する。第1反転装置15は、例えば液晶パネルPの搬送方向に対して平面視で45°に傾斜した回動軸15aと、回動軸15aを介して上流側コンベア6の終着位置及び下流側コンベア7の始発位置の間に支持される反転アーム15bとを有する。 The first reversing device 15 is provided on the downstream side of the panel conveyance with respect to the first deviation inspection device 14 and conveys the liquid crystal panel P that has reached the end position of the upstream conveyor 6 to the starting position of the downstream conveyor 7. The first reversing device 15 includes, for example, a rotation shaft 15a inclined at 45 ° in a plan view with respect to the transport direction of the liquid crystal panel P, and an end position of the upstream conveyor 6 and the downstream conveyor 7 via the rotation shaft 15a. And a reversing arm 15b supported between the first starting positions.
 反転アーム15bは、第1ズレ検査装置14を経て上流側コンベア6の終着位置に達した片面貼合パネルP11を吸着や挟持等により保持する。反転アーム15bは、回動軸15a回りに180°回動することで、片面貼合パネルP11の表裏を反転させる。反転アーム15bは、例えば前記表示領域P4の短辺(または長辺)と平行に搬送されていた片面貼合パネルP11を表示領域P4の長辺(または短辺)と平行に搬送されるように方向転換させる。 The reverse arm 15b holds the single-sided bonding panel P11 that has reached the end position of the upstream conveyor 6 via the first misalignment inspection device 14 by suction or sandwiching. The reversing arm 15b reverses the front and back of the single-sided bonding panel P11 by rotating 180 ° around the rotating shaft 15a. The reversing arm 15b is configured so that, for example, the single-sided bonding panel P11 transported in parallel with the short side (or long side) of the display region P4 is transported in parallel with the long side (or short side) of the display region P4. Turn around.
 前記反転は、液晶パネルPの表裏面に貼合する各光学部材F1が偏光軸方向を互いに直角に配置するような場合になされる。上流側コンベア6及び下流側コンベア7は、共に図1中において右側から左側へ向う方向を液晶パネルPの搬送方向とするが、第1反転装置15を経由することで、上流側コンベア6及び下流側コンベア7が平面視で所定量オフセットする。 The reversal is performed when the optical members F1 to be bonded to the front and back surfaces of the liquid crystal panel P are arranged so that the directions of the polarization axes are perpendicular to each other. In the upstream conveyor 6 and the downstream conveyor 7, the direction from the right side to the left side in FIG. 1 is the transport direction of the liquid crystal panel P. By passing through the first reversing device 15, the upstream conveyor 6 and the downstream conveyor 7 The side conveyor 7 is offset by a predetermined amount in plan view.
 なお、単に液晶パネルPの表裏を反転させる場合には、例えば搬送方向と平行な回動軸を有する反転アームを有する反転装置を用いればよい。この場合、第1貼合装置13のシート搬送方向と第2貼合装置17のシート搬送方向とを平面視で互いに直角にして配置すれば、液晶パネルPの表裏面に互いに偏光軸方向を直角にした光学部材F1を貼合できる。 In the case of simply reversing the front and back of the liquid crystal panel P, for example, a reversing device having a reversing arm having a rotation axis parallel to the transport direction may be used. In this case, if the sheet conveying direction of the first bonding device 13 and the sheet conveying direction of the second bonding device 17 are arranged at right angles to each other in a plan view, the polarization axis directions are perpendicular to each other on the front and back surfaces of the liquid crystal panel P. The optical member F1 made can be pasted.
 反転アーム15bは、前記第1吸着装置11のパネル保持部11aと同様のアライメント機能を有する。第1反転装置15には、前記第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ15cが設けられている。 The reversing arm 15b has the same alignment function as the panel holding portion 11a of the first suction device 11. The first reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
 第2吸着装置20は、第1吸着装置11と同様の構成を備えているため、同一部分に同一符号を付して説明する。第2吸着装置20は、片面貼合パネルP11を吸着して下流側コンベア7に搬送すると共に片面貼合パネルP11のアライメント(位置決め)を行う。第2吸着装置20は、パネル保持部11aと、アライメントカメラ11bと、レールRと、を有する。 Since the second adsorption device 20 has the same configuration as that of the first adsorption device 11, the same reference numerals are given to the same portions for explanation. The 2nd adsorption | suction apparatus 20 adsorbs the single-sided bonding panel P11, conveys it to the downstream conveyor 7, and performs alignment (positioning) of the single-sided bonding panel P11. The second suction device 20 includes a panel holding unit 11a, an alignment camera 11b, and a rail R.
 パネル保持部11aは、下流側コンベア7により下流側のストッパSに当接した片面貼合パネルP11を上下方向及び水平方向に移動可能に保持すると共に片面貼合パネルP11のアライメントを行う。パネル保持部11aは、ストッパSに当接した片面貼合パネルP11の上面を真空吸着によって吸着保持する。パネル保持部11aは、片面貼合パネルP11を吸着保持した状態でレールR上を移動して片面貼合パネルP11を搬送する。パネル保持部11aは、上記の搬送が終わると前記吸着保持を解除して片面貼合パネルP11をフリーローラコンベア24に受け渡す。 The panel holding unit 11a holds the single-sided bonding panel P11 that is in contact with the downstream stopper S by the downstream conveyor 7 so as to be movable in the vertical direction and the horizontal direction, and performs alignment of the single-sided bonding panel P11. The panel holding | maintenance part 11a adsorbs and hold | maintains the upper surface of the single-sided bonding panel P11 which contact | abutted to the stopper S by vacuum suction. The panel holding | maintenance part 11a moves on the rail R in the state which adsorbed and hold | maintained the single-sided bonding panel P11, and conveys the single-sided bonding panel P11. The panel holding unit 11a releases the suction holding and transfers the single-sided bonding panel P11 to the free roller conveyor 24 when the conveyance is finished.
 アライメントカメラ11bは、ストッパSに当接した片面貼合パネルP11をパネル保持部11aが保持し、上昇した状態で片面貼合パネルP11のアライメントマークや先端形状等を撮像する。アライメントカメラ11bによる撮像データは制御部40に送信され、この撮像データに基づき、パネル保持部11aが作動して搬送先のフリーローラコンベア24に対する片面貼合パネルP11のアライメントが行われる。つまり、片面貼合パネルP11は、フリーローラコンベア24に対する搬送方向、搬送方向と直交する方向、及び片面貼合パネルP11の垂直軸回りの旋回方向でのズレ分を加味した状態でフリーローラコンベア24に搬送される。 The alignment camera 11b holds the single-sided bonding panel P11 in contact with the stopper S by the panel holding part 11a, and images the alignment mark, the tip shape, etc. of the single-sided bonding panel P11 in the raised state. Imaging data from the alignment camera 11b is transmitted to the control unit 40, and based on this imaging data, the panel holding unit 11a is operated to align the single-sided bonding panel P11 with respect to the free roller conveyor 24 at the transport destination. That is, the single-sided bonding panel P11 is in a state in which the amount of misalignment in the conveying direction with respect to the free roller conveyor 24, the direction orthogonal to the conveying direction, and the turning direction around the vertical axis of the single-sided bonding panel P11 is taken into account. It is conveyed to.
 第2集塵装置16は、第2貼合装置17の貼合位置である挟圧ロール23の、液晶パネルPの搬送方向上流側に配置されている。第2集塵装置16は、貼合位置に導入される前の片面貼合パネルP11の周辺の塵埃、特に下面側の塵埃を除去するため、静電気の除去及び集塵を行う。 The 2nd dust collector 16 is arrange | positioned in the conveyance direction upstream of the liquid crystal panel P of the pinching roll 23 which is the bonding position of the 2nd bonding apparatus 17. FIG. The second dust collecting device 16 removes static electricity and collects dust in order to remove dust around the single-sided bonding panel P11 before being introduced to the bonding position, particularly dust on the lower surface side.
 第2貼合装置17は、第2集塵装置16よりもパネル搬送下流側に設けられている。第2貼合装置17は、貼合位置に導入された片面貼合パネルP11の下面に対して、所定サイズにカットした貼合シートF5の貼合を行う。第2貼合装置17は、前記第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。 The 2nd bonding apparatus 17 is provided in the panel conveyance downstream rather than the 2nd dust collector 16. FIG. The 2nd bonding apparatus 17 bonds the bonding sheet | seat F5 cut into the predetermined size with respect to the lower surface of the single-sided bonding panel P11 introduced into the bonding position. The 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the said 1st bonding apparatus 13. FIG.
 挟圧ロール23の一対の貼合ローラ23a間の間隙内(第2貼合装置17の貼合位置)には、片面貼合パネルP11及び貼合シートF5が重なり合った状態で導入され、片面貼合パネルP11の下面に貼合シートF5が一体的に貼合される。
 以下、この貼合後のパネルを両面貼合パネルP12(光学部材貼合パネル)という。
In the gap between the pair of bonding rollers 23a of the pinching roll 23 (the bonding position of the second bonding apparatus 17), the single-sided bonding panel P11 and the bonding sheet F5 are introduced in an overlapping state, and the single-sided bonding is performed. A bonding sheet F5 is integrally bonded to the lower surface of the combined panel P11.
Hereinafter, the panel after this bonding is called double-sided bonding panel P12 (optical member bonding panel).
 第2ズレ検査装置18は、第2貼合装置17よりもパネル搬送下流側に設けられている。第2ズレ検査装置18は、両面貼合パネルP12において、片面貼合パネルP11に対する貼合シートF5の位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第2ズレ検査装置18は、例えば両面貼合パネルP12のパネル搬送上流側及び下流側における貼合シートF5の端縁を撮像する一対のカメラ18a,18aを有する。これら一対のカメラ18a,18aによる撮像データは制御部40に送信され、この撮像データに基づき、貼合シートF5及び液晶パネルPの相対位置が適正か否かが判定される。前記相対位置が適正ではないと判定された両面貼合パネルP12は、不図示の払い出し手段によりシステム外に排出される。 The second misalignment inspection device 18 is provided on the panel transport downstream side of the second bonding device 17. The second misalignment inspection device 18 inspects whether or not the position of the bonding sheet F5 with respect to the single-sided bonding panel P11 is appropriate (whether the positional deviation is within the tolerance range) in the double-sided bonding panel P12. The 2nd shift | offset | difference test | inspection apparatus 18 has a pair of cameras 18a and 18a which image the edge of the bonding sheet | seat F5 in the panel conveyance upstream and downstream of the double-sided bonding panel P12, for example. Imaging data from the pair of cameras 18a, 18a is transmitted to the control unit 40, and based on this imaging data, it is determined whether or not the relative positions of the bonding sheet F5 and the liquid crystal panel P are appropriate. The double-sided bonded panel P12 determined to have an inappropriate relative position is discharged out of the system by a not-shown payout means.
 第2反転装置19は、第2ズレ検査装置18よりもパネル搬送下流側に設けられている。第2反転装置19は、第1反転装置15を経てバックライト側を上向きにした液晶パネルP(両面貼合パネルP12)の表裏を反転させ、フィルム貼合システム1への搬入時と同様に液晶パネルPの表示面側を上向きにする。 The second reversing device 19 is provided on the downstream side of the panel conveyance with respect to the second misalignment inspection device 18. The second reversing device 19 reverses the front and back of the liquid crystal panel P (double-sided bonding panel P12) with the backlight side facing upward via the first reversing device 15 and the liquid crystal is the same as when carrying into the film bonding system 1. The display surface side of the panel P is turned upward.
 欠陥検査装置(光学検査装置)30は、第2反転装置19よりもパネル搬送下流側に設けられている。欠陥検査装置30は、両面貼合パネルP12の欠陥(貼合不良等)の有無を検査する。検査対象となる欠陥としては、液晶パネルと貼合シートとを貼合する際の異物や気泡のかみ込み、貼合シートの表面の傷、液晶パネルに内在する配向不良などの欠陥が挙げられる。 The defect inspection device (optical inspection device) 30 is provided on the downstream side of the panel conveyance with respect to the second reversing device 19. The defect inspection apparatus 30 inspects the presence / absence of a defect (such as bonding failure) of the double-sided bonding panel P12. Examples of the defects to be inspected include defects such as biting of foreign matter or bubbles when the liquid crystal panel and the bonding sheet are bonded, scratches on the surface of the bonding sheet, and alignment defects inherent in the liquid crystal panel.
 なお、本実施形態においてフィルム貼合システム1の各部を統括制御する電子制御装置としての制御部40は、コンピュータシステムを含んで構成されている。このコンピュータシステムは、CPU等の演算処理部と、メモリやハードディスク等の記憶部とを備える。
 本実施形態の制御部40は、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含む。制御部40には、入力信号を入力可能な入力装置が接続されていてもよい。上記の入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシステムの外部の装置からのデータを入力可能な通信装置等を含む。制御部40は、フィルム貼合システム1の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。
In addition, in this embodiment, the control part 40 as an electronic control apparatus which performs overall control of each part of the film bonding system 1 is comprised including the computer system. This computer system includes an arithmetic processing unit such as a CPU and a storage unit such as a memory and a hard disk.
The control unit 40 of the present embodiment includes an interface that can execute communication with an external device of the computer system. An input device that can input an input signal may be connected to the control unit 40. The input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from a device external to the computer system. The control unit 40 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film bonding system 1 or may be connected to the display device.
 制御部40の記憶部には、コンピュータシステムを制御するオペレーティングシステム(OS)がインストールされている。制御部40の記憶部には、演算処理部にフィルム貼合システム1の各部を制御させることによって、フィルム貼合システム1の各部に光学シートFを精度よく搬送させるための処理を実行させるプログラムが記録されている。記憶部に記録されているプログラムを含む各種情報は、制御部40の演算処理部が読み取り可能である。制御部40は、フィルム貼合システム1の各部の制御に要する各種処理を実行するASIC等の論理回路を含んでいてもよい。 An operating system (OS) that controls the computer system is installed in the storage unit of the control unit 40. The storage unit of the control unit 40 includes a program that causes the arithmetic processing unit to control each unit of the film bonding system 1 to execute processing for causing each unit of the film bonding system 1 to accurately convey the optical sheet F. It is recorded. Various types of information including programs recorded in the storage unit can be read by the arithmetic processing unit of the control unit 40. The control unit 40 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film bonding system 1.
 記憶部は、RAM(Random Access Memory)、ROM(Read Only Memory)などといった半導体メモリや、ハードディスク、CD-ROM読取り装置、ディスク型記憶媒体などといった外部記憶装置などを含む概念である。記憶部は、機能的には、第1吸着装置11、第1集塵装置12、第1貼合装置13、第1ズレ検査装置14、第1反転装置15、第2集塵装置16、第2貼合装置17、第2ズレ検査装置18、第2反転装置19、第2吸着装置20、欠陥検査装置30の動作の制御手順が記述されたプログラムソフトを記憶する記憶領域、その他各種の記憶領域が設定される。 The storage unit is a concept including a semiconductor memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an external storage device such as a hard disk, a CD-ROM reader, and a disk-type storage medium. The storage unit functionally includes a first adsorption device 11, a first dust collecting device 12, a first pasting device 13, a first displacement inspection device 14, a first reversing device 15, a second dust collecting device 16, and a first. 2 bonding device 17, second misalignment inspection device 18, second reversing device 19, second suction device 20, a storage area for storing program software describing operation control procedures of defect inspection device 30, and other various memories An area is set.
(搬送検査装置)
 次に、本実施形態の搬送検査装置について詳細に説明する。
 図5は、搬送検査装置を模式的に示す側面図、図6は、搬送検査装置の中の搬送装置だけを取り出して模式的に示す平面図である。また、図7は、搬送装置の中の平ベルトコンベアの構成を示す側面図、図8は、欠陥検査装置を模式的に示す側面図である。
(Conveyance inspection device)
Next, the conveyance inspection apparatus of this embodiment will be described in detail.
FIG. 5 is a side view schematically showing the transport inspection apparatus, and FIG. 6 is a plan view schematically showing only the transport apparatus in the transport inspection apparatus. FIG. 7 is a side view showing the configuration of the flat belt conveyor in the transport apparatus, and FIG. 8 is a side view schematically showing the defect inspection apparatus.
 図5に示すように、この搬送検査装置50は、搬送装置60によって両面貼合パネル(光学部材貼合パネル)P12を一定方向(図5中矢印S1方向)に搬送しつつ、搬送経路途中に配された欠陥検査装置(光学検査装置)30によって両面貼合パネルの光学検査を行うものである。 As shown in FIG. 5, this conveyance inspection apparatus 50 is carrying out the conveyance path | route in the middle of a conveyance path | route, conveying the double-sided bonding panel (optical member bonding panel) P12 to a fixed direction (arrow S1 direction in FIG. 5) with the conveying apparatus 60. The double-sided bonded panel is optically inspected by the arranged defect inspection device (optical inspection device) 30.
 図5、図8において、符号Sf1は両面貼合パネル(光学部材貼合パネル)P12の下面(第1主面)であり、例えばバックライトが取り付けられる面である。符号Sf2は両面貼合パネルP12の上面(第2主面)であり、例えば画像表示面である。 5 and 8, symbol Sf1 is a lower surface (first main surface) of a double-sided bonding panel (optical member bonding panel) P12, for example, a surface to which a backlight is attached. Symbol Sf2 is the upper surface (second main surface) of the double-sided bonding panel P12, for example, an image display surface.
 図5及び図8に示すように、本実施形態の搬送検査装置50の中の欠陥検査装置30は、下面反射検査用の第1検査ユニット31と、上面反射検査用の第2検査ユニット32と、透過検査用の第3検査ユニット33とを、搬送方向の上流側から下流側に向かって順に備えている。 As shown in FIGS. 5 and 8, the defect inspection apparatus 30 in the transport inspection apparatus 50 of the present embodiment includes a first inspection unit 31 for bottom surface reflection inspection, and a second inspection unit 32 for top surface reflection inspection. The third inspection unit 33 for transmission inspection is provided in order from the upstream side to the downstream side in the transport direction.
 まず、最上流側の第1検査ユニット31は、パネル搬送ラインの下側に配置された照明光源311と撮像装置312とを備えている。この第1検査ユニット31は、第2反転装置19を経て表示面側を上向きにした両面貼合パネルP12に対して、照明光源311から第1主面(下面)Sf1に対して斜めに光を当て、第1主面Sf1で反射された光を撮像装置312で撮像する。そして、この撮像データに基づいて両面貼合パネルP12の下面(画像表示面とは反対側の面)の欠陥の有無を検査する。 First, the first inspection unit 31 on the most upstream side includes an illumination light source 311 and an imaging device 312 arranged on the lower side of the panel conveyance line. The first inspection unit 31 emits light obliquely from the illumination light source 311 to the first main surface (lower surface) Sf1 with respect to the double-sided bonding panel P12 with the display surface side facing upward through the second reversing device 19. The light reflected by the first main surface Sf1 is imaged by the imaging device 312. And the presence or absence of the defect of the lower surface (surface on the opposite side to an image display surface) of the double-sided bonding panel P12 is test | inspected based on this imaging data.
 次に、第2検査ユニット32は、パネル搬送ラインの上側に配置された照明光源321と撮像装置322とを備えている。この第2検査ユニット32は、第2反転装置19を経て表示面側を上向きにした両面貼合パネルP12に対して、照明光源321から第2主面(上面)Sf2に対して斜めに光を当て、第2主面Sf2で反射された光を撮像装置322で撮像する。そして、この撮像データに基づいて、両面貼合パネルP12の上面(画像表示面)の欠陥の有無を検査する。 Next, the second inspection unit 32 includes an illumination light source 321 and an imaging device 322 disposed on the upper side of the panel conveyance line. The second inspection unit 32 emits light obliquely from the illumination light source 321 to the second main surface (upper surface) Sf2 with respect to the double-sided bonding panel P12 with the display surface side facing upward through the second reversing device 19. The light reflected by the second main surface Sf2 is imaged by the imaging device 322. And based on this imaging data, the presence or absence of the defect of the upper surface (image display surface) of the double-sided bonding panel P12 is test | inspected.
 次に、最下流側の第3検査ユニット33は、両面貼合パネルP12を第1主面(下面)Sf1の側から照明する照明光源331と、照明光源331によって照明された両面貼合パネルP12の画像を第2主面(上面)Sf2の側から撮像する2つの撮像装置(第1撮像装置332及び第2撮像装置333)と、を備えている。 Next, the third inspection unit 33 on the most downstream side illuminates the double-sided bonding panel P12 from the first main surface (lower surface) Sf1 side, and the double-sided bonding panel P12 illuminated by the illumination light source 331. The two imaging devices (the first imaging device 332 and the second imaging device 333) that capture the image of (2) from the second main surface (upper surface) Sf2 side.
 照明光源331は、第1主面Sf1に対して概ね垂直に第1の光を入射させる。第1撮像装置332は、両面貼合パネルP12を挟んで照明光源321の光軸上に配置され、照明光源331から射出されて両面貼合パネルP12を透過した光のうち、鉛直上方に概ね真っ直ぐ進行する光の画像を撮像する。また、第2撮像装置333は、照明光源331の光軸からずれた位置に配置され、照明光源331から射出されて両面貼合パネルP12で散乱した光のうち、斜め上方に透過して進行する光の画像を撮像する。 The illumination light source 331 causes the first light to be incident substantially perpendicular to the first main surface Sf1. The first imaging device 332 is arranged on the optical axis of the illumination light source 321 with the double-sided bonding panel P12 interposed therebetween, and is substantially straight upward in the vertical direction out of the light emitted from the illumination light source 331 and transmitted through the double-sided bonding panel P12. An image of the traveling light is taken. Moreover, the 2nd imaging device 333 is arrange | positioned in the position shifted | deviated from the optical axis of the illumination light source 331, and permeate | transmits diagonally upward and advances among the light inject | emitted from the illumination light source 331 and scattered by the double-sided bonding panel P12. Take an image of light.
 第3検査ユニット33は、第1撮像装置332の撮像結果に基づいて、光軸方向から見たときの第2主面Sf2と平行な面内の透過率の分布を検出し、透過率の大きい部分を欠陥部分として検出する。両面貼合パネルP12に配向不良が生じていたり、光学部材の表面に傷が付いていたりすると、その部分の透過率が他の部分よりも高くなるため、光軸の方向から見たときの透過率の分布を検出すれば、配向不良や光学部材の傷の有無を検出することができる。 The third inspection unit 33 detects the distribution of transmittance in a plane parallel to the second main surface Sf2 when viewed from the optical axis direction based on the imaging result of the first imaging device 332, and has a large transmittance. The part is detected as a defective part. If the double-sided bonded panel P12 has an orientation failure or has a scratch on the surface of the optical member, the transmittance of that portion will be higher than that of the other portions, so transmission when viewed from the direction of the optical axis. If the distribution of the rate is detected, it is possible to detect the presence of orientation failure and scratches on the optical member.
 また、第3検査ユニット33は、第2撮像装置333の撮像結果に基づいて、光軸に対して斜め方向から見たときの第2主面Sf2と平行な面内の透過率の分布を検出し、透過率の大きい部分を欠陥部分として検出する。両面貼合パネルP12に異物や気泡があると、照明光源331から射出された光が異物や気泡によって散乱し、散乱光の一部が第2撮像装置333に入射する。一方、異物や気泡がない場合には、散乱光が生じないため、第2撮像装置333の撮像画像は暗くなる。そのため、光軸に対して斜め方向から見たときの透過率の分布を検出すれば、異物や気泡の有無を検出することができる。 The third inspection unit 33 detects the distribution of transmittance in a plane parallel to the second main surface Sf2 when viewed from an oblique direction with respect to the optical axis, based on the imaging result of the second imaging device 333. Then, a portion having a high transmittance is detected as a defective portion. If there is a foreign substance or a bubble on the double-sided bonding panel P12, the light emitted from the illumination light source 331 is scattered by the foreign substance or the bubble, and a part of the scattered light is incident on the second imaging device 333. On the other hand, when there is no foreign object or bubble, scattered light is not generated, and the captured image of the second imaging device 333 becomes dark. Therefore, the presence or absence of foreign matter or bubbles can be detected by detecting the transmittance distribution when viewed from an oblique direction with respect to the optical axis.
 さらに、照明光源331から射出された光は、第2主面Sf2側に異物や気泡がある場合だけでなく、第1主面Sf1側に異物や気泡がある場合においても、当該異物や気泡によって散乱する。そのため、第3検査ユニット33によれば、第2主面Sf2側及び第1主面Sf1側の両面側において異物や気泡の有無を検出することができる。 Furthermore, the light emitted from the illumination light source 331 is not only in the case where there is a foreign object or bubble on the second main surface Sf2 side, but also in the case where there is a foreign object or bubble on the first main surface Sf1 side. Scattered. Therefore, according to the third inspection unit 33, it is possible to detect the presence or absence of foreign matters or bubbles on both sides of the second main surface Sf2 side and the first main surface Sf1 side.
 ところで、特に透過検査用の第3検査ユニット33での光学検査の際に、長方形状の両面貼合パネルP12を、特に長辺が搬送方向の前端と後端に位置し、短辺が搬送方向に平行に位置する姿勢で、ローラコンベアによって一定の速度以上で搬送した場合、光抜けによる欠陥検出の虚報が発生することがある。即ち、ローラコンベアで搬送する場合、両面貼合パネルP12の前端が次々にローラ上に乗り継ぐときに、両面貼合パネルP12がZ方向に振動してしまうことがある。その結果、光抜けによる欠陥検出の虚報が発生するおそれがある。 By the way, particularly in the optical inspection by the third inspection unit 33 for transmission inspection, the rectangular double-sided bonded panel P12 is positioned particularly at the front and rear ends in the transport direction, and the short side is in the transport direction. In the case where the roller conveyor is transported at a certain speed or more in a posture positioned in parallel with the sensor, false detection of defect detection due to light leakage may occur. That is, when it conveys with a roller conveyor, when the front end of the double-sided bonding panel P12 transfers on a roller one after another, the double-sided bonding panel P12 may vibrate in a Z direction. As a result, false detection of defect detection due to light leakage may occur.
 そこで、この実施形態の搬送検査装置50の搬送装置60では、図5、図6に示すように、第3検査ユニット33による光学検査位置Kまで両面貼合パネルP12を搬送する上流側搬送コンベア61については、その上流側と同様にローラコンベア61Aで構成する。一方、光学検査位置Kの直後から両面貼合パネルP12を搬送する下流側搬送コンベア62については、両面貼合パネルP12の載る搬送面がフラットな平ベルト71を使用した平ベルトコンベア62Aで構成する。 Therefore, in the transport device 60 of the transport inspection device 50 of this embodiment, as shown in FIGS. 5 and 6, the upstream transport conveyor 61 that transports the double-sided bonding panel P <b> 12 to the optical inspection position K by the third inspection unit 33. As with the upstream side, the roller conveyor 61A is used. On the other hand, about the downstream side conveyance conveyor 62 which conveys the double-sided bonding panel P12 immediately after the optical inspection position K, it comprises the flat belt conveyor 62A using the flat belt 71 in which the conveyance surface where the double-sided bonding panel P12 rests is flat. .
 上流側搬送コンベア61であるローラコンベア61Aは、前述した搬送コンベア5(下流側コンベア7)の下流側の一部が相当している。図6に示すように、ローラコンベア61Aは、多数のローラ61Bを所定の間隔をおいて配列したものであり、ローラコンベア61Aのレイアウト領域には多くの余裕スペースが存在する。従って、透過型の第3検査ユニット33を、それらの余裕スペースに容易に配置することができる。 The roller conveyor 61A which is the upstream side conveyor 61 corresponds to a part of the downstream side of the conveyor 5 (downstream conveyor 7) described above. As shown in FIG. 6, the roller conveyor 61 </ b> A has a large number of rollers 61 </ b> B arranged at a predetermined interval, and there is a lot of extra space in the layout area of the roller conveyor 61 </ b> A. Therefore, the transmission type third inspection unit 33 can be easily arranged in those extra spaces.
 また、平ベルトコンベア62Aは、図6に示すように、透過検査用の第3検査ユニット33による検査位置Kの直後に両面貼合パネルP12が乗り継ぐことができるように配置されている。この実施形態の場合、平ベルトコンベア62Aは、搬送するパネルよりも幅の小さいものが複数台、隣接する平ベルトコンベア62A同士の間に適当なスペースを開けて搬送方向S1に平行に配置されている。隣接する平ベルトコンベア62Aの間のスペースには、必要に応じて各種のセンサ類が配置される。これら複数台の互いに平行に配列された平ベルトコンベア62Aは、同期駆動されることにより、搬送方向S1に両面貼合パネルP12を水平搬送することができる。 Further, as shown in FIG. 6, the flat belt conveyor 62A is arranged so that the double-sided bonding panel P12 can be transferred immediately after the inspection position K by the third inspection unit 33 for transmission inspection. In the case of this embodiment, a plurality of flat belt conveyors 62A having a width smaller than the panel to be conveyed are arranged in parallel with the conveying direction S1 with an appropriate space between adjacent flat belt conveyors 62A. Yes. Various sensors are arranged in the space between the adjacent flat belt conveyors 62A as necessary. The plurality of flat belt conveyors 62A arranged in parallel with each other can be driven in synchronization to horizontally transport the double-sided bonding panel P12 in the transport direction S1.
 平ベルトコンベア62Aは、図7に示すように、搬送方向に離間して配置された前後のローラ72、73、駆動ローラ74、サポートローラ75、テンションローラ76などに無端状の平ベルト71を掛け回したもので、モータ77を駆動して駆動ローラ74を回転させることにより一定方向に平ベルト71が周回する。そして、周回する平ベルトの上側の直線移動区間に載った被搬送物を一定方向に搬送する。また、テンション機構78でテンションローラ76に力を加えて平ベルト71にテンションを加えることで、被搬送物を水平状態に安定支持して搬送する。 As shown in FIG. 7, the flat belt conveyor 62A hangs an endless flat belt 71 on front and rear rollers 72, 73, a driving roller 74, a support roller 75, a tension roller 76, and the like that are spaced apart in the conveying direction. When the motor 77 is driven and the driving roller 74 is rotated, the flat belt 71 rotates in a certain direction. And the to-be-conveyed object mounted in the linear movement area above the flat belt to circulate is conveyed in a fixed direction. Further, the tension mechanism 78 applies force to the tension roller 76 to apply tension to the flat belt 71, thereby stably supporting and transporting the object to be conveyed in a horizontal state.
 この搬送検査装置50によれば、両面貼合パネルP12を光学検査位置Kまで搬送する上流側搬送工程が、ローラコンベア61Aによる搬送工程となり、両面貼合パネルP12を光学検査位置Kから搬送する下流側搬送工程が、平ベルトコンベアによる搬送工程となる。 According to this conveyance inspection apparatus 50, the upstream conveyance process which conveys the double-sided bonding panel P12 to the optical inspection position K becomes a conveyance process by the roller conveyor 61A, and the downstream which conveys the double-sided bonding panel P12 from the optical inspection position K. A side conveyance process turns into a conveyance process by a flat belt conveyor.
 従って、両面貼合パネルP12の前端が、光学検査位置Kを通過した直後に、ただちに平ベルト71上に乗り継ぐ。そして、平ベルト71で搬送される間は、乗り継ぎによる振動が両面貼合パネルP12に生じにくくなる上、平ベルト71の緩衝作用や安定支持作用を両面貼合パネルP12が受けるので、ローラコンベアを用いた場合のように、ローラ上に乗り継ぐたびに振動が発生することで欠陥虚報を生じるのが抑制される。その結果、両面貼合パネルP12の搬送速度を高めることができ、生産効率の向上が可能となる。因みに、本実施形態の搬送検査装置50によれば、50インチサイズのパネルを長辺間口の姿勢(長辺を搬送方向の前端と後端に向けた姿勢)として、250mm/secの搬送速度で搬送しながら透過検査することが可能となる。 Therefore, immediately after the front end of the double-sided bonding panel P12 passes through the optical inspection position K, it is immediately transferred onto the flat belt 71. And while being transported by the flat belt 71, vibration due to the transfer is less likely to occur on the double-sided bonding panel P12, and the double-sided bonding panel P12 receives the buffering action and the stable support action of the flat belt 71. As in the case of use, it is possible to suppress the generation of a false alarm by generating a vibration every time a transfer is made on the roller. As a result, the conveyance speed of the double-sided bonding panel P12 can be increased, and the production efficiency can be improved. Incidentally, according to the conveyance inspection apparatus 50 of the present embodiment, the 50-inch size panel is set to the posture of the long side opening (the direction in which the long side is directed to the front end and the rear end in the conveyance direction) at a conveyance speed of 250 mm / sec. Transmission inspection can be performed while transporting.
 また、上流側搬送コンベア61が、ローラ間に間隔が確保されたローラコンベア61Aで構成されているので、ローラ間のスペースを利用して光学検査装置(第3検査ユニット33等)による光学検査を行うことができる。また、個別のローラで両面貼合パネルP12を搬送するので、両面貼合パネルP12の搬送を一時停止させる等の、搬送上の自由度も高く確保できる。 Further, since the upstream conveyor 61 is composed of a roller conveyor 61A in which a gap is secured between the rollers, an optical inspection by an optical inspection device (the third inspection unit 33 or the like) is performed using the space between the rollers. It can be carried out. Moreover, since double-sided bonding panel P12 is conveyed with a separate roller, the freedom degree on conveyance, such as temporarily stopping conveyance of double-sided bonding panel P12, can be ensured highly.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態の一例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As mentioned above, although an example of a suitable embodiment concerning the present invention was explained referring to an accompanying drawing, it cannot be overemphasized that the present invention is not limited to the example concerned. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、上記実施形態では、上流側搬送コンベア61をローラコンベア61Aで構成した場合を説明したが、上流側搬送コンベア61を、下流側搬送コンベア62と同様の平ベルトコンベアで構成することも可能である。その場合、上流側搬送コンベア61を構成する平ベルトコンベアのレイアウト領域に、透光検査用の第3検査ユニット33等による光学検査が可能なスペースが確保されていることが好ましい。このように、下流側搬送コンベア62のみでなく、上流側搬送コンベア61も平ベルトコンベアで構成した場合、光学検査位置Kに到達するまでの搬送時の乗り継ぎによる振動も抑制することができ、検査の信頼性をより向上させることができる。 For example, in the above-described embodiment, the case where the upstream conveyor 61 is configured by the roller conveyor 61 </ b> A has been described. However, the upstream conveyor 61 may be configured by a flat belt conveyor similar to the downstream conveyor 62. is there. In that case, it is preferable that a space capable of optical inspection by the third inspection unit 33 for light transmission inspection is secured in the layout region of the flat belt conveyor constituting the upstream side conveyor 61. As described above, when not only the downstream side conveyor 62 but also the upstream side conveyor 61 is constituted by a flat belt conveyor, it is possible to suppress vibrations caused by transit during the transportation until the optical inspection position K is reached. The reliability can be further improved.
 また、上流側搬送コンベア61と下流側搬送コンベア62とを共に平ベルトコンベアで構成する場合、両者が一体に連続する平ベルトを使用した、共通の平ベルトコンベアで構成することも可能である。このように構成した場合、上流側搬送コンベアから下流側搬送コンベアへの乗り継ぎがなくなるので、更に振動抑制効果を高めることができる。
 なお、本発明は、少なくとも光学検査位置Kの直後からパネルを搬送する下流側搬送コンベア62が平ベルトコンベアによって構成されていればよい。
Further, when both the upstream side conveyor 61 and the downstream side conveyor 62 are constituted by flat belt conveyors, it is also possible to constitute a common flat belt conveyor using a flat belt in which both are integrally continuous. When configured in this manner, since there is no connection from the upstream conveyor to the downstream conveyor, the vibration suppressing effect can be further enhanced.
In the present invention, it is only necessary that the downstream-side transport conveyor 62 that transports the panel at least immediately after the optical inspection position K is constituted by a flat belt conveyor.
本発明に係る光学部材貼合パネルの搬送検査装置及び搬送検査方法は、光学部材貼合パネルを搬送しつつ光学検査を行う際に、光学部材貼合パネルの振動による欠陥検出の虚報を抑えて、効率の良い検査を実施することができるので、生産効率に優れた搬送検査装置及び搬送検査方法を提供できる。 The conveyance inspection device and conveyance inspection method of the optical member bonding panel according to the present invention suppresses false detection of defect detection due to vibration of the optical member bonding panel when performing an optical inspection while conveying the optical member bonding panel. Since efficient inspection can be performed, a conveyance inspection device and a conveyance inspection method excellent in production efficiency can be provided.
 30 欠陥検査装置(光学検査装置)
 33 第3検査ユニット(光学検査装置)
 331 照明光源
 332 第1撮像装置
 333 第2撮像装置
 50 搬送検査装置
 60 搬送装置
 61 上流側搬送コンベア
 61A ローラコンベア
 62 下流側搬送コンベア
 62A 平ベルトコンベア
 71 平ベルト
 P12 両面貼合パネル(光学部材貼合パネル)
 Sf1 第1主面
 Sf2 第2主面
30 Defect inspection equipment (optical inspection equipment)
33 Third inspection unit (optical inspection device)
331 Illumination light source 332 1st imaging device 333 2nd imaging device 50 Conveyance inspection device 60 Conveying device 61 Upstream conveying conveyor 61A Roller conveyor 62 Downstream conveying conveyor 62A Flat belt conveyor 71 Flat belt P12 Double-sided bonding panel (Optical member bonding) panel)
Sf1 first main surface Sf2 second main surface

Claims (4)

  1.  搬送装置によって光学部材貼合パネルを一定方向に搬送しつつ搬送経路途中に配された光学検査装置によって前記光学部材貼合パネルの検査を行う光学部材貼合パネルの搬送検査装置であって、
     前記搬送装置が、前記光学検査装置による光学検査位置まで前記光学部材貼合パネルを搬送する上流側搬送コンベアと、前記光学検査位置の直後から前記光学部材貼合パネルを搬送する下流側搬送コンベアとを備えており、
     少なくとも前記下流側搬送コンベアが、前記光学部材貼合パネルの載る搬送面がフラットな平ベルトで構成された平ベルトコンベアからなることを特徴とする光学部材貼合パネルの搬送検査装置。
    It is a conveyance inspection device for an optical member bonding panel that inspects the optical member bonding panel by an optical inspection device arranged in the middle of the conveyance path while conveying the optical member bonding panel in a certain direction by a conveyance device,
    An upstream conveying conveyor that conveys the optical member bonding panel to an optical inspection position by the optical inspection device; a downstream conveying conveyor that conveys the optical member bonding panel immediately after the optical inspection position; With
    The transport inspection apparatus for an optical member bonding panel, wherein at least the downstream transport conveyor is a flat belt conveyor having a flat belt on which a transport surface on which the optical member bonding panel is placed is formed.
  2.  前記上流側搬送コンベアがローラコンベアからなることを特徴とする請求項1に記載の光学部材貼合パネルの搬送検査装置。 The conveyance inspection device for an optical member bonding panel according to claim 1, wherein the upstream conveyance conveyor is a roller conveyor.
  3.  前記上流側搬送コンベアが前記下流側搬送コンベアと同様の平ベルトコンベアからなり、少なくとも前記上流側搬送コンベアを構成する平ベルトコンベアのレイアウト領域に、前記光学検査装置による光学検査が可能なスペースが確保されていることを特徴とする請求項1に記載の光学部材貼合パネルの搬送検査装置。 The upstream transport conveyor is a flat belt conveyor similar to the downstream transport conveyor, and at least a layout area of the flat belt conveyor constituting the upstream transport conveyor has a space for optical inspection by the optical inspection device. The conveyance inspection apparatus for an optical member bonding panel according to claim 1, wherein:
  4.  光学部材貼合パネルを一定方向に搬送しつつ搬送経路途中に配された光学検査装置によって前記光学部材貼合パネルの検査を行う光学部材貼合パネルの搬送検査方法であって、
     前記光学部材貼合パネルの搬送工程が、前記光学検査装置による光学検査位置まで前記光学部材貼合パネルを搬送する上流側搬送工程と、前記光学検査位置の直後から前記光学部材貼合パネルを搬送する下流側搬送工程と、を含んでおり、
     少なくとも前記下流側搬送工程が、前記光学部材貼合パネルの載る搬送面がフラットな平ベルトで構成された平ベルトコンベアによる搬送工程であることを特徴とする光学部材貼合パネルの搬送検査方法。
    It is a conveyance inspection method of an optical member bonding panel that inspects the optical member bonding panel by an optical inspection device arranged in the conveyance path while conveying the optical member bonding panel in a certain direction,
    The conveyance process of the said optical member bonding panel conveys the said optical member bonding panel from the upstream conveyance process which conveys the said optical member bonding panel to the optical inspection position by the said optical inspection apparatus, and the said optical inspection position immediately. A downstream conveying step,
    The transport inspection method for an optical member bonding panel, wherein at least the downstream side transporting step is a transporting step by a flat belt conveyor in which a transport surface on which the optical member bonding panel is placed is configured by a flat flat belt.
PCT/JP2014/081193 2013-11-28 2014-11-26 Device and method for conveying and inspecting panels having optical members applied thereto WO2015080136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013246551A JP2015105832A (en) 2013-11-28 2013-11-28 Conveyance and inspection apparatus and conveyance and inspection method for optical member laminate panel
JP2013-246551 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080136A1 true WO2015080136A1 (en) 2015-06-04

Family

ID=53199076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081193 WO2015080136A1 (en) 2013-11-28 2014-11-26 Device and method for conveying and inspecting panels having optical members applied thereto

Country Status (3)

Country Link
JP (1) JP2015105832A (en)
TW (1) TW201527194A (en)
WO (1) WO2015080136A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617809A1 (en) * 2018-08-30 2020-03-04 Riso Kagaku Corporation Image inspection device
CN110872020A (en) * 2018-08-30 2020-03-10 理想科学工业株式会社 Conveying device and image inspection device
CN111220623A (en) * 2018-11-26 2020-06-02 塔工程有限公司 Substrate detection device and substrate detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753279B1 (en) * 2015-10-26 2017-07-03 씨제이대한통운 (주) System for auto-recognizing Delivery freight

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52167946U (en) * 1976-06-14 1977-12-20
JPS61181948A (en) * 1985-02-06 1986-08-14 Kanebo Ltd Inspection of defect in transparent or semitransparent planar body
JPH09159406A (en) * 1995-12-12 1997-06-20 Omron Corp Optical sensor
JP2002529698A (en) * 1998-10-30 2002-09-10 フォウタン ダイナミクス カナダ インク. Glass inspection equipment
JP2004125471A (en) * 2002-09-30 2004-04-22 Dainippon Printing Co Ltd Unevenness inspection method and system of periodical pattern
JP2009271520A (en) * 2008-04-07 2009-11-19 Nitto Denko Corp Optical member attaching method and apparatus using the same
JP2011175016A (en) * 2010-02-23 2011-09-08 Hitachi Plant Technologies Ltd Liquid crystal substrate laminate system
JP2011242640A (en) * 2010-05-19 2011-12-01 Sharp Corp Liquid crystal panel manufacturing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52167946U (en) * 1976-06-14 1977-12-20
JPS61181948A (en) * 1985-02-06 1986-08-14 Kanebo Ltd Inspection of defect in transparent or semitransparent planar body
JPH09159406A (en) * 1995-12-12 1997-06-20 Omron Corp Optical sensor
JP2002529698A (en) * 1998-10-30 2002-09-10 フォウタン ダイナミクス カナダ インク. Glass inspection equipment
JP2004125471A (en) * 2002-09-30 2004-04-22 Dainippon Printing Co Ltd Unevenness inspection method and system of periodical pattern
JP2009271520A (en) * 2008-04-07 2009-11-19 Nitto Denko Corp Optical member attaching method and apparatus using the same
JP2011175016A (en) * 2010-02-23 2011-09-08 Hitachi Plant Technologies Ltd Liquid crystal substrate laminate system
JP2011242640A (en) * 2010-05-19 2011-12-01 Sharp Corp Liquid crystal panel manufacturing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617809A1 (en) * 2018-08-30 2020-03-04 Riso Kagaku Corporation Image inspection device
CN110872020A (en) * 2018-08-30 2020-03-10 理想科学工业株式会社 Conveying device and image inspection device
CN110872024A (en) * 2018-08-30 2020-03-10 理想科学工业株式会社 Image inspection apparatus
EP3617808A3 (en) * 2018-08-30 2020-05-13 Riso Kagaku Corporation Conveyance device and image inspection device
US11254120B2 (en) 2018-08-30 2022-02-22 Riso Kagaku Corporation Conveyance device and image inspection device
US11313807B2 (en) 2018-08-30 2022-04-26 Riso Kagaku Corporation Image inspection device
CN111220623A (en) * 2018-11-26 2020-06-02 塔工程有限公司 Substrate detection device and substrate detection method
CN111220623B (en) * 2018-11-26 2023-05-12 塔工程有限公司 Substrate detection device and substrate detection method

Also Published As

Publication number Publication date
JP2015105832A (en) 2015-06-08
TW201527194A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6529250B2 (en) Optical display panel manufacturing method and optical display panel manufacturing system
WO2015025703A1 (en) Defect inspection device, optical member manufacturing system, and optical display device production system
JP5733547B2 (en) Equipment for manufacturing optical member laminate
WO2013077353A1 (en) Optical member laminate manufacturing system, manufacturing method, and recording medium
WO2015080136A1 (en) Device and method for conveying and inspecting panels having optical members applied thereto
WO2013105532A1 (en) Inspection device and device for manufacturing laminate optical member
JP6182805B2 (en) Optical display device production system
KR102132059B1 (en) Manufacturing system for optical display device
JP2013107185A (en) Suction device of optical display component, and production system of optical display device
TW201345819A (en) Production system and production method of optical display device
KR20160045727A (en) Apparatus and method for manufacturing optical member-bonded body
JP2019109532A (en) Method for manufacturing optical display panel and system for manufacturing optical display panel
JP2013113897A (en) Operational method for production system of optical display device
WO2014192334A1 (en) Defect inspection apparatus, and production system of optical display device
JP5924726B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
WO2015030141A1 (en) Production method for laminated optical member
JP6490963B2 (en) Optical display component alignment apparatus and optical display component alignment method
JP5793821B2 (en) Detecting device, optical member bonded body manufacturing apparatus, and optical member bonded body manufacturing method
JP6227279B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
KR101990171B1 (en) System for producing optical display device
JP2012173617A (en) Recovery device, lamination system, and recovery method
JP6179886B2 (en) Defect inspection apparatus, optical display device production system, and optical sheet manufacturing system
JP5724146B2 (en) Manufacturing system, manufacturing method and recording medium for optical member bonded body
WO2015030062A1 (en) Production method for laminated optical member
WO2014185092A1 (en) Bonded optical member manufacturing system, manufacturing method, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866511

Country of ref document: EP

Kind code of ref document: A1