WO2015080124A1 - 排水処理方法、膜蒸留モジュールおよび排水処理装置 - Google Patents

排水処理方法、膜蒸留モジュールおよび排水処理装置 Download PDF

Info

Publication number
WO2015080124A1
WO2015080124A1 PCT/JP2014/081168 JP2014081168W WO2015080124A1 WO 2015080124 A1 WO2015080124 A1 WO 2015080124A1 JP 2014081168 W JP2014081168 W JP 2014081168W WO 2015080124 A1 WO2015080124 A1 WO 2015080124A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
membrane
treated liquid
wastewater
membrane distillation
Prior art date
Application number
PCT/JP2014/081168
Other languages
English (en)
French (fr)
Inventor
山口 篤
森田 徹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/782,619 priority Critical patent/US20160039686A1/en
Priority to CA2908905A priority patent/CA2908905A1/en
Publication of WO2015080124A1 publication Critical patent/WO2015080124A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • B01D61/3641Membrane distillation comprising multiple membrane distillation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a wastewater treatment method, a membrane distillation module used in the wastewater treatment method, and a wastewater treatment apparatus equipped with the membrane distillation module, and particularly, oil-containing salt-containing wastewater generated during oil production from general oil fields, surreal oil and surreal gas. It is suitably used for recycling and purification treatment.
  • oil field associated water When collecting oil from general oil fields, or when collecting surreal oil and surreal gas from the ground, high pressure water is injected into the formation and bedrock to make it easier to collect oil and gas. Further, when the oil component has a high viscosity, it is injected as high-temperature steam. In this way, injection of high-pressure water or steam is injected to reduce the viscosity of the oil, and the oil is recovered as a mixed fluid, and the oil is separated and acquired from the recovered mixed fluid.
  • the wastewater from which the oil has been separated is called “oil field associated water” and is generated in large quantities. In particular, in old oil fields, the amount of oil mined may be several to ten times, and the treatment of this large amount of oil accompanying water is an issue.
  • the oil accompanying water contains a lot of oil, salt, heavy metals, silica, bacteria, organic matter injected during mining, etc.
  • oil, salt, heavy metals, silica, bacteria, organic matter injected during mining, etc. There are many cases that take up a vast area and store water in a pond. However, depending on the location, this may not be discarded. Specifically, when geological disposal is difficult, specifically when groundwater veins pass and mixing with groundwater becomes a problem.
  • companion water may be used as a water source for industrial water and the like. However, in that case, it is necessary to remove many impurities such as oil and salt, which requires a lot of water treatment processes and a great investment in equipment.
  • the mixed fluid with the oil recovered from the oil well is gravity-separated into oil and drainage by the three-phase segregator 100.
  • the tertiary treatment by precision membrane filtration (MF filtration) or ultrafiltration membrane
  • MF filtration precision membrane filtration
  • RO membrane reverse osmosis desalination treatment
  • oilfield-associated water is often at a high temperature when discharged.
  • oil-containing wastewater having a temperature of 60 ° C. or higher is always supplied, PP and PE that have been widely used for oil-water separation treatment in the past.
  • the PVDE resin filter membrane does not have sufficient heat resistance.
  • Patent Document 1 PTFE (polytetrafluoroethylene), PSF (polysulfone) and PES (polyethersulfone) having excellent heat resistance and chemical resistance.
  • a separation membrane module is provided that uses a hollow fiber membrane made of a fluororesin selected from the above as a filtration membrane and membrane-filters oil-containing wastewater.
  • the separation membrane module of Patent Document 1 uses a hollow fiber membrane such as a fluorine-based resin or a sulfone-based resin for membrane filtration, heat degradation can be reduced because the oil-containing wastewater has heat resistance even when the heat is high, and Since it has chemical resistance, there is an advantage that cleaning using a strong alkaline agent can be performed.
  • the desalting treatment method used in the subsequent stage if the salt content is 500 mg / L or more, the ion exchange resin cannot be used, and if it is 45000 mg / L or more, the RO membrane cannot be separated efficiently. Therefore, after membrane filtration, it is necessary to further desalinate through an evaporator or the like.
  • the microfiltration membrane since the drainage is passed through the pores of the filtration membrane, the pores are blocked depending on the size of the solid matter contained in the drainage and the viscosity of the oil, and clogging cannot be completely prevented. That is, the permeation flow rate decreases. Further, for example, organic substances such as naphthenic acid, which are low molecular organic substances contained in oil sand drainage, etc. cannot be removed with a filtration membrane.
  • the present invention has been made in view of the above problems, and in a petroleum production system, after separating a mixed liquid with oil injection water collected from an oil well into oil and drainage using a separator, the multistage process is not performed. It can be purified in a simple process and has a purification performance that can simultaneously remove oil, salt, and low-molecular-weight organic substances contained in wastewater, and has durability against strong alkaline chemicals, excellent heat resistance, and long-term use. It is an issue to be able to purify performance over a long period of time.
  • a purification method for wastewater containing oil, salt and organic matter generated when oil is collected from a formation or a bedrock layer The waste water separated after recovering the oil from the oil-containing mixed water collected from the oil well with a separator is made of PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride) or PCTFE (polychlorotrifluoroethylene), and is practical.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • Patent Document 1 oil-containing wastewater is treated by membrane filtration using a fluororesin hollow fiber membrane selected from PTFE, PSF and PES, whereas in the present invention, the fluororesin is made hydrophobic.
  • Waste water treatment is performed using a membrane distillation method that uses a porous membrane and does not allow water to permeate but allows only water vapor to permeate.
  • fine foreign matters can be removed in the same manner as in the microfiltration, and water-soluble organic substances including salt, naphthenic acid and the like that could not be removed by the filtration membrane can be removed. Therefore, in Patent Document 1, desalting and softening treatment such as removal of hardness, which is necessary after the filtration treatment, can be eliminated.
  • the drainage maintained at 60 ° C. to 100 ° C. is flowed to one side of the hydrophobic porous membrane at a pressure A by a pump, and the treated liquid held at 5 ° C. to 40 ° C. is flowed to the other side at a pressure B by a pump. It is preferable that the pressure is A ⁇ pressure B.
  • membrane distillation only the water vapor generated from the drainage is permeated through the pores of the distillation membrane by using the saturated vapor pressure difference caused by the temperature difference of the fluid flowing on both sides of the distillation membrane made of a hydrophobic porous membrane as a driving source.
  • Membrane distillation can be performed more efficiently as the temperature difference, that is, the saturated vapor pressure difference is larger. Therefore, membrane distillation from the waste water side to the treated liquid side can be performed more efficiently as the temperature of the waste water is higher and the temperature of the treated liquid in which water vapor is liquefied is lower.
  • the wastewater is a high temperature wastewater of 60 ° C to 100 ° C, it is not necessary to heat the wastewater before the membrane distillation step, and even if it is necessary to heat below the required temperature, the amount of heating is small, and solar heat or heating Cost reduction can be achieved by using inexpensive thermal energy such as waste liquid.
  • the membrane-distilled treated liquid has less than 1 mg / l each of organic matter including oil, soluble matter, and salt. Thus, since salt can be removed together with oil, it is not necessary to desalinate the membrane-distilled treated water using an evaporator or a hardness remover as described above.
  • the wastewater treatment method of the present invention is particularly suitably used for wastewater treatment containing oil, salt and organic matter generated in a petroleum production process including oil produced from heavy oil, surreal oil, surreal gas and the like.
  • a membrane distillation module used in the wastewater treatment method of the first invention, is provided in which an oil-repellent layer holding an oil-repellent polymer is provided on the surface of a hydrophobic porous membrane made of a fluororesin in contact with waste water.
  • the fluororesin having a heat resistance exceeding 100 ° C. in practical use is suitably used.
  • examples of the fluororesin include PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), and PCFFE (polychlorotrifluoroethylene). Melting points serving as indices of heat resistance are 327 ° C. for PTFE, 155 to 175 ° C. for PVDF, and 220 ° C. for PCTFE. Further, the contact angle with water as an index of water repellency is 114 ° for PTFE, 82 ° for PVDF, and 84 ° for PCTFE.
  • PTFE is particularly desirable when the oil-containing wastewater to be treated is at a high temperature of 60 ° C to 100 ° C.
  • the PTFE has chemical resistance, particularly alkali resistance and oxidation resistance.
  • alkali resistance and oxidation resistance are important physical properties, and a PTFE membrane having these properties can sustain the treatment performance for a longer period of time.
  • the expanded PTFE porous membrane is most preferably used because of its excellent heat resistance, strength, and cleaning chemical resistance.
  • the shape of the expanded PTFE porous membrane is (1) a hollow fiber membrane, (2) A tube-like porous film wound around a porous sheet and sealed at the end of the roll, or (3) heat-bonded both ends of two porous films laminated on both sides of different materials such as nonwoven fabric It is preferable to use a bag-like composite film that contains a flow path material such as a net inside what is sealed with, for example.
  • the average pore diameter of the expanded PTFE membrane itself in the above forms (1) to (3) is preferably 0.01 ⁇ m to 1 ⁇ m.
  • the porosity is 40% to 90%, preferably 65% to 85%, more preferably 70 to 80%.
  • the reason for setting the porosity to 40 to 90% is that the water vapor permeability is preferably higher because the higher the porosity, the lower the diffusion resistance.
  • the high porosity is caused by the fact that the specific surface area is increased, the holding power is increased, and stable holding is easily realized.
  • the hollow fiber membrane (1) preferably has an inner diameter of 0.5 to 10 mm and a thickness of 0.3 to 1 mm.
  • the tubular porous membrane (2) preferably has an inner diameter of 3 mm to 20 mm and a thickness of 30 ⁇ m to 1 mm.
  • the thickness of the composite film (3) is preferably 10 ⁇ m to 5 mm.
  • the (1) hollow fiber membrane, (2) the tubular porous membrane, or (3) the composite membrane made of the expanded PTFE porous material has high strength. Therefore, the tensile strength at 25 ° C. is 30 N or more, preferably 50 N or more, and the upper limit is about 150 N.
  • the tensile strength conforms to JIS K 7161, and a hollow fiber membrane itself was used as a test body.
  • the tensile speed during the test was 100 mm / min, and the distance between the marked lines was 50 mm.
  • an oil repellent layer on at least the surface of the hydrophobic porous membrane of the present invention that is in contact with high temperature waste water.
  • an oil repellent layer it is possible to repel organic components such as soluble organic substances, surfactants, solvents, oils, etc. contained in wastewater, and contamination due to adhesion to these films, which causes film wetting. And stable membrane distillation performance can be exhibited without wetting the membrane over a long period of time.
  • the oil repellent function means that, for example, when a hollow fiber membrane is immersed and impregnated in 100% n-hexane, it does not enter the pores on the membrane surface, that is, does not get wet.
  • Another index refers to the fact that the rate of change in the air permeability of the membrane does not change substantially.
  • a polymer having a fluorinated alkyl side chain is preferably held by the hydrophobic porous body.
  • a method of providing an oil repellent layer on the surface of the hydrophobic porous membrane a method in which a solution in which a fluorinated monomer or a polymerization initiator is dissolved is prepared and the porous membrane is immersed in the solution, or the module is formed with the porous membrane.
  • a method in which the solution is impregnated into the porous film by a method such as press-fitting the solution into the porous film, and then the solvent is volatilized and removed can be employed.
  • the monomer it is diluted with a solvent and the concentration is set appropriately, so that an appropriate amount can be maintained without blocking the porous portion.
  • the polymer that has already become a polymer is dissolved in a solvent at an appropriate concentration, it is impregnated or coated on at least one surface of the hydrophobic porous membrane base membrane, and then dried or precipitated with a poor solvent. Let This may be carried out after forming a membrane module.
  • the distillation membrane used in the present invention is provided with an oil repellent layer on the surface of the hydrophobic porous membrane, so that a large amount of oil contained in the high temperature waste water separated from the warm bitumen mixed fluid is distilled membrane. Can be reduced or prevented from adhering to the surface. As a result, it is possible to prevent problems such as performance degradation and leakage due to wetting due to membrane dirt, which is a drawback of membrane distillation, and also reduce maintenance frequency, reduce running costs, and increase productivity.
  • the hydrophobic porous membrane used for the membrane distillation is provided with (1) a hollow fiber membrane, (2) the tubular porous membrane, or (3) a high-temperature drain circuit on the outer surface of the composite membrane. On the other hand, the inner surface side isolated by the membrane is preferably used as a cooling water circulation path.
  • hollow fiber membrane (1) and the tubular porous membrane (2) may be reversed.
  • the hollow fiber membrane or the tubular porous membrane has the oil repellent layer as an outer surface through which heated wastewater containing oil, salt and organic matter flows, and the hollow portion is made of water vapor.
  • the permeate side it is a passage for cooling water in which water vapor is liquefied.
  • the present invention includes the membrane distillation module of the second invention as the third invention,
  • a drainage storage tank, a pump and a heater are interposed in the drainage circulation path, and the drainage storage tank is opened to the atmosphere.
  • a heat exchanger, a treated liquid tank, and a pump are installed in the circulation path of the treated liquid, and the temperature of the treated liquid generated from the water vapor that has permeated the hydrophobic porous membrane is adjusted by the heat exchanger.
  • the wastewater generated in the oil production process for generating oil from the general oil field, surreal oil, surreal gas is purified and the membrane distillation method is used, the oil can be removed and the salt and organic matter can be removed. Can be removed at the same time. Therefore, it is possible to eliminate the desalting and softening steps using a hardness removing device and an evaporator that are necessary for membrane filtration.
  • the pores of the hydrophobic porous membrane used in membrane distillation are fine pores that do not transmit water but only water vapor, they can prevent clogging due to foreign matter generated in the filtration membrane, and can be hydrophobic in contact with drainage. Since it is only necessary to clean the surface of the porous porous membrane, the maintenance frequency can be greatly reduced, the continuous operation time can be extended, and the productivity can be increased.
  • FIG. 1 shows an embodiment of a membrane distillation module of the present invention, wherein (A) is a vertical sectional view, (B) is an enlarged perspective view of a hollow fiber membrane, and (C) is a drawing showing the membrane distillation action of the hollow fiber membrane. It is a general view of the waste water treatment equipment provided with the membrane distillation module. It is a partial perspective view of the tubular porous membrane used for membrane distillation.
  • (A) is a flowchart which shows the process of a prior art example
  • (B) is a flowchart which shows the process of this invention in contrast with the process of the said prior art example.
  • the wastewater treatment apparatus of this embodiment uses wastewater treatment apparatus 50 shown in FIG. 2 equipped with membrane distillation module 1 shown in FIG. 1 for wastewater generated in an oil production system that collects oil by injecting water into an oil field. Purification process.
  • the oil, salt and soluble organic matter are purified to less than 1 mg / l each by membrane distillation.
  • the membrane distillation module 1 comprises a hollow fiber membrane 2 made of expanded PTFE as a base membrane 3 as a hydrophobic porous membrane, and an oil repellent layer 4 provided on the outer peripheral surface of the base membrane 3. Used as a distillation membrane.
  • the oil-repellent layer 4 has a fluorinated alkyl side chain having an oil-repellent function in such a manner that the pores 3a (shown in FIG. 2) of the base film 3 are not closed on the outer peripheral surface of the base film 3 made of the expanded PTFE porous film.
  • a coating liquid made of a polymer is applied and provided.
  • the hollow fiber membrane 2 for membrane distillation has an average pore size in the range of 0.01 ⁇ m to 1 ⁇ m in order not to allow water to permeate but only water vapor.
  • the hollow fiber membrane 2 has an outer peripheral surface provided with the oil repellent layer 4 as a surface in contact with the high-temperature oil-containing drainage HW containing oil, and passes through the hollow portion 5 of the hollow fiber membrane 2. It is assumed that only the water vapor S flows in and water does not flow in.
  • the hollow portion 5 has an inner diameter of 0.5 mm to 4 mm, an outer diameter of 1 mm to 5 mm, a thickness of the hollow fiber membrane 2 including the oil repellent layer 4 of 10 ⁇ m to 5 mm, a total length of 1000 mm to 2500 mm, a porosity of 40 to 90%, and a tensile strength of 30-150N.
  • the membrane distillation module 1 has a converging body 6 in which a plurality of hollow fiber membranes 2 are arranged with a required interval of 0.5 mm to 20 mm). Both ends are fixed by upper and lower fixing plates 7 and 8 with the upper and lower openings 2a and 2b of each hollow fiber membrane 2 being opened. Caps 9 and 10 are fitted on the upper and lower fixing plates 7 and 8, respectively, and both ends of the circulating cooling pipe 11 are connected to the caps 9 and 10.
  • the hollow portion 5 of each hollow fiber membrane 2 becomes a treated liquid passage in which the permeated water vapor S is liquefied, its upper and lower openings communicate with the circulating cooling pipe 11, and the hollow portion 5 is part of the circulating cooling water passage. .
  • an outer cylinder 15 that connects the upper and lower fixing plates 7 and 8 is attached, and the converging body 6 is surrounded by a space serving as a drainage flow passage 18.
  • the openings provided on the upper and lower sides of the outer cylinder 15 are an intake port 15 a and a discharge port 15 b that communicate with the drain circulation pipe 21.
  • the wastewater treatment apparatus 50 shown in FIG. 2 provided with the membrane distillation module 1 is provided with a heat exchanger 12, a treated liquid tank 13, and a circulation pump 14 in the circulation cooling pipe 11 of the membrane distillation module 1.
  • the circulating cooling pipe 11 is disposed in the atmosphere to cool the water vapor that permeates the hollow part 5 by membrane distillation.
  • the heat exchanger 12 cools and adjusts the temperature to the required temperature if the fluid in the circulating cooling pipe 11 is above the required temperature.
  • the treated liquid tank 13 is connected to a supply pipe 16 for re-injection and other various reuses. A part of the treated liquid in the treated liquid tank 13 is circulated in the hollow part 5 of the hollow fiber membrane 2 of the membrane distillation module 1, and the remaining part is sent to the supply pipe for reuse.
  • a drainage storage tank 20, a circulation pump 23, and a heater 22 are interposed in a drainage circulation pipe 21 that circulates the high-temperature oil-containing drainage HW (hereinafter abbreviated as drainage HW).
  • the drainage storage tank 20 is an atmospheric release tank and releases the pressure of the stored drainage HW.
  • the heater 22 is heated so that the temperature is within the set range.
  • the waste water HW supplied to the outer peripheral surface of the hollow fiber membrane 2 of the membrane distillation module 1 is set to be supplied at a pressure A (20 to 300 KPa) by the circulation pump 23 while maintaining a temperature range of 60 ° C. to less than 100 ° C. .
  • the treated liquid CW supplied to the hollow portion 5 of the hollow fiber membrane 2 of the membrane distillation module 1 is set to be supplied at a pressure B (30 to 400 KPa) with the circulation pump 14 while being maintained at 5 ° C. to 40 ° C. . That is, the temperature difference between the heated waste water HW on the outer peripheral side of the hollow fiber membrane for membrane distillation and the treated liquid CW on the inner peripheral hollow portion side is 20 ° C. to 70 ° C., pressure A ⁇ pressure B, and the pressure difference Is set to 10 to 100 KPa.
  • action of the waste water treatment apparatus 50 provided with the membrane distillation module 1 is demonstrated.
  • the membrane distillation module 1 only the water vapor S generated from the drainage HW continuously supplied into the outer cylinder 15 at a required pressure passes through the hollow fiber membrane 2 and flows into the hollow portion 5, and water does not pass through the hollow portion. No water flows into 5. Since the hollow portion 5 communicates with the circulation cooling pipe 11 and the processed liquid CW flows through the pump 14, the permeated water vapor S comes into contact with the processed liquid CW having a low temperature and is liquefied.
  • the treated liquid CW is stored in the treated liquid tank 13, and the treated liquid CW in the tongue 13 is passed through the pipe 16 and supplied to the recycling process. A part of the treated liquid CW in the treated liquid tongue 13 is circulated through the circulation cooling pipe 11 to the hollow portion 5 of the hollow fiber membrane 2.
  • the hollow fiber membrane 2 of the membrane distillation module 1 has the oil repellent layer 4 disposed on the outer peripheral surface in contact with the drainage HW, the oil component is difficult to adhere, and the pores of the hollow fiber membrane 2 are blocked with the attached oil. Can be reduced, and the reduction in membrane distillation ability can be suppressed and prevented.
  • the treated liquid CW purified by the membrane distillation module 1 is purified to such an extent that oil, salt and soluble organic matter are each contained in less than 1 mg / liter.
  • the oil repellent layer 4 is provided on the outer peripheral surface of the hollow fiber membrane 2 in contact with the waste water HW to prevent the oil from adhering, but the water vapor permeation flow rate is stably maintained over a long period of time. Therefore, it is necessary to perform regular cleaning.
  • the hollow fiber membrane 2 made of PTFE used in the present invention is excellent in chemical resistance and is chemically washed to remove the adhered oil.
  • As the cleaning agent 1 to 20% sodium hydroxide aqueous solution, sodium hypochlorite, hydrogen peroxide water and the like are preferably used.
  • the waste water HW and the treated liquid CW are discharged from the membrane distillation module 1, and then the dry air is ventilated so that the temperature in the membrane distillation module 1 is not frozen. To maintain.
  • the wastewater treatment device 50 provided with the membrane distillation module 1 is used, as shown in FIG. 4 (B), in the oil production process, the liquid mixture collected from the oil well is separated into oil and wastewater by the separator 100,
  • the waste water can be purified by a waste water treatment apparatus equipped with a membrane distillation module by omitting the multi-stage pre-process shown in FIG.
  • a desalting step using an ion exchange resin, an evaporator, or an RO membrane is unnecessary and can be reused, so that the wastewater purification treatment step can be greatly reduced. Specifically, it has the specific effects described in the following (1) to (4).
  • the organic matter including oil, salt and soluble organic matter can be removed, and the oil, salt and organic matter can each be dropped to less than 1 mg / liter.
  • PTFE membrane When PTFE membrane is used for membrane distillation, it has heat resistance that is possible even when the temperature of the high-temperature wastewater HW is 200 ° C, and it can be supplied to the membrane distillation module without cooling, greatly reducing heat loss. it can.
  • ceramic membranes when ceramic membranes are used, there are problems such as crack resistance due to rapid temperature rise and fall, alkali resistance related to chemical cleaning, weight, size, lack of flexibility, handling properties from freezing repellent, and economic efficiency.
  • the above problem can be overcome by using a PTFE membrane.
  • FIG. 3 is a perspective view showing a modification of the hydrophobic porous membrane used in the membrane distillation module.
  • a stretched PTFE sheet is wound, and the winding end is sealed and fixed, and the tubular porous membrane is used as the base membrane 30.
  • An oil repellent layer 4 is provided on the outer peripheral surface of the base film 30 and a support layer 31 made of a nonwoven fabric is provided on the inner peripheral surface.
  • the hollow portion 5 of the tubular porous membrane can have a larger inner diameter than the hollow portion 5 of the hollow fiber membrane 2 of the first embodiment.
  • 1 membrane distillation module 1 hollow fiber membrane, 3 base membrane, 4 oil repellent layer, 5 hollow part, 6 converging body, 11 circulation cooling pipe, 21 circulation drain pipe, 50 wastewater treatment equipment, HW drainage, CW treated liquid, S water vapor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 地層または岩盤層から石油を採取する際に発生する油分、塩分および有機物を含む排水の浄化処理方法であって、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)あるいはPCTEF(ポリ三フッ化塩化エチレン)からなり、実用上の最高使用温度が100℃を超えるフッ素系樹脂製の疎水性多孔質膜を用いて膜蒸留し、前記排水に含有されている油分、塩分および有機物を同時に除去する。

Description

排水処理方法、膜蒸留モジュールおよび排水処理装置
 本発明は排水処理方法、該排水処理方法に用いる膜蒸留モジュール、および該膜蒸留モジュールを備えた排水処理装置に関し、特に、一般油田、シュールオイルおよびシュールガスからオイル生成時に発生する含油含塩排水の再利用、浄化処理に好適に用いられるものである。
 含油排水から油分を除去して浄化処理する排水処理装置および処理方法は、従来から種々提供されている。
 一般油田からのオイル採取時、あるいはシュールオイルおよびシュールガスを地中から採取する時、地層や岩盤中に高圧水を圧入し、オイルやガスを回収し易くしている。また、油分が高粘度の場合は高温スチームとして圧入している。このように、高圧水の注入やスチームを圧入して油分の粘度を下げて混合流体として回収し、回収した混合流体から油分を分離取得している。油分が分離された排水は「油田随伴水」と称され、大量に発生する。特に古い油田では、石油の採掘量の数倍から10倍になることもあり、この大量の油田随伴水の処理が課題となっている。
 即ち、油田随伴水には、油分の外、塩分や、重金属、シリカ、バクテリア、採掘の際に注入する有機物等を多く含み、これを地中に廃棄するか、あるいは廃棄しきれない随伴水は広大な場所をとり、池に貯水するケースが多い。ただし、場所によっては、これを廃棄できない場合がある。具体的には、地質学的に廃棄が難しい場合、具体的には地下水脈が通り、地下水との混合が問題となる場合である。一方、中東諸国をはじめ深刻な水不足である地域、特に内陸部で海域からも遠く、井戸水もない地域では、工業用水等の水源として随伴水を用いざるを得ない場合がある。しかし、その際には、油分、塩分など数多くの不純物を除去する必要があるが、そのために多くの水処理プロセスが必要となり、多大な設備投資が必要となる。
 これら、油田随伴水を工業用水レベルの水質まで引き上げるためには、図4(A)に示すように、油井から回収する油分との混合流体を三相セバレータ100で油と排水とに重力分離した後、ハイドロサイクロンによる油分、固体分離の一次処理、凝集沈殿槽・加圧浮上装置、Mediaフィルターやナッツシェルフィルター等による処理を経たのち、精密膜濾過(MF濾過)や限外ろ過膜による三次処理、さらに、RO膜による逆浸透の脱塩処理等を行う必要がある。一次、二次、三次、脱塩処理と、高次処理になればなる程、処理水量を確保するための設備コストが大きくなるため、大量に排出される油田随伴水の処理の投資採算が厳しくなる問題がある。かつ、大量排出される油田随伴水の処理においては、精密なMF膜による精密膜分離、RO膜による逆浸漬膜処理等は、その処理速度の点から適用が困難な場合も多い。
 また、精密ろ過膜に関しては、油田随伴水は排出時、高温である場合が多く、例えば常時60℃以上の含油排水が供給されると、従来、油水分離処理用として汎用されているPP、PE、PVDE樹脂製の濾過膜は耐熱性が十分ではない。
 さらに、濾過膜の膜面への油分付着により流量の低下が起こるため、水酸化ナトリウム等の強アルカリ性薬剤を用いた化学洗浄が必須であるが、前記樹脂製の濾過膜やセラミック膜は高濃度のアルカリ性水溶液に対する耐久性が低く、化学洗浄が十分に行えない問題がある。
 前記問題に対して、本出願人は特開2010-36183号公報(特許文献1)で耐熱性及び耐薬品性に優れたPTFE(ポリテトラフルオロエチレン)、PSF(ポリスルホン)およびPES(ポリエーテルスルホン)から選択されるフッ素系樹脂製の中空糸膜を濾過膜とし、含油排水を膜濾過する分離膜モジュールを提供している。
特開2010-36183号公報
 特許文献1の分離膜モジュールはフッ素系樹脂、スルホン系樹脂などの中空糸膜を膜濾過に用いているため、含油排水が高熱であっても耐熱性を有するために熱劣化を低減でき、かつ、耐薬品性を有するため強アルカリ性薬剤を用いた洗浄を行うことができる利点がある。
 しかしながら、除去すべき、溶解物質、例えば、塩分などを除去できない。さらに後段で用いる脱塩処理方法についても、塩分が500mg/L以上含まれている場合は、イオン交換樹脂が使えず、また45000mg/L以上ではRO膜でも効率良く分離できない。よって、膜濾過後に、さらにエバポレータ等を通して脱塩処理する必要がある。
 さらに、精密濾過膜に関しても、濾過膜の空孔に排水を通すため、排水中に含まれる固形物のサイズ、油分の粘度によっては空孔を塞ぎ、目づまりの発生を完全に防止できず、目つまりにより透過流量が低下する。また、例えば、オイルサンド排水などに含まれる低分子有機物であるナフテン酸等の有機物を濾過膜では除去できない。
 本発明は前記問題に鑑みてなされたものであり、石油生産システムにおいて、油井から採取した油の注入水との混合液をセパレータで油と排水に分離した後に、前記多段の工程を経ることなく簡単な工程で浄化処理でき、かつ、排水に含まれる油分、塩分および低分子有機物などを同時に除去できる浄化性能を有し、かつ、強アルカリ薬剤に対する耐久性を有すると共に、耐熱性に優れ、長期に渡り性能の浄化を行えるようにすることを課題としている。
 前記課題を解決するため、第1の発明として、地層または岩盤層から石油を採取する際に発生する油分、塩分および有機物を含む排水の浄化処理方法であって、
 油井から採取する含油混合水からセパレータで油を回収した後に分離された排水を、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)あるいはPCTFE(ポリクロロトリフルオロエチレン)からなり、実用上の最高使用温度が100℃を超えるフッ素系樹脂製の疎水性多孔質膜を用いて膜蒸留し、
 前記排水に含有されている油分、塩分および有機物を同時に除去することを特徴とする排水処理方法を提供している。
 特許文献1ではPTFE、PSFおよびPESから選択されるフッ素系樹脂製の中空糸膜を用いて膜濾過により含油排水を処理しているのに対して、本発明では前記フッ素系樹脂製の疎水性多孔質膜を用い、水は透過せず、水蒸気のみを透過する膜蒸留方法を用いて排水処理を行っている。該膜蒸留では、精密濾過と同様に微小異物の除去ができるうえ、濾過膜では除去できなかった塩分、ナフテン酸等を含む水溶性有機物等を除去できる。よって、特許文献1では濾過処理後に必要であった、硬度分除去などの脱塩、軟化処理を不要とできる。
 また、MF膜による精密濾過の処理を行うためには、前記のように、油井から採取した混合液をセパレータで重力分離した後、ハイドロサイクロン、凝集沈殿、加圧浮上、Mediaフィルター処理が前工程で必要であったが、膜蒸留を用いると膜への目詰まり発生の問題は生じにくいため、図4(B)に示すように、セパレータによる分離後、前記多段の前処理なしに膜蒸留を行うことができる。このように、セパレータ後の多段の処理工程を1段の処理工程として、処理工程の大幅な短縮を図ることができる。その結果、設備を簡単にでき、かつ、処理時間の大幅な短縮を図ることができる。
 前記疎水性多孔質膜の一面側に60℃~100℃に保持した前記排水をポンプにより圧力Aで流すと共に、他面側に5℃~40℃に保持した処理済み液をポンプにより圧力Bで流し、圧力A<圧力Bとすることが好ましい。
 膜蒸留では、疎水性多孔質膜からなる蒸留膜の両側を流れる流体の温度差に起因する飽和蒸気圧差を駆動源として、排水から発生させた水蒸気のみ蒸留膜の空孔を通して透過している。前記温度差すなわち飽和蒸気圧差が大きい程、膜蒸留を効率よく行うことができる。よって、排水の温度が高く、水蒸気が液化された処理済み液の温度が低い程、排水側から処理済み液側への膜蒸留を効率よく行うことができる。
 排水が60℃~100℃の高温排水であると、膜蒸留工程の前に排水を加熱する必要がなく、また、所要温度より低く加熱する必要があても加熱量は少なく、かつ、太陽熱や加熱廃液等の安価な熱エネルギーを利用するとコスト低下を図ることができる。
 前記膜蒸留された処理済み液は、油分、溶解性分も含めた有機物、および塩分がそれぞれ1mg/l未満となる。このように、油分と共に塩分も除去できるため、前記のように、膜蒸留された処理水をエバポレータや、硬度分除去装置を用いて脱塩する必要がない。
 さらに、前記排水および処理済み液の循環停止時に、前記膜蒸留モジュールから高温排水および処理済み液を排出し、その後、乾燥空気を通気することが好ましい。
 本発明の排水処理方法は、特に、重質油、シュールオイル、シュールガス等から生成するオイルを含む石油生産工程において発生する油分、塩分および有機物を含有する排水処理に好適に用いられる。
 第2の発明として、第1の発明の排水処理方法に用いる膜蒸留モジュールとして、
 フッ素系樹脂製の疎水性多孔質膜の排水と接する表面に撥油性ポリマーを保持した撥油層を設けている膜蒸留モジュールを提供している。
 特に、高温排水を処理するため、実用上の最高使用温度が100℃を越える耐熱性を備えた前記フッ素系樹脂が好適に用いられる。
 具体的には、前記フッ素樹脂として、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)、PCFFE(ポリクロロトリフルオロエチレン)が挙げられる。耐熱性の指標となる融点は、PTFEは327℃、PVDFは155~175℃、PCTFEは220℃である。また、これらの撥水性の指標となる水に対する接触角はPTFEで114°、PVDFで82°、PCTFEで84°である。
 よって、処理する含油排水が60℃~100℃の高温の場合にはPTFEが特に望ましい。さらに、前記PTFEは耐薬品性、特に耐アルカリ性、耐酸化性を備えている。高温排水と接する蒸留膜の表面に付着する油分、有機物等を除去するためには、強アルカリ性水溶液あるいは、過酸化水素水などによる化学洗浄により溶解あるいは剥離除去して繰り返し再生させる必要がある。よって、耐アルカリ性や耐酸化性は重要な物性であり、これを有するPTFE膜はより長期に渡り処理性能を持続させることができる。
 前記のように、延伸PTFE多孔質膜は耐熱性、強度、耐洗浄薬品性に優れることから最も好適に用いられ、該延伸PTFE多孔質膜の形状は、(1)中空糸膜、(2)多孔質シートを巻回して巻端をシール固着して筒状としたチューブ状多孔質膜、または(3)不織布等の異種材料の両面にラミネートされた多孔質膜2枚の両端を熱融着等でシールしたものの内部にネット等の流路材を含む袋状の複合膜とすることが好ましい。
 前記(1)~(3)の各形態の延伸PTFE膜自体の平均孔径は0.01μm~1μmが好ましい。気孔率は40%~90%、好ましくは65%~85%とし、さらに好ましくは70~80%である。気孔率を40~90%とする理由は、水蒸気透過性は気孔率が高いほうが拡散抵抗が小さいため速度がはやく望ましい。また、撥油剤を保持させるにあたって、高い気孔率はその比表面積が大きくするためその保持力が大きくなり、安定的な保持が実現しやすいことに因る。
 前記(1)の中空糸膜では内径0.5mm~10mm、厚さは0.3~1mmが好ましい。前記(2)のチューブ状多孔質膜では内径3mm~20mm、厚さは30μm~1mmが好ましい。前記(3)の複合膜では厚さは10μm~5mmが好ましい。
 前記延伸PTFE多孔質からなる(1)中空糸膜、(2)前記チューブ状多孔質膜または(3)前記複合膜は、高い強度を有していることが望ましい。よって、25℃での抗張力は、30N以上、好ましくは50N以上であり、上限は150N程度である。
 前記抗張力はJIS K 7161に準拠し、試験体としては中空糸膜そのものを用いた。試験時の引張速度は100mm/分、標線間距離は50mmとして測定した。
 前記30N以上とすると、常時高温で運転する膜蒸留においても長期にわたり、膜切れによるリーク等なしに高い信頼性で運転が可能である。
 また、その耐薬品性から、高濃度のアルカリ性洗浄液や耐酸化性洗浄液で繰り返しても処理能力及び強度が低下することがなく、かつ、長期に渡り高性能の浄化機能を持続することができる。
 また、本発明の前記疎水性多孔質膜の少なくとも高温排水と接する表面に撥油層を設けることが望ましい。撥油層を設けることにより、特に排水中に含まれる溶解性の有機物、界面活性剤、溶剤、油分等の有機成分をはじくことができ、膜の濡れの原因となるこれらの膜への付着による汚染を防ぎ、長期にわたり膜を濡らすことなく安定した膜蒸留性能を示すことができる。
 ここでいう撥油機能とは、例えば、中空糸膜を100%n-ヘキサンに浸漬、含浸した場合に目視で膜表面の孔にこれが進入しない、即ち濡れないことを言う。また別の指標では、膜の通気性能の変化率が実質的に変化しないことを言う。
 また、前記疎水性多孔質膜の表面に設ける前記撥油層はフッ素化アルキル側鎖を有する重合体が該疎水性多孔質体に保持されていることが好ましい。
 疎水性多孔質膜の表面に撥油層を設ける方法として、フッ素化モノマーまたはさらに重合開始剤を溶解させた溶液を調整し、多孔質膜をその溶液に浸漬する方法、あるいは多孔質膜でモジュールを作成後、この溶液を多孔質内に圧入する方法等により、該溶液を多孔質膜に含浸させたのち、溶媒を揮発除去させる方法が採用できる。実施に当たっては、モノマーを溶解させたのち、溶剤で希釈して濃度を適度に設定することで、多孔部を閉塞させることなく適正な量を保持させることができる。一方、すでに重合体となったものを適度な濃度で溶剤に溶解させた後、前記疎水性多孔質膜基膜の少なくとも一方の表面に含浸あるいは塗布させた後、乾燥させ、あるいは貧溶媒で析出させる。これを膜モジュール化した後で実施してもよい。
 前記のように、本発明で用いる蒸留膜は、疎水性多孔質膜の表面に撥油層を設けているため、加温ビチュメン混合流体から分離させた高温排水中に大量に含まれる油分が蒸留膜の表面に付着するのを低減・防止できる。その結果、膜蒸留の欠点とされる膜の汚れによる濡れに起因する性能劣化、リーク等のトラブルを防ぐことができ、またメンテナンス頻度を低減でき、ランニングコストを低下できると共に、生産性を高めることができる
 前記膜蒸留に用いる前記疎水性多孔質膜は、(1)中空糸膜、(2)前記チューブ状多孔質膜、あるいは(3)前記複合膜の外面に、高温排水の循環路を設ける一方、膜に隔離された内面側を冷却水の循環路とすることが好ましい。
 なお、前記(1)の中空糸膜および(2)の前記チューブ状多孔質膜では逆に流してもよい。
 しかしながら、固形分を多く含む排水を処理する場合、前記中空糸膜または前記チューブ状多孔質膜は、前記撥油層を油分、塩分、有機物を含む加温排水を流す外面とし、中空部を水蒸気の透過側で、水蒸気が液化した冷却水の通路としている。該構成とすると、排水中の固形分や油分による中空閉塞が起こりにくく、また冷却水の流れが良くなり、偏流が起こりにくく、温度差が均一になり、安定的に温度差を確保して、膜蒸留能力を安定化できる。
 さらに、本発明は、第3の発明として第2の発明の膜蒸留モジュールを備え、
 前記排水の循環路に排水貯溜槽、ポンプおよび加熱器を介設し、前記排水貯溜槽を大気開放とし、
 前記処理済み液の循環路に熱交換器、処理済み液槽およびポンプを介設し、前記疎水性多孔質膜を透過した水蒸気から生成される処理済み液の温度を前記熱交換器で調整して前記処理済み液槽に取り込み、該処理済み液槽に貯溜した処理済み液の一部を前記ポンプで前記循環路に供給して前記疎水性多孔質膜を透過した水蒸気の液化用に用いている排水処理装置を提供している。
 前述したように、本発明において、一般油田、シュールオイル、シュールガスからオイルを生成するオイル生産工程に発生する排水を浄化処理して膜蒸留方法を用いているため油分を除去できると共に塩分および有機物を同時に除去できる。よって、膜濾過で必要となっていた硬度分除去装置やエバポレータによる脱塩、軟化工程を不要にできる。かつ、膜蒸留で用いる疎水性多孔質膜の空孔は水を透過せず、水蒸気のみを透過する微細孔であるため、濾過膜で生じる異物による目詰の発生を防止でき、排水と接する疎水性多孔膜の表面を洗浄すれば良いだけであるため、メンテナンス頻度を大幅に減少して連続稼動時間を長期化して生産性を高めることができる。
本発明の膜蒸留モジュールの実施形態を示し、(A)は垂直断面図、(B)は中空糸膜の拡大斜視図、(C)は中空糸膜の膜蒸留作用を示す図面である。 前記膜蒸留モジュールを備えた排水処理装置の全体図である。 膜蒸留に用いるチューブ状多孔質膜の一部斜視図である。 (A)は従来例の工程を示すフロー図、(B)は前記従来例の工程と対比して本発明の工程を示すフロー図である。
 以下、本発明の実施形態を図面を参照して説明する。
 本実施形態の排水処理装置は、油田に水を注入して油を回収する油生産システムにおいて発生する排水を、図1に示す膜蒸留モジュール1を備えた図2に示す排水処理装置50を用いて浄化処理している。
 前記石油生産システムにおいて、油分、塩分および溶解性有機物を含む排水が大量に発生するため、前記油分、塩分および溶解性有機物などを、膜蒸留でそれぞれ1mg/l未満まで浄化処理している。
 図1に示すように、膜蒸留モジュール1は疎水性多孔質膜として延伸PTFE製の中空糸膜を基膜3とし、該基膜3の外周面に撥油層4を設けた中空糸膜2を蒸留膜として用いている。撥油層4は延伸PTFE多孔質膜からなる基膜3の外周面に、基膜3の空孔3a(図2に示す)を閉鎖しない態様で、撥油機能を有するフッ素化アルキル側鎖を有する重合体からなるコーティング液を塗布して設けている。該膜蒸留用の中空糸膜2は、その平均孔径を水は透過させず、水蒸気だけを透過させるため、0.01μm~1μmの範囲としている。
 図1(C)および図2に示すように、中空糸膜2は撥油層4を設けた外周面を油分を含む高温含油排水HWと接する面とし、中空糸膜2の中空部5に膜透過した水蒸気Sのみ流入し、水は流入しないものとしている。
 前記中空部5の内径は0.5mm~4mm、外径1mm~5mm、中空糸膜2の撥油層4を含む厚さは10μm~5mm、全長1000mm~2500mm、気孔率40~90%、抗張力は30~150Nとしている。
 図1(A)(C)に示すように、膜蒸留モジュール1は複数本の中空糸膜2を所要間隔0.5mm~20mm)をあけて配置した集束体6とし、該集束体6の上下両端を各中空糸膜2の上下開口2a、2bを開口した状態で上下固定板7、8で固定している。上下固定板7、8にそれぞれキャップ9、10を外嵌し、キャップ9、10に循環冷却管11の両端を接続している。各中空糸膜2の中空部5は透過した水蒸気Sが液化した処理済み液通路となり、その上下開口を前記循環冷却管11と連通し、中空部5を循環冷却水の通路の一部としている。
 また、前記上下固定板7と8とを連結する外筒15を取り付け、集束体6を排水流通路18となる空間をあけて囲んでいる。該外筒15の上下両側に設けた開口を排水循環管21と連通した取入口15aと排出口15bとしている。
 前記膜蒸留モジュール1を備えた図2に示す排水処理装置50は、膜蒸留モジュール1の循環冷却管11に、熱交換器12、処理済み液タンク13、循環ポンプ14を介設している。循環冷却管11は大気中に配置して、膜蒸留で前記中空部5に透過してくる水蒸気を冷却している。なお、熱交換器12は循環冷却管11内の流体が所要温度以上であれば冷却して所要温度に温度調整するものである。また、前記処理済み液タンク13には再注入他各種再利用するための供給パイプ16を連結している。該処理済み液タンク13内の処理済み液の一部を膜蒸留モジュール1の中空糸膜2の中空部5に循環し、残りの大半を再利用するために前記供給パイプへ流している。
 前記高温含油排水HW(以下、排水HWと略称する)を循環させる排水循環管21に排水貯溜槽20、循環ポンプ23、加熱器22を介設している。排水貯溜槽20は大気解放槽とし、貯溜した排水HWの圧力を解放している。供給される排水の温度が設定範囲の温度以下であると前記加熱器22で加熱して設定範囲の温度になるように調整している。
 前記膜蒸留モジュール1の中空糸膜2の外周面に供給する排水HWは、60℃~100℃未満の温度範囲に保持して循環ポンプ23で圧力A(20~300KPa)で供給する設定としている。また、膜蒸留モジュール1の中空糸膜2の中空部5に供給する処理済みの液CWは5℃~40℃に保持して循環ポンプ14で圧力B(30~400KPa)で供給する設定としている。即ち、膜蒸留用の中空糸膜の外周側の加温した排水HWと内周の中空部側の処理済み液CWとの温度差を20℃~70℃、圧力A<圧力Bとし、圧力差を10~100KPaに設定している。
 次に、膜蒸留モジュール1を備えた排水処理装置50の作用について説明する。
 膜蒸留モジュール1は外筒15内に所要圧力で連続的に供給される排水HWから発生する水蒸気Sのみ、中空糸膜2を透過して中空部5に流入し、水は透過せず中空部5に水は流入しない。中空部5は循環冷却管11と連通し、ポンプ14で処理済み液CWが流れ込んでいるため、透過してきた水蒸気Sは温度が低い処理済み液CWと接触して液化する。この処理済み液CWを処理済み液タンク13に貯溜し、該タンング13内の処理済み液CWをパイプ16へ通してリサイクル工程へ供給している。また、処理済み液タング13内の処理済み液CWの一部を循環冷却管11を通して中空糸膜2の中空部5に循環している。
 前記膜蒸留モジュール1の中空糸膜2は、排水HWと接触する外周面に撥油層4を配置しているため、油分が付着しにくく、付着した油で中空糸膜2の空孔を塞ぐのを低減防止でき、膜蒸留能力の低減を抑制、防止できる。
 膜蒸留モジュール1で浄化処理された処理済み液CWは、油分、塩分および溶解性有機物がそれぞれ1mg/リットル未満にしか含まない程度に浄化される。
 前記膜蒸留モジュール1では、排水HWと接触する中空糸膜2の外周面に撥油層4を設けて油分の付着を低減防止しているが、水蒸気の透過流速を長期間にわたって安定的に維持するため、定期的な洗浄を行う必要がある。
 本発明に用いられるPTFE製の中空糸膜2は耐薬品性に優れ、かつ、付着した油分を除去するために、薬品洗浄している。前記洗浄薬としては1~20%の苛性ソーダ水溶液、次亜塩素酸ナトリウム、過酸化水素水が等が好適に用いられる。
 さらに、排水HWおよび処理済み液CWの循環停止時に、膜蒸留モジュール1から排水HWおよび処理済み液CWを排出し、その後、乾燥空気を通気し、記膜蒸留モジュール1内の温度を凍結しない状態に維持している。
 前記膜蒸留モジュール1を備えた排水処理装置50を用いると、図4(B)に示すように、石油生産工程で、油井から採取する混合液をセパレータ100でオイルと排水に分離した後、図4(A)に示す多段の前工程を省略して、膜蒸留モジュールを備えた排水処理装置で排水を浄化処理できる。かつ、該膜蒸留モジュールでの浄化処理後に、イオン交換樹脂やエバポレータ、RO膜による脱塩工程等も不要で、再利用できるため、排水の浄化処理工程を大幅に削減できる。具体的には以下の(1)~(4)に記載の特有の作用効果を有する。
 (1)油分、塩分および溶解性有機物を含む有機物の除去ができ、これら油分、塩分および有機物をそれぞれ1mg/リットル未満に落とすことができる。
 (2)油分を高度に除去することで、処理済み液を再加熱するための機器および配管における有機物系のスケールトラブルが低減される。
 (3)膜蒸留により塩分も除去できるため、従来必要であったイオン交換器、硬度分除去装置、エバポレータによる脱塩工程が不要となる。
 (4)PTFE膜を膜蒸留に用いると、高温排水HWの温度が200℃でも可能な耐熱性を備え、高温排水を冷却せずに膜蒸留モジュールへ供給でき、熱ロスを大幅に抑えることができる。かつ、セラミック製の膜を用いると、急激な温度上昇下降による耐クラック性、薬品洗浄に関わるアルカリ耐性、重量・大きさ・柔軟性のなさ・凍結忌避からくるハンドリング性、経済性といった問題があるが、PTFE膜を用いることで前記問題を克服することができる。
 図3に膜蒸留モジュールに用いる疎水性多孔膜の変形例を示す斜視図である。
 該疎水性多孔膜は、中空糸膜を用いる代わりに、延伸PTFEシートを巻回し、巻端をシール固着してチューブ状多孔質膜を基膜30としている。この基膜30の外周面に撥油層4を設けると共に内周面に不織布からなる支持層31を設けている。該チューブ状多孔質膜の中空部5は、第1実施形態の中空糸膜2の中空部5より内径を大きくできる。
 他の構成及び作用は前記実施形態の中空糸膜と同様であるため、説明を省略する。
1 膜蒸留モジュール、2 中空糸膜、3 基膜、4 撥油層、5 中空部、6 集束体、11 循環冷却管、21 循環排水管、50 排水処理装置、HW 排水、CW 処理済み液、S 水蒸気。

Claims (8)

  1.  地層または岩盤層から石油を採取する際に発生する油分、塩分および有機物を含む排水の浄化処理方法であって、
     油井から採取する含油混合水からセパレータで油を回収した後に分離された排水を、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)あるいはPCTFE(ポリクロロトリフルオロエチレン)からなり、実用上の最高使用温度が100℃を超えるフッ素系樹脂製の疎水性多孔質膜を用いて膜蒸留し、
     前記排水に含有されている油分、塩分および有機物を同時に除去することを特徴とする、排水処理方法。
  2.  前記疎水性多孔質膜の一面側に60℃~100℃に保持した前記排水をポンプにより圧力Aで流すと共に、他面側に5℃~40℃に保持した処理済み液をポンプにより圧力Bで流し、圧力A<圧力Bとしている、請求項1に記載の排水処理方法。
  3.  前記膜蒸留された処理済み液に含まれる油分、有機物、および塩分がそれぞれ1mg/l未満に低減する、請求項1または請求項2に記載の排水処理方法。
  4.  前記排水および処理済み液の循環停止時に、前記膜蒸留モジュールから排水および処理済み液を排出し、その後、乾燥空気を通気している、請求項1乃至請求項3のいずれか1項に記載の排水処理方法。
  5.  重質油、シュールオイル、シュールガスから生成するオイルを含む石油生産工程において発生する油分、塩分および有機物を含有する排水を膜蒸留する、請求項1乃至請求項4のいずれか1項に記載の排水処理方法。
  6.  請求項1乃至請求項5のいずれか1項に記載の排水処理方法に用いる膜蒸留モジュールであって、
     前記フッ素系樹脂製の疎水性多孔質膜の前記排水と接する表面に撥油性ポリマーを保持した撥油層を設けている膜蒸留モジュール。
  7.  前記疎水性多孔質膜は、(1)中空糸膜、(2)多孔質シートを巻回して巻端をシール固着して筒状としたチューブ状多孔質膜、または(3)多孔質シート単体あるいは不織布等の異種材料の両面にラミネートされ、所定幅にスリットされた2枚の多孔質膜の両端を熱融着等でシールしたものの内部にネット等の流路材を含む袋状の複合膜からなり、
     前記疎水性多孔質膜の前記撥油層を設けた外周面に前記高温排水の循環路を設ける一方、内周面に囲まれた中空部を冷却水の循環路としている、請求項6に記載の膜蒸留モジュール。
  8.  請求項6または請求項7に記載の膜蒸留モジュールを備え、前記排水の循環路に排水貯溜槽、ポンプおよび加熱器を介設し、前記排水貯溜槽を大気解放とし、
     前記処理済み液の循環路に熱交換器、処理済み液槽およびポンプを介設し、前記疎水性多孔質膜を透過した水蒸気から生成される処理済み液の温度を前記熱交換器で調整して前記処理済み液槽に取り込み、該処理済み液槽に貯溜した処理済み液の一部を前記ポンプで前記循環路に供給して前記疎水性多孔質膜を透過した水蒸気の液化用に用いている、排水処理装置。
PCT/JP2014/081168 2013-11-27 2014-11-26 排水処理方法、膜蒸留モジュールおよび排水処理装置 WO2015080124A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/782,619 US20160039686A1 (en) 2013-11-27 2014-11-26 Wastewater treatment method, membrane distillation module and wastewater treatment apparatus
CA2908905A CA2908905A1 (en) 2013-11-27 2014-11-26 Wastewater treatment method, membrane distillation module and wastewater treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-245465 2013-11-27
JP2013245465A JP2015100776A (ja) 2013-11-27 2013-11-27 排水処理方法、膜蒸留モジュールおよび排水処理装置

Publications (1)

Publication Number Publication Date
WO2015080124A1 true WO2015080124A1 (ja) 2015-06-04

Family

ID=53199064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081168 WO2015080124A1 (ja) 2013-11-27 2014-11-26 排水処理方法、膜蒸留モジュールおよび排水処理装置

Country Status (4)

Country Link
US (1) US20160039686A1 (ja)
JP (1) JP2015100776A (ja)
CA (1) CA2908905A1 (ja)
WO (1) WO2015080124A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180404A (zh) * 2019-05-21 2019-08-30 中南大学 一种用于膜蒸馏的新型双层中空纤维膜及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441898B1 (en) * 2014-02-08 2019-10-15 Mansour S. Bader Vertical integration of source water treatment
CN115279480A (zh) * 2019-12-09 2022-11-01 阿克维泰克私人有限公司 用于从含水材料去除污染物的方法和装置
CN111233238B (zh) * 2020-02-08 2022-04-29 中煤(北京)环保工程有限公司 一种煤化工废水的零排放处理方法及装置
JP6958687B1 (ja) * 2020-08-07 2021-11-02 栗田工業株式会社 膜蒸留装置及びその運転方法
CN114956489A (zh) * 2022-07-07 2022-08-30 嘉兴启欣生态科技有限公司 一种高浓度含盐工业废水处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169386A (ja) * 1989-11-30 1991-07-23 Hitachi Ltd 水循環装置
JPH04346823A (ja) * 1991-05-27 1992-12-02 Hitachi Ltd 廃液の膜蒸発濃縮方法及び装置
JPH067644A (ja) * 1992-06-25 1994-01-18 Hitachi Ltd 膜蒸留装置
JP2005127590A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 酸素富化給湯装置
JP2010075808A (ja) * 2008-09-25 2010-04-08 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2010214245A (ja) * 2009-03-13 2010-09-30 Asahi Kasei Chemicals Corp 官能基を有するグラフト鎖が固定された多孔膜、その製造方法および利用
JP2013185127A (ja) * 2012-03-09 2013-09-19 Nitto Denko Corp 油水分離方法、含油水の処理方法、ビチェーメンの生産方法およびそれらのシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR692401A0 (en) * 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
US7608185B2 (en) * 2007-12-18 2009-10-27 Hamilton Sundstrand Corporation Hollow fiber membrane modules for use in distillation systems
CN102476881A (zh) * 2010-11-30 2012-05-30 通用电气公司 含油废水的处理方法及装置
US20130075333A1 (en) * 2011-09-22 2013-03-28 Randall B. Pruet Apparatus and Process for Treatment of Water
AU2013274344B2 (en) * 2012-06-11 2018-01-25 Colorado School Of Mines Methods for sustainable membrane distillation concentration of hyper saline streams

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169386A (ja) * 1989-11-30 1991-07-23 Hitachi Ltd 水循環装置
JPH04346823A (ja) * 1991-05-27 1992-12-02 Hitachi Ltd 廃液の膜蒸発濃縮方法及び装置
JPH067644A (ja) * 1992-06-25 1994-01-18 Hitachi Ltd 膜蒸留装置
JP2005127590A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 酸素富化給湯装置
JP2010075808A (ja) * 2008-09-25 2010-04-08 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2010214245A (ja) * 2009-03-13 2010-09-30 Asahi Kasei Chemicals Corp 官能基を有するグラフト鎖が固定された多孔膜、その製造方法および利用
JP2013185127A (ja) * 2012-03-09 2013-09-19 Nitto Denko Corp 油水分離方法、含油水の処理方法、ビチェーメンの生産方法およびそれらのシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180404A (zh) * 2019-05-21 2019-08-30 中南大学 一种用于膜蒸馏的新型双层中空纤维膜及其制备方法和应用
CN110180404B (zh) * 2019-05-21 2021-12-14 中南大学 一种用于膜蒸馏的新型双层中空纤维膜及其制备方法和应用

Also Published As

Publication number Publication date
CA2908905A1 (en) 2015-06-04
JP2015100776A (ja) 2015-06-04
US20160039686A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
WO2015080125A1 (ja) 膜蒸留モジュールおよび排水処理装置
WO2015080124A1 (ja) 排水処理方法、膜蒸留モジュールおよび排水処理装置
WO2015080123A1 (ja) 排水処理方法、膜蒸留モジュールおよび排水処理装置
JP5446416B2 (ja) 含油排水処理用の分離膜モジュール、含油排水処理方法および含油排水処理装置
CN110461452B (zh) 膜蒸馏用多孔质膜和膜蒸馏用组件的运转方法
WO2011101961A1 (ja) 含油排水処理用の分離膜モジュール、含油排水処理方法および含油排水処理装置
JP5418739B1 (ja) 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法
WO2013111826A1 (ja) 造水方法および造水装置
JPWO2011016410A1 (ja) 水処理装置及び水処理方法
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
CN111072106A (zh) 水处理系统和水处理方法
JP2018103184A (ja) 中空糸型半透膜の製造方法
KR101732811B1 (ko) 고분자 유도물질을 사용한 에너지 저감형 정삼투막-여과막 결합 수처리와 해수담수화 시스템 및 방법
KR20170042560A (ko) 역침투막 장치 및 그 운전 방법
KR101603785B1 (ko) 역삼투 방식을 이용한 과산화수소 정제 시스템 및 그에 의해 제조되는 과산화수소
CN106865696B (zh) 基于组合膜工艺的高温高盐采油废水回收再利用方法
TWI480231B (zh) 含油排水處理方法
JP2016097356A (ja) 油水分離システム
JP7328978B2 (ja) 高温ろ過用渦巻形膜要素
JP4853454B2 (ja) ろ過膜エレメントの取り出し方法
JP4853453B2 (ja) ろ過膜エレメントの取り出し方法
JP2011240299A (ja) 水処理部材及び水処理方法
JP2013188648A (ja) 膜ろ過装置及び膜ろ過装置の前処理膜の洗浄方法
JP2019025397A (ja) 含油海水の処理装置及び処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2908905

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14782619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865151

Country of ref document: EP

Kind code of ref document: A1