WO2015080057A1 - 空間光変調器、光描画装置、露光装置およびデバイス製造方法 - Google Patents

空間光変調器、光描画装置、露光装置およびデバイス製造方法 Download PDF

Info

Publication number
WO2015080057A1
WO2015080057A1 PCT/JP2014/080938 JP2014080938W WO2015080057A1 WO 2015080057 A1 WO2015080057 A1 WO 2015080057A1 JP 2014080938 W JP2014080938 W JP 2014080938W WO 2015080057 A1 WO2015080057 A1 WO 2015080057A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial light
substrate
upper electrode
modulation element
light modulator
Prior art date
Application number
PCT/JP2014/080938
Other languages
English (en)
French (fr)
Inventor
鈴木 美彦
鈴木 純児
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2015550907A priority Critical patent/JP6070860B2/ja
Publication of WO2015080057A1 publication Critical patent/WO2015080057A1/ja
Priority to US15/164,225 priority patent/US9910268B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices

Definitions

  • the present invention relates to a spatial light modulator, an optical drawing apparatus, an exposure apparatus, and a device manufacturing method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-101467
  • Patent Document 2 US Pat. No. 6,791,735
  • a substrate a reflecting mirror, a movable portion that displaces relative to the substrate while supporting the reflecting mirror, and the movable portion at a position farther from the substrate than the movable portion.
  • a first light modulation element having an upper electrode that adsorbs the movable part by an electrostatic force between the first light modulation element and the substrate adjacent to the first light modulation element, while supporting the reflection mirror and the reflection mirror,
  • a second light modulation element comprising: a movable portion that is displaced with respect to the substrate; and an upper electrode that attracts the movable portion by electrostatic force between the movable portion and a position farther from the substrate than the movable portion.
  • a spatial light modulator comprising: an electrode support portion that supports the upper electrode of the first light modulation element and the upper electrode of the second light modulation element in common with respect to the substrate.
  • FIG. 1 is a schematic diagram of a semiconductor exposure apparatus 100.
  • FIG. 3 is a schematic perspective view of a spatial light modulator 500.
  • FIG. 3 is a schematic exploded perspective view of a spatial light modulation element 501.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • FIG. 11 is
  • FIG. 11 is a cross-sectional view showing the process of manufacturing the spatial light modulator 500.
  • 3 is a cross-sectional view of a spatial light modulator 500.
  • FIG. 3 is a cross-sectional view of a spatial light modulation element 501.
  • FIG. 6 is a cross-sectional view showing the operation of the spatial light modulation element 501.
  • FIG. 6 is a cross-sectional view showing the operation of the spatial light modulation element 501.
  • FIG. 5 is a plan view showing the shape of a movable part 520.
  • FIG. 5 is a plan view showing the shape of a movable part 520.
  • FIG. 5 is a plan view showing the shape of a movable part 520.
  • FIG. 1 is a schematic diagram showing the structure of the semiconductor exposure apparatus 100.
  • the semiconductor exposure apparatus 100 includes a control system 200, an illumination system 300, and a light drawing system 400.
  • the optical drawing system 400 includes a spatial light modulator 500.
  • the control system 200 includes a main control unit 210, a stage control unit 220, a light source control unit 230, and a modulation control unit 240.
  • the stage control unit 220 controls the stage driving unit 430
  • the light source control unit 230 controls the light source 310
  • the modulation control unit 240 individually controls the spatial light modulator 500.
  • the main control unit 210 controls the entire semiconductor exposure apparatus 100 including the stage control unit 220, the light source control unit 230, and the modulation control unit 240.
  • the main control unit 210 has an interface to the user, receives instructions from the user, and notifies the operation state of the semiconductor exposure apparatus 100 to the outside of the semiconductor exposure apparatus 100.
  • the illumination system 300 includes a light source 310 and an optical system 301.
  • the light source 310 is supplied with a trigger pulse instructing the timing and intensity of light emission from the light source control unit 230 and emits pulses.
  • the pulsed light generated by the light source 310 is a substantially parallel light beam and has a rectangular beam cross-sectional shape.
  • a YAG laser, a semiconductor laser, or the like that emits laser light with a wavelength of 193 nm and a pulse width of about 1 ns at a frequency of about 1 to 3 MHz can be used.
  • an ArF excimer laser that emits a pulsed laser beam having a wavelength of 193 nm and a pulse width of about 50 ns at a frequency of about 4 to 6 kHz
  • a KrF excimer laser that emits light at a wavelength of 248 nm, a pulsed light emitting diode, or the like is also used. it can.
  • the optical system 301 includes optical members such as a beam expander 320, a polarization control optical element 330, a diffractive optical element 340, relay optical systems 352 and 354, a microlens array 360, a relay lens, and a field stop 380.
  • the beam expander 320 expands the beam diameter of the pulsed light generated by the light source 310.
  • the polarization control optical element 330 in the optical system 301 controls the polarization state of the pulsed light.
  • the polarization control optical element 330 includes a half-wave plate that rotates the polarization direction of pulsed light, a quarter-wave plate that converts pulsed light into circularly polarized light, and birefringence that converts pulsed light into random polarized light (non-polarized light).
  • a suitable prism is appropriately selected and arranged.
  • the diffractive optical element 340 in the optical system 301 one of a plurality of elements held by the turret is inserted into the optical path of the pulsed light.
  • the diffractive optical element 340 in addition to a normal illumination element, a small ⁇ illumination element that generates illumination light with a small coherence factor ( ⁇ value), a dipole illumination element, a quadrupole illumination element, and annular illumination An element or the like is used.
  • a reflective spatial modulation element can also be used as the diffractive optical element 340.
  • the pulsed light emitted from the diffractive optical element 340 is guided to the microlens array 360 by the relay optical system 352.
  • the microlens array 360 in the optical system 301 divides the pulsed light two-dimensionally by a number of minute lens elements, and a secondary light source (surface light source) is formed on the illumination pupil plane of the optical system 301 that is also the rear focal plane.
  • a zoom lens may be used as the relay optical system 352.
  • a fly-eye lens may be used as the microlens array 360.
  • the illumination light emitted from the secondary light source formed on the illumination pupil plane is irradiated toward the spatial light modulator 500 through the relay lens 370, the field stop 380, and another relay optical system 354.
  • the field stop 380 is provided at a position shifted in the optical axis direction from the plane COP 382 conjugate with the object plane of the projection optical system 410.
  • the illumination light applied to the spatial light modulator 500 has a substantially uniform illuminance.
  • the illumination light is incident on the reflecting surface of the spatial light modulator 500 at an incident angle ⁇ having a predetermined constant inclination.
  • the optical system 301 further includes a plurality of reflecting mirrors 391, 392, and 393 inserted on the optical path.
  • the reflecting mirrors 391, 392, and 393 reduce the size of the semiconductor exposure apparatus 100 by bending the optical path of the illumination light.
  • the optical drawing system 400 includes a spatial light modulator 500, a projection optical system 410, and a wafer stage 420.
  • the spatial light modulator 500 forms an illuminance distribution in the illumination light irradiated with uniform illuminance under the control of the modulation control unit 240.
  • the projection optical system 410 is non-telecentric on the spatial light modulator 500 side, and forms a telecentric reduction projection optical system on the wafer stage 420 side. Further, the spatial light modulator 500 and the surface of the semiconductor wafer 450 mounted on the wafer stage 420 are positioned in a conjugate relationship with respect to the projection optical system 410.
  • the projection optical system 410 forms a reduced image of the aerial image having the distribution formed by the spatial light modulator 500 on the surface of the semiconductor wafer 450, and sensitizes the resist film applied to the semiconductor wafer 450.
  • the semiconductor wafer 450 may be a compound semiconductor or the like in addition to a silicon single crystal.
  • the projection optical system 410 has a projection magnification ⁇ of about 1/10 to 1/100, for example. Further, the resolution of the projection optical system 410 is, for example, about 1 to several times the resolution of the spatial light modulator 500. In other words, the resolution of the projection optical system 410 can be improved by improving the resolution of the spatial light modulator 500.
  • control system 200, the illumination system 300, the spatial light modulator 500, and the projection optical system 410 are each fixed to the semiconductor exposure apparatus 100.
  • the wafer stage 420 is driven by the stage driving unit 430 and displaced in the scanning direction y indicated by an arrow in the drawing. Thereby, the surface of the semiconductor wafer 450 can be scanned with the projection light emitted from the projection optical system 410.
  • the wafer stage 420 also includes a reflecting mirror 422.
  • the reflecting mirror 422 has a reflecting surface orthogonal to the moving direction of the wafer stage 420, and reflects the laser light emitted from the interferometer 440 toward the interferometer 440.
  • the stage control unit 220 detects the movement amount of the wafer stage 420 with high accuracy and controls the stage driving unit 430 with high accuracy.
  • the semiconductor wafer 450 can be exposed by the projection light of the pattern formed by the maskless method without using a mask or a reticle. Further, the entire surface of the semiconductor wafer 450 can be exposed by moving the wafer stage 420.
  • a large number of exposure patterns can be formed on the surface of the semiconductor wafer 450 by repeating the exposure. Further, a pattern larger than the projected area of the projection optical system 410 can be formed on the semiconductor wafer 450 by changing the pattern for each shot. Further, different patterns can be formed depending on the region of the semiconductor wafer 450.
  • FIG. 2 is a schematic perspective view of a single spatial light modulator 500.
  • the spatial light modulator 500 includes a substrate 510 and a plurality of spatial light modulation elements 501 arranged on the substrate 510.
  • Each of the spatial light modulation elements 501 is formed by a MEMS (Micro Electro Mechanical Systems) technique, and includes a support 502 and a reflecting mirror 544, respectively.
  • MEMS Micro Electro Mechanical Systems
  • Each of the columns 502 is fixed to the substrate 510 and supports a member that forms the spatial light modulation element 501 such as the reflecting mirror 544.
  • each of the reflecting mirrors 544 has a square reflecting surface with a side of about several ⁇ m to hundreds of tens of ⁇ m, and is supported so as to be displaceable so as to approach or move away from the substrate 510 individually.
  • FIG. 3 is an exploded perspective view of a single spatial light modulation element 501 corresponding to one reflecting mirror 544.
  • the spatial light modulation element 501 includes a substrate 510, a movable part 520, a fixed part 530, and a reflecting part 540.
  • the substrate 510, the movable portion 520, and the fixed portion 530 are drawn in a state of looking down, while the reflecting portion 540 is drawn up to show the shape characteristics.
  • FIG. 3 is a diagram showing a hierarchical layout of functional elements in the spatial light modulator 501 and is not a diagram directly showing the physical structure of the spatial light modulator 501. For this reason, the structure shown in FIG. 3 does not match the layer structure of the spatial light modulator 501 formed by a thin film in the embodiment described later with reference to FIG.
  • the substrate 510 has a CMOS circuit built therein as a drive circuit for the spatial light modulator 501 and has a lower electrode 514 on the surface.
  • the lower electrode 514 is coupled to a CMOS circuit inside the substrate 510, and a driving voltage is applied from the CMOS circuit.
  • the movable part 520 has a support column 522, a flexure 526, and a movable electrode 524.
  • Four support columns 522 are provided and are fixed in the vicinity of the four corners of a rectangular region occupied by the spatial light modulator 501 on the substrate 510 as indicated by a dotted line in the drawing.
  • the support column 522 forms part of the support column 502 shown in FIG.
  • the flexure 526 couples the single movable electrode 524 and the four support columns 522 to each other.
  • Each of the flexures 526 has an annular portion, and allows deformation of the movable electrode 524 with respect to the support 522 by being deformed.
  • the movable electrode 524 is supported by the support column 522 via the flexure 526 so that the movable electrode 524 can be displaced with respect to the substrate 510.
  • the movable electrode 524 is supported by four flexures 526 arranged radially from the four corners, and is arranged in parallel to the substrate 510. When the movable electrode 524 is displaced, it is displaced in a direction toward or away from the substrate 510 as indicated by an arrow z in the drawing.
  • the fixing unit 530 includes a support column 532 and an upper electrode 534.
  • the support column 532 is connected to the support column 522 of the movable portion 520 and extends the support column 522 away from the substrate 510. Thereby, the support column 532 supports the upper electrode 534 at a position away from both the substrate 510 and the movable electrode 524.
  • the column 532 forms part of the column 502 shown in FIG.
  • the upper electrode 534 is connected to the support column 532 by the connecting portion 533 and arranged in parallel with the substrate 510. Since the connecting portion 533 is short, the upper electrode 534 is fixed without being displaced with respect to the support column 532. Further, since the upper electrode 534 is supported between the four support columns 532, it is difficult to be deformed even when a mechanical load is applied from the outside.
  • the upper electrode 534 has an opening 536 at substantially the center.
  • the opening 536 penetrates the upper electrode 534 in the thickness direction.
  • a reflection part 540 described later can be coupled to the movable electrode 524 of the movable part 520.
  • the reflection unit 540 includes a support member 542 and a reflection mirror 544.
  • the reflecting mirror 544 has a rectangular plane that covers most of the spatial light modulation element 501.
  • a reflective surface with a high reflectance formed of a metal thin film or the like is provided on the surface opposite to the substrate 510.
  • the upper end of the support member 542 in the figure is integrally coupled to the reflecting mirror 544 at the reflecting mirror 544 at the opposite side of the reflecting surface, that is, at the approximate center of the side facing the substrate 510.
  • the support member 542 extends from the reflecting mirror 544 toward the substrate 510, passes through the opening 536 of the upper electrode 534, and is then coupled to the approximate center of the movable electrode 524.
  • the reflection portion 540 is supported integrally with the movable electrode 524 so as to be displaceable with respect to the substrate 510.
  • the lower electrode 514, the movable electrode 524, and the upper electrode 534 that are involved in driving the spatial light modulator 501, and the columns 522 and 532 that support the movable electrode 524 and the upper electrode 534 are: There is a relationship in which space is maintained in the surface direction of the substrate 510. For this reason, for example, when the occupied area or the number of the columns 522 and 532 is increased for the purpose of increasing the support rigidity of the upper electrode 534, the areas of the lower electrode 514, the movable electrode 524, and the upper electrode 534 are reduced, and the spatial light modulation element The driving force or driving efficiency of 501 is reduced.
  • the area of the lower electrode 514, the movable electrode 524, and the upper electrode 534 is enlarged for the purpose of improving the driving force of the spatial light modulation element 501, the area or number of the columns 522, 532 is decreased. Support rigidity decreases.
  • FIGS. 11 to 26 are cross-sectional views showing the manufacturing process of the spatial light modulator 500 including the spatial light modulator 501 for each stage. These drawings are shown by a cross section cut along a diagonal line in the plan view of the rectangular spatial light modulator 501. 18, 20, and 22 are plan views of the spatial light modulator 500 in the manufacturing process. In addition, between FIGS. 11 to 26, a plurality of layers are collectively expressed as a sacrificial layer 610, a conductor layer 630, or an insulating layer 640 to help understand the layer structure.
  • the elements of the spatial light modulator 501 may be included in a shape or state different from the completed state. Therefore, in the description from FIG. 4 to FIG. 25, the elements of the spatial light modulator 500 shown in FIG. 1 to FIG. The correspondence relationship will be described.
  • a flat substrate 510 is prepared as shown in FIG.
  • a member having a flat surface such as a compound semiconductor substrate and a ceramic substrate can be widely used in addition to a silicon single crystal substrate.
  • the substrate 510 is formed of a silicon single crystal, and a CMOS circuit that drives the spatial light modulator 500 is already formed in the substrate 510.
  • a sacrificial layer 611 is formed on the surface of the substrate 510.
  • the sacrificial layer 611 can be formed by pre-baking a resist applied by, for example, spin coating or spray coating, and covers the entire substrate 510 with a substantially uniform thickness.
  • a mask used when a conductive material, an insulating material, or the like is deposited on the substrate 510 can be formed.
  • FIG. 6 shows a conductor layer 631 formed of a conductor material deposited on the substrate 510 using a mask formed of the sacrificial layer 611. Part of the conductor layer 631 finally forms the lower electrode 514. In addition, another part of the conductor layer 631 is electrically coupled to the movable electrode 524 or the upper electrode 534.
  • an insulating layer 641 covering a part of the conductor layer 631 is formed.
  • the insulating layer 641 is formed by dry etching or etching using an insulating layer 641 deposited on the substrate 510 and the conductor layer 631 by physical vapor deposition, chemical vapor deposition, or the like, using a resist layer or the like formed by photolithography as a mask. It can be formed by patterning by wet etching.
  • the entire surface of the substrate 510, the conductor layer 631 and the insulating layer 641 is again covered with the sacrificial layer 613 and flattened.
  • the position of the planarized sacrificial layer 613 is equal to the height of the surface of the movable electrode 524 facing the substrate 510.
  • the sacrificial layer 613 can be formed by a method similar to that for the sacrificial layer 611.
  • the sacrificial layer 613 is patterned to form an opening pattern 623 to expose a part of the conductor layer 631 that is not covered with the insulating layer 641.
  • the opening pattern 623 is narrower than the exposed conductor layer 631, exposes the central portion of the conductor layer 631, and the edge is covered with the sacrificial layer 613.
  • a conductor material is deposited on the entire surface of the sacrificial layer 613 and the exposed portion of the conductor layer 631 to form a conductor layer 632.
  • the conductor layer 632 can be formed, for example, by depositing a metal material such as a TiAl alloy by a physical vapor deposition method, a chemical vapor deposition method, a plating method, or the like. Part of the formed conductor layer 632 eventually becomes the movable part 520.
  • the conductor layers 632 and 631 can be simultaneously removed by dry etching such as plasma etching using a mask, reactive ion etching, or ion milling. Thereby, an opening pattern 624 in which the surface of the substrate 510 is exposed is formed.
  • an insulating layer 643 is further deposited inside the opening pattern 625. Accordingly, the side surface of the conductor layer 632 and a part of the upper surface of the conductor layer 632 are covered with the insulating layer 643.
  • the insulating layer 643 can be formed using a method and a material similar to those of the previously formed insulating layer 641.
  • a part of the insulating layer 643 is removed.
  • the insulating layer 643 can be removed simultaneously by dry etching such as plasma etching using a mask, reactive ion etching, or ion milling.
  • dry etching such as plasma etching using a mask, reactive ion etching, or ion milling.
  • the entire surface of the substrate 510, the conductor layer 632, and the insulating layer 643 is covered with a sacrificial layer 617 and planarized.
  • the position of the surface of the planarized sacrificial layer 617 is equal to the position of the surface of the upper electrode 534 facing the movable electrode 524.
  • the sacrificial layer 613 can also be formed in the same manner as the other sacrificial layers 611 and the like.
  • a patterned insulating layer 644 is formed on the surface of the sacrificial layer 617.
  • the insulating layer 644 can be removed simultaneously by dry etching such as plasma etching using a mask, reactive ion etching, or ion milling, as with the other insulating layers 644.
  • the insulating layer 644 thus formed has substantially the same shape as the pattern of the upper electrode 534, has substantially the same outer shape as the upper surface of the conductor layer 632, and has an opening at the center to form a ring shape.
  • a part of the sacrificial layer 617 is removed in the region where the conductor layer 632 is interrupted. Thereby, an opening pattern 627 is formed in the sacrificial layer 617.
  • a part of a portion where the insulating layer 643 extends horizontally and an opening pattern 626 that exposes the substrate 510 inside the insulating layer 643 appear outward.
  • a conductor layer 633 is formed so as to overlap the insulating layers 643 and 644.
  • the conductor layer 633 also covers the side surface of the sacrificial layer 617 that extends between the insulating layer 643 that covers the side surface of the conductor layer 632 and the insulating layer 644 formed on the upper surface of the sacrificial layer 617.
  • the conductor layer 633 has a slit pattern 660 that is partially broken on the upper surface of the insulating layer 644.
  • FIG. 18 is a diagram schematically showing a planar shape of the conductor layer 633 in the state shown in FIG.
  • the conductor layer 633 includes an annular portion that eventually becomes the upper electrode 534, a portion that surrounds the portion that becomes the upper electrode 534 and finally becomes the support column 532, one of the portions that become the support column 532, and the upper electrode 534. And a portion to be a connecting portion 533 that connects the portions to be connected. Further, among the four pillars 532 surrounding one of the parts that become the upper electrode 534, the other three are separated from the part that becomes the upper electrode 534 with the slit pattern 660 interposed therebetween.
  • an insulating layer 645 is formed in a region where the conductor layer 632 is separated.
  • one end of the insulating layer 645 is in contact with the insulating layer 644 positioned below the conductor layer 633 inside the slit pattern 660. Therefore, in the slit pattern 660, one end portion of the conductor layer 633 is covered with the insulating layers 644 and 645 and insulated from the other end portion.
  • the insulating layer 645 covers the surface of the conductor layer 633 in the vicinity of the opening pattern 627.
  • Such an insulating layer 645 can be formed by the same method and material as the other insulating layers 641 to 644.
  • FIG. 20 is a diagram schematically showing the planar shape of the insulating layer 645 in the state shown in FIG.
  • the conductor layer 633 covers the upper surface in all of the four portions that eventually become the pillars 532. Thereby, the insulating layer 645 insulates the conductor layer 633 from the upper layer.
  • a conductor layer 634 is formed on the upper surface of the slit pattern 660.
  • the conductor layer 634 straddles the upper surfaces of the conductor layer 633 and the insulating layer 645 with the slit pattern 660 interposed therebetween.
  • the conductor layer 634 can be formed by the same method and material as the other conductor layers 631 to 633.
  • FIG. 22 is a diagram schematically showing the positional relationship between the conductor layers 633 and 634 and the insulating layer 645 in the state shown in FIG. Around the portion that becomes the upper electrode 534 in the conductor layer 633, four portions that become the support columns 532 are arranged.
  • one of the portions that become the pillars 532 is mechanically and electrically coupled by the portion that becomes the connecting portion 533 in the conductor layer 633.
  • the other three of the portions that become the pillars 532 are connected to the upper electrode 534 by the conductor layer 634 formed in the stage shown in FIG.
  • each of the conductor layers 634 is formed so as to overlap the insulating layer 645, the conductor layer 634 is insulated from the conductor layer 633 covered with the insulating layer 645.
  • one of the four columns 532 surrounding the upper electrode 534 is electrically coupled to the upper electrode 534, and the other three are not coupled. Therefore, the plurality of upper electrodes 534 formed in the spatial light modulator 500 are electrically independent from each other.
  • each of the upper electrodes 534 is mechanically coupled to all of the four support columns 532 surrounding the upper electrode 534 by either the conductor layer 633 or the conductor layer 634. Therefore, the upper electrode 534 is firmly positioned by the plurality of columns 532. Further, when a load for displacing the upper electrode 534 is applied to the upper electrode 534, tension acts on the upper electrode 534 between the plurality of support columns 532. Thereby, the upper electrode 534 is not easily deformed when a mechanical load is applied.
  • the support column 532 that supports the movable electrode 524 and the upper electrode 534 in each of the spatial light modulation elements 501 also functions as the support column 532 that supports the movable electrode 524 and the upper electrode 534 of the adjacent spatial light modulation element 501. Therefore, in the entire spatial light modulator 500, the number of support columns 532 can be suppressed, and the ratio of the area contributing to the light modulation can be increased.
  • each of the conductor layers 634 is also electrically coupled to the portion of the conductor layer 633 that becomes the upper electrode 534. Therefore, the shape of the upper electrode 534 including the conductor layer 633 and the conductor layer 634 is point-symmetric with respect to the center of the opening 536 located at the center of the upper electrode 534. Therefore, it is possible to suppress the occurrence of bias with respect to the electrostatic force acting on the upper electrode 534.
  • a sacrificial layer 618 covering the existing sacrificial layer 617, the conductor layers 633 and 634, and the insulating layer 645 is formed and planarized as a whole.
  • the surface of the sacrificial layer 618 formed at this stage is located at the same height as the lower surface of the reflecting mirror 544 with respect to the substrate 510.
  • the sacrifice layer 618 is patterned to form an opening pattern 628 reaching the center of the conductor layer 632.
  • the width of the opening pattern 628 is narrower than the width of the opening pattern penetrating the conductor layer 633 and the insulating layer 644, and the side end portions of the conductor layer 633 and the insulating layer 644 are embedded in the sacrifice layers 617 and 618. is doing.
  • the upper surface of the conductor layer 632 that becomes the movable electrode 524 appears in the opening pattern 628 in the drawing.
  • a reflective material is patterned and deposited on the entire surfaces of the sacrificial layers 618 and 617 and the conductor layer 632 to form a reflective layer 650.
  • the horizontal portions of the reflective layer 650 in the figure are separated in a region overlapping the gap between the conductor layers 632.
  • the reflective layer 650 is coupled to the conductor layer 632 inside the opening pattern 628 for each region separated from each other.
  • the reflective layer 650 may be formed of a metal material.
  • the reflective layer 650 may be formed of a dielectric multilayer film.
  • the reflective layer 650 may be formed of a composite thin film formed by laminating an inorganic material layer such as amorphous silicon, silicon nitride, or silicon oxide and a metal layer or a dielectric multilayer film.
  • the reflective layer 650 or the thin film forming the reflective layer 650 can be formed by various physical vapor deposition methods and chemical vapor deposition methods.
  • the surface of the sacrificial layer 618 serving as a base of the reflective mirror 544 may be mirror-polished.
  • the base may be mirror-polished before forming the metal layer or the dielectric multilayer film that directly reflects the irradiation light.
  • all the sacrificial layers 613, 617, 618 are removed, and the spatial light modulator 500 is completed.
  • some sacrificial layers 613 appear to be separated from the other sacrificial layers 617, 618 by the conductor layer 632.
  • the conductor layer 632 forming the movable portion 520 does not completely cover the sacrificial layer 613. Therefore, all the sacrificial layers 613, 617, and 618 are continuous and can be removed at once by etching using gas or liquid.
  • FIG. 26 reference numerals of elements of the spatial light modulator 501 shown in FIG. As illustrated, a part of the conductor layer 631 forms a lower electrode 514. In addition, the conductor layer 632 forms the support column 522 and the movable electrode 524 of the movable portion 520.
  • a part of the conductor layer 633 forms a support column 532 of the fixing portion 530. Furthermore, another part of the conductor layer 633 and the conductor layer 634 form the upper electrode 534. Then, the reflective layer 650 forms a support member 542 and a reflective mirror 544.
  • the column 522 formed by the conductor layer 632 supports the movable electrode 524 of the spatial light modulation elements 501 adjacent to each other in common.
  • each of the plurality of upper electrodes 534 in the spatial light modulator 500 is supported by the support columns 532 at the four corners, so that positioning can be ensured and high support rigidity can be ensured. Further, it is possible to prevent the number of support columns 532 from significantly increasing with respect to the number of upper electrodes 534, and to prevent the support columns 532 from reducing the area that can be divided into the lower electrodes 514 on the surface of the substrate 510.
  • each of the lower electrode 514, the movable electrode 524, and the upper electrode 534 is individually coupled to the substrate 510 for each spatial light modulation element 501. Therefore, a voltage can be individually applied to each of the spatial light modulation elements 501 and to the lower electrode 514, the movable electrode 524, and the upper electrode 534 by the CMOS circuit built in the substrate 510.
  • all of the movable electrode 524, the upper electrode 534, and the reflecting mirror 544 have a flat cross-sectional shape.
  • the movable electrode 524, the upper electrode 534, and the reflecting mirror 544 may be provided with stepped or rib-like portions to improve the bending rigidity of the movable electrode 524, the upper electrode 534, and the reflecting mirror 544.
  • the manufacture of a single spatial light modulator 500 is described. However, after a plurality of spatial light modulators 500 including a plurality of spatial light modulation elements 501 are formed on one wafer, dicing is performed. A large number of spatial light modulators 500 may be manufactured in a lump by separating them. Thereby, productivity can be improved and the price of the spatial light modulator 500 can be reduced.
  • FIG. 27 is a cross-sectional view showing one spatial light modulation element 501 in the completed spatial light modulator 500.
  • the lower electrode 514, the movable electrode 524, and the upper electrode 534 are each connected to a CMOS circuit built in the substrate 510. Accordingly, the lower electrode 514, the movable electrode 524, and the upper electrode 534 can be set to individual potentials.
  • the movable electrode 524 is directly connected to the reference potential and always maintains the reference potential.
  • the movable electrode 524 of the adjacent spatial light modulator 501 is also individually connected to the reference potential.
  • the connection to the reference potential in the substrate 510 may be integrated in one place. Thereby, the wiring of the CMOS circuit in the substrate 510 can be simplified.
  • FIG. 28 is a cross-sectional view showing a state in which a driving voltage is applied to the lower electrode 514 in the spatial light modulator 501.
  • a driving voltage is applied to the lower electrode 514
  • a potential difference is generated between the movable electrode 524 set to the reference potential and the lower electrode 514.
  • the lower electrode 514 attracts the movable electrode 524 by the electrostatic force generated between the lower electrode 524 and attracts the reflecting portion 540 that is displaced integrally with the movable electrode 524 toward the substrate 510.
  • the movable electrode 524 adsorbed by the lower electrode 514 contacts the lower electrode 514 to position the reflecting portion 540. At this time, the insulating layer 641 provided on the surface of the lower electrode 514 prevents a short circuit between the lower electrode 514 and the movable electrode 524.
  • the drive voltage is not applied to the upper electrode 534. Further, in this case, it is preferable to eliminate the potential difference between the upper electrode 534 and the movable electrode 524 by connecting the upper electrode 534 to the reference potential.
  • FIG. 29 is a cross-sectional view showing a state in which a driving voltage is applied to the upper electrode 534 in the spatial light modulation element 501.
  • a driving voltage is applied to the upper electrode 534
  • a potential difference is generated between the movable electrode 524 set to the reference potential and the upper electrode 534.
  • the upper electrode 534 attracts the movable electrode 524 by the electrostatic force generated between the upper electrode 524 and the reflecting portion 540 that is displaced integrally with the movable electrode 524 toward the position away from the substrate 510. Attract.
  • the movable electrode 524 adsorbed on the upper electrode 534 comes into contact with the upper electrode 534 and is positioned. Thereby, the reflecting portion 540 that is displaced integrally with the movable electrode 524 is also positioned at a position away from the substrate 510. At this time, the insulating layer 644 provided on the lower surface of the upper electrode 534 in the drawing prevents a short circuit between the upper electrode 534 and the movable electrode 524.
  • the upper electrode 534 is supported between the four columns 532. Furthermore, each of the upper electrode 534 and the support column 532 is connected by a short connecting portion 533 that is difficult to deform. Therefore, even when the movable electrode 524 is adsorbed against the elasticity of the flexure 526, the position of the upper electrode 534 is prevented from changing or the upper electrode 534 itself is prevented from being deformed. Therefore, the movable electrode 524 and the reflecting portion 540 that are in contact with the upper electrode 534 are accurately positioned even at a position away from the substrate 510.
  • the drive voltage is not applied to the lower electrode 514. Further, in this case, it is preferable to eliminate the potential difference between the lower electrode 514 and the movable electrode 524 by connecting the lower electrode 514 to the reference potential.
  • the movable electrodes 524 are connected to the same reference potential. Therefore, all of the movable electrode 524 and the column 522 that supports the movable electrode in the spatial light modulator 500 may be electrically coupled. In this case, the conductor layers 632 may be electrically coupled to each other in the spatial light modulator 500 as a whole.
  • the movable electrode 524 is set to the reference potential, and the drive voltage is applied to the lower electrode 514 and the upper electrode 534.
  • the driving voltage may be applied to other electrodes while the potential of the lower electrode 514 or the upper electrode 534 is fixed.
  • the lower electrode 514 or the upper electrode 534 whose potential is fixed to the reference potential may be electrically coupled to each other in the spatial light modulator 501.
  • the formation of the insulating layer 645 that insulates the upper electrode 534 between the spatial light modulation elements 501 can be omitted.
  • the insulating layers 641 and 644 provided on the lower electrode 514 and the upper electrode 534 for the purpose of preventing a short circuit with the movable electrode 524 can be replaced with insulating layers provided on the upper surface and the lower surface of the movable electrode 524.
  • an insulating layer may be provided on the upper surface of the lower electrode 514 and the upper surface of the movable electrode 524, or an insulating layer may be provided on the lower surface of the movable electrode 524 and the lower surface of the upper electrode.
  • the insulating layer that prevents the short circuit between the movable electrode 524, the lower electrode 514, and the upper electrode 534 can prevent the movable electrode 524, the lower electrode 514, and the upper electrode 534 from coming into direct contact with each other, It may be provided only on part of the electrode 514 or the upper electrode 534. In the example shown in FIGS. 28 and 29, since the movable electrode 524, the lower electrode 514, and the upper electrode 534 are all in contact with each other near the center, the insulating layers 641 and 644 are located at the center of the lower electrode 514 and the upper electrode 534. It is enough if it is formed in the vicinity.
  • the spatial light modulator 500 is formed by arranging a plurality of spatial light modulation elements 501 each having a rectangular reflecting mirror 544. Therefore, each of the spatial light modulation elements 501 has a rectangular planar shape, and has a structure in which the movable electrode 524 and the upper electrode 534 are supported by the four support columns 522 and 532 arranged at the four corners of the rectangle.
  • the planar shape of the spatial light modulator 501 is not limited to a rectangle.
  • the spatial light modulator 500 by making the reflecting mirror 544 into a triangle and filling the plane with the spatial light modulation element 501 having a triangular planar shape.
  • the lower electrode 514, the movable electrode 524, and the upper electrode 534 are also triangular, and the movable electrode 524 and the upper electrode 534 are supported by the three columns 522, 532 arranged at the apexes of the triangle. Accordingly, the columns 522 and 532 can be shared between the adjacent spatial light modulation elements 501.
  • the spatial light modulator 500 can be formed by making the reflecting mirror 544 hexagonal and filling the plane with the spatial light modulation element 501 having a hexagonal planar shape.
  • the lower electrode 514, the movable electrode 524, and the upper electrode 534 are each formed in a hexagonal shape, and the movable electrode 524 and the upper electrode 534 are supported by the six columns 522 and 532 arranged at the apexes of the hexagon.
  • a structure may be adopted in which three columns 522 and 532 are disposed at every other hexagonal apex to support the movable electrode 524 and the upper electrode 534. In either case, the columns 522 and 532 can be shared between the adjacent spatial light modulation elements 501.
  • FIG. 30 is a schematic plan view showing another shape of the movable portion 520.
  • the shape of the flexure 526 is not limited to the annular shape already shown.
  • the shape of the flexure 526 may be easily deformed by bending.
  • various shapes such as a spiral shape and a pantograph shape can be used as long as the movable electrode 524 does not prevent the movable portion 520 from being displaced with respect to the substrate 510.
  • FIG. 31 is a schematic plan view showing another shape of the movable portion 520.
  • the movable electrode 524 is adsorbed to either the lower electrode 514 or the upper electrode 534 and is predetermined. Is positioned. Therefore, the flexure 526 in the movable portion 520 may not strictly position the movable electrode 524.
  • the movable electrode 524 may be a cantilever structure.
  • the flexure 526 is sufficient if it can prevent the movable electrode 524 from falling off, fitting into the flexure 526, and need not be positioned.
  • the present invention is not limited to application to an exposure apparatus for manufacturing semiconductor devices.
  • the present invention can be widely applied to exposure apparatuses for manufacturing various devices such as (CCD, etc.), micromachines, thin film magnetic heads, and DNA chips.
  • the present invention can also be applied to an exposure apparatus that manufactures a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a lithography process.
  • the object to be exposed to which the energy beam is irradiated in each of the above embodiments is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, or a mask blank.
  • circuit patterns such as the step of device function / performance design, the step of forming a wafer from a silicon material, the step of exposing the wafer through the variable molding mask by the exposure apparatus of the above embodiment, and the etching And a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like.
  • 100 semiconductor exposure apparatus 200 control system, 210 main control unit, 220 stage control unit, 230 light source control unit, 240 modulation control unit, 300 illumination system, 301 optical system, 310 light source, 320 beam expander, 330 polarization control optical element 340 diffractive optical element, 352, 354 relay optical system, 360 micro lens array, 370 relay lens, 380 field stop, 382 COP, 391, 392, 393 reflector, 400 light drawing system, 410 projection optical system, 420 wafer stage 422, reflecting mirror, 430 stage drive unit, 440 interferometer, 450 semiconductor wafer, 500 spatial light modulator, 501 spatial light modulator, 502, 522, 532 support, 510 substrate, 514, lower electrode, 520 movable part, 524 possible Electrode, 526 flexure, 530 fixing part, 533 connection part, 534 upper electrode, 536 opening part, 540 reflection part, 542 support member, 544 reflection mirror, 610, 611, 613, 617, 618 sacrifice layer, 623, 624

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 空間光変調器であって、基板と、反射鏡、前記反射鏡を支持しつつ前記基板に対して変位する可動部、および、前記可動部よりも前記基板から離れた位置で前記可動部との間の静電力により前記可動部を吸着する上部電極、を有する第一光変調素子と、前記基板において前記第一光変調素子に隣接して配され、反射鏡、前記反射鏡を支持しつつ前記基板に対して変位する可動部、および、前記可動部よりも前記基板から離れた位置で前記可動部との間の静電力により前記可動部を吸着する上部電極、を有する第二光変調素子と、前記第一光変調素子の前記上部電極と、前記第二光変調素子の前記上部電極とを、前記基板に対して共通に支持する電極支持部とを備える。

Description

空間光変調器、光描画装置、露光装置およびデバイス製造方法
 本発明は、空間光変調器、光描画装置、露光装置およびデバイス製造方法に関する。
 変位する反射鏡を備えた空間光変調器がある(例えば特許文献1および2参照)。
 [特許文献1] 特開平09-101467号公報
 [特許文献2] 米国特許第6791735号明細書
 空間光変調器においては、部材を支持、固定する支柱と、電極等の駆動用部材とが、基板上のスペースを取り合う。このため、電極による駆動力、駆動効率等は、支柱による部材の支持剛性とトレードオフの関係にある。
 本発明の一態様においては、基板と、反射鏡、前記反射鏡を支持しつつ前記基板に対して変位する可動部、および、前記可動部よりも前記基板から離れた位置で前記可動部との間の静電力により前記可動部を吸着する上部電極、を有する第一光変調素子と、前記基板において前記第一光変調素子に隣接して配され、反射鏡、前記反射鏡を支持しつつ前記基板に対して変位する可動部、および、前記可動部よりも前記基板から離れた位置で前記可動部との間の静電力により前記可動部を吸着する上部電極、を有する第二光変調素子と、前記第一光変調素子の前記上部電極と、前記第二光変調素子の前記上部電極とを、前記基板に対して共通に支持する電極支持部とを備える空間光変調器が提供される。
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションもまた発明となり得る。
半導体露光装置100の模式図である。 空間光変調器500の模式的斜視図である。 空間光変調素子501の模式的分解斜視図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 導体層633の平面形状を示す図である。 空間光変調器500の製造過程を示す断面図である。 導体層633および絶縁層645の平面形状を示す図である。 空間光変調器500の製造過程を示す断面図である。 導体層導体層633、634の平面形状を示す図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の製造過程を示す断面図である。 空間光変調器500の断面図である。 空間光変調素子501の断面図である。 空間光変調素子501の動作を示す断面図である。 空間光変調素子501の動作を示す断面図である。 可動部520の形状を示す平面図である。 可動部520の形状を示す平面図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、半導体露光装置100の構造を示す模式図である。半導体露光装置100は、制御系200、照明系300および光描画系400を備える。光描画系400は、空間光変調器500を含む。
 制御系200は、主制御部210、ステージ制御部220、光源制御部230および変調制御部240を有する。ステージ制御部220はステージ駆動部430を、光源制御部230は光源310を、変調制御部240は空間光変調器500を、それぞれ個別に制御する。
 これに対して、主制御部210は、ステージ制御部220、光源制御部230および変調制御部240を含む半導体露光装置100全体を統括して制御する。また、主制御部210は、ユーザに対するインタフェイスを有し、ユーザからの指示を受け付けると共に、半導体露光装置100の動作状態を、半導体露光装置100の外部に向かって通知する。
 照明系300は、光源310および光学系301を有する。光源310は、発光のタイミングおよび発光強度を指示するトリガパルスを光源制御部230から供給されて、パルス発光する。光源310が発生するパルス光は略平行光束で、矩形のビーム断面形状を有する。
 光源310としては、例えば、波長193nmでパルス幅1ns程度のレーザ光を1~3MHz程度の周波数でパルス発光するYAGレーザ、半導体レーザ等を用いることができる。また、光源310としては、波長193nmでパルス幅50ns程度のレーザ光を4~6kHz程度の周波数でパルス発光するArFエキシマレーザ、波長248nmで発光するKrFエキシマレーザ、パルス点灯される発光ダイオード等も使用できる。
 光学系301は、ビームエキスパンダ320、偏光制御光学素子330、回折光学素子340、リレー光学系352、354、マイクロレンズアレイ360、リレーレンズ、視野絞り380等の光学部材を有する。ビームエキスパンダ320は、光源310が発生したパルス光のビーム径を拡大する。
 光学系301における偏光制御光学素子330は、パルス光の偏光状態を制御する。偏光制御光学素子330としては、パルス光の偏光方向を回転する1/2波長板、パルス光を円偏光に変換する1/4波長板、パルス光をランダム偏光(非偏光)に変換する複屈折性プリズム等が適宜選択されて配される。
 光学系301における回折光学素子340は、ターレットに保持された複数の素子のひとつがパルス光の光路に挿入される。回折光学素子340としては、通常照明用素子の他に、コヒーレンスファクター(σ値)の小さな照明光を生成する小σ照明用素子、2極照明用素子、4極照明用素子、輪帯照明用素子等が用いられる。なお、回折光学素子340として、反射形の空間変調素子を使用することもできる。
 光学系301において、回折光学素子340から射出されたパルス光は、リレー光学系352により、マイクロレンズアレイ360に導かれる。光学系301におけるマイクロレンズアレイ360は、多数の微小なレンズエレメントによりパルス光を二次元的に分割して、後側焦点面でもある光学系301の照明瞳面に、二次光源(面光源)を形成する。なお、リレー光学系352として、ズームレンズを用いてもよい。また、マイクロレンズアレイ360として、フライアイレンズを使用してもよい。
 照明瞳面に形成された二次光源から射出された照明光は、リレーレンズ370、視野絞り380および他のリレー光学系354を通じて、空間光変調器500に向かって照射される。視野絞り380は、投影光学系410の物体面と共役な面COP382から光軸方向にシフトした位置に設けられる。
 空間光変調器500に照射される照明光は、略均一な照度を有する。また、照明光は、空間光変調器500の反射面に対して、予め定められた一定の傾きを有する入射角αで入射する。
 なお、光学系301は、光路上に挿入された複数の反射鏡391、392、393を更に含む。反射鏡391、392、393は、照明光の光路を折り曲げることにより半導体露光装置100を小型化している。
 光描画系400は、空間光変調器500、投影光学系410およびウエハステージ420を含む。空間光変調器500は、変調制御部240による制御の下に、均一な照度で照射された照明光に照度分布を形成する。
 投影光学系410は、空間光変調器500側に非テレセントリックであり、ウエハステージ420側にテレセントリックな縮小投影光学系を形成する。また、投影光学系410に対して、空間光変調器500と、ウエハステージ420に搭載された半導体ウエハ450の表面は共役な関係に位置する。
 これにより、投影光学系410は、空間光変調器500により形成された分布を有する空間像の縮小像を半導体ウエハ450の表面に形成して、半導体ウエハ450に塗布されたレジスト膜を感光させる。半導体ウエハ450は、シリコン単結晶の他、化合物半導体等でもあり得る。
 投影光学系410は、例えば1/10~1/100程度の投影倍率βを有する。また、投影光学系410の解像度は、例えば、空間光変調器500の解像度の1倍~数倍程度である。換言すれば、空間光変調器500の解像度を向上させることにより、投影光学系410の解像度を向上させることができる。
 ところで、制御系200、照明系300、空間光変調器500および投影光学系410は、それぞれ、半導体露光装置100に対して固定されている。これに対して、ウエハステージ420は、ステージ駆動部430により駆動されて、図中に矢印で示す走査方向yに変位する。これにより、投影光学系410から射出された投影光により、半導体ウエハ450の表面を走査できる。
 なお、ウエハステージ420は、反射鏡422も搭載する。反射鏡422は、ウエハステージ420の移動方向に対して直交する反射面を有し、干渉計440から照射されたレーザ光を干渉計440に向かって反射する。これにより、ステージ制御部220は、ウエハステージ420の移動量を精度よく検出して、ステージ駆動部430を高精度に制御する。
 このように、半導体露光装置100においては、マスクまたはレチクルを用いることなく、マスクレス方式で形成したパターンの投影光により半導体ウエハ450を感光させることができる。また、ウエハステージ420を移動させることにより、半導体ウエハ450全面を感光させることができる。
 よって、露光を繰り返すことにより、半導体ウエハ450の表面に多数の露光パターンを形成することができる。また、ショット毎にパターンを変更することにより、投影光学系410の投影面積よりも大きなパターンを半導体ウエハ450上に形成することができる。更に、半導体ウエハ450の領域により、異なるパターンを形成することもできる。
 図2は、単独の空間光変調器500の模式的な斜視図である。空間光変調器500は、基板510と、基板510上に配列された複数の空間光変調素子501を備える。空間光変調素子501の各々は、MEMS(Micro Electro Mechanical Systems:微小電気機械システム)技術により形成され、支柱502と反射鏡544とをそれぞれ含む。
 支柱502の各々は、基板510に対して固定されており、反射鏡544等の、空間光変調素子501を形成する部材を支持する。これに対して、反射鏡544のそれぞれは、一辺数μmから百数十μm程度の正方形の反射面を有し、基板510に対して個別に近づきまたは遠ざかるように変位可能に支持されている。
 図3は、ひとつの反射鏡544に対応する空間光変調素子501単独の分解斜視図である。空間光変調素子501は、基板510、可動部520、固定部530および反射部540を備える。なお、図3において、基板510、可動部520および固定部530は見下ろした状態で描かれているが、反射部540は、形状の特徴を示すために見上げた状態が描かれている。
 なお、図3は、空間光変調素子501における機能要素の階層的なレイアウトを示す図であって、空間光変調素子501の物理的な構造を直截に示す図ではない。このため、図3に示す構造は、図4以降を参照して後述する実施形態において薄膜により形成する空間光変調素子501の層構造とは一致しない。
 基板510は、空間光変調素子501の駆動回路としてのCMOS回路が内部に造り込まれており、表面に下部電極514を有する。下部電極514は、基板510内部のCMOS回路に結合されて、CMOS回路から駆動電圧を印可される。
 可動部520は、支柱522、フレクシャ526および可動電極524を有する。支柱522は4本設けられ、図中に点線で示すように、基板510上で空間光変調素子501が占める矩形の領域の四隅近傍に固定される。支柱522は、図2に示した支柱502の一部をなす。
 フレクシャ526は、単一の可動電極524と4本の支柱522とをそれぞれ結合する。フレクシャ526は、それぞれ環状の部分を有して、変形することにより可動電極524の支柱522に対する変位を許容する。
 可動電極524は、フレクシャ526を介して支柱522から支持されることにより、基板510に対して変位可能に配される。可動電極524は、四隅から放射状に配された4本のフレクシャ526に支持されて、基板510に対して平行に配される。可動電極524が変位する場合は、図中に矢印zで示す、基板510に対して近づきあるいは遠ざかる方向に変位する。
 固定部530は、支柱532および上部電極534を有する。支柱532は、可動部520の支柱522に連結されて、支柱522を基板510から遠ざかる方向に延長する。これにより、支柱532は、上部電極534を、基板510からも、可動電極524からも離れた位置に支持する。支柱532は、図2に示した支柱502の一部をなす。
 上部電極534は、連結部533により支柱532に連結されて、基板510と平行に配される。連結部533は短いので、上部電極534は、支柱532に対して変位することなく固定される。また、上部電極534は、4本の支柱532の間に支持されているので、外部から機械的な負荷がかかった場合も変形し難い。
 更に、上部電極534は、略中央に、開口部536を有する。開口部536は、上部電極534を厚さ方向に貫通する。これにより、後述する反射部540を、可動部520の可動電極524に結合できる。
 反射部540は、支持部材542および反射鏡544を有する。反射鏡544は、空間光変調素子501の大部分を覆う矩形の平面を有する。反射鏡544において、基板510と反対側の面には、金属薄膜等により形成された反射率の高い反射面が設けられる。
 支持部材542の図中上端は、反射鏡544において、反射面とは反対の側、即ち、基板510に面した側の略中央に、反射鏡544に対して一体的に結合される。また、支持部材542は、反射鏡544から基板510に向かって延在し、上部電極534の開口部536を貫通した後、可動電極524の略中央に結合される。これにより、反射部540は、可動電極524と一体的に、基板510に対して変位可能に支持される。
 なお、図示のレイアウトから判るように、空間光変調素子501の駆動に関与する下部電極514、可動電極524および上部電極534と、可動電極524および上部電極534を支持する支柱522、532とは、基板510の面方向についてスペースを取り合う関係にある。このため、例えば、上部電極534の支持剛性を高くする目的で支柱522、532の占有面積または本数を増加すると、下部電極514、可動電極524および上部電極534の面積が小さくなり、空間光変調素子501の駆動力または駆動効率が低下する。一方、空間光変調素子501の駆動力を向上させる目的で下部電極514、可動電極524および上部電極534の面積を拡大すると、支柱522、532の面積または本数が減少して、特に上部電極534の支持剛性が低下する。
 図4から図26までは、空間光変調素子501を含む空間光変調器500の製造過程を段階毎に示す断面図である。これらの図面は、矩形の空間光変調素子501の平面図における対角線において切った断面により示される。ただし、図18、20、22は、製造過程にある空間光変調器500の平面図である。また、図11から図26までの間は、複数の層をまとめて犠牲層610、導体層630または絶縁層640と表すことにより層構造の理解を助ける。
 なお、製造過程の空間光変調器500においては、空間光変調素子501の要素が、完成した状態とは異なる形状または状態で含まれている場合がある。そこで、図4から図25までの説明においては、これらの図面に固有の参照番号を付与して説明した後に、図26において、図1から図3までに示した空間光変調器500の要素との対応関係を説明する。
 空間光変調器500を製造する場合は、図4に示すように、平坦な基板510を用意する。基板510の材料としては、シリコン単結晶基板の他、化合物半導体基板、セラミックス基板等、平坦な表面を有する部材を広く使用できる。図示の例では、基板510はシリコン単結晶により形成され、空間光変調器500を駆動するCMOS回路が基板510中に既に形成されている。
 まず、図5に示すように、基板510の表面に犠牲層611が形成される。犠牲層611は、例えば、スピンコート、スプレイコート等により塗布したレジストをプリベイクして形成でき、基板510全体を略均一な厚さで覆う。この犠牲層611を、フォトリソグラフィによりパターニングすることにより、基板510上に導体材料、絶縁材料等を堆積させる場合に用いるマスクを形成できる。
 図6は、犠牲層611により形成したマスクを用いて基板510上に堆積させた導体材料により形成された導体層631を示す。導体層631の一部は、最終的に、下部電極514を形成する。また、導体層631の他の一部は、可動電極524または上部電極534に電気的に結合される。
 次に、図7に示すように、導体層631の一部を覆う絶縁層641を形成する。絶縁層641は、物理気相析出法、化学気相析出法等により基板510および導体層631の上に堆積させた絶縁層641を、フォトリソグラフィにより形成したレジスト層等をマスクとするドライエッチングまたはウエットエッチングによりパターニングして形成できる。
 続いて、図8に示すように、導体層631の一部を絶縁層641により覆った状態で、基板510、導体層631および絶縁層641の表面全体を、再び犠牲層613により覆って平坦化する。平坦化された犠牲層613の表面の位置は、可動電極524における基板510に対向する面の高さと等しい。なお、犠牲層613は、犠牲層611と同様の方法で形成できる。
 次に、図9に示すように、犠牲層613をパターニングして開口パターン623を形成して、導体層631のうち、絶縁層641に覆われていない領域の一部を露出させる。開口パターン623は、露出する導体層631よりも狭く、導体層631の中央部分を露出させ、縁部は犠牲層613に覆われた状態にする。
 次に、図10に示すように、犠牲層613の表面全体と、導体層631の露出部分との全体に導体材料を堆積させ、導体層632を形成する。導体層632は、例えば、TiAl合金等の金属材料を、物理気相析出法、化学気相析出法、鍍金法等で堆積させることにより形成できる。形成された導体層632の一部は、最終的に可動部520になる。
 次に、図11に示すように、導体層632、631の一部を取り除く。導体層632、631は、マスクを用いたプラズマエッチング、リアクティブイオンエッチング、イオンミリング等のドライエッチッグにより同時に取り除くことができる。これにより、内部に基板510の表面が露出した開口パターン624が形成される。
 次に、図12に示すように、開口パターン625の内部に、更に絶縁層643を堆積させる。これにより、導体層632の側面と、導体層632の上面の一部が、絶縁層643により覆われる。絶縁層643は、先に形成した絶縁層641と同様の方法および材料により形成できる。
 次に、図13に示すように、絶縁層643の一部を除去する。絶縁層643は、マスクを用いたプラズマエッチング、リアクティブイオンエッチング、イオンミリング等のドライエッチッグにより同時に取り除くことができる。これにより、導体層632から絶縁された状態で、基板510の表面の一部を露出させる開口パターン626が形成される。
 続いて、図14に示すように、基板510、導体層632、絶縁層643の表面全体を犠牲層617により覆って平坦化する。平坦化された犠牲層617の表面の位置は、上部電極534における可動電極524に対向する面の位置と等しい。犠牲層613も、他の犠牲層611等と同様の方法で形成できる。
 次に、図15に示すように、犠牲層617の表面に、パターニングされた絶縁層644を形成する。絶縁層644は、他の絶縁層644と同様に、マスクを用いたプラズマエッチング、リアクティブイオンエッチング、イオンミリング等のドライエッチッグにより同時に取り除くことができる。こうして形成された絶縁層644は、上部電極534のパターンと略同じ形状を有し、導体層632の上面と略同じ外形を有すると共に、中央に開口を有して環状をなす。
 次に、図16に示すように、導体層632が途切れている領域において、犠牲層617の一部を除去する。これにより、犠牲層617に開口パターン627が形成される。また、絶縁層643が水平に延在する部分の一部と、絶縁層643の内側に基板510を露出させる開口パターン626とが外部に向かって現れる。
 続いて、図17に示すように、絶縁層643、644に重なるように、導体層633が形成される。また、導体層633は、導体層632の側面を覆う絶縁層643と、犠牲層617の上面に形成された絶縁層644との間に出する犠牲層617の側面も覆う。更に、導体層633は、絶縁層644の上面において、一部が途切れたスリットパターン660を有する。
 図18は、図17に示した状態における導体層633の平面形状を模式的に示す図である。導体層633は、最終的に上部電極534になる環状の部分と、上部電極534になる部分を包囲して最終的に支柱532になる部分と、支柱532になる部分のひとつと上部電極534になる部分とを連結する連結部533になる部分とを含む。また、上部電極534になる部分のひとつを包囲する4つの支柱532になる部分のうち、他の3つは、スリットパターン660を挟んで、上部電極534になる部分から分離されている。
 次に、図19に示すように、導体層632が分離している領域に、絶縁層645を形成する。図示の断面において、絶縁層645の一端は、スリットパターン660の内側において、導体層633の下層に位置する絶縁層644に接する。よって、スリットパターン660の内部において、導体層633の一方の端部は、絶縁層644、645により覆われて、他方の端部から絶縁される。
 また、絶縁層645は、開口パターン627の近傍において、導体層633の表面を覆う。このような絶縁層645は、他の絶縁層641~644と同じ方法および材料で形成できる。
 図20は、図19に示した状態における絶縁層645の平面形状を模式的に示す図である。導体層633は、最終的に支柱532になる4つの部分の全てにおいて上面を覆う。これにより、絶縁層645は、更に上の層から導体層633を絶縁する。
 次に、図21に示すように、スリットパターン660の上面に、導体層634を形成する。導体層634は、スリットパターン660を挟んで、導体層633および絶縁層645の上面にまたがる。導体層634は、他の導体層631~633と同じ方法および材料で形成できる。
 図22は、図21に示した状態における導体層633、634と絶縁層645との位置関係を模式的に示す図である。導体層633において上部電極534になる部分の周囲には、支柱532になる4つの部分が配される。
 これら支柱532になる部分のうちのひとつは、図18を参照して説明した通り、導体層633において連結部533になる部分により機械的にも電気的にも結合される。しかしながら、支柱532になる部分のうちの他の3つは、図21に示した段階において形成された導体層634により上部電極534に連結される。
 導体層634の各々は絶縁層645に重ねて形成されているので、絶縁層645に覆われた導体層633に対して絶縁される。換言すれば、上部電極534を包囲する4つの支柱532のうち、ひとつは上部電極534に電気的に結合され、他の3本は結合されない。よって、空間光変調器500に形成される複数の上部電極534は、互いに電気的に独立している。
 一方、上部電極534の各々は、導体層633または導体層634のいずれかにより、上部電極534を包囲する4つの支柱532の全てに対して、機械的に結合される。よって、上部電極534は複数の支柱532により強固に位置決めされる。また、上部電極534を変位させる負荷が上部電極534に作用した場合に、複数の支柱532の間で上部電極534に対して張力が作用する。これにより、上部電極534は、機械的な負荷が作用した場合に変形し難い。
 更に、空間光変調素子501の各々において可動電極524および上部電極534を支持する支柱532は、隣接する空間光変調素子501の可動電極524および上部電極534を支持する支柱532としても機能する。よって、空間光変調器500全体では支柱532の数を抑制して、光の変調に寄与する面積の割合を増やすことができる。
 一方、導体層634の各々は、導体層633のうち、上部電極534になる部分に対しては電気的にも結合されている。よって、導体層633および導体層634を合わせた上部電極534の形状は、上部電極534の中央に位置する開口部536の中心に対して点対称な形状になる。よって、上部電極534に対して作用する静電力に対して偏りが生じることが抑制される。
 次に、図23に示すように、既存の犠牲層617、導体層633、634および絶縁層645を覆う犠牲層618を形成して全体を平坦化する。この段階で形成された犠牲層618の表面は、基板510に対して、反射鏡544の下面と同じ高さに位置する。
 続いて、図24に示すように、犠牲層618をパターニングして、導体層632の中央に達する開口パターン628を形成する。ここで、開口パターン628の幅は、導体層633および絶縁層644を貫通する開口パターンの幅よりも狭く、導体層633および絶縁層644の側端部は、犠牲層617、618の内部に埋没している。一方、開口パターン628内には、可動電極524になる導体層632の図中上面が現れる。
 次に、図25に示すように、犠牲層618、617および導体層632の表面全体に、反射材料をパターニングして堆積させ、反射層650を形成する。反射層650の図中水平部分は、導体層632相互の間隙に重なる領域において分離されている。また、相互に分離された領域毎に、反射層650は、開口パターン628の内部において導体層632に結合される。
 反射層650は、金属材料により形成してもよい。また、反射層650は、誘電体多層膜により形成してもよい。更に、反射層650は、アモルファスシリコン、シリコン窒化物、シリコン酸化物等の無機材料層と、金属層または誘電体多層膜とを積層して形成した複合薄膜により形成してもよい。反射層650または反射層650を形成する薄膜は、各種の物理気相析出法、化学気相析出法により形成できる。
 なお、反射層650を形成する場合に、反射鏡544の下地になる犠牲層618の表面を鏡面研磨してもよい。また、反射層650を複合薄膜により形成する場合は、照射光を直接に反射する金属層または誘電体多層膜を形成する前に、下地を鏡面研磨してもよい。これにより、反射鏡544の平坦性を向上させ、最終的に得られる空間光変調器500の反射率を向上できる。
 次に、図26に示すように、全ての犠牲層613、617、618を除去して、空間光変調器500が完成する。図示の断面においては、一部の犠牲層613が、導体層632により他の犠牲層617、618から分離されているように見える。しかしながら、図3に示したように、可動部520を形成する導体層632は、犠牲層613を隈なく覆っているわけではない。よって、全ての犠牲層613、617、618は連続しており、気体または液体を用いたエッチングにより一括して除去できる。
 なお、図26には、図3に示した空間光変調素子501の各要素の参照番号を点線で囲って併せて示す。図示のように、導体層631の一部は、下部電極514を形成する。また、導体層632は、可動部520の支柱522および可動電極524を形成する。
 更に、導体層633の一部は、固定部530の支柱532を形成する。また更に、導体層633の他の一部と導体層634が、上部電極534を形成する。そして、反射層650は、支持部材542と反射鏡544とを形成する。
 ここで、導体層632により形成された支柱522は、互いに隣接する空間光変調素子501の可動電極524を共通に支持する。これにより、空間光変調器500における複数の上部電極534のひとつひとつが四隅で支柱532に支持されて、位置決めを確実にすると共に高い支持剛性を確保できる。また、支柱532の数が上部電極534の数に対して著しく多くなることが抑制され、基板510の表面において下部電極514に割くことができる面積を支柱532が削減することを防止できる。
 図中に現れる複数の空間光変調素子501の各々において、下部電極514、可動電極524および上部電極534のそれぞれは、空間光変調素子501毎に個別に基板510に結合される。よって、基板510に造り込まれたCMOS回路により、空間光変調素子501毎に、且つ、下部電極514、可動電極524および上部電極534に対して個別に電圧を印可できる。
 なお、図示の例では、可動電極524、上部電極534および反射鏡544はいずれも平坦な断面形状を有する。しかしながら、可動電極524、上部電極534および反射鏡544に段差状またはリブ状の部分を設けて、可動電極524、上部電極534および反射鏡544の曲げ剛性を向上してもよい。
 また、上記の例では、単独の空間光変調器500の作製について説明しているが、複数の空間光変調素子501を複数含む空間光変調器500を1枚のウエハに複数形成した後、ダイシングにより切り分けて多数の空間光変調器500を一括して作製してもよい。これにより生産性を向上させて、空間光変調器500の価格を低廉化できる。
 更に、複数の空間光変調器500を一括して作製する場合は、ダイシングが終了するまで、反射部540を覆った犠牲層618を残しておくことが好ましい。これにより、ダイシングで生じた切子が反射鏡544に付着することを防止できる。
 図27は、完成した空間光変調器500におけるひとつの空間光変調素子501を示す断面図である。空間光変調素子501の各々において、下部電極514、可動電極524および上部電極534は、それぞれ、基板510に造りこまれたCMOS回路に接続される。これにより、下部電極514、可動電極524および上部電極534を、それぞれ個別の電位にすることができる。
 図示の例においては、可動電極524は、基準電位に直結されて、常時基準電位を保つ。なお、図示の場合は、隣接する空間光変調素子501の可動電極524も個別に基準電位に接続されている。しかしながら、空間光変調器500において空間光変調素子501相互の可動電極524を接続することにより、基板510内の基準電位への接続を一カ所にまとめてもよい。これにより、基板510内のCMOS回路の配線を簡素化できる。
 図28は、空間光変調素子501において、下部電極514に駆動電圧が印可された状態を示す断面図である。下部電極514に駆動電圧が印可されると、基準電位に設定された可動電極524と下部電極514との間に電位差が生じる。これにより、下部電極514は、可動電極524との間に発生した静電力により可動電極524を吸着し、可動電極524と一体的に変位する反射部540を基板510に向かって引きつける。
 下部電極514に吸着された可動電極524は、下部電極514に当接して反射部540を位置決めする。このとき、下部電極514の表面に設けられた絶縁層641が、下部電極514と可動電極524との短絡を防止する。
 なお、下部電極514に駆動電圧を印可する期間は、上部電極534に対して駆動電圧を印可しない。更に、この場合、上部電極534を基準電位に接続して、上部電極534と可動電極524との電位差を解消することが好ましい。
 図29は、空間光変調素子501において、上部電極534に駆動電圧が印可された状態を示す断面図である。上部電極534に駆動電圧が印可されると、基準電位に設定された可動電極524と上部電極534との間に電位差が生じる。これにより、上部電極534は、可動電極524との間に発生した静電力により可動電極524を吸着し、可動電極524と一体的に変位する反射部540を、基板510から離れた位置に向かって引きつける。
 やがて、上部電極534に吸着された可動電極524は、上部電極534に当接して位置決めされる。これにより、可動電極524と一体的に変位する反射部540も、基板510から離れた位置で位置決めされる。このとき、上部電極534の図中下面に設けられた絶縁層644が、上部電極534と可動電極524との短絡を防止する。
 また、上部電極534は、4箇所の支柱532の間に支持されている。更に、上部電極534および支柱532の各々は、変形し難い短い連結部533により連結されている。よって、フレクシャ526の弾性に抗して可動電極524を吸着した場合も、上部電極534の位置が変化し、あるいは、上部電極534自体が変形することが防止される。よって、上部電極534に当接した可動電極524および反射部540は、基板510から離れた位置でも精度よく位置決めされる。
 なお、上部電極534に駆動電圧を印可する期間は、下部電極514に対しては駆動電圧を印可しない。更に、この場合、下部電極514を基準電位に接続して、下部電極514と可動電極524との電位差を解消することが好ましい。
 また、複数の空間光変調素子501を含む空間光変調器500において、可動電極524は互いに同じ基準電位に接続される。よって、空間光変調器500内において可動電極524および可動電極を支持する支柱522はすべて電気的に結合されてもよい。この場合は、空間光変調器500全体で、導体層632が相互に電気的に結合されてもよい。
 更に、図27から図29までを参照して説明した上記の例では、可動電極524を基準電位にして、下部電極514および上部電極534に駆動電圧を印可する構造とした。しかしながら、下部電極514または上部電極534の電位を固定して、他の電極に駆動電圧を印可してもよい。
 その場合、電位を基準電位に固定される下部電極514または上部電極534は、空間光変調素子501相互で互いに電気的に結合されてもよい。特に、上部電極534が共通に基準電位に結合される構造の場合は、空間光変調素子501相互で上部電極534を絶縁する絶縁層645の形成を省略できる。
 また、可動電極524との短絡を防止する目的で下部電極514および上部電極534に設けた絶縁層641、644は、可動電極524の上面および下面に設けた絶縁層に代えることができる。更に、下部電極514の上面および可動電極524の上面に絶縁層を設ける構造、可動電極524の下面および上部電極の下面に絶縁層を設ける構造であってもよい。
 更に、可動電極524と下部電極514および上部電極534との短絡を防止する絶縁層は、可動電極524と下部電極514および上部電極534とが直接に接触することを防止できれば、可動電極524と下部電極514または上部電極534の一部に設けるにとどめてもよい。図28および図29に示した例では、可動電極524と下部電極514および上部電極534とは、いずれも中央付近で接触するので、絶縁層641、644は、下部電極514および上部電極534の中央付近に形成すれば足りる。
 また更に、上記の例では、それぞれが矩形の反射鏡544を有する複数の空間光変調素子501を配列することにより空間光変調器500を形成した。このため、空間光変調素子501のそれぞれも矩形の平面形状を有し、矩形の四隅に配置した4本の支柱522、532により可動電極524および上部電極534を支持する構造とした。しかしながら、空間光変調素子501の平面形状は、矩形には限らない。
 例えば、反射鏡544を三角形にして、三角形の平面形状を有する空間光変調素子501により平面を埋めて空間光変調器500を形成することができる。この場合、下部電極514、可動電極524および上部電極534もそれぞれ三角形にして、この三角形の頂点に配置した3本の支柱522、532により可動電極524および上部電極534を支持する構造とする。これにより、隣接する空間光変調素子501の間で、支柱522、532を共用することができる。
 また、例えば、例えば、反射鏡544を六角形にして、六角形の平面形状を有する空間光変調素子501により平面を埋めて空間光変調器500を形成することもできる。この場合、下部電極514、可動電極524および上部電極534もそれぞれ六角形にして、この六角形の頂点に配置した6本の支柱522、532により可動電極524および上部電極534を支持する構造とする。また、六角形の頂点の一つ置きに3本の支柱522、532を配置して、可動電極524および上部電極534を支持する構造としてもよい。いずれの場合も、隣接する空間光変調素子501の間で、支柱522、532を共用することができる。
 図30は、可動部520の他の形状を示す模式的な平面図である。可動部520において、フレクシャ526の形状は、既に示した環状の形状に限られない。例えば、図30に示すように、フレクシャ526の形状は、屈曲することにより変形しやすくしたものでもよい。更に、可動部520において可動電極524が基板510に対して変位することを妨げない形状であれば、渦巻き状、パンタグラフ状等、さまざまな形状にすることができる。
 図31は、可動部520の他の形状を示す模式的な平面図である。図27から図29を参照して説明したように、空間光変調器500が動作している場合、可動電極524は、下部電極514または上部電極534のいずれかに吸着されて、予め定められた位置に位置決めされている。よって、可動部520におけるフレクシャ526は、可動電極524を厳密に位置決めしなくてもよい。
 そこで、図31に示すように、可動部520において、可動電極524を片持ち構造としても差し支えない。即ち、フレクシャ526は、可動電極524の脱落、嵌まり込み等を防止できれば足り、位置決めはしなくてもよい。
 本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をリソグラフィ工程を用いて製造する露光装置にも適用することができる。以上のように、上記各実施形態でエネルギビームが照射される露光対象の物体はウエハに限られるものではなく、ガラスプレート、セラミック基板、あるいはマスクブランクスなど他の物体でも良い。
 半導体デバイスは、デバイスの機能・性能設計を行うステップ、シリコン材料からウエハを形成するステップ、上記の実施形態の露光装置により可変成形マスクを介してウエハを露光するステップ、エッチング等の回路パターンを形成するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、及び検査ステップ等を経て製造される。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書および図面における手順に関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 半導体露光装置、200 制御系、210 主制御部、220 ステージ制御部、230 光源制御部、240 変調制御部、300 照明系、301 光学系、310 光源、320 ビームエキスパンダ、330 偏光制御光学素子、340 回折光学素子、352、354 リレー光学系、360 マイクロレンズアレイ、370 リレーレンズ、380 視野絞り、382 COP、391、392、393 反射鏡、400 光描画系、410 投影光学系、420 ウエハステージ、422 反射鏡、430 ステージ駆動部、440 干渉計、450 半導体ウエハ、500 空間光変調器、501 空間光変調素子、502、522、532 支柱、510 基板、514 下部電極、520 可動部、524 可動電極、526 フレクシャ、530 固定部、533 連結部、534 上部電極、536 開口部、540 反射部、542 支持部材、544 反射鏡、610、611、613、617、618 犠牲層、623、624、625、626、627、628 開口パターン、630、631、632、633、634 導体層、640、641、643、644、645 絶縁層、650 反射層、660 スリットパターン

Claims (13)

  1.  基板と、
     反射鏡、前記反射鏡を支持しつつ前記基板に対して変位する可動部、および、前記可動部よりも前記基板から離れた位置で前記可動部との間の静電力により前記可動部を吸着する上部電極、を有する第一光変調素子と、
     前記基板において前記第一光変調素子に隣接して配され、反射鏡、前記反射鏡を支持しつつ前記基板に対して変位する可動部、および、前記可動部よりも前記基板から離れた位置で前記可動部との間の静電力により前記可動部を吸着する上部電極、を有する第二光変調素子と、
     前記第一光変調素子の前記上部電極と、前記第二光変調素子の前記上部電極とを、前記基板に対して共通に支持する電極支持部と
    を備える空間光変調器。
  2.  前記第一光変調素子および前記第二光変調素子の各々の前記上部電極のそれぞれは、複数の前記電極支持部の間に支持される請求項1に記載の空間光変調器。
  3.  前記第一光変調素子および前記第二光変調素子の各々の前記上部電極は、前記電極支持部に沿って配された中継配線層を介して、前記基板上に設けられた電気回路と電気的に結合される請求項1または2に記載の空間光変調器。
  4.  前記第一光変調素子の前記上部電極に結合された前記中継配線層は、前記第二光変調素子の前記上部電極に対して電気的に絶縁される請求項3に記載の空間光変調器。
  5.  前記第一光変調素子および前記第二光変調素子の各々において、前記上部電極は、前記反射鏡を支持する反射鏡支持部に対して対称な導体パターンを有する請求項1から請求項4までのいずれか一項に記載の空間光変調器。
  6.  前記第一光変調素子および前記第二光変調素子の各々において、前記上部電極および前記可動部の少なくとも一方は、前記上部電極および前記可動部の間を絶縁する絶縁層を更に有する請求項1から5までのいずれか一項に記載の空間光変調器。
  7.  前記第一光変調素子および前記第二光変調素子の各々は、
     前記基板の表面に固定され、前記可動部との間の静電力により前記可動部を吸着する下部電極を更に備える請求項1から6までのいずれか一項に記載の空間光変調器。
  8.  前記可動部の前記基板に対する変位量は、前記反射鏡が反射する光の波長の整数倍に対して前記波長の1/4の差を有する請求項1から7までのいずれか一項に記載の空間光変調器。
  9.  前記上部電極の各々は、一直線上に並ばない少なくとも3つの前記電極支持部により支持される請求項1から8までのいずれか一項に記載の空間光変調器。
  10.  前記可動部は、単一の連結部により、前記基板に対して連結される請求項1から9までのいずれか一項に記載の空間光変調器。
  11.  請求項1から10のいずれか1項に記載の空間光変調器を用いて光像を描画する光描画装置。
  12.  請求項11に記載の光描画装置を用いて半導体を露光する露光装置。
  13.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程では、請求項12に記載の露光装置を用いて露光を行うデバイス製造方法。
PCT/JP2014/080938 2013-11-27 2014-11-21 空間光変調器、光描画装置、露光装置およびデバイス製造方法 WO2015080057A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015550907A JP6070860B2 (ja) 2013-11-27 2014-11-21 空間光変調器、光描画装置、露光装置およびデバイス製造方法
US15/164,225 US9910268B2 (en) 2013-11-27 2016-05-25 Spatial light modulator, photolithographing apparatus, exposure apparatus, and method of manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013245010 2013-11-27
JP2013-245010 2013-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/164,225 Continuation US9910268B2 (en) 2013-11-27 2016-05-25 Spatial light modulator, photolithographing apparatus, exposure apparatus, and method of manufacturing device

Publications (1)

Publication Number Publication Date
WO2015080057A1 true WO2015080057A1 (ja) 2015-06-04

Family

ID=53198998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080938 WO2015080057A1 (ja) 2013-11-27 2014-11-21 空間光変調器、光描画装置、露光装置およびデバイス製造方法

Country Status (4)

Country Link
US (1) US9910268B2 (ja)
JP (1) JP6070860B2 (ja)
TW (1) TWI646353B (ja)
WO (1) WO2015080057A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338076B (zh) * 2020-03-31 2022-06-14 吉林省广播电视研究所(吉林省广播电视局科技信息中心) 微机电纵深成像集成电路及成像方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862518A (ja) * 1994-07-29 1996-03-08 Texas Instr Inc <Ti> マイクロメカニカルデバイス用支柱
JPH09101467A (ja) * 1995-05-31 1997-04-15 Texas Instr Inc <Ti> 空間光変調器
JP2003005102A (ja) * 2001-04-19 2003-01-08 Nikon Corp 薄膜弾性構造体及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
WO2009060906A1 (ja) * 2007-11-09 2009-05-14 Nikon Corporation マイクロアクチュエータ、光学デバイス、表示装置、露光装置、及びデバイス製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433917B1 (en) * 2000-11-22 2002-08-13 Ball Semiconductor, Inc. Light modulation device and system
US20020149834A1 (en) * 2000-12-22 2002-10-17 Ball Semiconductor, Inc. Light modulation device and system
US6624880B2 (en) * 2001-01-18 2003-09-23 Micronic Laser Systems Ab Method and apparatus for microlithography
US6791735B2 (en) * 2002-01-09 2004-09-14 The Regents Of The University Of California Differentially-driven MEMS spatial light modulator
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
JP5751332B2 (ja) * 2011-08-25 2015-07-22 株式会社ニコン 空間光変調素子の製造方法、空間光変調素子、空間光変調器および露光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862518A (ja) * 1994-07-29 1996-03-08 Texas Instr Inc <Ti> マイクロメカニカルデバイス用支柱
JPH09101467A (ja) * 1995-05-31 1997-04-15 Texas Instr Inc <Ti> 空間光変調器
JP2003005102A (ja) * 2001-04-19 2003-01-08 Nikon Corp 薄膜弾性構造体及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
WO2009060906A1 (ja) * 2007-11-09 2009-05-14 Nikon Corporation マイクロアクチュエータ、光学デバイス、表示装置、露光装置、及びデバイス製造方法

Also Published As

Publication number Publication date
US9910268B2 (en) 2018-03-06
JP6070860B2 (ja) 2017-02-01
TW201527797A (zh) 2015-07-16
JPWO2015080057A1 (ja) 2017-03-16
TWI646353B (zh) 2019-01-01
US20160266378A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP5751332B2 (ja) 空間光変調素子の製造方法、空間光変調素子、空間光変調器および露光装置
US7525718B2 (en) Spatial light modulator using an integrated circuit actuator and method of making and using same
US8699116B2 (en) Microactuator, optical device, display apparatus, exposure apparatus, and method for producing device
JP5630015B2 (ja) 空間光変調器、露光装置およびそれらの製造方法
TWI243968B (en) Lithographic apparatus and device manufacturing method
US8947634B2 (en) Apparatus for supporting an optical element, and method of making same
WO2011080883A1 (ja) 電気機械変換器、空間光変調器、露光装置およびそれらの製造方法
JP2011137961A (ja) 空間光変調器、露光装置およびそれらの製造方法
US9645390B2 (en) Spatial light modulator and exposure apparatus
WO2015080057A1 (ja) 空間光変調器、光描画装置、露光装置およびデバイス製造方法
JP2011138888A (ja) 電気機械変換器、空間光変調器、露光装置およびそれらの製造方法
JP5549222B2 (ja) 空間光変調器、露光装置およびそれらの製造方法
JP6358265B2 (ja) 空間光変調素子モジュール、光描画装置、露光装置、空間光変調素子モジュール製造方法およびデバイス製造方法
JP5509912B2 (ja) 空間光変調器、照明装置、露光装置およびそれらの製造方法
WO2013027405A1 (ja) 空間光変調素子および露光装置
JP5740819B2 (ja) 空間光変調器の製造方法、空間光変調器、照明光発生装置および露光装置
TW201439589A (zh) 空間光調變器及其驅動方法、以及曝光方法及裝置
JP5573212B2 (ja) 空間光変調素子、空間光変調素子の製造方法、照明光発生装置及び露光装置
JP2013171213A (ja) 空間光変調器及びその制御方法、並びに露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866422

Country of ref document: EP

Kind code of ref document: A1