WO2015079792A1 - 非可逆回路素子 - Google Patents

非可逆回路素子 Download PDF

Info

Publication number
WO2015079792A1
WO2015079792A1 PCT/JP2014/075158 JP2014075158W WO2015079792A1 WO 2015079792 A1 WO2015079792 A1 WO 2015079792A1 JP 2014075158 W JP2014075158 W JP 2014075158W WO 2015079792 A1 WO2015079792 A1 WO 2015079792A1
Authority
WO
WIPO (PCT)
Prior art keywords
center electrode
variable capacitance
port
capacitance element
parallel
Prior art date
Application number
PCT/JP2014/075158
Other languages
English (en)
French (fr)
Inventor
大輔 大久保
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015079792A1 publication Critical patent/WO2015079792A1/ja
Priority to US15/142,423 priority Critical patent/US9634368B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/36Isolators

Definitions

  • the present invention relates to non-reciprocal circuit elements, and more particularly to non-reciprocal circuit elements such as isolators and circulators used in the microwave band.
  • nonreciprocal circuit elements such as isolators and circulators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Utilizing this characteristic, for example, an isolator is used in a transmission circuit unit of a mobile communication device such as a mobile phone.
  • the isolation characteristic shifts to the high frequency side when the temperature is higher than 25 ° C., which is normal temperature, and shifts to the low frequency side when the temperature is lower. Further, in the example shown in FIG. 10, when the temperature becomes higher or lower than 25 ° C., which is normal temperature, the insertion loss characteristic also varies according to the temperature change.
  • An object of the present invention is to provide a non-reciprocal circuit device capable of suppressing characteristic fluctuations with respect to temperature with a simple configuration without changing the material of a microwave magnetic body or magnet.
  • the nonreciprocal circuit device is A magnetic material to which a DC magnetic field is applied; A plurality of central electrodes arranged to intersect with each other in a magnetically insulated state; A termination resistor connected in parallel with one of the central electrodes between the input and output ports; A capacitive element having a variable capacitance connected between the input / output ports and in parallel with the termination resistor; A thermistor element connected in series with the variable capacitance element to the control power supply circuit of the variable capacitance element; It is provided with.
  • the non-reciprocal circuit device is a two-port type isolator, and the non-reciprocal circuit devices according to the second and third embodiments are three-port type circulators.
  • any nonreciprocal circuit element by selecting a thermistor element with appropriate temperature characteristics, it is necessary to develop a capacitance value to cope with the temperature change of the variable capacitance element with a constant control voltage. Can be applied to the variable capacitance element. As a result, fluctuations in characteristics with respect to temperature changes can be suppressed, and there is no need to change the material of the magnetic material for the microwave or the magnet or to perform complicated control.
  • the nonreciprocal circuit device 1A is a lumped constant type two-port isolator, and a ferrite 32 to which a DC magnetic field G is applied by a permanent magnet (not shown) Are provided with a first center electrode 35 (inductor L1) and a second center electrode 36 (inductor L2) disposed so as to cross each other in an insulated state.
  • the first center electrode 35 has one end connected to the input port P1 and the other end connected to the output port P2.
  • the second center electrode 36 has one end connected to the output port P2 and the other end connected to the ground port P3.
  • a termination resistor R is connected in parallel with the first center electrode 35 between the input port P1 and the output port P2, and a variable capacitance capacitor C11 is connected between the input port P1 and the output port P2.
  • a matching capacitor C2 is connected in parallel with the second center electrode 36 between the ground port P3.
  • a capacitor CS1 for matching input impedance and a capacitor CA dropped to ground are connected to the input port P1, and a capacitor CS2 for matching output impedance is connected to the output port P2.
  • the thermistor element S is connected in series with the capacitor C11 to the control power supply circuit (DC power supply E) of the variable capacitance capacitor C11.
  • the capacitance value of the capacitance variable capacitor C11 varies according to a change in voltage applied by the control power supply circuit.
  • a variable capacitance element using a ferroelectric material for example, a BST (barium / strontium / titanate) element can be suitably used.
  • Permanent magnets 41 are attached to the front and back surfaces of the ferrite 32 via adhesives 42, respectively.
  • the first center electrode 35 is wound around the front and back surfaces of the ferrite 32 by one turn, and one end electrode 35a is the input port P1 and the other end electrode 35b is the output port P2.
  • the second center electrode 36 is wound four turns on the front and back surfaces of the ferrite 32 so as to intersect with the first center electrode 35 while maintaining an insulating state at a predetermined angle.
  • One end of the second center electrode 36 is common to the electrode 35b (output port P2), and the other end electrode 36a is a ground port P3.
  • the illustration of the electrode on the back side of the ferrite 32 is omitted to avoid complication.
  • the nonreciprocal circuit element 1A has an isolation characteristic in which curves A, B, and C at 25 ° C., 85 ° C., and ⁇ 35 ° C. are almost overlapped. There has been little change.
  • FIG. 3B shows the isolation characteristics of a 2-port isolator in which the thermistor element S and the power source E are omitted for comparison.
  • the characteristic in the comparative example is the same as the characteristic of FIG. 9 shown as the conventional example.
  • the crossing angle of the center electrodes 35 and 36 is set as necessary, and the input impedance and insertion loss are adjusted. Further, by winding the second center electrode 36 around the ferrite 32 a plurality of times, the inductance of the second center electrode 36 is increased, the insertion loss is reduced, and the operating frequency band is expanded.
  • the nonreciprocal circuit device 1B (two-port isolator) of the second embodiment has a variable capacitance capacitor C12 connected in parallel with the capacitor CA, and a thermistor device S1 and its DC power supply E1. It is connected. Further, a variable capacitance capacitor C13 is connected in parallel with the capacitor C2, and the thermistor element S2 and its DC power source E2 are connected. Other configurations are the same as those of the non-reciprocal circuit device 1A according to the first embodiment.
  • variable capacitance capacitors C12 and C13 and the thermistor elements S1 and S2 in the second embodiment are basically the same as those in the first embodiment.
  • the capacitors C12 and C13 may be omitted, and the capacitors CA and C2 may be variable capacitance capacitors.
  • thermistor elements S1 and S2 are connected in series to the variable capacitance capacitors C12 and C13 connected in parallel with the capacitors CA and C2, so that the variation or insertion of the isolation characteristic due to the temperature change is inserted. Variations in loss characteristics can be suppressed.
  • the isolation characteristics of the nonreciprocal circuit device 1B hardly change as shown by curves A (25 ° C.), B (85 ° C.), and C ( ⁇ 35 ° C.) in FIG.
  • the insertion loss characteristic is as shown by curves A ′ (25 ° C.), B ′ (85 ° C.), and C ′ ( ⁇ 35 ° C.) in FIG. Fluctuation hardly occurs compared to the conventional example.
  • FIG. 5B shows the isolation characteristics of a two-port isolator in which the capacitors C12 and C13, the thermistor elements S, S1 and S2, and the power supplies E, E1 and E2 are omitted.
  • the characteristic in the comparative example is the same as the characteristic of FIG. 9 shown as the conventional example.
  • the nonreciprocal circuit device 1C according to the third embodiment is a lumped constant type three-port circulator having the equivalent circuit shown in FIG. That is, the first center electrode 121 (inductor L11), the second center electrode 122 (inductor L12), and the third center electrode 123 (inductor L13) are insulated from the ferrite 132 to which a DC magnetic field is applied in the direction of arrow G by a permanent magnet.
  • One end of the first center electrode 121 is disposed at the first port P11
  • one end of the second center electrode 122 is disposed at the second port P12
  • one end of the third center electrode 123 is disposed at the third port P13. It is said.
  • the other ends of the center electrodes 121, 122, and 123 are connected to each other and to the ground through an inductor Lg and a capacitor Cg connected in series.
  • Capacitors C21, C22, and C23 are connected in parallel to the center electrodes 121, 122, and 123, respectively.
  • a capacitor Cs1 is connected between the first port P11 and the first terminal 141
  • a capacitor Cs2 is connected between the second port P12 and the second terminal 142
  • the third port P13 and the third terminal 143 are connected.
  • a capacitor Cs3 is connected between the two.
  • variable capacitance capacitor C14 is connected in parallel with the capacitor Cg, and the thermistor element S3 and its DC power supply E3 are connected.
  • the high frequency signal input from the second terminal 142 (second port P12) is output from the first terminal 141 (first port P11), and the first terminal 141 (first port).
  • the high frequency signal input from the first port P11) is output from the third terminal 143 (third port P13), and the high frequency signal input from the third terminal 143 (third port P13) is the second terminal 142 (second port). P12).
  • variation of the insertion loss characteristic resulting from a temperature change can be suppressed by connecting the thermistor element S3 in series with the capacity
  • the insertion loss characteristic of the nonreciprocal circuit device 1C hardly fluctuates as shown by curves A ′ (25 ° C.), B ′ (85 ° C.), and C ′ ( ⁇ 35 ° C.) in FIG. .
  • FIG. 7B shows the insertion loss characteristics of a 3-port circulator in which the thermistor element S3 and the power source E3 are omitted for comparison.
  • the capacitor C14 may be omitted and the capacitor Cg may be a variable capacitance capacitor.
  • the nonreciprocal circuit device 1D according to the fourth embodiment is a lumped constant type three-port circulator having the equivalent circuit shown in FIG. 8, and the nonreciprocal circuit device 1C according to the third embodiment has the following points. Only different.
  • variable capacitance capacitor C14, the thermistor element S3, and the DC power supply E3 with respect to the capacitor Cg are omitted, and these elements C14, S3, and E3 are connected to the capacitors C21, C22, and C23, respectively.
  • the characteristic variation of the non-reciprocal circuit element 1D due to the temperature change can be suppressed as in the first, second, and third embodiments.
  • the non-reciprocal circuit device according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
  • Non-reciprocal circuit element 32 ... Ferrite 35, 36, 121-123 ... Center electrode 41 ... Permanent magnet P1-P3, P11-P13 ... Port C11-C14 ... Capacitance variable capacitor S, S1, S2, S3 ... Thermistor Element E, E1, E2, E3 ... Power supply R ... Termination resistor

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

 非可逆回路素子において、磁性体や磁石の材料変更を行うことなく、温度に対する特性変動を簡単な構成で抑えること。 直流磁界(G)が印加される磁性体(32)と、磁性体(32)に互いに絶縁状態で交差して配置された複数の中心電極(35,36)と、入出力ポート(P1,P2)間に中心電極(35,36)の一つと並列に接続された終端抵抗(R)と、入出力ポート(P1,P2)間であって終端抵抗(R)と並列に接続された容量が可変な容量素子(C11)と、可変容量素子(C11)の制御電源回路(E)に可変容量素子(C11)と直列に接続されたサーミスタ素子(S)と、を備えた非可逆回路素子。

Description

非可逆回路素子
 本発明は、非可逆回路素子、特に、マイクロ波帯で使用されるアイソレータやサーキュレータなどの非可逆回路素子に関する。
 従来、アイソレータやサーキュレータなどの非可逆回路素子は、予め定められた特定方向にのみ信号を伝送し、逆方向には伝送しない特性を有している。この特性を利用して、例えば、アイソレータは、携帯電話などの移動体通信機器の送信回路部に使用されている。
 この種の非可逆回路素子としては、図9に記載のように、永久磁石により直流磁界Gが印加されるマイクロ波用磁性体32(以下、フェライトと称する)に、第1中心電極35(インダクタL1)と第2中心電極36(インダクタL2)とを互いに絶縁状態で交差して配置し、第1中心電極35の一端を入力ポートP1とし、第1中心電極35の他端と第2中心電極36の一端を出力ポートP2とし、入出力ポートP1,P2間に第1中心電極35と並列に終端抵抗Rを接続するとともに、入出力ポートP1,P2間であって終端抵抗Rと並列に容量素子C11を接続したアイソレータが知られている。また、出力ポートP2とグランドポートP3との間であって第2中心電極36と並列に容量素子C2が接続されている。
 前記アイソレータは、挿入損失が小さく、広帯域で動作が可能である。このような回路構成を基礎として、特許文献1には、前記容量素子C11を可変容量素子としたり、スイッチ素子などを用いて共振容量を可変とすることで、挿入損失を劣化させることなく、アイソレーション特性を調整するようにした非可逆回路素子が記載されている。
 ところで、フェライトの透磁率及び永久磁石の磁力は固有の温度特性を有している。フェライト及び永久磁石の特性を常温においてアイソレーションを調整することは可能であるが、温度変化による特性変動に完全に追従することはできず、アイソレーション特性と挿入損失特性が設計値から変動してしまう。図10にフェライト及び永久磁石の温度特性に起因する特性変動例を示す。図10の曲線A,A’で25℃のアイソレーション特性及び挿入損失特性を示し、曲線B,B’で85℃のアイソレーション特性及び挿入損失特性を示し、曲線C,C’で-35℃のアイソレーション特性及び挿入損失特性を示す。即ち、図10に示す例では、アイソレーション特性は、温度が常温である25℃よりも高くなると高周波側にずれ、低くなると低周波側にずれる。また、図10に示す例では、温度が常温である25℃よりも高くなったり、低くなったりすると、挿入損失特性も温度の変化に従って変動する。
 前記アイソレーション特性が劣化する理由は、フェライト及び永久磁石の温度特性により、実効的なインダクタL1,L2の値が変化することで、L1とC11で構成されるLC共振回路及びL2とC2で構成されるLC共振回路の共振周波数が変動してしまうことによる。これを防ぐためには、広帯域に温度特性を調整した磁石とフェライトを用意するか、共振容量素子C11の容量値を共振周波数の変動を打ち消すように調整する必要がある。しかし、広帯域に温度特性を調整した材料を用意することは極めて困難である。また、容量素子C11の調整は、高精度な温度検知とその温度に対する容量制御が必要となり、実際的ではない。
国際公開第2012/020613号
 本発明の目的は、マイクロ波用磁性体や磁石の材料変更を行うことなく、温度に対する特性変動を簡単な構成で抑えることのできる非可逆回路素子を提供することにある。
 本発明の第1の形態である非可逆回路素子は、
 直流磁界が印加される磁性体と、
 前記磁性体に互いに絶縁状態で交差して配置された複数の中心電極と、
 入出力ポート間に前記中心電極の一つと並列に接続された終端抵抗と、
 入出力ポート間であって前記終端抵抗と並列に接続された容量が可変な容量素子と、
 前記可変容量素子の制御電源回路に該可変容量素子と直列に接続されたサーミスタ素子と、
 を備えたことを特徴とする。
 本発明の第2の形態である非可逆回路素子は、
 直流磁界が印加される磁性体と、
 前記磁性体に互いに絶縁状態で交差して配置された第1中心電極、第2中心電極及び第3中心電極と、
 を備え、
 第1中心電極の一端を第1ポート、第2中心電極の一端を第2ポート、第3中心電極の一端を第3ポートとし、
 第1中心電極、第2中心電極及び第3中心電極のそれぞれの他端は互いに接続されてグランド端子に接続され、
 第1中心電極、第2中心電極及び第3中心電極に対して並列に容量素子がそれぞれ接続され、
 前記グランド端子とグランドとの間に直列にインダクタ素子及び容量が可変な容量素子が接続され、
 前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
 を特徴とする。
 本発明の第3の形態である非可逆回路素子は、
 直流磁界が印加される磁性体と、
 前記磁性体に互いに絶縁状態で交差して配置された第1中心電極、第2中心電極及び第3中心電極と、
 を備え、
 第1中心電極の一端を第1ポート、第2中心電極の一端を第2ポート、第3中心電極の一端を第3ポートとし、
 第1中心電極、第2中心電極及び第3中心電極のそれぞれの他端は互いに接続されてグランド端子に接続され、
 第1中心電極、第2中心電極及び第3中心電極に対して並列に容量が可変な容量素子がそれぞれ接続され、
 前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
 を特徴とする。
 前記第1の形態である非可逆回路素子は2ポート型のアイソレータであり、前記第2及び第3の形態である非可逆回路素子は3ポート型のサーキュレータである。いずれの非可逆回路素子においても、適切な温度特性を持つサーミスタ素子を選定することで、制御電圧は一定の状態で、可変容量素子の温度変化に対応するための容量値を発現するのに必要な電圧を可変容量素子に与えられる。これにて、温度変化に対する特性の変動が抑えられることになり、マイクロ波用磁性体や磁石の材料変更や複雑な制御は不要となる。
 本発明によれば、マイクロ波用磁性体や磁石の材料変更を行うことなく、温度に対する特性変動を簡単な構成で抑えることができる。
第1実施例である非可逆回路素子(2ポート型アイソレータ)を示す等価回路図である。 前記非可逆回路素子の要部を示す分解斜視図である。 (A)は第1実施例である非可逆回路素子のアイソレーション特性を示すグラフであり、(B)は比較例のアイソレーション特性を示すグラフである。 第2実施例である非可逆回路素子(2ポート型アイソレータ)を示す等価回路図である。 (A)は第2実施例である非可逆回路素子のアイソレーション特性及び挿入損失特性を示すグラフであり、(B)は比較例のアイソレータ特性及び挿入損失特性を示すグラフである。 第3実施例である非可逆回路素子(3ポート型サーキュレータ)を示す等価回路図である。 (A)は第3実施例である非可逆回路素子の挿入損失特性を示すグラフであり、(B)は比較例の挿入損失特性を示すグラフである。 第4実施例である非可逆回路素子(3ポート型サーキュレータ)を示す等価回路図である。 従来例である非可逆回路素子(2ポート型アイソレータ)を示す等価回路図である。 図9に示した従来例である非可逆回路素子のアイソレーション特性及び挿入損失特性を示すグラフである。
 以下、本発明に係る非可逆回路素子の実施例について添付図面を参照して説明する。なお、各図において、同じ部材、部分については共通する符号を付し、重複する説明は省略する。
 (第1実施例、図1~図3参照)
 第1実施例である非可逆回路素子1Aは、図1に示すように、集中定数タイプの2ポート型アイソレータであり、図示しない永久磁石により直流磁界Gが印加されるフェライト32と、該フェライト32に互いに絶縁状態で交差して配置された第1中心電極35(インダクタL1)及び第2中心電極36(インダクタL2)とを備えている。第1中心電極35は、一端が入力ポートP1に接続され、他端が出力ポートP2に接続されている。第2中心電極36は、一端が出力ポートP2に接続され、他端がグランドポートP3に接続されている。入力ポートP1と出力ポートP2との間に終端抵抗Rが第1中心電極35と並列に接続され、入力ポートP1と出力ポートP2との間に、容量可変コンデンサC11が接続され、出力ポートP2とグランドポートP3との間に第2中心電極36と並列に整合コンデンサC2が接続されている。
 また、入力ポートP1には入力インピーダンスを整合させるためのコンデンサCS1及びグランドに落とされたコンデンサCAが接続され、出力ポートP2には出力インピーダンスを整合させるためのコンデンサCS2が接続されている。
 さらに、容量可変コンデンサC11の制御電源回路(直流電源E)に該コンデンサC11と直列にサーミスタ素子Sが接続されている。容量可変コンデンサC11は、制御電源回路により印加される電圧の変化に応じて、容量値が変動する。容量可変コンデンサC11としては、強誘電体を用いた可変容量素子、例えば、BST(バリウム・ストロンチウム・チタン酸塩)素子を好適に用いることができる。
 ここで、非可逆回路素子1Aの要部の構成について図2を参照して説明する。フェライト32の表裏面にそれぞれ永久磁石41が接着剤42を介して貼着されている。第1中心電極35はフェライト32の表裏面に1ターン巻回されており、一端電極35aが入力ポートP1であり、他端電極35bが出力ポートP2である。第2中心電極36はフェライト32の表裏面に第1中心電極35と所定の角度で絶縁状態を保って交差して4ターン巻回されている。第2中心電極36の一端は前記電極35bと共通(出力ポートP2)であり、他端電極36aがグランドポートP3である。なお、図2では、煩雑さを避けるためにフェライト32の裏面側の電極は図示を省略している。
 非可逆回路素子1Aにおいては、出力ポートP2から高周波信号が入力されると、第1中心電極35と容量可変コンデンサC11とで形成される並列共振回路によって減衰(アイソレーション)される。直流電源Eによる電圧が一定であってもサーミスタ素子Sの抵抗値が温度に応じて変化することにより可変コンデンサC11に印加される電圧が変化する。これにて、温度によって変化するフェライト32や永久磁石の特性変化を補償してアイソレーション特性の変動(共振周波数の変動)が打ち消される。また、終端抵抗Rのインピーダンスを選択することにより、減衰量が調整される。
 一方、入力ポートP1から出力ポートP2へ高周波電流が流れる動作時には、第2中心電極36に大きな高周波電流が流れ、終端抵抗Rや容量可変コンデンサC11にはほとんど高周波電流が流れないため、容量可変コンデンサC11が追加されていてもそれによる損失は無視でき、挿入損失が増大することはない。
 非可逆回路素子1Aのアイソレーション特性は、図3(A)に示すように、25℃、85℃及び-35℃での曲線A,B,Cがほとんど重なっており、温度によるアイソレーション特性の変動はほとんど生じていない。なお、図3(B)に、比較のために、サーミスタ素子S及び電源Eを省略した2ポート型アイソレータのアイソレーション特性を示す。比較例での特性は従来例として示した図9の特性と同様である。
 なお、中心電極35,36の交差角は必要に応じて設定され、入力インピーダンスや挿入損失が調整されることになる。また、第2中心電極36をフェライト32に複数回巻回することにより、第2中心電極36のインダクタンスが大きくなり、挿入損失が低下し、動作周波数帯域も拡大する。
 (第2実施例、図4及び図5参照)
 第2実施例である非可逆回路素子1B(2ポート型アイソレータ)は、図4に示すように、コンデンサCAと並列に容量可変コンデンサC12が接続されるとともに、サーミスタ素子S1とその直流電源E1が接続されている。さらに、コンデンサC2と並列に容量可変コンデンサC13が接続されるとともに、サーミスタ素子S2とその直流電源E2が接続されている。他の構成は前記第1実施例である非可逆回路素子1Aと同様である。本第2実施例におけるアイソレータとしての動作及び容量可変コンデンサC12,C13やサーミスタ素子S1,S2の動作は前記第1実施例と基本的には同様である。なお、コンデンサC12,C13を省略するとともに、コンデンサCA,C2を容量可変コンデンサとしてもよい。
 本第2実施例のごとく、コンデンサCA,C2と並列に接続された容量可変コンデンサC12,C13にサーミスタ素子S1、S2を直列に接続することで、温度変化に起因するアイソレーション特性の変動や挿入損失特性の変動を抑制することができる。非可逆回路素子1Bのアイソレーション特性は、図5(A)に曲線A(25℃),B(85℃),C(-35℃)で示すように、変動をほとんど生じていない。また、挿入損失特性は、図5(A)に曲線A’(25℃)、B'(85℃),C‘(-35℃)で示すように、動作周波数帯となる780MHz付近においては、従来例と比較して変動をほとんど生じていない。なお、図5(B)に、比較のために、コンデンサC12,C13、サーミスタ素子S,S1,S2及び電源E、E1,E2を省略した2ポート型アイソレータのアイソレーション特性を示す。比較例での特性は従来例として示した図9の特性と同様である。
 (第3実施例、図6及び図7参照)
 第3実施例である非可逆回路素子1Cは、図6に示す等価回路を有する集中定数タイプの3ポート型サーキュレータである。即ち、永久磁石により矢印G方向に直流磁界が印加されるフェライト132に第1中心電極121(インダクタL11)、第2中心電極122(インダクタL12)及び第3中心電極123(インダクタL13)をそれぞれ絶縁状態で所定の角度で交差させて配置し、第1中心電極121の一端を第1ポートP11、第2中心電極122の一端を第2ポートP12、第3中心電極123の一端を第3ポートP13としている。
 各中心電極121,122,123のそれぞれの他端は互いに接続されるとともに直列に接続されたインダクタLgとコンデンサCgとを介してグランドに接続されている。各中心電極121,122,123に対して並列にコンデンサC21,C22,C23がそれぞれ接続されている。第1ポートP11と第1端子141との間にはコンデンサCs1が接続され、第2ポートP12と第2端子142との間にはコンデンサCs2が接続され、第3ポートP13と第3端子143との間にはコンデンサCs3が接続されている。
 さらに、コンデンサCgと並列に容量可変コンデンサC14が接続されるとともに、サーミスタ素子S3とその直流電源E3が接続されている。
 第3実施例である3ポート型サーキュレータにおいて、第2端子142(第2ポートP12)から入力された高周波信号は、第1端子141(第1ポートP11)から出力され、第1端子141(第1ポートP11)から入力された高周波信号は第3端子143(第3ポートP13)から出力され、第3端子143(第3ポートP13)から入力された高周波信号は第2端子142(第2ポートP12)から出力される。
 そして、本第3実施例のごとく、コンデンサCgと並列に接続された容量可変コンデンサC14にサーミスタ素子S3を直列に接続することで、温度変化に起因する挿入損失特性の変動を抑制することができる。非可逆回路素子1Cの挿入損失特性は、図7(A)に曲線A’(25℃),B’(85℃),C’(-35℃)で示すように、変動をほとんど生じていない。なお、図7(B)に、比較のために、サーミスタ素子S3及び電源E3を省略した3ポート型サーキュレータの挿入損失特性を示す。
 なお、コンデンサC14を省略するとともに、コンデンサCgを容量可変コンデンサとしてもよい。
 (第4実施例、図8参照)
 第4実施例である非可逆回路素子1Dは、図8に示す等価回路を有する集中定数タイプの3ポート型サーキュレータであって、前記第3実施例である非可逆回路素子1Cとは以下の点のみで異なっている。
 即ち、コンデンサCgに対する容量可変コンデンサC14、サーミスタ素子S3及び直流電源E3を省略するとともに、これらの素子C14,S3,E3を、コンデンサC21,C22,C23に対してそれぞれ接続したものである。本第4実施例においても、温度変化に起因する非可逆回路素子1Dの特性変動を抑制できることは、前記第1、第2及び第3実施例と同様である。
 (他の実施例)
 なお、本発明に係る非可逆回路素子は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
 例えば、永久磁石のN極とS極を反転させれば、入力ポートと出力ポートが入れ替わる。また、フェライトや永久磁石の細部構成、各中心電極の形状は種々に変更することができる。
 以上のように、本発明は、非可逆回路素子に有用であり、特に、温度に対する特性変動を簡単な構成で抑えることができる点で優れている。
  1A~1D…非可逆回路素子
  32…フェライト
  35,36,121~123…中心電極
  41…永久磁石
  P1~P3,P11~P13…ポート
  C11~C14…容量可変コンデンサ
  S,S1,S2,S3…サーミスタ素子
  E,E1,E2、E3…電源
  R…終端抵抗

Claims (7)

  1.  直流磁界が印加される磁性体と、
     前記磁性体に互いに絶縁状態で交差して配置された複数の中心電極と、
     入出力ポート間に前記中心電極の一つと並列に接続された終端抵抗と、
     入出力ポート間であって前記終端抵抗と並列に接続された容量が可変な容量素子と、
     前記可変容量素子の制御電源回路に該可変容量素子と直列に接続されたサーミスタ素子と、
     を備えたことを特徴とする非可逆回路素子。
  2.  前記中心電極は前記磁性体に互いに絶縁状態で交差して配置された第1中心電極及び第2中心電極からなり、
     第1中心電極は、一端が入力ポートに電気的に接続され、他端が出力ポートに電気的に接続され、
     第2中心電極は、一端が出力ポートに電気的に接続され、他端がグランドポートに電気的に接続され、
     前記終端抵抗は前記入力ポートと前記出力ポートとの間に接続され、
     前記可変容量素子は前記入力ポートと前記出力ポートとの間に、前記終端抵抗と並列に接続されていること、
     を特徴とする請求項1に記載の非可逆回路素子。
  3.  前記入力ポートは、容量が可変な容量素子を介してグランドに接続され、
     前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
     を特徴とする請求項1又は請求項2に記載の非可逆回路素子。
  4.  前記出力ポートは、容量が可変な容量素子を介してグランドに接続され、
     前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
     を特徴とする請求項1ないし請求項3のいずれかに記載の非可逆回路素子。
  5.  直流磁界が印加される磁性体と、
     前記磁性体に互いに絶縁状態で交差して配置された第1中心電極、第2中心電極及び第3中心電極と、
     を備え、
     第1中心電極の一端を第1ポート、第2中心電極の一端を第2ポート、第3中心電極の一端を第3ポートとし、
     第1中心電極、第2中心電極及び第3中心電極のそれぞれの他端は互いに接続されてグランド端子に接続され、
     第1中心電極、第2中心電極及び第3中心電極に対して並列に容量素子がそれぞれ接続され、
     前記グランド端子とグランドとの間に直列にインダクタ素子及び容量が可変な容量素子が接続され、
     前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
     を特徴とする非可逆回路素子。
  6.  第1中心電極、第2中心電極及び第3中心電極に対して並列に容量が可変な容量素子がそれぞれ接続され、
     前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
     を特徴とする請求項5に記載の非可逆回路素子。
  7.  直流磁界が印加される磁性体と、
     前記磁性体に互いに絶縁状態で交差して配置された第1中心電極、第2中心電極及び第3中心電極と、
     を備え、
     第1中心電極の一端を第1ポート、第2中心電極の一端を第2ポート、第3中心電極の一端を第3ポートとし、
     第1中心電極、第2中心電極及び第3中心電極のそれぞれの他端は互いに接続されてグランド端子に接続され、
     第1中心電極、第2中心電極及び第3中心電極に対して並列に容量が可変な容量素子がそれぞれ接続され、
     前記可変容量素子の制御電源回路に該可変容量素子と直列にサーミスタ素子が接続されていること、
     を特徴とする非可逆回路素子。
PCT/JP2014/075158 2013-11-29 2014-09-24 非可逆回路素子 WO2015079792A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/142,423 US9634368B2 (en) 2013-11-29 2016-04-29 Non-reciprocal circuit element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-247325 2013-11-29
JP2013247325 2013-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/142,423 Continuation US9634368B2 (en) 2013-11-29 2016-04-29 Non-reciprocal circuit element

Publications (1)

Publication Number Publication Date
WO2015079792A1 true WO2015079792A1 (ja) 2015-06-04

Family

ID=53198746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075158 WO2015079792A1 (ja) 2013-11-29 2014-09-24 非可逆回路素子

Country Status (2)

Country Link
US (1) US9634368B2 (ja)
WO (1) WO2015079792A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085981A (ja) * 2006-08-31 2008-04-10 Ntt Docomo Inc 非可逆回路素子
JP2008109391A (ja) * 2006-10-25 2008-05-08 Kyocera Mita Corp 温度補償型圧電発振器及び画像形成装置
JP2011055222A (ja) * 2009-09-01 2011-03-17 Murata Mfg Co Ltd 非可逆回路素子
JP2013145945A (ja) * 2012-01-13 2013-07-25 Murata Mfg Co Ltd 無線通信装置
WO2013118355A1 (ja) * 2012-02-06 2013-08-15 株式会社村田製作所 非可逆回路素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807071B2 (ja) * 1997-12-08 2006-08-09 Tdk株式会社 非可逆回路素子
US8130054B1 (en) * 2008-10-14 2012-03-06 Rf Micro Devices, Inc. Frequency-adjustable radio frequency isolator circuitry
CN103081219B (zh) 2010-08-09 2016-01-13 株式会社村田制作所 非可逆电路元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085981A (ja) * 2006-08-31 2008-04-10 Ntt Docomo Inc 非可逆回路素子
JP2008109391A (ja) * 2006-10-25 2008-05-08 Kyocera Mita Corp 温度補償型圧電発振器及び画像形成装置
JP2011055222A (ja) * 2009-09-01 2011-03-17 Murata Mfg Co Ltd 非可逆回路素子
JP2013145945A (ja) * 2012-01-13 2013-07-25 Murata Mfg Co Ltd 無線通信装置
WO2013118355A1 (ja) * 2012-02-06 2013-08-15 株式会社村田製作所 非可逆回路素子

Also Published As

Publication number Publication date
US20160240906A1 (en) 2016-08-18
US9634368B2 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
JP5158146B2 (ja) 非可逆回路素子
US8253510B2 (en) Non-reciprocal circuit element
JP5679056B2 (ja) 非可逆回路素子
CN103081219A (zh) 非可逆电路元件
JP5843007B2 (ja) 非可逆回路素子
KR100969614B1 (ko) 비가역 회로 소자
WO2015079792A1 (ja) 非可逆回路素子
JPWO2014136596A1 (ja) 非可逆回路素子及びモジュール
US11088669B2 (en) Band pass filter
US9172125B1 (en) Non-reciprocal circuit element
JP5874709B2 (ja) 非可逆回路素子、そのモジュール及び送受信モジュール
US20150303545A1 (en) Non-reciprocal circuit element
JP5880738B2 (ja) 2ポート型非可逆回路素子
WO2014115595A1 (ja) 非可逆回路素子
JP6152896B2 (ja) 非可逆回路素子
WO2015093273A1 (ja) 非可逆回路素子
JPWO2013118355A1 (ja) 非可逆回路素子
WO2016021352A1 (ja) 非可逆回路素子
JP5672014B2 (ja) 非可逆位相器
JPWO2016158044A1 (ja) 非可逆回路素子、高周波回路及び通信装置
JP5672413B2 (ja) 非可逆回路素子
JP2012090141A (ja) 非可逆回路素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP