WO2015079770A1 - 蓄熱デバイス - Google Patents

蓄熱デバイス Download PDF

Info

Publication number
WO2015079770A1
WO2015079770A1 PCT/JP2014/073902 JP2014073902W WO2015079770A1 WO 2015079770 A1 WO2015079770 A1 WO 2015079770A1 JP 2014073902 W JP2014073902 W JP 2014073902W WO 2015079770 A1 WO2015079770 A1 WO 2015079770A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
chamber
storage material
particles
Prior art date
Application number
PCT/JP2014/073902
Other languages
English (en)
French (fr)
Inventor
坂本 禎章
宙樹 坂本
裕直 小倉
Original Assignee
株式会社村田製作所
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 国立大学法人 千葉大学 filed Critical 株式会社村田製作所
Priority to JP2015550592A priority Critical patent/JPWO2015079770A1/ja
Publication of WO2015079770A1 publication Critical patent/WO2015079770A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0209Thermal insulation, e.g. for fire protection or for fire containment or for high temperature environments
    • H05K5/0211Thermal buffers, e.g. latent heat absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat storage device, and more particularly to a heat storage device that can be suitably used to suppress a temperature rise of a heat generating component (or an electronic component that generates heat) in an electronic device.
  • an electronic component built in an electronic device for example, a central processing unit (CPU) or other integrated circuit (IC)
  • CPU central processing unit
  • IC integrated circuit
  • a part of the input energy is converted into heat and lost due to heat generation.
  • an electronic component itself may fail or it may have a bad influence on other surrounding components, and the lifetime and reliability of an electronic device may be impaired.
  • the heat generation of the electronic component is not preferable in terms of usability and safety of the user of the electronic device.
  • JP 2001-68883 A Japanese Patent Laid-Open No. 10-89799 JP 2008-1111592 A
  • the temperature of each heat generating component is measured, and when the measured temperature exceeds a predetermined threshold, the amount of energy input to the heat generating component is limited.
  • This method suppresses the temperature rise of the heat generating component by reducing the heat generation amount itself of the heat generating component.
  • the function of the heat generating component for example, the performance of the CPU
  • the performance of the electronic device is sacrificed.
  • An object of the present invention is to provide a heat storage device that can be suitably used to suppress a temperature rise of a heat generating component in an electronic device.
  • the inventors of the present invention paid attention to a technology for storing and transferring heat, that is, a heat pump, utilizing a chemical reaction of a heat storage material, an adsorption / desorption phenomenon, or the like.
  • a heat pump is a relatively large device that is currently used for the purpose of utilizing waste heat in a chemical plant or a power plant, or used in a domestic hot water supply / heating system, a refrigeration vehicle, or the like (for example, Patent Documents 2 to 3). checking). Since such a conventional heat pump is too large compared to an electronic device, it cannot be applied as it is to suppress the temperature rise of the heat-generating component. In addition, simply reducing the size of the conventional heat pump cannot provide sufficient cooling efficiency to suppress the temperature rise of the heat-generating component. As a result of intensive studies based on the unique idea of using a heat pump as a novel means that can suppress the temperature rise of the heat-generating component, the present inventors have completed the present invention.
  • a method for manufacturing a heat storage device including a first chamber containing a heat storage material in a housing, and slurry containing particles of the heat storage material and a solvent is contained in the first chamber of the housing.
  • a manufacturing method includes pouring, removing the solvent, and leaving the particles of the heat storage material in the first chamber of the housing.
  • the particles of the heat storage material are poured into the first chamber of the housing in the form of slurry, it can be supplied to every corner, and as a result, the manufactured heat storage device In the device, heat transferability (or heat coupling property) between the housing and the heat storage material can be improved, and high cooling efficiency can be obtained.
  • a heat storage device that has high cooling efficiency and can be suitably used to suppress a temperature rise of a heat generating component in an electronic device.
  • cooling means that the material to be cooled, such as a heat-generating component, absorbs heat (takes heat away), and it is not necessary to lower the temperature of the material to be cooled. What is necessary is just to suppress this temperature rise compared with the case where the heat storage device of this invention is not applied. Therefore, in this specification, the term “cooling” may be used in the same meaning as “suppression of temperature rise”.
  • the slurry may further contain a binder. Even after the solvent is removed, the binder can remain together with the particles of the heat storage material and solidify, and the particles can be connected to each other and can be in close contact with the inner wall of the housing (more specifically, the inner wall of the first chamber). .
  • the heat transferability inside the heat storage material and the heat transferability between the housing and the heat storage material can be further improved, and higher cooling efficiency can be obtained.
  • the heat storage material may contain an inorganic compound hydrate.
  • Such inorganic compound hydrates may originally be in the form of hydrates, and the inorganic compound reacts with moisture (eg, moisture that may be present in the ambient atmosphere, water that may be present as a solvent, etc.). It may be caused by this.
  • the heat storage material contains an inorganic compound hydrate
  • the inorganic compound hydrate (or its precursor) reacts with moisture to form particles of the heat storage material (inorganic compound hydrate). While) it can be connected and solidified.
  • heat transferability inside the heat storage material can be further increased, and higher cooling efficiency can be obtained.
  • the average particle diameter of the heat storage material particles may be in the range of 1 to 100 ⁇ m.
  • the particles having such a small average particle diameter can be supplied in more detail in the first chamber of the housing by being poured in the form of a slurry.
  • “average particle diameter” means a median diameter (D50) in a volume-based particle size distribution.
  • the housing may have an uneven structure on the inner wall surface that defines the first chamber.
  • the surface area of the inner wall of the first chamber of the housing, and hence the area that can come into contact with the heat storage material, is increased by the uneven structure.
  • the average particle diameter of the heat storage material particles is 1/3 or less of the gap of the concavo-convex structure.
  • Particles having an average particle size of 1/3 or less of the gaps in the concavo-convex structure can be supplied to the details of the gaps in the concavo-convex structure in the first chamber of the casing by pouring in the form of slurry.
  • the heat transfer between the housing and the heat storage material can be further improved, and higher cooling efficiency can be obtained.
  • the heat storage device only needs to have a first chamber containing the heat storage material in the housing, but the second chamber for phase-changing the component released from the particles of the heat storage material and the component It is preferable to further include a communication part that connects the first chamber and the second chamber so that the first chamber can move between the first chamber and the second chamber.
  • a device having such a configuration can be understood as a so-called heat pump.
  • a heat storage device including a first chamber containing a heat storage material in a housing, and a lump formed from particles of the heat storage material is provided on an inner wall surface of the first chamber.
  • a heat storage device is also provided that is in contact with at least two adjacent surfaces.
  • Such a heat storage device can be manufactured by the above-described method for manufacturing a heat storage device of the present invention.
  • the heat storage material can be supplied to every corner, and heat between the housing and the heat storage material can be supplied.
  • a heat storage device that can increase the transferability (or heat bondability) and thus has high cooling efficiency and can be suitably used to suppress the temperature rise of the heat generating component in the electronic apparatus is provided.
  • the heat storage device manufactured in the present invention only needs to have a first chamber containing a heat storage material in the housing.
  • the heat storage device 10 changes the phase of the components released from the heat storage material particles 2 a and the first chamber 1 containing the heat storage material particles 2 a.
  • the first chamber 1 and the second chamber 3 so that the component (hereinafter also referred to as a mobile component) can move between the first chamber 1 and the second chamber 3.
  • the communication unit 5 may be provided in the housing 9.
  • the heat storage device 10 having such a configuration can be understood as a heat pump (a chemical heat pump when a chemical heat storage material to be described later is used).
  • the heat storage device 10 ′ includes a first chamber 1 in which a heat storage material particle 2 a is accommodated in a housing 9. Good.
  • the manufacturing method of the heat storage device of this embodiment prepares the slurry containing the particle
  • the particles 2a are left in the first chamber 1 of the housing. More details are as follows.
  • the housing 9 is prepared.
  • the housing 9 only needs to be able to finally form a sealed space (a closed system in which no substance enters and exits) including at least the first chamber 1 inside.
  • the housing 9 has an opening leading to the first chamber 1 at the time of supplying the slurry, or when the housing 9 is assembled from a plurality of parts, the housing 9 is in a stage before completion of the assembly. There may be an opening leading to 1.
  • the housing 9 is configured to allow heat to enter and exit at least inside and outside of the first chamber 1 and inside and outside of the second chamber 3 when present. Specifically, each of the first chamber 1 and the second chamber 3 when present is in contact with at least a part (in the illustrated example, the heat generating component 11 described later and the heat conductive member 13 when present).
  • the wall portion arranged in the same manner can be made of a heat conductive material.
  • the heat conductive material is not particularly limited, and may be a good heat conductor such as metal (copper and the like), oxide (alumina and the like), nitride (aluminum nitride and the like), and carbon.
  • the dimensions of the housing 9 can be appropriately set according to the use of the heat storage device.
  • the height of the first chamber 1 and, if present, the second chamber 3 may be, for example, 0.1-100 mm, in particular 0.3-10 mm, and may be the same or different. May be.
  • the inner dimension height of the connecting portion 5 may be, for example, 0.1 to 100 mm, particularly 0.3 to 10 mm.
  • the heat storage material any appropriate material can be used as long as heat can be stored by a chemical reaction or adsorption / desorption phenomenon.
  • the heat storage material exhibits an endothermic reaction / phenomenon and an exothermic reaction / phenomenon that are reversible with each other and releases a mobile component that can change phase by any of these
  • the mobile component is typically a condensable component, i.e. a component capable of phase change (condensation and evaporation) between a gas state (gas phase) and a liquid state (liquid phase), but a sublimable component. That is, it may be a component capable of phase change (sublimation) between a gas state (gas phase) and a solid state (solid phase).
  • a chemical heat storage material can be used as the heat storage material.
  • the “chemical heat storage material” means a substance that can store heat by an endothermic reaction.
  • a chemical heat storage material that generates a condensable component by an endothermic reaction can be used.
  • Such a chemical heat storage material may exhibit a dehydration reaction as an endothermic reaction and a hydration reaction as an exothermic reaction.
  • the condensable component is water.
  • inorganic chemical compound hydrates and inorganic hydroxides can be used as the chemical heat storage material. More specifically, alkaline earth metal compound hydrates and alkaline earth metal hydroxides such as calcium sulfate and calcium chloride hydrates, calcium and magnesium hydroxides, and the like can be given. Also, inorganic compounds capable of forming hydrates (which are understood as precursors of hydrates of inorganic compounds), such as calcium oxide, can be used.
  • calcium sulfate hemihydrate exhibits the following endothermic reaction.
  • Q 1 is known to be about 16.7 kJ / mol.
  • the endothermic reaction of calcium sulfate hemihydrate can proceed at about 50 to 150 ° C., for example, although it depends on various conditions. This is a reversible reaction, and the reverse reaction is an exothermic reaction.
  • Calcium sulfate hemihydrate is in the solid state (in the form of particles described later in this specification), calcium sulfate is in the solid state (in the form of similar particles), and water is in the gaseous state.
  • calcium chloride hydrate exhibits the following endothermic reaction.
  • n can be the number of molecules to be hydrated, specifically 1, 2, 4, 6 and Q 2 is known to be about 30 to 50 kJ / mol.
  • the endothermic reaction of calcium chloride hydrate can proceed at about 30 to 150 ° C., for example, although it depends on various conditions. This is a reversible reaction, and the reverse reaction is an exothermic reaction.
  • Calcium chloride hydrate is in the solid state (in the form of particles described later in this specification), calcium chloride is in the solid state (in the form of similar particles), and water is in the gaseous state.
  • the chemical heat storage material is not limited to the above example, and any appropriate chemical heat storage material may be used (for example, it may be capable of generating ammonia), depending on the cooling target (this In the embodiment, the heat generation component 11 may be appropriately selected so as to exhibit an endothermic reaction by the heat generated by the heat generating component 11.
  • a chemical heat storage material can obtain a large heat storage capacity by using a chemical reaction, and can store heat in a wide temperature range.
  • heat storage materials other than chemical heat storage materials may be used.
  • heat storage materials that can be used in the present invention include at least one heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica, and activated carbon (hereinafter, also simply referred to as “zeolite etc.”).
  • zeolite etc. Such a heat storage material can be easily handled and can be simplified in structure (for example, it is not necessary to consider corrosion prevention) as compared with a chemical heat storage material.
  • any of these zeolites and the like can adsorb and desorb water, for example, reversibly, and exhibit an endothermic phenomenon upon desorption of water.
  • Z represents the composition of zeolite or the like as a representative, and x can take various values depending on the composition.
  • Q 4 can be, for example, about 30-80 kJ / mol for zeolite, depending on the specific composition.
  • Such desorption of water proceeds depending on various conditions, for example, about 50 to 150 ° C. for zeolite, about 5 to 150 ° C. for silica gel, about 5 to 150 ° C. for mesoporous silica, and about 5 to 150 ° C. for activated carbon. Can do.
  • the zeolite is a so-called zeolite structure, that is, a crystalline hydrous aluminosilicate having a network structure in which SiO 4 tetrahedron and AlO 4 tetrahedron share apex oxygen and are connected in three dimensions as a basic skeleton.
  • Zeolites can usually be represented by the general formula: (M 1, M 2 1/2) m (Al m Si n O 2 (m + n)) ⁇ xH 2 O (n ⁇ m)
  • M 1 is a monovalent cation such as Li + , Na + , or K +
  • M 2 is a divalent cation such as Ca 2+ , Mg 2+ , or Ba 2+ .
  • Silica gel is a colloidal silica three-dimensional structure having a pore diameter of several nm to several tens of nm and a specific surface area of 5 to 1000 m 2 / g, and the porous material characteristics can be controlled over a wide range. Moreover, the primary particle surface of silica gel is covered with silanol, and polar molecules (such as water) are selectively adsorbed under the influence of silanol.
  • Mesoporous silica is a substance having uniform and regular pores made of silicon dioxide and having a pore diameter of about 2 to 10 nm.
  • Activated carbon is a “porous carbonaceous substance having pores”, which has a large specific surface area and adsorption capacity.
  • the basic skeleton is a two-dimensional lattice planar structure in which carbon atoms are connected at an angle of 120 °.
  • the two-dimensional lattice is irregularly stacked to form a crystal lattice, and this crystal lattice is randomly connected to be activated carbon.
  • the voids between the crystal lattices are activated carbon pores, and water is adsorbed into the pores. .
  • zeolites and the like are preferably sufficiently adsorbed with water.
  • Water contained in the solvent may be allowed to remain adsorbed on the zeolite or the like, or water may be adsorbed on the zeolite or the like after the solvent is removed.
  • the heat storage material at least one selected from the group consisting of the above-described chemical heat storage material and zeolite may be used, but it is preferable to use an inorganic compound hydrate (or a precursor thereof).
  • the inorganic compound hydrate (or its precursor) reacts with moisture and removes the solvent, then the particles of the heat storage material (inorganic compound hydrate) are connected together (while crystal growth) and solidified (porous) Therefore, a higher heat transfer property can be obtained inside the heat storage material.
  • the moisture may be moisture that may be present in the ambient atmosphere, but it is preferred that the solvent contains water.
  • the heat storage material that can be used in the present invention depends on the object to be cooled.
  • an endothermic reaction / temperature at a temperature of 30 to 200 ° C. It is preferable to exhibit a phenomenon, and it is particularly preferable to exhibit an endothermic reaction at a temperature of 40 ° C. or higher, 50 ° C. or higher, 150 ° C. or lower, and further 120 ° C. or lower.
  • the heat storage material is prepared in the form of particles 2a (particulate matter).
  • the average particle diameter (D50) of the particles of the heat storage material is, for example, 1 to 100 ⁇ m, preferably 1 to 50 ⁇ m.
  • D50 average particle diameter
  • voids voids
  • by pouring particles in the form of slurry even particles having such a relatively small average particle diameter can be seen in every corner of the housing to the details of the housing (first chamber). Therefore, higher heat transfer can be obtained between the housing and the heat storage material.
  • the solvent is in a liquid state (liquid substance).
  • the solvent can be appropriately selected according to the heat storage material to be used, and for example, an organic solvent such as water or alcohol can be used, and water is preferable.
  • the slurry may contain a binder, an additive and the like in addition to the particles of the heat storage material and the solvent.
  • a binder for example, an organic binder such as resin (vinyl alcohol type, acrylic type, etc.) or an inorganic binder such as alumina sol can be used.
  • resin vinyl alcohol type, acrylic type, etc.
  • alumina sol an organic binder such as alumina sol.
  • the binder When the binder is used, it can remain together with the particles of the heat storage material even after the solvent is removed, and these particles can be connected to each other and adhered to the inner wall of the housing (more specifically, the inner wall of the first chamber). Therefore, higher heat transfer properties can be obtained inside the heat storage material and between the housing and the heat storage material.
  • the additive include a dispersant and a viscosity adjuster, and known ones can be used.
  • the slurry of these heat storage materials is prepared by mixing with particles of the heat storage material, a solvent, and a binder if present.
  • the mixing ratio can be appropriately selected according to the material and average particle size of the heat storage material to be used, the type of solvent, the presence or absence of a binder, an additive, and the like. Up to 200 parts by weight, preferably 80 to 120 parts by weight can be mixed.
  • the binder can be mixed at, for example, 0.5 to 15 parts by weight, preferably 1 to 10 parts by weight, with respect to 100 parts by weight of the heat storage material.
  • the slurry prepared as described above is poured into the first chamber 1 of the casing 9 described above.
  • the slurry can be poured into the first chamber 1 as appropriate from the opening of the housing 9 described above.
  • the particles 2a of the heat storage material are poured in the form of slurry, the particles can be easily spread to every corner of the first chamber 1 by the leveling action of the fluid. Such an effect is more remarkable as the particle size of the heat storage material particles 2a is smaller.
  • the heat storage material particles 2a are filled in a dry state, for example, even if mechanical work such as application of pressure is performed, the first chamber 1 is sufficiently filled. Is difficult.
  • the solvent is removed from the slurry poured into the first chamber 1.
  • the removal of the solvent can be performed by evaporating the solvent by, for example, drying, decompression, heating or the like.
  • the heat storage material particles 2 a remain in the first chamber 1 of the housing 9.
  • the heat storage material is an inorganic compound hydrate (or a precursor thereof)
  • the particles 2a of the heat storage material may be connected and solidified (while crystal growth).
  • the slurry contains a binder
  • the binder may remain together with the heat storage material particles 2 a and harden, and the particles 2 a may be connected to each other and adhered to the inner wall of the first chamber 1.
  • the heat storage material particles 2 a exist in the form of lumps, and these lumps are in contact with the area of the inner wall surface of the first chamber 1 that is in contact with the slurry. It will be in close contact.
  • Such a mass is in contact with at least two surfaces adjacent to each other among the inner wall surfaces of the first chamber, and preferably, at least two of the inner wall surfaces of the first chamber 1 and possibly three surfaces are formed. The corner is fully filled.
  • the heat storage material particles 2a may remain in the form of calcium sulfate dihydrate.
  • a mobile component is supplied into the housing 9 (for example, water is adsorbed on zeolite or the like), and the housing 9 is sealed.
  • a mobile component for example, water is adsorbed on zeolite or the like
  • Any appropriate method may be applied to the sealing, and for example, laser welding, arc welding, resistance welding, gas welding, brazing, or the like can be used.
  • the heat storage device 10, 10 'of the present embodiment is manufactured.
  • the heat storage device 10, 10 ′ is incorporated in an electronic device and can be suitably used to suppress the temperature rise of the heat generating component 11.
  • the heat generating component 11 may be an electronic component that is lost by heat generated by converting part of the input energy into heat.
  • Examples of the heat generating component 11 include an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR); a light emitting diode (LED), Light emitting elements such as incandescent light bulbs and semiconductor lasers; others include, but are not limited to, field effect transistors (FETs), motors, coils, converters, inverters and capacitors.
  • IC integrated circuit
  • CPU central processing unit
  • PMIC power management IC
  • PA power amplifier
  • VR voltage regulator
  • LED light emitting diode
  • LED Light emitting elements such as incandescent light bulbs and semiconductor lasers
  • FETs field effect transistors
  • the electronic device may be, for example, a mobile electronic device such as a smartphone, a mobile phone, a tablet terminal, a laptop personal computer, a portable game machine, a portable music player, or a digital camera, but is not limited thereto.
  • a mobile electronic device such as a smartphone, a mobile phone, a tablet terminal, a laptop personal computer, a portable game machine, a portable music player, or a digital camera, but is not limited thereto.
  • the first chamber 1 containing the heat storage material particles 2a is thermally coupled to the heat-generating component 11 through the wall portion of the housing 9, and the heat storage material particles 2a.
  • the second chamber 3 that changes the phase of the mobile component released from the heat is thermally coupled to the heat conductive member 13 (thermally separated from the heat-generating component 11) via the wall of the housing 9.
  • a portion made of the heat conductive material of the first chamber 1 may be arranged in direct or indirect contact with the heat generating component 11, and the heat of the second chamber 3 may be set against the heat conductive member 13.
  • the portion made of a conductive material may be placed in direct or indirect contact.
  • the heat conductive member 13 only needs to have a temperature lower than the temperature of the heat generating component 11 when the heat generating component 11 generates heat.
  • Examples of the heat conductive member 13 include, but are not limited to, an external casing of an electronic device, a battery (eg, a lithium ion battery, an alkaline battery, a nickel metal hydride battery), a substrate, a display, and the like.
  • the heat storage device 10 ′ is used so that the first chamber 1 containing the heat storage material particles 2 a is thermally coupled to the heat generating component 11 through the wall portion of the housing 9. Can be done. For example, you may arrange
  • the two members being “thermally coupled” means that they are combined so that heat can move between these members.
  • the thermal coupling may be heat conduction by direct or indirect contact, non-contact heat radiation, or a heat medium or a heat conductive member.
  • a thermally conductive adhesive layer for example, a layer obtained by using an adhesive whose thermal conductivity is increased by a metal filler, etc.
  • the contact is preferably made via a member made of a heat conductive material (for example, a heat transfer plate made of metal or a thermal sheet).
  • the particles 2a of the heat storage material accommodated in the first chamber 1 are in a solid state (solid phase) and exist together with a gas phase 2b containing a mobile component (typically a condensable component). Can do. It is desirable that the pressure in the first chamber 1 is substantially equal to the equilibrium pressure of the endothermic reaction and the exothermic reaction in a normal use temperature environment (when the exothermic component is in a non-exothermic state).
  • the second chamber 3 can include a mobile component contained in the gas phase 4a and the liquid phase 4b.
  • the pressure in the second chamber is desirably substantially equal to the saturated vapor pressure of the mobile component (saturated water vapor pressure in the case of water) under the operating temperature environment.
  • the communication part 5 which connects the 1st chamber 1 and the 2nd chamber 3 should just be able to move a movable component between these. More specifically, the mobile component can move in a gaseous state, and in this case, the communication unit 5 may be any member that allows gas to pass through.
  • the usage method of the heat storage device 10 will be described as an example when the mobile component is a condensable component (the first chamber 1 and the second chamber 3 can be understood as a reaction chamber and a condensation evaporation chamber, respectively). .
  • the first chamber 1 and the second chamber 3 can be understood as a reaction chamber and a condensation evaporation chamber, respectively.
  • Such a heat storage device 10 can be used in the following two modes.
  • the endothermic reaction / phenomenon (heat storage) of the heat storage material proceeds in the first chamber 1 to generate a condensable component (that is, the condensability in the first chamber 1).
  • the partial pressure of the component increases).
  • heat is deprived from the heat generating component, and an increase in the temperature of the heat generating component (typically, the temperature of the outer surface of the heat generating component, and so on) is suppressed.
  • the condensable component generated in the first chamber 1 moves from the first chamber 1 to the second chamber 3 through the connecting portion 5 in a gaseous state (steam). Such movement can occur naturally due to the diffusion phenomenon, but is not limited thereto.
  • the condensable component condenses and generates heat (latent heat).
  • the condensable component is water
  • the gas state water changes to liquid state water by the following reaction.
  • Q 3 is known to be 20.9 kJ / mol.
  • the temperature in the second chamber can rise due to the generated heat.
  • the pressure in the second chamber is set in advance (in the non-heat generation state, for example, when the heat conductive member 13 is thermally coupled to the second chamber 3, It is preferable to set the saturated vapor pressure of the condensable component (at a temperature that can be set as appropriate) and keep the condensable component in a gas-liquid equilibrium state because condensation can proceed rapidly.
  • the heat generated in the second chamber 3 is, for example, through the portion made of the heat conductive material of the second chamber 3. It is transmitted to the conductive member 13.
  • the temperature increase of the heat generating component 11 can be suppressed (cooled) using the endothermic reaction / phenomenon (heat storage) of the heat storage material.
  • the heat storage material stores heat, and the heat generating component 11 starts to the first chamber. Since the heat emitted from the second chamber 3 to the heat conductive member 13 can be made smaller than the heat entering the inside 1, the temperature of the external housing of the electronic device can be maintained at a relatively low temperature. This makes it possible to control the temperature of the heat generating component 11 and thus the entire electronic device.
  • the condensable component in the gaseous state moves from the second chamber 3 to the first chamber 1 through the connecting portion 5.
  • Such movement may occur naturally due to a diffusion phenomenon, but is not limited thereto.
  • the liquid phase condensable component gains heat (latent heat) and evaporates.
  • the temperature in the second chamber 3 can be lowered by taking heat away.
  • the second chamber 3 When the second chamber 3 is thermally coupled to the heat conductive member 13, the second chamber 3 is passed from the heat conductive member 13 through, for example, a portion made of the heat conductive material of the second chamber 3. Is transmitted to. In other words, cold heat can be obtained from the second chamber 3 to the heat conductive member 13.
  • the second mode it is possible to suppress the temperature drop of the heat generating component 11 by using the heat generation reaction / phenomenon (heat dissipation) of the heat storage material.
  • the second chamber 3 is thermally coupled as the heat conductive member 13 to the external housing of the electronic device or the exterior of the battery, the temperature of the external housing of the electronic device or the battery is decreased. It can also be cooled. This makes it possible to control the temperature of the heat generating component 11 and thus the entire electronic device.
  • the heat storage material particles 2 a are contained in the first chamber 1 of the housing 9. It can exist in the form of calcium sulfate dihydrate. Therefore, in the first (first) first mode, when heat is supplied to the first chamber, first, the endothermic reaction of the following formula (A) proceeds, and then the endothermic reaction of the following formula (B) proceeds. This produces water that is a condensable component. In the second mode, when heat is taken from the system in the first chamber 1, an exothermic reaction opposite to the endothermic reaction of the above formula (B) proceeds to consume water as a condensable component.
  • an exothermic reaction opposite to the endothermic reaction of the above formula (A) usually does not occur. Accordingly, in the first mode thereafter (after the second time) (the endothermic reaction of the above formula (A) does not proceed), the endothermic reaction of the above formula (B) proceeds, and in the second mode, the above formula (B) An exothermic reaction opposite to the endothermic reaction proceeds.
  • the above is an example when calcium sulfate hemihydrate is used as the raw material of the heat storage material particles 2a, but the endothermic reaction / phenomenon and exothermic reaction depend on the raw material of the heat storage material particles 2a and the solvent, etc. / Phenomenon can vary.
  • the method of using the heat storage device 10 of the present embodiment has been described by way of example in the case where the mobile component is a condensable component.
  • the case where the mobile component is a sublimable component can be similarly understood.
  • the same description as described above with respect to the first chamber 1 in the heat storage device 10 applies to the heat storage device 10 ′ of the present embodiment.
  • the heat generated by the heat generating component 11 is transferred from the outer surface of the heat generating component 11 to the heat storage material accommodated in the first chamber 1, and the heat storage material absorbs heat, thereby suppressing the temperature rise of the heat generating component 11. Can be cooled (cooled).
  • the heat from the heat generating component 11 is transmitted to the particles 2a of the heat storage material accommodated in the first chamber 1 through the housing 9 (more specifically, the wall portion).
  • the housing 9 more specifically, the wall portion.
  • a chemical reaction or adsorption / desorption phenomenon of the heat storage material is caused. That is, as a factor that affects the cooling efficiency of the heat storage device, heat transfer between the housing and the heat storage material can be cited.
  • the conventional heat pump is a relatively large device, and loss of heat transfer between the housing and the heat storage material is not a particular problem, and particles of the heat storage material (for example, a radius of 0.1 mm or more) It is considered that it was sufficient to simply fill the casing with a substantially spherical particle of 1 cm or less (see paragraph 0032 of Patent Document 3).
  • the heat storage material particles 2a are poured into the first chamber 1 of the housing 9 in the form of slurry.
  • the heat transfer property (or heat bondability) between the heat storage material 2a and the heat storage material 2a can be increased, and the loss of heat transfer can be reduced, so that high cooling efficiency can be obtained even with a small device.
  • the heat storage devices 10 and 10 'manufactured according to the present embodiment do not need to input extra energy for the purpose of suppressing the temperature rise of the heat generating components, Excellent efficiency.
  • the heat storage devices 10 and 10 ′ manufactured according to the present embodiment are not radiated by convection (generates an air flow and exhausts outside) as in the conventional heat radiating method using a cooling fan, but are electronic devices.
  • the outer casing may be in a sealed state (closed system).
  • the housing 9 ′ includes the uneven structure 7 on the inner wall surface that defines the first chamber 1.
  • the slurry containing the heat storage material particles 2a and the solvent is poured into the first chamber 1 of the casing 9 ', the solvent is removed therefrom, and the heat storage material particles 2a. Is carried out in the first chamber 1 of the housing.
  • the concavo-convex structure 7 includes a portion (made of a heat conductive material) that is thermally coupled to the heat generating component 11 on the inner wall surface that defines the first chamber 1. It is preferably provided so as to extend and be embedded in the particles 2a of the heat storage material.
  • the concavo-convex structure 7 may have, for example, regularly arranged protrusions and / or recesses or randomly.
  • the uneven structure 7 can be provided by any appropriate method.
  • the concavo-convex structure 7 is preferably made of a heat conductive material, and can be made of a good heat conductor such as metal (copper or the like), oxide (alumina or the like), nitride (aluminum nitride or the like), or carbon.
  • the concavo-convex structure 7 may be obtained by, for example, dimple processing, wave processing, cutting processing, mold forming, welding, or the like on the surface of metal or the like.
  • the shape, size, arrangement, and the like of the concavo-convex structure 7 may be selected as appropriate, but the average particle size of the heat storage material particles 2a is 1/3 or less of the gap x of the concavo-convex structure, preferably 1/30 to 1/5. (Note that the particle 2a is schematically enlarged in the accompanying drawings, and the scales of the particle 2a and the concavo-convex structure 7 do not match).
  • the “gap in the concavo-convex structure” refers to the dimension of the space portion opened to the space in the first chamber 1 in the concavo-convex structure 7 (the dimension in which the heat storage material particles 2 a can enter).
  • particles having a sufficiently small average particle size compared to the gaps of the concavo-convex structure 7 can be easily spread to every corner of the concavo-convex structure 7 in the first chamber 1 by flowing in the form of slurry. .
  • the height difference y of the concavo-convex structure 7 may be 3 times or more the average particle diameter of the heat storage material particles 2a, preferably 1/3 or more, more preferably 1/2 or more of the filling height of the heat storage material particles 2a. More preferably, it can be 2/3 or more. It is preferable that the height difference y is large because the area that can come into contact with the particles 2a of the heat storage material increases.
  • the surface area of the inner wall surface of the first chamber 1 of the housing 9 ′, and thus the area that can come into contact with the particles 2 a of the heat storage material is increased by the uneven structure 7. Since the particles 2a are poured into the first chamber 1 of the housing 9 ′ in the form of a slurry, heat transferability (or thermal bondability) between the housing 9 ′ and the heat storage material 2a can be improved. And high cooling efficiency can be obtained.
  • Example 1 This example relates to the above-described first embodiment (see FIG. 1).
  • two metal plates 41a and 41b made of SUS314, thickness of about 0.2 mm
  • one metal plate 41a has two concave portions 43a corresponding to the first chamber 1 and the second chamber 3 (length in the longitudinal direction shown in the drawing is about 20 mm, width is about 10 mm). And a depth of about 0.3 mm) (in FIG. 4B, the metal plate 41a is shown upside down for convenience).
  • the other metal plate 41b was formed with a recess 43b (length in the longitudinal direction of about 30 mm, width of about 5 mm, depth of about 0.1 mm) corresponding to the connecting portion 5.
  • these metal plates 41a and 41b are overlapped so that the recesses 43a and 43b together form an internal space, and the outer peripheral flat surfaces of the metal plates 41a and 41b. Were brought into close contact with each other. And as shown in FIG.4 (d), the outer peripheral part 49 of the piled metal plates 41a and 41b was airtightly sealed by laser welding. Thus, the heat storage device of this example was produced.
  • each heat storage device of the produced Example and Comparative Example was subjected to a heating experiment. More specifically, each device is cut at the concave portion 43b corresponding to the connecting portion 5, and a thermocouple is inserted so that the temperature of the heat storage material can be measured, and the outer surface of the device housing (the portion defining the first chamber) The outer surface was heated in contact with a heater at 100 ° C., and the temperature change of the heat storage material from the start of heating was measured. As a result, the time required for the heat storage material to reach 60 ° C. was 25 seconds for the device of this example, whereas it was 35 seconds for the device of the comparative example.
  • Calcium sulfate hydrate used as a heat storage material does not cause an endothermic reaction at temperatures below 60 ° C. Therefore, by examining the time required for the heat storage material to reach 60 ° C, the heat transfer from the heater can be facilitated. It can be judged that heat is more easily transmitted when the required time is shorter. In the device of this example, a rapid temperature increase was observed compared to the device of the comparative example. This is because, in the device of the comparative example, since the heat storage material is filled in powder form, heat is not easily transferred from the device casing to the heat storage material, whereas in the device of this example, the heat storage material powder is slurried. It is considered that the heat transferability between the device casing and the heat storage material is improved (heat transfer loss is reduced).
  • Example 2 This example relates to the above-described second embodiment (see FIG. 3).
  • a concave-convex structure (gap about 2) is formed in the concave portion 43a (length in the longitudinal direction shown in the drawing is about 20 mm, width is about 10 mm, depth is about 0.3 mm) corresponding to the first chamber 1.
  • 0.0 mm, height difference of about 0.2 mm, and pitch of about 3.0 mm were formed in the same manner as in Example 1 to produce a heat storage device.
  • a temperature increase in a shorter time was observed compared to the device of Example 1. This is because the contact area between the device housing and the heat storage material is increased due to the uneven structure provided on the inner wall surface of the first chamber in the device of this example, and the heat transferability between the device housing and the heat storage material is increased. This is considered to be due to further improvement (heat transfer loss is further reduced).
  • the present invention is suitable for suppressing temperature rise of heat-generating components in mobile electronic devices such as smartphones, mobile phones, tablet terminals, laptop computers, portable game machines, portable music players, and digital cameras.
  • mobile electronic devices such as smartphones, mobile phones, tablet terminals, laptop computers, portable game machines, portable music players, and digital cameras.
  • the present invention is not limited to this.
  • First chamber 2a Particles of heat storage material (solid phase) 2b Gas phase (including mobile components) 3 Second chamber 4a Gas phase (including mobile components) 4b Liquid phase (including mobile component) 5 Contact portion 7 Concave and convex structure 9, 9 'Housing 10, 10', 10 '' Heat storage device 11 Heat generating component 13 Thermal conductive member x Clearance of concave and convex structure y Height difference of concave and convex structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 電子機器において発熱部品の温度上昇を抑制するために好適に使用され得る蓄熱デバイスを提供する。蓄熱材を収容した第一室を筐体内に備える蓄熱デバイス(10)の製造方法において、蓄熱材の粒子(2a)と溶媒とを含むスラリーを筐体(9)の第一室(1)内に流し込み、溶媒を除去して、蓄熱材の粒子(2a)を筐体(9)の第一室(1)内に残す。

Description

蓄熱デバイス
 本発明は、蓄熱デバイスに関し、特に、電子機器において発熱部品(または発熱する電子部品)の温度上昇を抑制するために好適に使用され得る蓄熱デバイスに関する。
 電子機器に内蔵されている電子部品、例えば中央処理装置(CPU)その他の集積回路(IC)等においては、投入されたエネルギーの一部が熱に変換されて、発熱することにより失われている。そして、発熱による温度上昇が顕著になると、電子部品そのものが故障したり、周囲の他の部品に悪影響を及ぼしたりして、電子機器の寿命や信頼性を損ね得る。また、電子部品の発熱は、電子機器のユーザの使用感や安全性のうえでも好ましくない。
 かかる発熱部品の温度上昇を抑制するために、従来、冷却ファンを用いて強制対流により電子機器の外部へ熱を排気する方法や、ヒートパイプの両端をそれぞれ発熱部品およびヒートシンクまたは放熱板に接続し、ヒートパイプ内の作動液の蒸発および凝縮の潜熱を利用して熱を輸送し、ヒートシンク等から放熱する方法が知られている(例えば特許文献1を参照のこと)。これら方法は、発熱部品から直接または間接に放熱することにより、発熱部品の温度上昇を抑制するものである。
特開2001-68883号公報 特開平10-89799号公報 特開2008-111592号公報
 近年、電子機器の高性能化に伴い、1つの電子機器に内蔵される発熱部品の数が増加すると共に、個々の発熱部品に投入されるエネルギー量が増大し、これらの結果、電子機器における発熱量が増大している。
 冷却ファンを用いた従来の放熱方法では、冷却ファンを駆動するために追加のエネルギーを要しており、より高い放熱能力を得るためには電子機器の電力消費量が更に増すこととなり、好ましくない。そもそも、この方法は、エネルギー損失である発熱に対して、エネルギー投入により放熱するというものであり、効率的でない。加えて、冷却ファンを設置するには比較的大きなスペースを要し、小型の電子機器には不向きである。更に、スマートフォンやタブレット型端末などでは、電子機器の筐体(外部筐体)が密閉されており、冷却ファンで気流を起こして外部へ排気することはできない。
 また、ヒートパイプを用いた従来の放熱方法では、熱を速やかに輸送することができるものの、この熱を放熱するにはヒートシンクや放熱板が必要である。ヒートシンク等を設置するには比較的大きなスペースを要し、小型の電子機器には不向きである。ヒートシンク等に代えて、電子機器の外部筐体等に熱を逃がすことも考えられ得るが、電子機器の小型薄型化により、外部筐体の表面積が減少しており、高い放熱能力を得ることはできない。加えて、電子機器の外部筐体の温度が上昇し過ぎると、ユーザの使用感や安全性のうえで好ましくない。更に、スマートフォンなどの高性能モバイル機器ではリチウムイオンバッテリの寿命低下が問題となっているところ、外部筐体に熱を逃すと、リチウムイオンバッテリの使用環境温度が高くなり、バッテリ容量の経時低下を招き得る。
 かかる状況下、個々の発熱部品の温度を測定し、温度測定値が所定の閾値を超えた場合に、発熱部品に投入するエネルギー量を制限することが行われているのが実状である。この方法は、発熱部品の発熱量自体を減少させることにより、発熱部品の温度上昇を抑制するものである。しかしながら、この方法では、発熱部品の温度上昇により、発熱部品の機能(例えばCPUのパフォーマンス)が都度妨げられることとなり、電子機器の性能を犠牲にしたものである。
 本発明は、電子機器において発熱部品の温度上昇を抑制するために好適に使用され得る蓄熱デバイスを提供することを目的とする。
 本発明者らは、蓄熱材の化学反応や吸脱着現象等を利用して熱を蓄熱および移動させる技術、即ち、ヒートポンプに着目した。ヒートポンプは、現在、化学プラントや発電所における排熱利用の目的で用いられたり、家庭の給湯・暖房システムや冷凍車などに用いられている比較的大型の装置である(例えば特許文献2~3を参照のこと)。かかる従来のヒートポンプは、電子機器に比して寸法が大きすぎるため、発熱部品の温度上昇を抑制するのにそのまま適用することはできない。そして、従来のヒートポンプを単に小型化しただけでは、発熱部品の温度上昇を抑制するのに十分な冷却効率を得ることができない。本発明者らは、発熱部品の温度上昇を抑制し得る新規な手段として、ヒートポンプを利用するという独自の発想に基づいて鋭意検討した結果、本発明を完成するに至った。
 本発明の1つの要旨によれば、蓄熱材を収容した第一室を筐体内に備える蓄熱デバイスの製造方法であって、蓄熱材の粒子と溶媒とを含むスラリーを筐体の第一室内に流し込み、溶媒を除去して、蓄熱材の粒子を筐体の第一室内に残すことを含む製造方法が提供される。
 上記本発明の蓄熱デバイスの製造方法では、蓄熱材の粒子は、スラリーの形態で筐体の第一室内に流し込まれるので、その隅々にまで供給することができ、この結果、製造された蓄熱デバイスにおいて、筐体と蓄熱材との間での熱伝達性(または熱結合性)を高めることができ、高い冷却効率を得ることができる。かかる本発明によれば、高い冷却効率を有し、電子機器において発熱部品の温度上昇を抑制するために好適に使用され得る蓄熱デバイスが提供される。
 なお、本発明において、「冷却」とは、発熱部品等の冷却対象の物質から吸熱する(熱を奪う)ことを意味し、冷却対象の物質の温度を低下させる必要はなく、冷却対象の物質の温度上昇を、本発明の蓄熱デバイスを適用しなかった場合に比べて抑制するものであればよい。よって、本明細書において、「温度上昇の抑制」と同様の意味で、「冷却」との用語を使用することがある。
 本発明の1つの態様において、スラリーは、バインダを更に含んでいてよい。バインダは、溶媒を除去した後も蓄熱材の粒子と一緒に残存して固まり得、これら粒子間を相互に接続すると共に筐体の内壁(より詳細には第一室の内壁)に密着し得る。この結果、製造された蓄熱デバイスにおいて、蓄熱材の内部での熱伝達性および筐体と蓄熱材との間での熱伝達性をより高めることができ、より高い冷却効率を得ることができる。
 本発明において、蓄熱材は、無機化合物の水和物を含んでいてよい。かかる無機化合物の水和物は、元々、水和物の形態であってもよく、また、無機化合物が水分(例えば周囲雰囲気中に存在し得る湿気、溶剤として存在し得る水など)と反応することによって生じたものであってもよい。蓄熱材が、無機化合物の水和物を含む場合、無機化合物の水和物(またはその前駆体)が、水分と反応して蓄熱材(無機化合物の水和物)の粒子同士が(結晶成長しながら)つながって固まり得る。この結果、製造された蓄熱デバイスにおいて、蓄熱材の内部での熱伝達性をより高めることができ、より高い冷却効率を得ることができる。
 蓄熱材の粒子の平均粒径は、1~100μmの範囲にあってよい。このように小さい平均粒径を有する粒子は、スラリーの形態で流し込むことにより、筐体の第一室において、より細部にまで供給することができる。この結果、製造された蓄熱デバイスにおいて、筐体と蓄熱材との間での熱伝達性をより高めることができ、より高い冷却効率を得ることができる。なお、本発明において「平均粒径」は、体積基準粒度分布におけるメジアン径(D50)を意味する。
 本発明の1つの態様において、筐体は、第一室を規定する内壁面に凹凸構造を備えていてよい。筐体の第一室の内壁面の表面積、ひいては蓄熱材と接触し得る面積が、凹凸構造により増加し、この結果、製造された蓄熱デバイスにおいて、筐体と蓄熱材との間での熱伝達性をより高めることができ、より高い冷却効率を得ることができる。
 かかる態様において、蓄熱材の粒子の平均粒径は、上記凹凸構造の隙間の1/3以下であることが好ましい。凹凸構造の隙間の1/3以下の平均粒径を有する粒子は、スラリーの形態で流し込むことにより、筐体の第一室において、凹凸構造の隙間の細部にまで供給することができる。この結果、製造された蓄熱デバイスにおいて、筐体と蓄熱材との間での熱伝達性をより高めることができ、より高い冷却効率を得ることができる。
 本発明において、蓄熱デバイスは、蓄熱材を収容した第一室を筐体内に備えるものであればよいが、蓄熱材の粒子から放出される成分を相変化させるための第二室と、該成分が第一室と第二室との間を移動可能なように第一室と第二室とを連絡する連絡部とを更に備えることが好ましい。本発明を限定する趣旨ではないが、かかる構成を有するデバイスは、いわゆるヒートポンプとして理解され得る。
 本発明のもう1つの要旨によれば、蓄熱材を収容した第一室を筐体内に備える蓄熱デバイスであって、蓄熱材の粒子から形成される塊状物が、該第一室の内壁面のうち少なくとも互いに隣接する2つの面に対して接触している蓄熱デバイスもまた提供される。かかる蓄熱デバイスは、上述した本発明の蓄熱デバイスの製造方法によって製造可能である。
 本発明によれば、蓄熱材の粒子が、スラリーの形態で筐体の第一室内に流し込まれるので、その隅々にまで供給することができて、筐体と蓄熱材との間での熱伝達性(または熱結合性)を高めることができ、よって、高い冷却効率を有し、電子機器において発熱部品の温度上昇を抑制するために好適に使用され得る蓄熱デバイスが提供される。
本発明の1つの実施形態において製造され得る蓄熱デバイスの1つの例の使用状態を示す概略模式断面図である。 本発明の1つの実施形態において製造され得る蓄熱デバイスのもう1つの例の使用状態を示す概略模式断面図である。 本発明のもう1つの実施形態において製造され得る蓄熱デバイスの1つの例の使用状態を示す概略模式断面図である。 本発明の実施例における蓄熱デバイスの製造方法を説明する概略模式斜視図である。
 本発明の2つの実施形態における電子機器について、以下、図面を参照しながら詳述するが、本発明はこれに限定されるものではない。
(実施形態1)
 本発明において製造される蓄熱デバイスは、蓄熱材を収容した第一室を筐体内に備えるものであればよい。本実施形態の1つの例においては、図1に示すように、蓄熱デバイス10は、蓄熱材の粒子2aを収容した第一室1と、蓄熱材の粒子2aから放出される成分を相変化させるための第二室3と、この成分(以下、移動性成分とも言う)が第一室1と第二室3との間を移動可能なように第一室1と第二室3とを連絡する連絡部5とを筐体9内に備えて成るものであってよい。かかる構成を有する蓄熱デバイス10は、ヒートポンプ(後述する化学蓄熱材を使用した場合はケミカルヒートポンプ)として理解され得る。蓄熱材の示す反応/現象は、ヒートポンプ10による熱の移動の駆動源であり、蓄熱材の粒子2aから放出される移動性成分は、ヒートポンプ10の作動媒体である。また、本実施形態の別の例においては、図2に示すように、蓄熱デバイス10’は、蓄熱材の粒子2aを収容した第一室1を筐体9内に備えて成るものであってよい。
 本実施形態の蓄熱デバイスの製造方法は、蓄熱材の粒子2aと溶媒とを含むスラリーを調製し、これを筐体9の第一室1内に流し込み、そこから溶媒を除去して、蓄熱材の粒子2aを筐体の第一室1内に残すことにより実施される。より詳細には以下の通りである。
 まず、筐体9を準備する。筐体9は、最終的に、少なくとも第一室1を含む密閉空間(物質の出入りのない閉じた系)を内部に形成可能であればよい。例えば、筐体9は、スラリー供給時点において、第一室1に通じる開口部を有し、あるいは筐体9が複数の部品から組み立てられる場合には、組み立て完成前の段階にあり、第一室1に通じる開口部が存在していてよい。
 また、筐体9は、少なくとも第一室1の内外で、および存在する場合には第二室3の内外で、熱の出入りが可能なように構成される。具体的には、第一室1および存在する場合には第二室3は、それぞれ少なくとも一部(図示する例では、後述する発熱部品11および存在する場合には熱伝導性部材13と接触して配置される壁部)が熱伝導性材料から構成され得る。熱伝導性材料は、特に限定されないが、例えば金属(銅など)、酸化物(アルミナなど)、窒化物(窒化アルミニウムなど)、カーボンなどの熱の良導体であってよい。
 筐体9の寸法は、蓄熱デバイスの用途に応じて適宜設定され得る。代表的には、第一室1および存在する場合には第二室3の高さは、それぞれ例えば0.1~100mm、特に0.3~10mmとし得、互いに同じであっても、異なっていてもよい。また、存在する場合には連絡部5の内側寸法高さは、例えば0.1~100mm、特に0.3~10mmとし得る。
 次に、蓄熱材の粒子と溶媒とを含むスラリーを調製する。
 蓄熱材には、化学反応や吸脱着現象等により熱を蓄熱できる限り、任意の適切な材料を使用し得る。図1に示す蓄熱デバイス10に関し、ヒートポンプの原理上は、蓄熱材は、互いに可逆な吸熱反応/現象および発熱反応/現象を示し、これらのいずれかによって相変化可能な移動性成分を放出するものであればよいが、これに限定されない。移動性成分は、典型的には、凝縮性成分、即ち、気体状態(気相)と液体状態(液相)との間で相変化(凝縮および蒸発)可能な成分であるが、昇華性成分、即ち、気体状態(気相)と固体状態(固相)との間で相変化(昇華)可能な成分であってもよい。
 蓄熱材には、化学蓄熱材を使用することができる。本明細書において、「化学蓄熱材」とは、吸熱反応により熱を蓄熱できる物質を意味する。例えば、吸熱反応によって凝縮性成分を生じるような化学蓄熱材を使用することができる。かかる化学蓄熱材は、吸熱反応として脱水反応を示し、発熱反応として水和反応を示すものであってよく、この場合、凝縮性成分は、水である。
 より具体的には、上記の化学蓄熱材としては、無機化合物の水和物および無機水酸化物などが使用され得る。より詳細には、アルカリ土類金属化合物の水和物およびアルカリ土類金属の水酸化物、例えば硫酸カルシウムや塩化カルシウムなどの水和物、カルシウムやマグネシウムの水酸化物などが挙げられる。また、水和物を形成可能な無機化合物(これは無機化合物の水和物の前駆体として理解される)、例えば酸化カルシウムも使用可能である。
 例えば、硫酸カルシウムの半水和物は、以下の吸熱反応を示す。
Figure JPOXMLDOC01-appb-C000001
 式中、Qは、16.7kJ/mol程度であることが知られている。
 硫酸カルシウムの半水和物の吸熱反応は、種々の条件にもよるが、例えば約50~150℃程度で進行し得る。これは可逆反応であり、上記の逆反応は、発熱反応となる。硫酸カルシウムの半水和物は固体状態(本明細書において後述する粒子の形態)であり、硫酸カルシウムは固体状態(同様の粒子の形態)であり、水は気体状態である。
 また例えば、塩化カルシウムの水和物は、以下の吸熱反応を示す。
Figure JPOXMLDOC01-appb-C000002
 式中、nは水和する分子数、具体的には1、2、4、6であり得、Qは、30~50kJ/mol程度であることが知られている。
 塩化カルシウムの水和物の吸熱反応は、種々の条件にもよるが、例えば約30~150℃程度で進行し得る。これは可逆反応であり、上記の逆反応は、発熱反応となる。塩化カルシウムの水和物は固体状態(本明細書において後述する粒子の形態)であり、塩化カルシウムは固体状態(同様の粒子の形態)であり、水は気体状態である。
 しかしながら、化学蓄熱材は、上記の例に限定されず、任意の適切な化学蓄熱材を使用してよく(例えば、アンモニアを発生し得るものであってもよい)、冷却対象に応じて(本実施形態では発熱部品11が発する熱によって吸熱反応を示すように)適宜選択され得る。化学蓄熱材は、化学反応を利用して、大きい蓄熱容量を得ることができ、幅広い温度範囲で蓄熱が可能である。
 あるいは、化学蓄熱材以外の他の蓄熱材を使用してもよい。本発明に利用可能な他の蓄熱材としては、例えばゼオライト、シリカゲル、メソポーラスシリカおよび活性炭から成る群より選択される少なくとも1種の蓄熱材(以下、単に「ゼオライト等」とも言う)が挙げられる。かかる蓄熱材は、化学蓄熱材と比べて、取り扱いが容易であり、構成を簡素化できる(例えば、腐食防止を考慮しなくてよい)という効果を奏し得る。
 これらゼオライト等は、いずれも、例えば水を可逆的に吸着および脱着することが可能であり、水の脱着の際に吸熱現象を示す。
Figure JPOXMLDOC01-appb-C000003
 式中、Zは、ゼオライト等の組成を代表して表したものであり、その組成に応じてxは種々の値をとり得る。Qは、具体的な組成にもよるが、例えば、ゼオライトで約30~80kJ/molであり得る。かかる水の脱着は、種々の条件にもよるが、例えば、ゼオライトで約50~150℃、シリカゲルで約5~150℃、メソポーラスシリカで約5~150℃、活性炭で約5~150℃で進行し得る。
 ゼオライトとは、いわゆるゼオライト構造、即ち、SiO四面体およびAlO四面体が頂点酸素を共有し3次元に連なった網目状構造を基本骨格として有する結晶性含水アルミノケイ酸塩を言う。ゼオライトは、通常、下記の一般式で表され得る。
 (M,M 1/2(AlSi2(m+n))・xHO (n≧m)
 Mは、Li、Na、K等の1価のカチオンであり、Mは、Ca2+、Mg2+、Ba2+等の2価のカチオンである。
 なかでも、本発明に好適に利用され得るゼオライトとしては、A型ゼオライト(LTA)、X型ゼオライト(FAU)、Y型ゼオライト(FAU)、ベータ型ゼオライト(BEA)、AlPO-5(AFI)などである。
 シリカゲルは、コロイド状シリカの三次元構造体であり、細孔径が数nm~数十nm、比表面積は5~1000m/gと多孔体特性を広範囲に制御できる。また、シリカゲルの一次粒子表面はシラノールに覆われており、シラノールの影響で極性分子(水など)を選択的に吸着する。
 メソポーラスシリカは、二酸化ケイ素を材質として均一で規則的な細孔を持つ物質で、細孔径は約2~10nmのものを言う。
 活性炭は、「細孔を有する多孔質の炭素質物質」で、大きな比表面積と吸着能力を持つ物質を言う。その基本骨格は炭素原子が120°の角度で結ばれた二次元格子の平面構造である。この二次元格子が不規則に積層して結晶格子を形成し、この結晶格子がランダムにつながったものが活性炭であり、結晶格子間の空隙が活性炭細孔であり、細孔に水が吸着する。
 これらゼオライト等は、水を十分に吸着させておくことが好ましい。溶媒に含まれる水をゼオライト等に吸着させたまま残存させても、あるいは、溶媒を除去した後に、水をゼオライト等に吸着させてもよい。
 蓄熱材には、上述した化学蓄熱材およびゼオライト等からなる群から選択される少なくとも1種を使用してよいが、無機化合物の水和物(またはその前駆体)を使用することが好ましい。無機化合物の水和物(またはその前駆体)は、水分と反応し、溶媒を除去した後に蓄熱材(無機化合物の水和物)の粒子同士が(結晶成長しながら)つながって固まり(多孔質状の成形体となり)得るので、蓄熱材の内部において、より高い熱伝達性を得ることができる。水分は、周囲雰囲気中に存在し得る湿気でもよいが、溶媒が水を含んでいることが好ましい。
 より広範な概念において、本発明に利用可能な蓄熱材は、冷却対象にもよるが、特に電子機器の発熱部品の温度上昇を抑制するためには、例えば30~200℃の温度で吸熱反応/現象を示すものであることが好ましく、特に40℃以上、更に50℃以上で、150℃以下、より更に120℃以下の温度で吸熱反応を示すものであることが好ましい。
 本発明において、蓄熱材は粒子2a(粒状物)の形態で準備される。蓄熱材の粒子の平均粒径(D50)は、例えば1~100μm、好ましくは1~50μmである。このように比較的小さい平均粒径を有する粒子は、乾燥状態では、筐体内の隅々まで十分に充填することが難しく、例えばコーナー部分などに鬆(空隙)が生じてしまう。これに対して、粒子をスラリーの形態で流し込むことにより、このように比較的小さい平均粒径を有する粒子であっても、筐体(第一室)のより細部にまで、筐体内の隅々まで十分に供給することができるので、筐体と蓄熱材との間において、より高い熱伝達性を得ることができる。
 他方、溶媒は液体状態(液状物)である。溶媒は、使用する蓄熱材に応じて適宜選択され得るが、例えば水、アルコール等の有機溶剤などを使用することができ、好ましくは水である。
 スラリーは、蓄熱材の粒子および溶媒に加えて、バインダや添加剤等を含んでいてよい。バインダとしては、例えば樹脂(ビニルアルコール系、アクリル系など)などの有機バインダ、また、例えばアルミナゾルなどの無機バインダが使用され得る。バインダを使用すると、溶媒を除去した後も蓄熱材の粒子と一緒に残存して固まり得、これら粒子間を相互に接続すると共に筐体の内壁(より詳細には第一室の内壁)に密着し得るので、蓄熱材の内部および筐体と蓄熱材との間において、より高い熱伝達性を得ることができる。添加剤としては、分散剤、粘度調製剤等が挙げられ、既知のものが使用され得る。
 これら蓄熱材の粒子、溶媒、および存在する場合にはバインダ等と混合してスラリーを調製する。混合比は、使用する蓄熱材の材料および平均粒径、溶媒の種類、バインダや添加剤等の有無などに応じて適宜選択され得るが、蓄熱材100重量部に対して、溶媒を、例えば50~200重量部、好ましくは80~120重量部で混合し得る。使用する場合、バインダは、蓄熱材100重量部に対して、例えば0.5~15重量部、好ましくは1~10重量部で混合し得る。
 以上の通り調製したスラリーを、上述した筐体9の第一室1内に流し込む。第一室1へのスラリーの流し込みは、上述した筐体9の開口部から適宜行い得る。このとき、蓄熱材の粒子2aは、スラリーの形態で流し込まれるので、流体のレベリング作用により、第一室1の隅々まで容易に行き渡らせることができる。かかる効果は、蓄熱材の粒子2aの粒径が小さいほど顕著である。これに対して、蓄熱材の粒子2aを、例えば乾燥状態のままで充填しようとすると、圧力を加える等の機械的な仕事を行っても、第一室1の隅々まで十分に充填することは難しい。
 次いで、第一室1内に流し込んだスラリーから溶媒を除去する。溶媒の除去は、例えば乾燥、減圧、加熱等による溶媒蒸発によって行い得る。
 この結果、蓄熱材の粒子2aが筐体9の第一室1内に残ることとなる。このとき、蓄熱材が無機化合物の水和物(またはその前駆体)である場合には、蓄熱材(無機化合物の水和物)の粒子2a同士が(結晶成長しながら)つながって固まり得る。また、スラリーがバインダを含んでいる場合には、バインダは蓄熱材の粒子2aと一緒に残存して固まり得、これら粒子2a間を相互に接続すると共に第一室1の内壁に密着し得る。
 換言すれば、第一室1おいて、蓄熱材の粒子2aは塊状物の形態で存在し、この塊状物は、第一室1の内壁面のうち上記スラリーと接触していた領域に対して密着することとなる。かかる塊状物は、第一室の内壁面のうち少なくとも互いに隣接する2つの面に対して接触し、好ましくは、第一室1の内壁面のうち少なくとも2つ、場合により3つの面が形成する角部にまで十分に充填される。
 本発明を限定するものではないが、例えば、蓄熱材の粒子2aの原料として硫酸カルシウム半水和物を使用した場合、水(典型的には溶媒として使用され得る)の存在下にて、下記の水和反応により硬化を起こして固まり得るので、筐体9の第一室1内において、蓄熱材の粒子2aは硫酸カルシウム2水和物の形態で残ることとなり得る。
Figure JPOXMLDOC01-appb-C000004
 その後、必要に応じて移動性成分を筐体9内に供給し(例えばゼオライト等に水を吸着させて)、筐体9を密封する。密封には、任意の適切な方法を適用してよく、例えばレーザー溶接、アーク溶接、抵抗溶接、ガス溶接、ろう付けなどの方法を利用できる。
 以上のようにして、本実施形態の蓄熱デバイス10、10’が製造される。
 かかる蓄熱デバイス10、10’は、電子機器に組み込まれて、発熱部品11の温度上昇を抑制するために好適に利用され得る。発熱部品11は、投入されたエネルギーの一部が熱に変換されて、発熱することにより失われる電子部品であればよい。発熱部品11の例としては、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC);発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子;その他、電界効果トランジスタ(FET)、モーター、コイル、コンバーター、インバーターおよびコンデンサーなどが挙げられるが、これらに限定されない。発熱部品11は、電子機器において少なくとも1つ、一般的には複数存在し得る。電子機器は、例えばスマートフォン、携帯電話、タブレット型端末、ラップトップ型パソコン、携帯型ゲーム機、携帯型音楽プレイヤー、デジタルカメラなどのモバイル型電子機器であり得るが、これらに限定されない。
 蓄熱デバイス10は、図1に示すように、蓄熱材の粒子2aを収容した第一室1が、筐体9の壁部を介して発熱部品11と熱的に結合し、蓄熱材の粒子2aから放出される移動性成分を相変化させる第二室3が、筐体9の壁部を介して熱伝導性部材13(発熱部品11と熱的に分離されている)と熱的に結合するようにして使用され得る。例えば、発熱部品11に対して、第一室1の熱伝導性材料から成る部分を直接または間接的に接触させて配置してよく、熱伝導性部材13に対して、第二室3の熱伝導性材料から成る部分を直接または間接的に接触させて配置してよい。この熱伝導性部材13は、発熱部品11が発熱しているときに、発熱部品11の温度より低い温度を有するものであればよい。熱伝導性部材13の例としては、電子機器の外部筐体、バッテリ(例えばリチウムイオンバッテリ、アルカリバッテリ、ニッケル水素バッテリなど)の外装、基板、ディスプレイなどが挙げられるが、これらに限定されない。
 蓄熱デバイス10’は、図2に示すように、蓄熱材の粒子2aを収容した第一室1が、筐体9の壁部を介して、発熱部品11と熱的に結合するようにして使用され得る。例えば、発熱部品11に対して、第一室1の熱伝導性材料から成る部分を直接または間接的に接触させて配置してよい。
 なお、本発明において、2つの部材が「熱的に結合する」とは、これら部材の間を熱が移動可能なように組み合わせることを意味する。熱的な結合は、直接または間接的な接触による熱伝導でもよいし、非接触で熱放射によるものでもよいし、熱媒または熱伝導性部材を利用したものであってもよい。2つの部材を熱的に結合させるために間接的に接触させる場合には、熱伝導性の接着剤層(例えば、金属フィラーなどで熱伝導性を高めた接着剤を用いて得られる層)や、熱伝導性材料から成る部材(例えば、金属などから成る伝熱板や、サーマルシート)等を介して接触させることが好ましい。
 蓄熱デバイス10、10’において、第一室1に収容された蓄熱材の粒子2aは固体状態(固相)であり、移動性成分(典型的には凝縮性成分)を含む気相2bと共に存在し得る。第一室1内の圧力は、通常(発熱部品が非発熱状態であるとき)の使用温度環境下にて、吸熱反応と発熱反応の平衡圧力に実質的に等しいことが望ましい。
 蓄熱デバイス10において、第二室3には、移動性成分が気相4aおよび液相4bに含まれて存在し得る。第二室内の圧力は、使用温度環境下にて、移動性成分の飽和蒸気圧(水の場合には飽和水蒸気圧)に実質的に等しいことが望ましい。第一室1と第二室3とを連絡する連絡部5は、これらの間を移動性成分が移動可能なようになっていればよい。より詳細には、移動性成分は気体状態で移動し得、この場合、連絡部5は気体が通過し得るものであればよい。
 以下、蓄熱デバイス10の使用方法について、例示的に、移動性成分が凝縮性成分である場合(第一室1および第二室3はそれぞれ反応室および凝縮蒸発室として理解され得る)について説明する。かかる蓄熱デバイス10は、次の2つのモードで使用され得る。
・第1モード(蓄熱過程)
 まず、発熱部品11にエネルギーが投入されて熱を発するようになり、発熱部品11の温度が上昇すると、これと熱的に結合している第一室1へと熱が伝達される。具体的には、発熱部品11が発する熱は、発熱部品11の外表面から、例えば第一室1の熱伝導性材料から成る部分を通じて、第一室1に収容した蓄熱材へと伝導される。このようにして第一室1に熱が供給されると、第一室1内で蓄熱材の吸熱反応/現象(蓄熱)が進行して凝縮性成分を生じる(即ち、第一室内の凝縮性成分の分圧が上昇する)。この結果、発熱部品から熱が奪われ、発熱部品の温度(代表的には、発熱部品の外表面の温度、以下も同様)の上昇が抑制される。
 このようにして第一室1内で生じた凝縮性成分は、気体状態(蒸気)で第一室1から連絡部5を通って第二室3へ移動する。かかる移動は、拡散現象により自然に起り得るが、これに限定されない。
 第二室3内では、凝縮性成分が凝縮して熱(潜熱)を生じる。例えば、凝縮性成分が水の場合、以下の反応により、気体状態の水が液体状態の水に相変化する。
Figure JPOXMLDOC01-appb-C000005
 式中、Qは、20.9kJ/molであることが知られている。
 第二室内の温度は、生じた熱により上昇し得る。このとき、第二室内の圧力を予め(非発熱状態において、例えば熱伝導性部材13が第二室3に熱的に結合して配置されている場合には、熱伝導性部材13に対して適宜設定され得る温度にて)凝縮性成分の飽和蒸気圧とし、凝縮性成分を気液平衡状態にしておくと、凝縮が速やかに進行し得るので好ましい。
 そして、第二室3が熱伝導性部材13に熱的に結合されている場合には、第二室3で生じた熱は、例えば第二室3の熱伝導性材料から成る部分を通じて、熱伝導性部材13に伝達される。
 以上、第1モードによれば、蓄熱材の吸熱反応/現象(蓄熱)を利用して、発熱部品11の温度上昇を抑制する(冷却する)ことができる。また、第二室3が、熱伝導性部材13として電子機器の外部筐体に熱的に結合されている場合には、蓄熱材に蓄熱していること、および、発熱部品11から第一室1内に入る熱よりも第二室3から熱伝導性部材13へ出る熱を小さくできることによって、電子機器の外部筐体の温度を比較的低温に維持できる。これにより、発熱部品11ひいては電子機器全体の温度制御が可能になる。
 なお、第二室3が熱伝導性部材13に熱的に結合されている場合には、熱伝導性部材13の温度を低下させることによっても、上記と同様の作用(メカニズム)が得られ、発熱部品11から熱を奪うことができ、発熱部品11の温度の上昇を抑制し、更には低下させることも可能である。
・第2モード(放熱過程)
 次に、例えば発熱部品11へのエネルギー投入を減少または停止するなどして、発熱部品11の温度が低下すると、これと熱的に結合している第一室1から発熱部品11へと熱が伝達される。具体的には、第一室1内の系から、例えば第一室1の熱伝導性材料から成る部分を通じて、発熱部品11へと伝導される。このようにして第一室1内の系から熱が奪われると、第一室1内で、蓄熱材の上記吸熱反応/現象と逆の発熱反応/現象(放熱)が進行して凝縮性成分を消費する(即ち、第一室内の凝縮性成分の分圧が低下する)。この結果、発熱部品11の温度は上昇に転じることとなる。
 このようにして第一室1内で凝縮性成分が消費されると、気体状態(蒸気)の凝縮性成分が第二室3から連絡部5を通って第一室1へ移動する。かかる移動も、拡散現象により自然に起り得るが、これに限定されない。
 第二室3内では、液相の凝縮性成分が熱(潜熱)を得て蒸発する。第二室3内の温度は、熱を奪われることにより低下し得る。
 そして、第二室3が熱伝導性部材13に熱的に結合されている場合には、熱伝導性部材13から、例えば第二室3の熱伝導性材料から成る部分を通じて、第二室3に伝達される。換言すれば、第二室3から熱伝導性部材13に対して、冷熱を得ることができる。
 以上、第2モードによれば、蓄熱材の発熱反応/現象(放熱)を利用して、発熱部品11の温度低下を抑制することができる。また、第二室3が、熱伝導性部材13として電子機器の外部筐体やバッテリの外装などに熱的に結合されている場合には、電子機器の外部筐体やバッテリの温度を低下させる(冷却する)こともできる。これにより、発熱部品11ひいては電子機器全体の温度制御が可能になる。
 なお、第二室3が熱伝導性部材13に熱的に結合されている場合には、熱伝導性部材13の温度を上昇させることによっても、上記と同様の作用(メカニズム)が得られ、発熱部品11の温度を上昇させることができる。
 本発明を限定するものではないが、例えば、蓄熱材の粒子2aの原料として硫酸カルシウム半水和物を使用した場合には、筐体9の第一室1内において、蓄熱材の粒子2aは硫酸カルシウム2水和物の形態で存在し得る。よって、最初(1回目)の第1モードでは、第一室に熱が供給されると、まず、下記式(A)の吸熱反応が進行し、次いで下記式(B)の吸熱反応が進行して、凝縮性成分である水を生じる。
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-I000007
 そして、第2モードでは、第一室1内の系から熱が奪われると、上記式(B)の吸熱反応と逆の発熱反応が進行して凝縮性成分である水を消費する。このとき、通常、上記式(A)の吸熱反応と逆の発熱反応は起こらない。
 従って、その後(2回目以降)の第1モードでは、(上記式(A)の吸熱反応は進行せず)上記式(B)の吸熱反応が進行し、第2モードでは、上記式(B)の吸熱反応と逆の発熱反応が進行することとなる。
 上記は、蓄熱材の粒子2aの原料として硫酸カルシウム半水和物を使用したときの例であるが、使用する蓄熱材の粒子2aの原料および溶媒等に応じて、吸熱反応/現象および発熱反応/現象は様々であり得る。
 以上、本実施形態の蓄熱デバイス10の使用方法について、例示的に、移動性成分が凝縮性成分である場合について説明したが、移動性成分が昇華性成分である場合も同様に理解され得る。
 また、本実施形態の蓄熱デバイス10’についても、蓄熱デバイス10における第一室1に関して上述したものと同様の説明が当て嵌まる。概略的には、発熱部品11が発する熱を、発熱部品11の外表面から、第一室1に収容した蓄熱材へ伝導し、蓄熱材が吸熱することによって、発熱部品11の温度上昇を抑制する(冷却する)ことができる。
 上述した使用方法から理解されるように、発熱部品11からの熱は、筐体9(より詳細にはその壁部)を通じて、第一室1内に収容された蓄熱材の粒子2aへと伝達されて、蓄熱材の化学反応や吸脱着現象等を引き起こす。つまり、蓄熱デバイスの冷却効率に影響する因子として、筐体と蓄熱材との間での熱伝達性が挙げられる。これに対して、従来のヒートポンプは比較的大型の装置であって、筐体と蓄熱材との間での熱伝達のロスは特段問題とならず、蓄熱材の粒子(例えば半径0.1mm以上1cm以下の略球形状粒子)を筐体に単に充填するだけで十分であったものと考えられる(特許文献3の第0032段落を参照のこと)。本実施形態の蓄熱デバイスの製造方法では、かかる従来のヒートポンプの製造方法とは異なり、蓄熱材の粒子2aをスラリーの形態で筐体9の第一室1内に流し込んでいるので、筐体9と蓄熱材2aとの間での熱伝達性(または熱結合性)を高めることができ、熱伝達のロスを低減して、小型のデバイスであっても、高い冷却効率を得ることができる。
 また、本実施形態により製造される蓄熱デバイス10、10’は、冷却ファンを用いた従来の放熱方法のように、発熱部品の温度上昇を抑制する目的で余計にエネルギー投入する必要がなく、エネルギー効率に優れる。
 また、本実施形態により製造される蓄熱デバイス10、10’は、冷却ファンを用いた従来の放熱方法にように、対流により放熱する(気流を起こして外部へ排気する)ものではなく、電子機器の外部筐体は密閉状態(閉じられた系)であってもよい。
(実施形態2)
 本実施形態は、上述の実施形態1の改変例であり、特に説明のない限り、実施形態1と同様の説明が当て嵌まる。
 本実施形態においては、図3に示すように、蓄熱デバイス10’’において、筐体9’が、第一室1を規定する内壁面に凹凸構造7を備える。本実施形態の蓄熱デバイスの製造方法は、蓄熱材の粒子2aと溶媒とを含むスラリーをかかる筐体9’の第一室1内に流し込み、そこから溶媒を除去して、蓄熱材の粒子2aを筐体の第一室1内に残すことにより実施される。
 より詳細には、凹凸構造7は、図3に示すように、第一室1を規定する内壁面のうち、発熱部品11と熱的に結合されている部分(熱伝導性材料から成る)から延在し、蓄熱材の粒子2aに埋設されるように設けられることが好ましい。
 凹凸構造7は、例えば凸部および/または凹部が規則的に配置されていても、ランダムに配置されていてもよい。凹凸構造7は、任意の適切な方法により設けることができる。凹凸構造7は、熱伝導性材料から成ることが好ましく、例えば金属(銅など)、酸化物(アルミナなど)、窒化物(窒化アルミニウムなど)、カーボンなどの熱の良導体から成り得る。凹凸構造7は、例えば金属等の表面に対するディンプル加工や波状加工、切削加工、鋳型成形、溶接などにより得られたものであってよい。
 凹凸構造7の形状、寸法、配置等は適宜選択してよいが、蓄熱材の粒子2aの平均粒径が、凹凸構造の隙間xの1/3以下、好ましくは1/30~1/5となるように設計され得る(なお、添付の図面において粒子2aは模式的に拡大して示してあり、粒子2aと凹凸構造7の縮尺は一致していないことに留意されたい)。本発明において、「凹凸構造の隙間」とは、凹凸構造7において、第一室1内の空間に対して開口した空間部分の寸法(蓄熱材の粒子2aが入り得る寸法)を言う。このように凹凸構造7の隙間に比して十分小さい平均粒径を有する粒子は、スラリーの形態で流し込むことにより、第一室1内の凹凸構造7の隅々まで容易に行き渡らせることができる。
 凹凸構造7の高低差yは、蓄熱材の粒子2aの平均粒径の3倍以上とされ得、好ましくは蓄熱材の粒子2aの充填高さの1/3以上、より好ましくは1/2以上、更に好ましくは2/3以上とされ得る。高低差yが大きいほど、蓄熱材の粒子2aと接触し得る面積が増加するので好ましい。
 本実施形態の蓄熱デバイスの製造方法では、筐体9’の第一室1の内壁面の表面積、ひいては蓄熱材の粒子2aと接触し得る面積が、凹凸構造7により増加した状態で、蓄熱材の粒子2aをスラリーの形態で筐体9’の第一室1内に流し込んでいるので、筐体9’と蓄熱材2aとの間での熱伝達性(または熱結合性)を高めることができ、高い冷却効率を得ることができる。
 以上、本発明の2つの実施形態における蓄熱デバイスの製造方法について詳述したが、本発明はかかる実施形態に限定されず、本発明の基本的概念に基づいて種々の改変が可能である。
(実施例1)
 本実施例は、上述した実施形態1(図1参照)に関するものである。
 まず、図4(a)を参照して、2枚の金属板41a、41b(SUS314製、厚さ約0.2mm)を用意した。次に、図4(b)に示すように、1つの金属板41aに、第一室1および第二室3に対応する2つの凹部43a(図示する長手方向の長さ約20mm、幅約10mm、深さ約0.3mm)を形成した(なお、図4(b)中、便宜的に金属板41aの上下を反転して示す)。他方、もう1つの金属板41bには、連絡部5に対応する凹部43b(図示する長手方向の長さ約30mm、幅約5mm、深さ約0.1mm)を形成した。別途、蓄熱材として硫酸カルシウム半水和物の粉末(平均粒径D50=50μm)と、バインダとしてビニルアルコール系樹脂と、溶媒として水とを、100:2:100の割合(重量基準)で混合してスラリーを調製した。次に、金属板41aの2つの凹部43aのうち第一室に対応するほう(図4(b)に矢印にて示す)に、上記で調製したスラリーを流し込んだ。そして、乾燥させてスラリー中の水を除去して、第一室内に蓄熱材の成形体を形成した。その後、図4(c)に示すように、これら金属板41a、41bを、凹部43aと凹部43bとが一緒になって内部空間を形成するように重ね合わせ、金属板41a、41bの外周平坦面を互いに密接させた。そして、図4(d)に示すように、重ね合わせた金属板41a、41bの外周部49を、レーザー溶接にて気密封止した。以上により本実施例の蓄熱デバイスを作製した。
 また、比較例として、蓄熱材として硫酸カルシウム2水和物の粉末(平均粒径D50=50μm)を、そのままの状態で(スラリーとせずに)第一室に対応する凹部に充填したこと以外は、上記実施例と同様にして、蓄熱デバイスを作製した。
 作製した本実施例および比較例の各蓄熱デバイスを加熱実験に付した。より詳細には、各デバイスを連絡部5に対応する凹部43bで切断し、熱電対を挿入して蓄熱材の温度を測定可能にし、デバイス筐体の外表面(第一室を区画する部分の外表面)を100℃のヒーターに接触させて加熱し、加熱開始からの蓄熱材の温度変化を測定した。その結果、蓄熱材が60℃に達するまでの所要時間は、本実施例のデバイスでは25秒であったのに対し、比較例のデバイスでは35秒であった。
 蓄熱材として用いた硫酸カルシウムの水和物は60℃未満の温度では吸熱反応を起こさないため、蓄熱材が60℃に達するまでの所要時間を調べることにより、ヒーターからの熱の伝わり易さを判断することができ、この所要時間が短いほうが、熱がより伝わり易いと言える。本実施例のデバイスでは、比較例のデバイスよりも、速やかな温度上昇が観測された。これは、比較例のデバイスでは、蓄熱材を粉末のまま充填していることから、デバイス筐体から蓄熱材に熱が伝わりにくいのに対し、本実施例のデバイスでは、蓄熱材の粉末をスラリーの形態で流し込んでいることにより、デバイス筐体と蓄熱材との熱伝達性が向上した(熱伝達ロスが小さくなった)ことによるものと考えられる。
(実施例2)
 本実施例は、上述した実施形態2(図3参照)に関するものである。
 図4(b)に示す金属板41aにおいて、第一室1に対応する凹部43a(図示する長手方向の長さ約20mm、幅約10mm、深さ約0.3mm)に凹凸構造(隙間約2.0mm、高低差約0.2mm、ピッチ約3.0mm)を形成したこと以外は、実施例1と同様にして、蓄熱デバイスを作製した(なお、凹凸構造は、その凸部が、第一室1に対応する凹部43aの幅方向に平行なストライプ状となるように形成し、凹凸構造の隣接する2つの凸部の間およびこれらの両外端に位置する凸部と凹部43aの壁面との間に約2mmの隙間を設けた)。
 作製した本実施例の蓄熱デバイスを、実施例1にて上述したのと同様の加熱実験に付したところ、蓄熱材が60℃に達するまでの所要時間は、15秒であった。
 本実施例のデバイスでは、実施例1のデバイスに比較して、より短時間での温度上昇が観測された。これは、本実施例のデバイスでは、第一室の内壁面に設けた凹凸構造により、デバイス筐体と蓄熱材との接触面積が増大して、デバイス筐体と蓄熱材との熱伝達性が更に向上した(熱伝達ロスが更に小さくなった)ことによるものと考えられる。
 なお、上記実施例1および2では、蓄熱材として硫酸カルシウム半水和物を用いた場合を示したが、塩化カルシウム水和物やゼオライトなどの蓄熱材であっても同様の効果がある。
 本発明は、例えばスマートフォン、携帯電話、タブレット型端末、ラップトップ型パソコン、携帯型ゲーム機、携帯型音楽プレイヤー、デジタルカメラなどのモバイル型電子機器において、発熱部品の温度上昇を抑制するために好適に利用され得るが、これに限定されるものではない。
 本願は、2013年11月26日付けで出願された特願2013-244194に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
  1 第一室
  2a 蓄熱材の粒子(固相)
  2b 気相(移動性成分を含む)
  3 第二室
  4a 気相(移動性成分を含む)
  4b 液相(移動性成分を含む)
  5 連絡部
  7 凹凸構造
  9、9’ 筐体
  10、10’、10’’ 蓄熱デバイス
  11 発熱部品
  13 熱伝導性部材
  x 凹凸構造の隙間
  y 凹凸構造の高低差

Claims (9)

  1.  蓄熱材を収容した第一室を筐体内に備える蓄熱デバイスの製造方法であって、
     蓄熱材の粒子と溶媒とを含むスラリーを筐体の第一室内に流し込み、溶媒を除去して、蓄熱材の粒子を筐体の第一室内に残すことを含む製造方法。
  2.  スラリーがバインダを更に含む、請求項1に記載の蓄熱デバイスの製造方法。
  3.  蓄熱材が、無機化合物の水和物を含む、請求項1または2に記載の蓄熱デバイスの製造方法。
  4.  蓄熱材の粒子の平均粒径が、1~100μmの範囲にある、請求項1~3のいずれかに記載の蓄熱デバイスの製造方法。
  5.  筐体が、第一室を規定する内壁面に凹凸構造を備える、請求項1~4のいずれかに記載の蓄熱デバイスの製造方法。
  6.  蓄熱材の粒子の平均粒径が、前記凹凸構造の隙間の1/3以下である、請求項5に記載の蓄熱デバイスの製造方法。
  7.  蓄熱デバイスが、蓄熱材の粒子から放出される成分を相変化させるための第二室と、該成分が第一室と第二室との間を移動可能なように第一室と第二室とを連絡する連絡部とを更に備える、請求項1~6のいずれかに記載の蓄熱デバイスの製造方法。
  8.  蓄熱材を収容した第一室を筐体内に備える蓄熱デバイスであって、蓄熱材の粒子から形成される塊状物が、該第一室の内壁面のうち少なくとも互いに隣接する2つの面に対して接触している、蓄熱デバイス。
  9.  請求項1~7のいずれか1項に記載の製造方法によって得られる、請求項8に記載の蓄熱デバイス。
PCT/JP2014/073902 2013-11-26 2014-09-10 蓄熱デバイス WO2015079770A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550592A JPWO2015079770A1 (ja) 2013-11-26 2014-09-10 蓄熱デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013244194 2013-11-26
JP2013-244194 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079770A1 true WO2015079770A1 (ja) 2015-06-04

Family

ID=53198726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073902 WO2015079770A1 (ja) 2013-11-26 2014-09-10 蓄熱デバイス

Country Status (2)

Country Link
JP (1) JPWO2015079770A1 (ja)
WO (1) WO2015079770A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053438A (ja) * 2014-09-03 2016-04-14 大阪瓦斯株式会社 化学蓄熱システム
JP2018165578A (ja) * 2017-03-28 2018-10-25 古河電気工業株式会社 蓄熱装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343989A (en) * 1980-11-24 1982-08-10 Brosnan Denis A Magnesium oxide based heat storage device
JPH02207836A (ja) * 1989-02-06 1990-08-17 Technol Res Assoc Super Heat Pump Energ Accum Syst 蓄熱媒体充填方法および装置
JPH04143558A (ja) * 1990-10-02 1992-05-18 Daikin Ind Ltd 吸着熱交換器
JPH1089799A (ja) * 1996-09-12 1998-04-10 Kyushu Electric Power Co Inc 温・冷熱生成ケミカルヒートポンプ
JPH10286460A (ja) * 1997-04-15 1998-10-27 Mayekawa Mfg Co Ltd 成形用吸着剤と、一体成形構造の吸着熱交換器
JP2003021430A (ja) * 2001-07-10 2003-01-24 Denso Corp 吸着コアの製造方法及び吸着コア
JP2003240465A (ja) * 2002-02-20 2003-08-27 Toho Gas Co Ltd 潜熱蓄熱装置
JP2005036197A (ja) * 2003-01-23 2005-02-10 Mitsubishi Chemicals Corp 熱利用材料、及びその応用
JP2008111592A (ja) * 2006-10-30 2008-05-15 Chiba Univ ケミカルヒートポンプ並びにこれを用いたハイブリッド冷凍システム及びハイブリッド冷凍車
JP2008157536A (ja) * 2006-12-22 2008-07-10 Denso Corp 吸着器および吸着器の製造方法
JP2009221289A (ja) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc 化学蓄熱材成形体及びその製造方法
JP2013112706A (ja) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology 化学蓄熱材及びケミカルヒートポンプ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343989A (en) * 1980-11-24 1982-08-10 Brosnan Denis A Magnesium oxide based heat storage device
JPH02207836A (ja) * 1989-02-06 1990-08-17 Technol Res Assoc Super Heat Pump Energ Accum Syst 蓄熱媒体充填方法および装置
JPH04143558A (ja) * 1990-10-02 1992-05-18 Daikin Ind Ltd 吸着熱交換器
JPH1089799A (ja) * 1996-09-12 1998-04-10 Kyushu Electric Power Co Inc 温・冷熱生成ケミカルヒートポンプ
JPH10286460A (ja) * 1997-04-15 1998-10-27 Mayekawa Mfg Co Ltd 成形用吸着剤と、一体成形構造の吸着熱交換器
JP2003021430A (ja) * 2001-07-10 2003-01-24 Denso Corp 吸着コアの製造方法及び吸着コア
JP2003240465A (ja) * 2002-02-20 2003-08-27 Toho Gas Co Ltd 潜熱蓄熱装置
JP2005036197A (ja) * 2003-01-23 2005-02-10 Mitsubishi Chemicals Corp 熱利用材料、及びその応用
JP2008111592A (ja) * 2006-10-30 2008-05-15 Chiba Univ ケミカルヒートポンプ並びにこれを用いたハイブリッド冷凍システム及びハイブリッド冷凍車
JP2008157536A (ja) * 2006-12-22 2008-07-10 Denso Corp 吸着器および吸着器の製造方法
JP2009221289A (ja) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc 化学蓄熱材成形体及びその製造方法
JP2013112706A (ja) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology 化学蓄熱材及びケミカルヒートポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053438A (ja) * 2014-09-03 2016-04-14 大阪瓦斯株式会社 化学蓄熱システム
JP2018165578A (ja) * 2017-03-28 2018-10-25 古河電気工業株式会社 蓄熱装置

Also Published As

Publication number Publication date
JPWO2015079770A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6369997B2 (ja) 電子機器
Li et al. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries
TW533455B (en) Device for cooling heat-generating electrical and electronic components, and an entire component comprising the same
TW200301814A (en) Optimised use of PCMS in cooling devices
JP5482681B2 (ja) 蓄熱装置
US8631855B2 (en) System for dissipating heat energy
US20110127013A1 (en) Heat-radiating component and method of manufacturing the same
BR112016016131B1 (pt) Dispositivo de troca de calor de adsorvedor híbrido e método de fabricação
JP2009133588A (ja) 熱交換型熱利用装置及びその製造方法
JP2004319658A (ja) 電子冷却装置
Huang et al. Modification on hydrated salt‐based phase change composites with carbon fillers for electronic thermal management
JP2009133590A (ja) 蓄熱装置及びその製造方法
Hu et al. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding
WO2015079770A1 (ja) 蓄熱デバイス
US20160141225A1 (en) Latent heat storage devices
US10420252B2 (en) Electronic apparatus
JP6372126B2 (ja) 熱輸送装置
JP6350661B2 (ja) 多孔質体および蓄熱デバイス
JP2001308242A (ja) 電子部品
JP6052216B2 (ja) 熱輸送装置
JP2013253212A (ja) 化学蓄熱材成形体およびその製造方法ならびに化学蓄熱装置
CN103209566A (zh) 散热结构
CN210694775U (zh) 一种基于相变材料的散热器
KR101419740B1 (ko) 이중구조로 이루어진 세라믹 방열부재 및 그 제조방법
JP2017089931A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865043

Country of ref document: EP

Kind code of ref document: A1