WO2015079538A1 - Dc-dcコンバータ - Google Patents

Dc-dcコンバータ Download PDF

Info

Publication number
WO2015079538A1
WO2015079538A1 PCT/JP2013/082079 JP2013082079W WO2015079538A1 WO 2015079538 A1 WO2015079538 A1 WO 2015079538A1 JP 2013082079 W JP2013082079 W JP 2013082079W WO 2015079538 A1 WO2015079538 A1 WO 2015079538A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
reactor
voltage
converter
capacitor
Prior art date
Application number
PCT/JP2013/082079
Other languages
English (en)
French (fr)
Inventor
佐土原 正志
征二 橋本
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2013/082079 priority Critical patent/WO2015079538A1/ja
Publication of WO2015079538A1 publication Critical patent/WO2015079538A1/ja
Priority to US15/162,621 priority patent/US9876423B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the disclosed embodiment relates to a DC-DC converter.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a DC-DC converter having a wide application range.
  • a DC-DC converter includes a step-up chopper circuit, a first reactor, a first capacitor, and a first diode.
  • the step-up chopper circuit has an input terminal, an output terminal, a reactor, a blocking diode, and a switching element, and boosts the input voltage to generate an output voltage.
  • the input terminal is connected to a DC power source.
  • the output terminal is connected to a load.
  • the reactor is provided between the input terminal and the output terminal.
  • the blocking diode is connected in series with the reactor.
  • One end of the switching element is connected between the reactor and the blocking diode.
  • the first reactor is provided between the input terminal and one end of the switching element.
  • the first capacitor is provided between the first reactor and the switching element, and is connected in series with the first reactor.
  • the first diode has an anode terminal connected to the connection portion of the first reactor and the first capacitor, and a cathode terminal connected to the output terminal.
  • the DC-DC converter can be applied in a wide range.
  • FIG. 7 is a diagram for explaining the current flowing through the DC-DC converter when the second switching element according to the second embodiment is off.
  • FIG. 8 is a diagram for explaining a current flowing through the DC-DC converter when the second switching element according to the second embodiment is on.
  • FIG. 9 is a diagram for explaining an input voltage and an output voltage of the DC-DC converter according to the second embodiment, a voltage of the second capacitor, a control signal for the switching element, and a control signal for the second switching element.
  • FIG. 1 is a circuit diagram of a DC-DC converter 1 according to the present embodiment.
  • the DC-DC converter 1 includes a step-up chopper circuit 100, a ZVS (Zero Voltage Switching) circuit 110, a ZCS (Zero Current Switching) circuit 120, and a control circuit 130.
  • ZVS Zero Voltage Switching
  • ZCS Zero Current Switching
  • the step-up chopper circuit 100 has a positive input terminal Vin +, a negative input terminal Vin ⁇ , a positive output terminal Vout +, a negative output terminal Vout ⁇ , a reactor L100, a blocking diode D100, a switching element S100, and a smoothing capacitor C100.
  • the step-up chopper circuit 100 switches the accumulation of energy from the DC power source E to the reactor L100 and the release of the energy from the reactor L100 by turning on / off the switching element S100. As a result, the boost chopper circuit 100 boosts the voltage output from the DC power supply E.
  • the negative electrode potential of the DC power supply E is the ground potential of the DC-DC converter 1.
  • the negative output terminal Vout ⁇ is connected to the ground potential.
  • the reactor L100 is provided between the positive input terminal Vin + and the positive output terminal Vout +.
  • the reactor L100 has one end connected to the positive input terminal Vin + and the other end connected to the anode terminal of the blocking diode D100.
  • Blocking diode D100 is connected in series with reactor L100.
  • the blocking diode D100 of FIG. 1 has an anode terminal connected to the reactor L100 and a cathode terminal connected to the positive output terminal Vout +.
  • Switching element S100 has one end connected between reactor L100 and blocking diode D100. The other end of the switching element S100 is connected to the ground potential.
  • the switching element S100 switches whether to connect the other end of the reactor L100 to the negative input terminal Vin ⁇ based on a control signal from the control circuit 130.
  • a bipolar transistor is used as the switching element S100, but the switching element S100 is not limited to this.
  • a MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the ZVS circuit 110 includes a first reactor L101, a first capacitor C101, a first diode D101, and a second diode D102.
  • the first reactor L101 is provided between the positive electrode input terminal Vin + and one end of the switching element S100.
  • the first reactor L101 has one end connected to the positive input terminal Vin + and the other end connected to the anode terminal of the second diode D102.
  • the first diode D101 has an anode terminal connected to the connection portion A between the first reactor L101 and the first capacitor C101, and a cathode terminal connected to the positive output terminal Vout +.
  • the first diode D101 is provided as a discharging diode for the first capacitor C101.
  • the second diode D102 is provided as a backflow prevention diode so that current does not flow back from the first capacitor C101 to the first reactor L101.
  • the second diode D102 is provided between the first reactor L101 and the first capacitor C101, but may be provided between the first reactor L101 and the positive input terminal Vin +. Further, the second diode D102 may be omitted.
  • connection portion A is a portion where the other end of the first reactor L101 and one end of the first capacitor C101 are connected. Therefore, the anode terminal of the first diode D101 is connected to the other end of the first reactor L101 and to one end of the first capacitor C101.
  • the ZCS circuit 120 is a circuit for the switching element S100 to perform soft switching when the switching element S100 is turned on. By providing the ZCS circuit 120, switching loss occurring in the switching element S100 can be suppressed. Details of suppressing the switching loss by the ZCS circuit 120 will be described later.
  • the ZCS circuit 120 has a second reactor L102.
  • the second reactor L102 is provided between the blocking diode D100 and the positive output terminal Vout +.
  • the second reactor L102 has one end connected to the cathode terminal of the blocking diode D100 and the other end connected to the positive output terminal Vout +.
  • FIG. 2 is a diagram showing the DC-DC converter 1 when the switching element S100 is on.
  • the arrows in FIG. 2 indicate the path of current flowing through the DC-DC converter 1.
  • the switching element S100 When the switching element S100 is on, the other end of the first capacitor C101 is connected to the ground potential via the switching element S100. Accordingly, the current I2 flowing from the positive electrode of the DC power supply E to the first reactor L101 flows to the ground potential through the second diode D102, the first capacitor C101, and the switching element S100.
  • FIG. 3 is a diagram illustrating the DC-DC converter 1 at the time of turn-off in which the switching element S100 is switched from on to off.
  • the arrows in FIG. 3 indicate the path of current flowing through the DC-DC converter 1 at the time of turn-off.
  • the first capacitor C101 starts discharging at the time of turn-off. Accordingly, the current I3 flows through the DC-DC converter 1 from the first capacitor C101 to the first diode D101.
  • the voltage of the first capacitor C101 is equal to the output voltage Vout. Therefore, when the switching element S100 is turned off, the potential of the connection portion B is equal to the ground potential.
  • the DC-DC converter 1 can perform zero volt switching, and can suppress the switching loss generated in the switching element S100 at the time of turn-off.
  • a boost operation by soft switching is performed in a circuit including the first reactor L101, the first capacitor C101, the first diode D101, and the switching element S100.
  • the first reactor L101 and the first capacitor C101 are set to appropriate values so that the voltage of the first capacitor C101 is equal to the output voltage Vout. Is not limited to this. It is only necessary that the voltage of the switching element S100 at the time of turn-off can be made smaller than the output voltage Vout by accumulating charges in the first capacitor C101. As described above, by suppressing the voltage of the switching element S100 at the time of turn-off, the DC-DC converter 1 can perform soft switching, and suppress the switching loss corresponding to the voltage of the first capacitor C101. Can do.
  • FIG. 4 is a diagram showing the DC-DC converter 1 when the switching element S100 is off.
  • the arrows in FIG. 4 indicate the path of current flowing through the DC-DC converter 1.
  • the current I1 flows through the DC-DC converter 1 from the positive electrode of the DC power source E to the reactor L100.
  • the current I1 flows from the positive electrode of the DC power source E to the reactor L100, the blocking diode D100, and the second reactor L102. At this time, magnetic field energy is accumulated in the second reactor L102.
  • FIG. 5 is a diagram showing the DC-DC converter 1 at the turn-on time when the switching element S100 is switched from OFF to ON.
  • the arrows in FIG. 5 indicate paths of current flowing through the DC-DC converter 1 when the switching element S100 is turned on.
  • the other end of the reactor L100 is connected to the ground potential via the switching element S100.
  • the DC-DC converter 1 has a second reactor L102 as the ZCS circuit 120. Due to the second reactor L102, the current I1 flows to the blocking diode D100 and the second reactor L102 even when it is turned on.
  • the second reactor L102 is set to an appropriate value so that the current I1 does not flow through the switching element S100 at the time of turn-on.
  • the present invention is not limited to this. It suffices that the current flowing through the second reactor L102 can reduce the current flowing through the switching element S100 during turn-off. As a result, the DC-DC converter 1 can perform soft switching, and can suppress a switching loss corresponding to the current flowing through the first reactor L102.
  • the DC-DC converter 1 includes the second reactor L102 as the ZCS circuit 120, so that the switching loss when the switching element S100 is switched from OFF to ON can be suppressed.
  • the ZVS circuit 110 by providing the ZVS circuit 110, it is possible to suppress the switching loss that occurs when the switching element S100 is turned on.
  • the DC-DC converter 1 discharges energy accumulated in the ZVS circuit 110 to the positive output terminal Vout + side in order to realize soft switching of the switching element S100, thereby suppressing loss due to soft switching. Can do.
  • the DC-DC converter 1 can suppress the switching loss that occurs when the switching element S100 is switched from OFF to ON by providing the ZCS circuit 120 in addition to the ZVS circuit 110.
  • the DC-DC converter 1 is configured such that no reverse current for charging the first capacitor C101 in the second reactor L102 is generated. Therefore, time for canceling the reverse current is not required, and the DC-DC converter 1 can be applied in a wide range.
  • a surge voltage may be generated in the second reactor L102.
  • the surge voltage is determined by the potential Ldi / dt across the second reactor L102. Accordingly, a surge voltage is generated when the switching element S100 is switched from on to off and the current flowing through the switching element S100 moves to the second reactor L102 side.
  • the second reactor L102 is very small compared to the reactor L100. Further, the DC-DC converter 1 of FIG. 1 performs zero-volt switching when the switching element S100 is switched from on to off. Therefore, the surge voltage generated at the timing when the switching element S100 switches from on to off does not have a large value, and does not give a large problem to the DC-DC converter 1.
  • the snubber circuit 200 is provided so as to absorb the surge voltage.
  • Snubber circuit 200 absorbs a surge voltage generated in second reactor L102.
  • the DC-DC converter 2 shown in FIG. 6 has the same configuration as that of the DC-DC converter 1 shown in FIG. 1 except that the snubber circuit 200 and the snubber control circuit 210 are included. The description is omitted.
  • 6 includes a second capacitor C201, a third reactor L201, a third diode D201, a fourth diode D202, and a second switching element S201.
  • the second capacitor C201 has one end connected to the positive output terminal Vout + and the other end connected to one end of the second switching element S201.
  • the second capacitor C201 accumulates the surge voltage generated in the second reactor L102 as an electric charge.
  • the third diode D201 has an anode terminal connected to the connection C between the blocking diode D100 and the second reactor L102, and a cathode terminal connected to the other end of the second capacitor C201.
  • the third diode D201 operates as a backflow prevention diode that prevents the charge accumulated in the second capacitor C201 from flowing back to the connection portion C.
  • the third reactor L201 has one end connected to the positive electrode output terminal Vout + and the other end connected to the cathode terminal of the fourth diode D202.
  • the fourth diode D202 has an anode terminal connected to the ground potential and a cathode terminal connected to the other end of the third reactor L201. Therefore, the other end of the third reactor L201 is connected to the ground potential via the fourth diode D202.
  • the fourth diode D202 operates as a backflow prevention diode that prevents the electric charge accumulated in the second capacitor C201 from flowing to the ground potential.
  • the second switching element S201 is provided between the second capacitor C201 and the fourth diode D202.
  • the second switching element S201 in FIG. 6 has one end connected to the other end of the second capacitor C201 and the other end connected to the cathode terminal of the fourth diode D202. That is, the other end of the second switching element S201 is connected to the ground potential via the fourth diode D202.
  • the second switching element S201 switches whether to connect the other end of the second capacitor C201 to the ground potential according to the instruction of the snubber control circuit 210. Specifically, when the second switching element S201 is on, the other end of the second capacitor C201 is connected to the ground potential. When the second switching element S201 is off, the other end of the second capacitor C201 is electrically disconnected from the ground potential.
  • a bipolar transistor is used as the second switching element S201, but the present invention is not limited to this.
  • a MOSFET transistor may be used as the second switching element S201.
  • the collector terminal of the second switching element S201 is connected to the other end of the second capacitor C201, and the emitter terminal of the second switching element S201 is the cathode terminal of the fourth diode D202. Connected to.
  • the base terminal of the second switching element S201 is connected to the snubber control circuit 210 as a control terminal.
  • the snubber control circuit 210 controls whether or not the snubber circuit 200 absorbs / discharges the surge voltage generated in the second reactor L102. Specifically, the snubber control circuit 210 controls the snubber circuit 200 to repeatedly absorb / release the surge voltage when the voltage of the snubber circuit 200 becomes higher than a predetermined voltage.
  • the snubber control circuit 210 detects the voltage of the second capacitor C201 as the voltage of the snubber circuit 200, for example, with a voltage detection circuit (not shown). Further, the snubber control circuit 210 generates a control signal for switching on / off of the second switching element S201 based on the detected voltage of the second capacitor C201. The snubber control circuit 210 controls the second switching element S201 by outputting the generated control signal to the second switching element S201.
  • FIG. 7 is a diagram illustrating a path of a current flowing through the snubber circuit 200 when the second switching element S201 is off.
  • the snubber control circuit 210 is not shown.
  • the second capacitor C201 When the second switching element S201 is off, the second capacitor C201 is connected in parallel with the second reactor L102. Therefore, as shown in FIG. 7, a current flows through the snubber circuit 200 from the connection C to the second capacitor C201 through the third diode D201. As a result, the second capacitor C201 accumulates electric charges.
  • FIG. 8 is a diagram illustrating a path of a current flowing through the snubber circuit 200 when the second switching element S201 is on.
  • the snubber control circuit 210 is not shown.
  • the second switching element S201 When the second switching element S201 is on, the other end of the second capacitor C201 is connected to the ground potential. Thereby, as shown in FIG. 8, in the snubber circuit 200, a current flows from the other end of the second capacitor C201 to the positive output terminal Vout + through the second switching element S201 and the third reactor L201. Thus, when the second switching element S201 is on, the second capacitor C201 releases the accumulated charge to the positive output terminal Vout +.
  • FIG. 9 is a diagram illustrating the input voltage Vin, the output voltage Vout, the voltage of the second capacitor C201, the control signal of the switching element S100, and the control signal of the second switching element S201 in the DC-DC converter 2.
  • the input voltage Vin becomes the constant voltage Ve.
  • the output voltage Vout becomes the voltage Ve equal to the input voltage Vin while the DC-DC converter 2 is not performing the boosting operation (before timing T1 in FIG. 9).
  • the switching element S100 is repeatedly turned on / off at a constant period based on a control signal from the control circuit 130 (after timing T1 in FIG. 9)
  • the DC-DC converter 2 performs a boost operation, and the output voltage Vout rises to the voltage Vr. To do.
  • the control circuit 130 controls the switching element S100 by applying the control signal of the switching element S100 shown in FIG. 9 to the control terminal of the switching element S100.
  • the second switching element S201 of the snubber circuit 200 performs hard switching, but the influence of the loss due to the hard switching on the entire DC-DC converter 2 is small. This is because the energy stored in the snubber circuit 200 is much smaller than the boosted power of the boost chopper circuit 100.

Abstract

 DC-DCコンバータ(1,2)は、昇圧チョッパ回路(100)と、第1リアクトル(L101)と、第1コンデンサ(C101)と、第1ダイオード(D101)とを備える。昇圧チョッパ回路(100)は、入力端子(Vin+,Vin-)と、出力端子(Vout+,Vout-)と、リアクトル(L100)と、ブロッキングダイオード(D100)と、スイッチング素子(S100)とを有し、入力電圧(Vin)を昇圧して出力電圧(Vout)を生成する。第1リアクトル(L101)は、入力端子(Vin)とスイッチング素子(S100)の一端との間に設けられる。第1コンデンサ(C101)は、第1リアクトル(L101)と直列接続される。第1ダイオード(D101)は、アノード端子が第1リアクトル(L101)と第1コンデンサ(C101)との接続部に接続され、カソード端子が出力端子(Vout+)に接続される。

Description

DC-DCコンバータ
 開示の実施形態は、DC-DCコンバータに関する。
 昇圧型のDC-DCコンバータは、スイッチング素子がオン/オフを周期的に繰り返すことで入力電圧を昇圧する。このとき、オン/オフをソフトスイッチングで行うことで、スイッチングロスを低減する技術が知られている(例えば、特許文献1参照)。
特開2012-70505号公報
 しかしながら、特許文献1に開示されたDC-DCコンバータでは、スイッチング素子をオンすると、逆電圧防止用ダイオードより出力側に設けられたリアクトルにスナバ回路用キャパシタを充電するための逆方向電流が発生する。かかる逆方向電流がキャンセルされるために時間がかかり、ソフトスイッチング用リアクタンスに流れる電流を十分にキャンセルできない。そのため、従来のDC-DCコンバータを適応できる範囲が限られるという問題があった。
 実施形態の一態様は、上記に鑑みてなされたものであって、適用範囲の広いDC-DCコンバータを提供することを目的とする。
 実施形態の一態様に係るDC-DCコンバータは、昇圧チョッパ回路と、第1リアクトルと、第1コンデンサと、第1ダイオードとを備える。昇圧チョッパ回路は、入力端子と、出力端子と、リアクトルと、ブロッキングダイオードと、スイッチング素子と、を有し、入力電圧を昇圧して出力電圧を生成する。入力端子は、直流電源に接続される。出力端子は、負荷に接続される。リアクトルは、入力端子と出力端子との間に設けられる。ブロッキングダイオードは、リアクトルと直列接続される。スイッチング素子は、一端がリアクトルとブロッキングダイオードとの間に接続される。第1リアクトルは、入力端子とスイッチング素子の一端との間に設けられる。第1コンデンサは、第1リアクトルとスイッチング素子との間に設けられ、第1リアクトルと直列接続される。第1ダイオードは、アノード端子が第1リアクトル及び第1コンデンサの接続部に接続され、カソード端子が出力端子に接続される。
 実施形態の一態様によれば、DC-DCコンバータを広範囲に適用することができる。
図1は、第1の実施形態に係るDC-DCコンバータを示す図である。 図2は、第1の実施形態に係るスイッチング素子がオンの場合にDC-DCコンバータに流れる電流を説明する図である。 図3は、第1の実施形態に係るスイッチング素子のターンオフ時にDC-DCコンバータに流れる電流を説明する図である。 図4は、第1の実施形態に係るスイッチング素子がオフの場合にDC-DCコンバータに流れる電流を説明する図である。 図5は、第1の実施形態に係るスイッチング素子のターンオン時にDC-DCコンバータに流れる電流を説明する図である。 図6は、第2の実施形態に係るDC-DCコンバータを示す図である。 図7は、第2の実施形態に係る第2スイッチング素子がオフの場合にDC-DCコンバータに流れる電流を説明する図である。 図8は、第2の実施形態に係る第2スイッチング素子がオンの場合にDC-DCコンバータに流れる電流を説明する図である。 図9は、第2の実施形態に係るDC-DCコンバータの入力電圧及び出力電圧、第2コンデンサの電圧、スイッチング素子の制御信号、及び第2スイッチング素子の制御信号を説明する図である。
 以下、添付図面を参照して、本願の開示するDC-DCコンバータの実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
 図1は、本実施形態に係るDC-DCコンバータ1の回路図である。DC-DCコンバータ1は、昇圧チョッパ回路100と、ZVS(Zero Voltage Switching)回路110と、ZCS(Zero Current Switching)回路120と、制御回路130とを備える。
 昇圧チョッパ回路100は、正極入力端子Vin+、負極入力端子Vin-、正極出力端子Vout+、及び負極出力端子Vout-、リアクトルL100、ブロッキングダイオードD100、スイッチング素子S100、及び平滑コンデンサC100を有する。
 昇圧チョッパ回路100は、直流電源EからリアクトルL100へのエネルギーの蓄積、及びかかるエネルギーのリアクトルL100からの放出を、スイッチング素子S100をオン/オフすることで切り替える。これにより、昇圧チョッパ回路100は直流電源Eから出力される電圧を昇圧する。
 昇圧チョッパ回路100は、正極入力端子Vin+と負極入力端子Vin-との間の電圧(以下、入力電圧Vinと称する)を昇圧して出力電圧Voutを生成する。出力電圧Voutは、正極出力端子Vout+と負極出力端子Vout-とを介して負荷Rに印加される。
 正極入力端子Vin+は、直流電源Eの正極に接続される。また、負極入力端子Vin-は、直流電源Eの負極に接続される。正極出力端子Vout+は、負荷Rの正極に接続される。また、負極出力端子Vout-は、負荷Rの負極に接続される。
 なお、図1の例では、直流電源Eの負極の電位がDC-DCコンバータ1のグランド電位となっている。また、負極出力端子Vout-は、グランド電位に接続される。
 リアクトルL100は、正極入力端子Vin+と正極出力端子Vout+との間に設けられる。図1の昇圧チョッパ回路100では、リアクトルL100は、一端が正極入力端子Vin+に接続され、他端がブロッキングダイオードD100のアノード端子に接続される。
 ブロッキングダイオードD100は、リアクトルL100と直列接続される。図1のブロッキングダイオードD100は、アノード端子がリアクトルL100に接続され、カソード端子が正極出力端子Vout+に接続される。
 ブロッキングダイオードD100は、正極出力端子Vout+から正極入力端子Vin+へと電流が逆流しないように逆流防止ダイオードとして設けられる。
 スイッチング素子S100は、一端がリアクトルL100とブロッキングダイオードD100との間に接続される。また、スイッチング素子S100は、他端がグランド電位に接続される。
 スイッチング素子S100は、制御回路130からの制御信号に基づき、リアクトルL100の他端を負極入力端子Vin-に接続するか否かを切り替える。図1ではスイッチング素子S100としてバイポーラトランジスタを用いているが、スイッチング素子S100はこれに限られない。例えば、スイッチング素子S100としてMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)トランジスタを用いてもよい。
 なお、スイッチング素子S100としてバイポーラトランジスタを用いる場合、スイッチング素子S100のコレクタ端子がリアクトルL100とブロッキングダイオードD100との間に接続され、スイッチング素子S100のエミッタ端子がグランド電位に接続される。また、ベース端子は、制御端子として制御回路130と接続される。
 平滑コンデンサC100は、一端が正極出力端子Vout+に接続され、他端が負極出力端子Vout-に接続される。平滑コンデンサC100は出力電圧Voutを平滑化する。なお、図1ではDC-DCコンバータ1が平滑コンデンサC100を有する構成としているが、負荷Rが平滑コンデンサC100を有する構成としてもよい。
 ZVS回路110は、スイッチング素子S100のターンオフ時にスイッチング素子S100がソフトスイッチングを行うための回路である。ZVS回路110は、スイッチング素子S100のオン時に直流電源Eから供給されるエネルギーに基づき、スイッチング素子S100のターンオフ時にスイッチング素子の電圧を抑制する。これにより、スイッチング素子S100に発生するスイッチング損失を抑制することができる。ZVS回路110によってスイッチング損失を抑制する点についての詳細は後述する。
 ZVS回路110は、第1リアクトルL101、第1コンデンサC101、第1ダイオードD101、及び第2ダイオードD102を有する。
 第1リアクトルL101は、正極入力端子Vin+とスイッチング素子S100の一端との間に設けられる。図1では、第1リアクトルL101は、一端が正極入力端子Vin+に接続され、他端が第2ダイオードD102のアノード端子に接続される。
 第1コンデンサC101は、第1リアクトルL101とスイッチング素子S100との間に設けられ、第1リアクトルL101と直列接続される。図1では、第1コンデンサC101は、一端が第2ダイオードD102のカソード端子に接続され、他端がスイッチング素子S100の一端に接続される。このように、図1の第1コンデンサC101は、第2ダイオードD102を介して第1リアクトルL101と直列接続される。
 第1ダイオードD101は、アノード端子が第1リアクトルL101と第1コンデンサC101との接続部Aに接続され、カソード端子が正極出力端子Vout+に接続される。第1ダイオードD101は、第1コンデンサC101の放電用ダイオードとして設けられる。
 図1のように、第1リアクトルL101及び第1コンデンサC101が第2ダイオードD102を介して直列接続される場合、接続部Aは、第2ダイオードD102のカソード端子と第1コンデンサC101の一端とが接続する部分となる。すなわち、第1ダイオードD101のアノード端子は、第2ダイオードD102を介して第1リアクトルL101の他端と接続し、かつ第1コンデンサC101の一端と接続する。
 次に、第2ダイオードD102は、第1リアクトルL101と直列接続される。図1の第2ダイオードD102は、アノード端子が第1リアクトルL101の他端に接続され、カソード端子が第1コンデンサC101の一端に接続される。
 第2ダイオードD102は、第1コンデンサC101から第1リアクトルL101へと電流が逆流しないように逆流防止ダイオードとして設けられる。図1では、第2ダイオードD102は第1リアクトルL101と第1コンデンサC101との間に設けられるが、第1リアクトルL101と正極入力端子Vin+との間に設けてもよい。また、第2ダイオードD102を省略してもよい。
 この場合、接続部Aは、第1リアクトルL101の他端と第1コンデンサC101の一端とが接続する部分となる。従って、第1ダイオードD101のアノード端子は、第1リアクトルL101の他端と接続し、かつ第1コンデンサC101の一端と接続する。
 ZCS回路120は、スイッチング素子S100のターンオン時にスイッチング素子S100がソフトスイッチングを行うための回路である。ZCS回路120を設けることで、スイッチング素子S100に発生するスイッチング損失を抑制することができる。ZCS回路120によってスイッチング損失を抑制する点についての詳細は後述する。
 ZCS回路120は、第2リアクトルL102を有する。第2リアクトルL102は、ブロッキングダイオードD100と正極出力端子Vout+との間に設けられる。図1では、第2リアクトルL102は、一端がブロッキングダイオードD100のカソード端子と接続され、他端が正極出力端子Vout+と接続される。
 続いて、図2乃至図5を用いてスイッチング素子S100のオン/オフを切り替えた場合に、DC-DCコンバータ1に流れる電流について説明する。なお、図2乃至図5では、簡略化のため制御回路130を省略している。
<スイッチング素子S100がオンの場合>
 図2は、スイッチング素子S100がオンの場合のDC-DCコンバータ1を示す図である。図2の矢印はDC-DCコンバータ1に流れる電流の経路を示す。
 スイッチング素子S100がオンの場合、リアクトルL100の他端がスイッチング素子S100を介してグランド電位に接続される。従って、直流電源Eの正極からリアクトルL100へと流れる電流I1は、スイッチング素子S100を通ってグランド電位へと流れる。これにより、リアクトルL100は磁界エネルギーを蓄積する。
 また、スイッチング素子S100がオンの場合、第1コンデンサC101の他端がスイッチング素子S100を介してグランド電位に接続される。従って、直流電源Eの正極から第1リアクトルL101へと流れる電流I2は、第2ダイオードD102、第1コンデンサC101、及びスイッチング素子S100を通ってグランド電位へと流れる。
 第1コンデンサC101は、第1リアクトルL101からエネルギーの供給を受けて、電荷を蓄積する。本実施形態では、第1リアクトルL101及び第1コンデンサC101の値を適切に設定することで、第1コンデンサC101の電圧が出力電圧Voutと同等になるようにする。
<スイッチング素子S100がオンからオフへと切り替わる場合>
 次に、図3を用いて、スイッチング素子S100がオンからオフへと切り替わる過渡状態について説明する。図3は、スイッチング素子S100がオンからオフへと切り替わるターンオフ時のDC-DCコンバータ1を示す図である。図3の矢印はターンオフ時にDC-DCコンバータ1に流れる電流の経路を示す。
 ターンオフ時に第1コンデンサC101は放電を開始する。従って、DC-DCコンバータ1には、第1コンデンサC101から第1ダイオードD101へと電流I3が流れる。
 リアクトルL100に流れる電流I1は、スイッチング素子S100がオフとなっても流れ続ける。ターンオフ時、電流I1は直流電源Eの正極からリアクトルL100を通り第1コンデンサC101の他端へと流れる。
 第1リアクトルL101に流れる電流I2は、スイッチング素子S100がオフとなっても流れ続ける。電流I2は、直流電源Eの正極から、第1リアクトルL101及び第2ダイオードD102を通って接続部Aへと流れる。
 ここで、ZVS回路110によりスイッチング素子S100のスイッチング損失を抑制する点について説明する。
 スイッチング素子S100がオンの間に第1コンデンサC101に電荷が蓄積されることで、第1コンデンサC101の電圧は出力電圧Voutと同等となっている。従って、スイッチング素子S100のターンオフ時、接続部Bの電位はグランド電位と同等となる。
 そのため、スイッチング素子S100の両端の電位がともにグランド電位と同等となり、スイッチング素子S100の電圧がほぼゼロとなる。従って、DC-DCコンバータ1は、ゼロボルトスイッチングを行うことができ、ターンオフ時にスイッチング素子S100で発生するスイッチング損失を抑制することができる。
 本実施形態のDC-DCコンバータ1では、第1リアクトルL101、第1コンデンサC101、第1ダイオードD101、及びスイッチング素子S100を含む回路でソフトスイッチングによる昇圧動作を行っているとも言える。
 なお、本実施形態では、第1リアクトルL101及び第1コンデンサC101を適切な値とすることで、第1コンデンサC101の電圧が出力電圧Voutと等しくなるようにするとしたが、第1コンデンサC101の電圧はこれに限られない。第1コンデンサC101に電荷を蓄積することで、ターンオフ時のスイッチング素子S100の電圧を出力電圧Voutより小さくできればよい。このように、ターンオフ時のスイッチング素子S100の電圧を抑制することで、DC-DCコンバータ1は、ソフトスイッチングを行うことができ、第1コンデンサC101の電圧に相当する分のスイッチング損失を抑制することができる。
<スイッチング素子S100がオフの場合>
 続いて、図4を用いてスイッチング素子S100がオフの場合のDC-DCコンバータ1について説明する。図4は、スイッチング素子S100がオフの場合のDC-DCコンバータ1を示す図である。図4の矢印は、DC-DCコンバータ1に流れる電流の経路を示す。
 第1コンデンサC101の放電が完了し定常状態へと移行すると、DC-DCコンバータ1には、直流電源Eの正極からリアクトルL100へと電流I1が流れる。電流I1は、直流電源Eの正極から、リアクトルL100、ブロッキングダイオードD100、第2リアクトルL102へと流れる。このとき、第2リアクトルL102に磁界エネルギーが蓄積される。
<スイッチング素子S100がオフからオンへと切り替わる場合>
 次に、図5を用いて、スイッチング素子S100がオフからオンへと切り替わる過渡状態について説明する。図5は、スイッチング素子S100がオフからオンへと切り替わるターンオン時のDC-DCコンバータ1を示す図である。図5の矢印はスイッチング素子S100のターンオン時にDC-DCコンバータ1に流れる電流の経路を示す。
 スイッチング素子S100がオフからオンへと切り替わるターンオン時、リアクトルL100の他端がスイッチング素子S100を介してグランド電位に接続される。
 ZCS回路120がないDC-DCコンバータの場合、ターンオン時にリアクトルL100に流れる電流I1がスイッチング素子S100へと流れる。従って、スイッチング素子S100に流れる電流I1に相当するスイッチング損失が発生する。
 DC-DCコンバータ1は、ZCS回路120として第2リアクトルL102を有する。かかる第2リアクトルL102によって、電流I1は、ターンオン時もブロッキングダイオードD100、第2リアクトルL102へと流れる。
 従って、ターンオン時にスイッチング素子S100に電流が流れず、スイッチング素子S100をオフからオンに切り替えたときのスイッチング損失をゼロとすることができる。
 なお、本実施形態では、第2リアクトルL102を適切な値とすることで、ターンオン時にスイッチング素子S100に電流I1が流れないとしたが、これに限られない。第2リアクトルL102に電流が流れることで、ターンオフ時のスイッチング素子S100に流れる電流を小さくできればよい。これにより、DC-DCコンバータ1は、ソフトスイッチングを行うことができ、第1リアクトルL102に流れる電流に相当する分のスイッチング損失を抑制することができる。
 このように、本実施形態に係るDC-DCコンバータ1は、ZCS回路120として第2リアクトルL102を有することで、スイッチング素子S100をオフからオンに切り替えたときのスイッチング損失を抑制することができる。
 以上のように、本実施形態に係るDC-DCコンバータ1では、ZVS回路110を設けることで、スイッチング素子S100のターンオン時に発生するスイッチング損失を抑制することができる。
 また、DC-DCコンバータ1は、スイッチング素子S100のソフトスイッチングを実現するためにZVS回路110に蓄積されるエネルギーを正極出力端子Vout+側に放出するようにしており、ソフトスイッチングによる損失を抑制することができる。
 また、DC-DCコンバータ1は、ZVS回路110に加えてZCS回路120を設けることで、スイッチング素子S100をオフからオンに切り替えた時に発生するスイッチング損失を抑制することができる。
 また、DC-DCコンバータ1は、第2リアクトルL102に第1コンデンサC101を充電するための逆方向電流が発生しない構成としている。従って、かかる逆方向電流をキャンセルするための時間が不要となり、DC-DCコンバータ1を広範囲に適応することができる。
(第2の実施形態)
 次に、図6乃至図9を用いて第2の実施形態に係るDC-DCコンバータ2について説明する。
 図1のDC-DCコンバータ1は第2リアクトルL102を有しているため、第2リアクトルL102にサージ電圧が発生する場合がある。
 サージ電圧は、第2リアクトルL102の両端の電位Ldi/dtで決定される。従って、スイッチング素子S100がオンからオフへと切り替わり、スイッチング素子S100に流れていた電流が第2リアクトルL102側へと移る場合に、サージ電圧が発生する。
 しかしながら、第2リアクトルL102は、リアクトルL100に比べて非常に小さい。さらに図1のDC-DCコンバータ1は、スイッチング素子S100がオンからオフへと切り替わる場合にゼロボルトスイッチングを行う。従って、スイッチング素子S100がオンからオフへと切り替わるタイミングで発生するサージ電圧は大きな値とならずDC-DCコンバータ1に大きな問題を与えない。
 一方、スイッチング素子S100がオフからオンへと切り替わり、第2リアクトルL102に流れる電流がすべてスイッチング素子S100に流れるようになった場合について考える。この場合、第2リアクトルL102とブロッキングダイオードD100との間の接続容量や浮遊容量により共振が発生し、第2リアクトルL102に発生するサージ電圧が、定常状態の2倍まで大きくなる可能性がある。
 そこで、本実施形態に係るDC-DCコンバータ2では、スナバ回路200を設け、かかるサージ電圧を吸収するようにする。
 図6のDC-DCコンバータ2は、図1のDC-DCコンバータ1の構成に加えスナバ回路200及びスナバ制御回路210を有する。スナバ回路200は、第2リアクトルL102に発生するサージ電圧を吸収する。
 なお、図6に示すDC-DCコンバータ2は、スナバ回路200及びスナバ制御回路210を有する点を除き、図1に示すDC-DCコンバータ1と同じ構成であるため、同一構成要素には同一符号を付し説明を省略する。
 図6のスナバ回路200は、第2コンデンサC201、第3リアクトルL201、第3ダイオードD201、第4ダイオードD202、及び第2スイッチング素子S201を有する。
 第2コンデンサC201は、一端が正極出力端子Vout+に接続され、他端が第2スイッチング素子S201の一端に接続される。第2コンデンサC201は、第2リアクトルL102に発生するサージ電圧を電荷として蓄積する。
 第3ダイオードD201は、アノード端子がブロッキングダイオードD100と第2リアクトルL102との接続部Cに接続され、カソード端子が第2コンデンサC201の他端に接続される。第3ダイオードD201は、第2コンデンサC201に蓄積された電荷が接続部Cへと逆流しないようにする逆流防止ダイオードとして動作する。
 第3リアクトルL201は、一端が正極出力端子Vout+に接続され、他端が第4ダイオードD202のカソード端子に接続される。
 第4ダイオードD202は、アノード端子がグランド電位に接続され、カソード端子が第3リアクトルL201の他端に接続される。従って、第3リアクトルL201の他端は、第4ダイオードD202を介してグランド電位に接続される。
 また、第4ダイオードD202は、第2コンデンサC201に蓄積された電荷がグランド電位に流れないようにする逆流防止ダイオードとして動作する。
 第2スイッチング素子S201は、第2コンデンサC201と第4ダイオードD202との間に設けられる。図6の第2スイッチング素子S201は、一端が第2コンデンサC201の他端に接続され、他端が第4ダイオードD202のカソード端子に接続される。すなわち、第2スイッチング素子S201の他端は第4ダイオードD202を介してグランド電位に接続される。
 第2スイッチング素子S201は、スナバ制御回路210の指示に従い第2コンデンサC201の他端をグランド電位に接続するか否かを切り替える。具体的には、第2スイッチング素子S201がオンの場合、第2コンデンサC201の他端はグランド電位に接続される。また、第2スイッチング素子S201がオフの場合、第2コンデンサC201の他端はグランド電位から電気的に切り離される。
 図6では、第2スイッチング素子S201としてバイポーラトランジスタを用いているが、これに限られない。例えば第2スイッチング素子S201としてMOSFETトランジスタを用いてもよい。
 なお、第2スイッチング素子S201としてバイポーラトランジスタを用いる場合、第2スイッチング素子S201のコレクタ端子が第2コンデンサC201の他端に接続され、第2スイッチング素子S201のエミッタ端子が第4ダイオードD202のカソード端子に接続される。また、第2スイッチング素子S201のベース端子は、制御端子としてスナバ制御回路210と接続される。
 スナバ制御回路210は、スナバ回路200が第2リアクトルL102に発生するサージ電圧を吸収/放出するか否かを制御する。具体的には、スナバ制御回路210は、スナバ回路200の電圧が所定の電圧より大きくなった場合にサージ電圧を吸収/放出を繰り返すようスナバ回路200を制御する。
 本実施形態では、スナバ制御回路210は、スナバ回路200の電圧として第2コンデンサC201の電圧を、例えば電圧検出回路(図示せず)で検出する。また、スナバ制御回路210は、検出した第2コンデンサC201の電圧に基づき、第2スイッチング素子S201のオン/オフを切り替える制御信号を生成する。スナバ制御回路210は、生成した制御信号を第2スイッチング素子S201に出力することで第2スイッチング素子S201を制御する。
 続いて、図7乃至図9を用いてスナバ回路200の動作について説明する。図7は、第2スイッチング素子S201がオフの場合にスナバ回路200に流れる電流の経路を示す図である。なお、図7ではスナバ制御回路210の図示を省略している。
 第2スイッチング素子S201がオフの場合、第2コンデンサC201は、第2リアクトルL102と並列接続される。従って、図7に示すように、スナバ回路200には、接続部Cから第3ダイオードD201を通って第2コンデンサC201へと電流が流れる。これにより、第2コンデンサC201は電荷を蓄積する。
 続いて、図8は、第2スイッチング素子S201がオンの場合にスナバ回路200に流れる電流の経路を示す図である。なお、図8ではスナバ制御回路210の図示を省略している。
 第2スイッチング素子S201がオンの場合、第2コンデンサC201の他端はグランド電位に接続される。これにより、図8に示すように、スナバ回路200には、第2コンデンサC201の他端から第2スイッチング素子S201及び第3リアクトルL201を通って正極出力端子Vout+へと電流が流れる。このように、第2スイッチング素子S201がオンの場合、第2コンデンサC201は蓄積した電荷を正極出力端子Vout+へと放出する。
 次に、図9を用いて第2スイッチング素子S201のオン/オフを切り替えるタイミングについて説明する。図9は、DC-DCコンバータ2における入力電圧Vin、出力電圧Vout、第2コンデンサC201の電圧、スイッチング素子S100の制御信号、及び第2スイッチング素子S201の制御信号を説明する図である。
 DC-DCコンバータ2の正極入力端子Vin+及び負極入力端子Vin-が電圧Veの直流電源Eに接続されるため、入力電圧Vinは一定電圧Veとなる。
 また、出力電圧Voutは、DC-DCコンバータ2が昇圧動作を行っていない間(図9のタイミングT1より前)は入力電圧Vinに等しい電圧Veとなる。制御回路130からの制御信号に基づきスイッチング素子S100が一定周期でオン/オフを繰り返すと(図9のタイミングT1以降)、DC-DCコンバータ2は昇圧動作を行い、出力電圧Voutは電圧Vrまで上昇する。
 図9に示すように、制御回路130が生成するスイッチング素子S100の制御信号は、一定の周期でHigh信号とLow信号を繰り返す2値のデジタル信号である。スイッチング素子S100の制御信号がHighの場合にスイッチング素子S100はオンとなり、Lowの場合にオフとなる。
 制御回路130は、図9に示すスイッチング素子S100の制御信号をスイッチング素子S100の制御端子に印加することでスイッチング素子S100を制御する。
 DC-DCコンバータ2が昇圧動作を開始すると、スナバ制御回路210は第2コンデンサC201の電圧の監視を行う。
 具体的にスナバ制御回路210は、第2コンデンサC201の電圧を検出する電圧検出回路(図示せず)の検出結果から、第2コンデンサC201の電圧が所定の電圧VL以上か否かを判定する。ここで、所定の電圧VLは、例えばスイッチング素子S100がオフの場合に第2リアクトルL102に発生する電圧リップルの最大振幅値よりも大きい値とする。
 スナバ制御回路210は、第2コンデンサC201の電圧が所定の電圧VL以上になった場合(図9のタイミングT2)に、第2スイッチング素子S201の制御信号を生成する。
 図9に示すように、第2スイッチング素子S201の制御信号は、一定の周期でHigh信号とLow信号を繰り返す2値のデジタル信号である。第2スイッチング素子S201の制御信号がHighの場合に第2スイッチング素子S201はオンとなり、Lowの場合にオフとなる。
 第2スイッチング素子S201の制御信号の周期、すなわち第2スイッチング素子S201のスイッチング周期は、スイッチング素子S100のスイッチング周期より低速である。図9の例では、第2スイッチング素子S201のスイッチング周期を、スイッチング素子S100のスイッチング周期の2倍としている。
 なお、図9の例では、第2スイッチング素子S201の制御信号のデューティー比を一定としているが、PMW制御としてもよい。
 スナバ制御回路210は、図9に示す第2スイッチング素子S201の制御信号を第2スイッチング素子S201の制御端子に印加することで第2スイッチング素子S201を制御する。
 このように、第2スイッチング素子S201は、スナバ制御回路210の指示に従い低速スイッチングを行うことで、サージ電圧の吸収/放出を所定のスイッチング周期で繰り返す。これにより、第2コンデンサC201の電圧を所定の電圧VL以下に抑えることができる。
 以上のように、本実施形態に係るDC-DCコンバータ2は、第1の実施形態に係るDC-DCコンバータ1と同様の効果が得られるとともに、スナバ回路200によってサージ電圧を吸収することができる。これにより、DC-DCコンバータ2を安定して動作させることができるようになり、DC-DCコンバータ2をより広範囲に適用することができる。
 さらに、本実施形態に係るDC-DCコンバータ2では、スナバ回路200で吸収したエネルギーを正極出力端子Vout+へと放出するようにしている。そのため、スナバ回路200でのエネルギー損失を抑制することができる。これにより、DC-DCコンバータ2の損失を抑制することができる。
 なお、スナバ回路200の第2スイッチング素子S201はハードスイッチングを行うが、かかるハードスイッチングによる損失がDC-DCコンバータ2全体に与える影響は小さい。これは、スナバ回路200に蓄積されるエネルギーが昇圧チョッパ回路100の昇圧電力に比べて非常に小さいためである。
 例えば、スナバ回路200で蓄積されるエネルギーがDC-DCコンバータ2定格の3パーセントであるとする。このエネルギー全てを例えば抵抗で消費した場合、昇圧チョッパ回路100の損失がたとえゼロであったとしても、DC-DCコンバータ2全体でも97パーセント以上の効率は得られないことになる。
 一方、本実施形態に係るスナバ回路200では、スナバ回路200で蓄積されるエネルギーを正極出力端子Vout+側に放出している。この場合、第2スイッチング素子S201のハードスイッチングによる損失が例えば5パーセント発生したとしても、スナバ回路200の損失量は定格の3パーセント×5パーセントとなる。従って、スナバ回路200の損失はDC-DCコンバータ2定格の0.15パーセントとなり、スナバ回路200がDC-DCコンバータ2全体に与える影響は非常に小さいことがわかる。
 このように、本実施形態に係るDC-DCコンバータ2では、ハードスイッチングを行っていても、スナバ回路200で吸収したエネルギーを正極出力端子Vout+へと放出することで、DC-DCコンバータ2の損失を抑制することができる。
 また、本実施形態では、スナバ回路200の電圧が、スイッチング素子S100がオフの時に発生する第2リアクトルL102の電圧リップルより大きくなった場合に、第2スイッチング素子S201を低速スイッチングさせるようにしている。これにより、スナバ回路200の電力消費が不要に大きくならないようにしつつ、スナバ回路200を効率的に動作させることができる。
 スナバ回路200に蓄積したエネルギーを放出すると、スナバ回路200の電圧が低下する。スナバ回路200の電圧があまりに低下すると、本来なら第2リアクトルL102で許容できる電圧変動分のエネルギーもスナバ回路200が吸収し処理することになる。かかるエネルギーをスナバ回路200で処理することになると、スナバ回路200での損失が増え、DC-DCコンバータ2の効率に影響を与える可能性がある。
 これを避けるようにスナバ制御回路210が第2スイッチング素子S201の制御信号を生成するか否かを判断する基準となる所定の電圧VLを決定する。例えば、サージ電圧に対するDC-DCコンバータ2の耐圧性や、DC-DCコンバータ2の効率等を総合的に考慮しながら決定すればよい。
 このように、適切な電圧VLを決定し、スナバ回路200の電圧がかかる電圧VLより大きくなった場合に第2スイッチング素子S201のオン/オフを周期的に切り替えることで、スナバ回路200が効率的にサージ電圧を吸収することができる。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1、2 DC-DCコンバータ
 100 昇圧チョッパ回路
 110 ZVS回路
 120 ZCS回路
 130 制御回路
 200 スナバ回路
 210 スナバ制御回路
 L100 リアクトル
 L101 第1リアクトル
 L102 第2リアクトル
 L201 第3リアクトル
 C100 平滑コンデンサ
 C101 第1コンデンサ
 C201 第2コンデンサ
 D100 ブロッキングダイオード
 D101 第1ダイオード
 D102 第2ダイオード
 D201 第3ダイオード
 D202 第4ダイオード
 S100 スイッチング素子
 S201 第2スイッチング素子
 Vin+ 正極入力端子
 Vin- 負極入力端子
 Vout+ 正極出力端子
 Vout- 負極出力端子
 E 直流電源
 R 負荷

Claims (6)

  1.  直流電源に接続される入力端子と、
     負荷に接続される出力端子と、
     前記入力端子と前記出力端子との間に設けられるリアクトルと、
     前記リアクトルと直列接続されるブロッキングダイオードと、
     一端が前記リアクトルと前記ブロッキングダイオードとの間に接続されるスイッチング素子と、
     を有し、入力電圧を昇圧して出力電圧を生成する昇圧チョッパ回路と、
     前記入力端子と前記スイッチング素子の一端との間に設けられる第1リアクトルと、
     前記第1リアクトルと前記スイッチング素子との間に設けられ、前記第1リアクトルと直列接続される第1コンデンサと、
     アノード端子が前記第1リアクトルと前記第1コンデンサとの接続部に接続され、カソード端子が前記出力端子に接続される第1ダイオードと
     を備えることを特徴とするDC-DCコンバータ。
  2.  前記第1リアクトルと直列接続される第2ダイオードをさらに備えることを特徴とする請求項1に記載のDC-DCコンバータ。
  3.  前記ブロッキングダイオードと前記出力端子との間に第2リアクトルをさらに備えることを特徴とする請求項1または2に記載のDC-DCコンバータ。
  4.  前記ブロッキングダイオードと前記第2リアクトルとの間のサージ電圧を吸収するスナバ回路をさらに備えることを特徴とする請求項3に記載のDC-DCコンバータ。
  5.  前記スナバ回路の電圧が、前記スイッチング素子がオフの場合に発生する前記第2リアクトルの電圧リップルより大きい値になった場合に、前記スイッチング素子のオン/オフの周期より低速な周期で前記サージ電圧の吸収/放出を繰り返すよう、前記スナバ回路を制御する制御部をさらに備えることを特徴とする請求項4に記載のDC-DCコンバータ。
  6.  直流電源からリアクトルへのエネルギーの蓄積、及び前記エネルギーの前記リアクトルからの放出をスイッチング素子のオン/オフで切り替えることで前記直流電源から出力される電圧を昇圧する昇圧手段と、
     前記スイッチング素子のオン時に前記直流電源から供給されるエネルギーに基づき、前記スイッチング素子のターンオフ時に前記スイッチング素子の電圧を抑制する電圧抑制手段と、
     を備えることを特徴とするDC-DCコンバータ。
PCT/JP2013/082079 2013-11-28 2013-11-28 Dc-dcコンバータ WO2015079538A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/082079 WO2015079538A1 (ja) 2013-11-28 2013-11-28 Dc-dcコンバータ
US15/162,621 US9876423B2 (en) 2013-11-28 2016-05-24 DC-to-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082079 WO2015079538A1 (ja) 2013-11-28 2013-11-28 Dc-dcコンバータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/162,621 Continuation US9876423B2 (en) 2013-11-28 2016-05-24 DC-to-DC converter

Publications (1)

Publication Number Publication Date
WO2015079538A1 true WO2015079538A1 (ja) 2015-06-04

Family

ID=53198527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082079 WO2015079538A1 (ja) 2013-11-28 2013-11-28 Dc-dcコンバータ

Country Status (2)

Country Link
US (1) US9876423B2 (ja)
WO (1) WO2015079538A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525870A (ja) * 2013-07-29 2016-08-25 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG 昇圧コンバータ、対応するインバータおよび動作方法
JPWO2018110440A1 (ja) * 2016-12-12 2019-10-24 パナソニックIpマネジメント株式会社 スナバ回路及びそれを用いた電力変換システム
WO2021028990A1 (ja) * 2019-08-09 2021-02-18 株式会社安川電機 Dc-dcコンバータ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102051570B1 (ko) * 2017-04-03 2019-12-05 한국과학기술원 멀티 패스를 가지는 컨버터 및 이의 제어 방법
WO2018186610A1 (ko) 2017-04-03 2018-10-11 한국과학기술원 멀티 패스를 가지는 컨버터 및 이의 제어 방법
JP6942256B2 (ja) * 2018-07-26 2021-09-29 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル装置
JP7051726B2 (ja) * 2019-01-24 2022-04-11 株式会社京三製作所 直流パルス電源装置
JP7115388B2 (ja) * 2019-03-28 2022-08-09 日本電産株式会社 昇圧チョッパ回路、直流電源装置及び昇圧方法
TWI767851B (zh) * 2021-10-08 2022-06-11 亞源科技股份有限公司 具有被動式無損失緩衝器之多相式升壓轉換裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285915A (ja) * 1997-04-11 1998-10-23 Toshiba Fa Syst Eng Kk スナバエネルギー回生回路
JP2004201369A (ja) * 2002-12-16 2004-07-15 Daihen Corp Dc/dcコンバータ
JP2010516223A (ja) * 2007-01-12 2010-05-13 パワー・インテグレーションズ・インコーポレーテッド スナバを有する電力コンバータ
JP2012070505A (ja) * 2010-09-22 2012-04-05 Mitsubishi Electric Corp Dc−dcコンバータ
JP2013207894A (ja) * 2012-03-28 2013-10-07 Murata Mfg Co Ltd スイッチング電源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486752A (en) * 1994-06-17 1996-01-23 Center For Innovative Technology** Zero-current transition PWM converters
US5914587A (en) * 1997-08-05 1999-06-22 Lucent Technologies Inc. Circuit for reducing switching losses of a power converter and method of operation thereof
US5959438A (en) * 1998-01-09 1999-09-28 Delta Electronics, Inc. Soft-switched boost converter with isolated active snubber
US6060867A (en) * 1998-08-28 2000-05-09 Lucent Technologies Inc. Switch driver for a snubber circuit, method of operation thereof and power converter employing the same
US6051961A (en) * 1999-02-11 2000-04-18 Delta Electronics, Inc. Soft-switching cell for reducing switching losses in pulse-width-modulated converters
US6236191B1 (en) * 2000-06-02 2001-05-22 Astec International Limited Zero voltage switching boost topology
WO2002003533A1 (fr) * 2000-07-05 2002-01-10 Tdk Corporation Systeme de conversion de courant electrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285915A (ja) * 1997-04-11 1998-10-23 Toshiba Fa Syst Eng Kk スナバエネルギー回生回路
JP2004201369A (ja) * 2002-12-16 2004-07-15 Daihen Corp Dc/dcコンバータ
JP2010516223A (ja) * 2007-01-12 2010-05-13 パワー・インテグレーションズ・インコーポレーテッド スナバを有する電力コンバータ
JP2012070505A (ja) * 2010-09-22 2012-04-05 Mitsubishi Electric Corp Dc−dcコンバータ
JP2013207894A (ja) * 2012-03-28 2013-10-07 Murata Mfg Co Ltd スイッチング電源装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525870A (ja) * 2013-07-29 2016-08-25 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG 昇圧コンバータ、対応するインバータおよび動作方法
EP3028376B1 (de) * 2013-07-29 2022-05-11 SMA Solar Technology AG Hochsetzsteller, entsprechender wechselrichter und betriebsverfahren
JPWO2018110440A1 (ja) * 2016-12-12 2019-10-24 パナソニックIpマネジメント株式会社 スナバ回路及びそれを用いた電力変換システム
WO2021028990A1 (ja) * 2019-08-09 2021-02-18 株式会社安川電機 Dc-dcコンバータ
JPWO2021028990A1 (ja) * 2019-08-09 2021-02-18
JP7243838B2 (ja) 2019-08-09 2023-03-22 株式会社安川電機 Dc-dcコンバータ

Also Published As

Publication number Publication date
US20160268895A1 (en) 2016-09-15
US9876423B2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2015079538A1 (ja) Dc-dcコンバータ
JP4966249B2 (ja) スイッチング電源装置
US8669748B2 (en) Device for synchronous DC-DC conversion and synchronous DC-DC converter
JP4825632B2 (ja) Dc−dcコンバータ
JP3861220B2 (ja) Dc−dcコンバータ
US9698677B2 (en) Brownout recovery circuit for bootstrap capacitor and switch power supply circuit
JP4254884B2 (ja) 力率改善回路
KR101213461B1 (ko) 스위칭 전원회로
JP2005318766A (ja) Dc−dcコンバータ
JP2013169057A (ja) スイッチング電源回路
JP4931092B2 (ja) スイッチング電源、スイッチング電源を制御する制御回路、スイッチング電源の制御方法およびモジュール基板
JP5642621B2 (ja) スイッチング電源装置
JP2004201373A (ja) スイッチング電源回路
Kumar et al. A high voltage gain current fed non-isolated dc-dc converter
US20220158553A1 (en) Dc-dc converter
JP2013027124A (ja) スイッチング電源回路
JP2010200470A (ja) エネルギー回生スナバ回路
JP2004254401A (ja) 昇圧チョッパ装置
JP2015154682A (ja) Dc/dcコンバータ
JP2006042443A (ja) 共振コンバータ
JP7115388B2 (ja) 昇圧チョッパ回路、直流電源装置及び昇圧方法
JP2008228417A (ja) Dc−dcコンバータ
JP2011142761A (ja) Dc−dcコンバータ
JP6597264B2 (ja) 電力変換装置
JP5267004B2 (ja) 直流昇圧回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP