WO2015079075A1 - Equipo portátil de boración de aguas en flujo continuo - Google Patents

Equipo portátil de boración de aguas en flujo continuo Download PDF

Info

Publication number
WO2015079075A1
WO2015079075A1 PCT/ES2013/070820 ES2013070820W WO2015079075A1 WO 2015079075 A1 WO2015079075 A1 WO 2015079075A1 ES 2013070820 W ES2013070820 W ES 2013070820W WO 2015079075 A1 WO2015079075 A1 WO 2015079075A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous flow
water boiler
flow water
portable continuous
boiler according
Prior art date
Application number
PCT/ES2013/070820
Other languages
English (en)
French (fr)
Inventor
Jesús Lacalle Bayo
Amparo PONCE LEON
Judith TROEUNG
Belén LOPEZ LOPEZ
Daniel ALCARAZ PIETERS
Original Assignee
Ingenieria Y Marketing, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingenieria Y Marketing, S.A. filed Critical Ingenieria Y Marketing, S.A.
Priority to PCT/ES2013/070820 priority Critical patent/WO2015079075A1/es
Priority to EP13898404.2A priority patent/EP3076399B1/en
Priority to US15/038,778 priority patent/US10210957B2/en
Priority to ES13898404T priority patent/ES2723433T3/es
Publication of WO2015079075A1 publication Critical patent/WO2015079075A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/22Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/10Dissolving using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/52Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle with a rotary stirrer in the recirculation tube
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • G21C9/033Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by an absorbent fluid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/48Mixing water in water-taps with other ingredients, e.g. air, detergents or disinfectants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a device for the dissolution of boron compounds in a continuous flow of water for the treatment and protection of radiation in situations of nuclear emergency.
  • thermonuclear power station in Fukushima, Japan, in which the lack of refrigeration of the different reactors caused a lack of control of the reaction with the consequences that we all know, provoking a diffusion of radioactivity in the whole environment, having had to evacuate the civilian population.
  • a reaction is produced that is catalysed by immersing the fuel in a solution of borated water.
  • Boron is a neutron detector that is ideal for reducing radiation and neutralizing the reaction of nuclear fuel.
  • the use of boron solutions as a function of the concentration of boron in water makes it possible to keep the fission reaction stable, increase it, or stop the reaction when the concentrations are high.
  • the cooling of the circuits, primary, secondary, storage pools is done by borated water.
  • the borada water supply facilities are not available for use in times of emergency where it is required to the extent necessary, so it is necessary to have an external means of water supply borada that maintains the refrigeration of the systems and the reduction of the reaction.
  • the security systems of a nuclear power plant include a set of electrical accumulators that are capable of supplying all systems for a few tens of hours, and also a set of generators, normally powered by diesel engines, which are activated immediately and automatically when detects a power failure in the plant.
  • a mobile installation for the supply of borated water, in continuous flow, comprising means of supplying water and a device for mixing the corresponding components, and pumping devices, all contained in cages or containers, for example containers 20 feet.
  • KR 2012 0039161 discloses an apparatus for the automatic control of the concentration of boron in a nuclear reactor to carry out the necessary daily load.
  • It comprises a temperature indicator, a power distribution signal in the axial direction and a position signal of a control rod.
  • SE 98 00940 A discloses a system for stopping a nuclear reactor PWR or BWR, in which devices are arranged that allow boron to be introduced into the refrigerant.
  • a method for such shutdown including the addition of boron in the coolant to reduce radioactivity levels in the reactor core is also disclosed.
  • JP 2012 083113 describes a control device that controls the flow and concentration of boron in a tank controlling the volume of the refrigerant to be supplied to the reactor. The mixing ratio between a boric acid solution and an objective concentration of the primary coolant is determined.
  • DE 3618966 Al describes a provision for safeguarding the fuel chamber of a nuclear reactor against overheating.
  • a neutron absorbing material is provided, formed by oxide granules or salts having a high neutron absorption capacity, formed by silica, sodium oxide, gadolinium oxide, boron oxide, among others.
  • US 4844856 A describes a process for the automatic regulation of the soluble boron content of the cooling water of a pressurized nuclear reactor;
  • the borating zones of the boiler and the means of dissolution are determined a priori, in correspondence with pairs of valves of two control parameters, relative to the position of the group of regulation of the reactor in the core and the deviation of the imbalance of axial energy.
  • US 4582672 A discloses a method for the prevention of inadvertent criticality in a nuclear fuel electrical power generating unit, in which water with a large amount of boron is injected into the reactor to maintain the reactor under subcritical conditions.
  • CA 1136778 Al describes an apparatus for the addition of boron to the primary coolant of a water cooled nuclear reactor system. Boric acid is injected into the primary coolant to ensure a cessation of reactivity in the event of an accident.
  • the method comprises the heating of molten boric acid and a solution of water in a storage vessel creating sufficient pressure for the steam mattress that is generated to inject the solution into the reactor coolant.
  • the present invention consists of a continuous flow water boiler, which can be easily transported and which allows its rapid use, with nothing more than the mere connection of the corresponding conduits and the energy source, such as a portable generator.
  • the team consists of the following elements: • dosing units, equipped with the corresponding shredders and feeders,
  • said team is formed by two units fundamentally:
  • a first unit comprising a metering mechanism, and a loading device of the metering mechanism
  • a second unit comprising a mixing mechanism and the pumping means to drive the dissolution towards the installation in which it is necessary.
  • the units are capable of being connected to each other by means of the corresponding conduits, each of said units being preferably configured in a carrier cage or container.
  • each of these units is integrated in a cage or container, which has such dimensions that it can be moved in a standard truck, or be part or be integrated into a trailer for easy drag.
  • other means of transport are contemplated, such as their air transport, for example by helicopter, when the situation demands an immediate action.
  • the first unit is formed by two parts, a lower part, which supports the set of elements, and an upper part that supports the cover, and which is capable of telescopic lifting by mechanical, hydraulic, pneumatic or electrical means, from a first position , of transport, to a second position, of operation.
  • At least said first unit, of supply and dosage comprises integrated at least one crane.
  • a crane is provided for each dispenser. It is envisaged that the crane is integrated into the roof, so that when the roof is raised, it provides transit capacity below the roof of the product containers.
  • Said crane is a sliding element, and is formed by a slide along which a hoist moves. It is provided that said slide is formed by a longitudinal beam, which in the transport position may be retracted, if it were telescopic, or folded, in case it is articulated.
  • two discharge lines for the compounds to be supplied to the water for dissolution are located in the supply and dosing unit.
  • One of these compounds is usually boric acid (H 3 B 0 3 ), in which an aqueous solution has a very low pH. Since it is undesirable that the fluids that circulate in the reactor and in the auxiliary circuits have a pH too low, this low pH due to boric acid must be corrected by the addition of a basic component.
  • Said basic component may be sodium hydroxide (NaOH), or preferably a borated salt, such as sodium tetraborate (Borax).
  • each of the products will be placed on a supply unit; each supply unit is formed by a receiving hopper, in which there are load and level sensors; the hoppers can be vibrated to disintegrate the caked elements, and in addition they can have a crushing device to grind the granules and facilitate the subsequent dissolution.
  • each supply unit there is a feeder, possibly made by means of a worm screw, whose speed is synchronized with that of other feeders depending on the required concentrations of each product.
  • a feeder possibly made by means of a worm screw, whose speed is synchronized with that of other feeders depending on the required concentrations of each product.
  • the supply units ( normally two, concur in a receiving unit, provided in turn with the sensor means and corresponding feeder to the water supply line.
  • Said water supply line is provided with the corresponding filtering means to avoid the incorporation of impurities in the circuit, and is provided with heating means if the water is outside suitable temperature ranges; will be inadequate when the water is below 4 ° C, in which case the heating means must be activated.
  • it will include a flowmeter to determine the amount of mixture of products to be supplied.
  • the water pressure is close to atmospheric, so that the supply can be carried out by pouring. Pumping means are then placed in a solution tank, or reactor.
  • the reactor comprises:
  • a general entry line of the water flow provided with the borated compounds; in this line, a premixing of the products with the inlet effluent is carried out;
  • a protective insulating sheath which allows a minimum temperature drop inside the reactor, in case the outside temperature is extremely low;
  • the reactor, the inlet line and / or any of the components may comprise heating means to guarantee the supply conditions.
  • the agitation blade consists of a impeller formed by a disk perpendicular to the axis of rotation, provided with radial blades perpendicular to said disk.
  • the incoming flow is measured, and the quantity of product mixture is supplied to said flow, this is conducted to the mixing tank, and the flow is removed necessary for the specific application, the rest being recirculated in the mixing tank.
  • Figure 1 shows a view of a schematic of the equipment of the invention
  • Figure 2 shows a plan view of a first dosage unit
  • Figure 3 shows a side view of the unit of Figure 2 in a first transport position
  • Figure 4 shows a side view of the unit of the figures
  • Figure 5 shows a plan view of a second unit, mixer and pumping unit
  • Figure 6 shows a front view of the unit of the figure
  • Figure 7 shows a side view of the unit of the figures
  • Figure 8 shows a rear view of the unit of figures 5 to 7, in which pumping means can be observed.
  • the invention consists of a device for the continuous flow of water, to be used especially in nuclear facilities, because of the neutrophagous power of boron.
  • the equipment is essentially formed by two units namely:
  • a first dosage unit (1) this first unit comprises a dosing mechanism (11,12,13), and a loading device of the metering mechanism; Y
  • a second unit (2) comprising a mixing mechanism (21) and the necessary pumping means (5,16,17).
  • the inlet line (18) is provided with a filter (3) that allows the particles that circulate with the water to be eliminated, and is possibly of a heating body (20) so that the water has a minimum operating temperature (above 3 ° C). Below said temperature the heating body (20) will be connected and will heat the water to the extent necessary to proceed with the dissolution process.
  • Said first unit (1) comprises a receiving hopper (11, 12) for each of the components, and is provided with shredders (31,32) and dosing units (41,42).
  • the components are introduced into a mixing hopper (13), which in turn comprises a dispenser (43), which pour over an introduction body (14) of the mixed product into the incoming water flow line, already at the minimum temperature of operation.
  • Said introduction body (14) is isolated from said flow line by the corresponding valve (15).
  • Said first unit (1) is integrated in a cage or container that supports the set of reception elements, filtering, water heating.
  • Said cage or container is formed by a base body (51) and by a cover (52).
  • the cover (52) is attached to the base body by a set of extendable bodies (55).
  • Said extensible bodies can be formed by pneumatic, hydraulic cylinders, or mechanical slides operated by electric motors or manually. In its actuation, the extensible bodies extend by raising the cover (52), and with it one or more crane bodies (54) integrated in said cover (52).
  • the crane body (54) is formed by a hoist that can slide along a beam or beam (53), as we have said in solidarity with the cover.
  • said bar or beam (53) is capable of extension by articulation of an end portion, telescopically, or by mechanical coupling of a supplement.
  • the hoist can slide from the vertical of a positioning area of "big bags” or large bags containing product, to the corresponding dosage area, being able to pour and fill the corresponding hopper with ease.
  • each of the receiving hoppers will have a corresponding crane body (54).
  • the pouring of the receiving hoppers (11, 12) is conducted to the mixing hopper (13), and from this to the introduction body (14), and the mixture is pumped to the second unit, by means of, for example, a pump (4). ).
  • the second unit (2) comprises the reactor (21). It also comprises drive means (5) of the incoming mixture to said reactor, a pump drive (17) of the mixture for external use, as well as a recirculation pump (16) that through the line (10) reintroduces in the reactor the product not used.
  • the reactor (21) consists of a tank provided or forming a cover (28), which for reasons of maximizing the capacity with the minimum height has been provided with a concavity (7) in which a motor (6) is housed .
  • the motor (6) is extended on an axis (61) which in its lower part moves a drive blade (62).
  • the blade (62) is preferably formed by a disk perpendicular to the shaft, from which radial or eccentrically arranged blades emerge in a plane parallel to the motor shaft.
  • the equipment is complemented with a generator to electrically power the systems of the equipment, and a cabinet for the housing of tools and auxiliary elements, such as hoses for joining the units together.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Comprende unos conjuntos dosificadores, provistos de los correspondientes trituradores y alimentadores, un alimentador de agua al circuito, un medidor y/o un regulador de caudal para adecuar la concentración de los productos suministrados al agua, medios de bombeo para llevar la mezcla a un reactor mezclador, un reactor con un mezclador mecánico, una línea de recirculación del mezclador, medios de bombeo de suministro, que preferentemente forma dos unidades en jaulas o contenedores independientes, y que disponen medios grúa para la alimentación de los productos de boración en "big bags".

Description

Equipo portátil de boración de aguas en flujo continuo
La presente invención tiene por objeto un equipo para la disolución de compuestos de boro en un flujo continuo de agua para el tratamiento y protección de radiación en situaciones de emergencia nuclear.
Es notorio el problema surgido en la central termonuclear de Fukushima, Japón en la que la falta de refrigeración de los distintos reactores produjo un descontrol de la reacción con las consecuencias que todos conocemos, provocando una difusión de radiactividad en todo el entorno, habiéndose tenido que evacuar la población civil.
En las centrales nucleares se produce una reacción que es catalizada mediante la inmersión del combustible en una solución de agua borada. El boro es un captador de neutrones que resulta idóneo para reducir la radiación y neutralizar la reacción del combustible nuclear. La utilización de disoluciones de boro en función de la concentración del boro en el agua permite mantener estable la reacción de fisión, incrementarla, o detener la reacción cuando las concentraciones son elevadas. La refrigeración de los circuitos, primarios, secundarios, piscinas de almacenamiento se realiza mediante agua borada.
En las centrales suele haber tanques de almacenamiento provistos de agua con compuestos de boro en disolución, por ejemplo ácido bórico, habitualmente mantenidas a cierta temperatura para evitar la precipitación y mantener la concentración deseada. Sin embargo, esos tanques tienen dimensiones limitadas y no son capaces de abastecer un flujo continuado más allá de unas pocas horas, en el caso de que ello resulte necesario.
Por lo tanto, es posible que las instalaciones de suministro de agua borada no estén disponibles par su utilización en los momentos de emergencia en los que se requiere en la medida suficiente, por lo que se hace necesario disponer de un medio externo de suministro de agua borada que mantenga la refrigeración de los sistemas y la reducción de la reacción.
Los sistemas de seguridad de una central nuclear incluyen un conjunto de acumuladores eléctricos que son capaces de suministrar a todos los sistemas durante unas decenas de horas, y también un conjunto de generadores, normalmente accionados mediante motores Diesel, que se activan inmediata y automáticamente cuando se detecta un fallo de suministro eléctrico en la central .
Así, normalmente no resultará imprescindible dicha refrigeración externa durante las primeras horas, por lo que es suficiente tener disponible el sistema tras algunas horas desde que se produce el fallo de la central .
Así, se propone una instalación móvil para el suministro de agua borada, en flujo continuo, comprendiendo medios de suministro de agua y un dispositivo de mezclado de los correspondientes componentes, y dispositivos de bombeo, todo ello contenido en jaulas o contenedores, por ejemplo contenedores de 20 pies.
Estado de la técnica KR 2012 0039161 divulga un aparato para el control automático de la concentración de boro en un reactor nuclear para realizar la carga diaria necesaria.
Comprende un indicador de temperatura, una señal de distribución de energía en dirección axial y una señal de posición de una varilla de control.
SE 98 00940 A describe un sistema de parada de un reactor nuclear PWR o BWR, en el se disponen dispositivos que permiten que se introduzca boro en el refrigerante. También se describe un método para dicha parada que incluye la adición de boro en el refrigerante para reducir los niveles de radiactividad en el núcleo del reactor.
JP 2012 083113 describe un dispositivo de control que controla el caudal y la concentración de boro en un tanque de control del volumen del refrigerante que se ha de suministrar al reactor. Se determina la relación de mezcla entre una solución de ácido bórico con una concentración objetivo del refrigerante del primario. DE 3618966 Al describe una disposición para salvaguardar la cámara de combustible de un reactor nuclear contra el sobrecalentamiento. Se suministra un material absorbente de neutrones, formado por gránulos de óxidos o sales que tienen una alta capacidad de absorción de neutrones, formado por sílice, oxido de sodio, óxido de gadolinio, óxido de boro, entre otros.
US 4844856 A describe un proceso para la regulación automática del contenido de boro soluble del agua de refrigeración de un reactor nuclear presurizado; las zonas de boración de los medios de boración y los medios de disolución se determinan a priori, en correspondencia con pares de válvulas de dos parámetros de control, relativos a la posición del grupo de regulación del reactor en el núcleo y la desviación del imbalance de energía axial . US 4582672 A describe un método para la prevención de la criticidad inadvertida en una unidad de generación de energía eléctrica de combustible nuclear, en el que se inyecta al reactor agua con gran cantidad de boro, para mantener el reactor en condiciones subcríticas.
CA 1136778 Al describe un aparato para la adición de boro al refrigerante del primario de un sistema de reactor nuclear refrigerado por agua. Se inyecta ácido bórico en el refrigerante del primario para asegurar un cese de la reactividad en caso de accidente. El método comprende el calentamiento de ácido bórico fundido y una solución de agua en una vasija de almacenamiento creando la suficiente presión para que el colchón de vapor que se genera inyecte la solución en el refrigerante del reactor.
Si bien todas estas invenciones contemplan distintos modos de introducir agua borada en el reactor, todas ellas se integran en el proceso ordinario de trabajo de la central, no resuelven el problema en caso de producirse el descontrol de dicha central o una catástrofe, en la que se hace necesario disponer de agua borada en grandes cantidades, sin que ello pueda depender de las instalaciones de la propia central, ya que pueden dejar de estar operativas.
Descripción de la invención
La presente invención consiste en un equipo de boración de aguas en flujo continuo, que puede ser fácilmente transportada y que permite su utilización rápida, sin más que la mera conexión de los conductos correspondientes y a la fuente de energía, tal como un generador portátil.
El equipo está formado por los siguientes elementos: • unos conjuntos dosificadores, provistos de los correspondientes trituradores y alimentadores,
• un alimentador al circuito de agua,
• un medidor y/o un regulador de caudal para adecuar la concentración de los productos suministrados al agua,
• medios de bombeo para llevar la mezcla a un mezclador;
• un mezclador mecánico;
• una línea de recirculación del mezclador;
• medios de bombeo de suministro.
Además, está previsto que en el propio equipo se disponga un medio de suministro de los compuestos de boro u otros componentes. Estos compuestos se suministran en grandes sacos, de los denominados "big bags", normalmente con una capacidad para 1000 kg de producto. Obviamente dichas cantidades no pueden ser manipuladas manualmente, por lo que el medio de suministro incluye una grúa de manipulación.
Según se prefiere, dicho equipo está formado por dos unidades fundamentalmente :
• Una primera unidad, que comprende un mecanismo dosificador, y un dispositivo de carga del mecanismo dosificador; y
• Una segunda unidad, que comprende un mecanismo mezclador y los medios de bombeo para impulsar la disolución hacia la instalación en la que es necesaria.
Las unidades son susceptibles de ser conectadas entre sí por medio de las correspondientes conducciones, cada una de dichas unidades estando configurada preferentemente en una jaula o contenedor portador.
Como se ha indicado, cada una de estas unidades está integrada en una jaula o contenedor, que tiene unas dimensiones tales que pueda ser desplazado en un camión estándar, o bien formar parte o estar integrado en un remolque para su fácil arrastre. Obviamente, se contemplan otros medios de transporte, tal como su transporte aéreo, por ejemplo en helicóptero, cuando la situación exija una actuación inmediata.
La primera unidad está formada por dos partes, una parte inferior, que soporta el conjunto de elementos, y una parte superior que sustenta la cubierta, y que es susceptible de elevación telescópica por medios mecánicos, hidráulicos, neumáticos o eléctricos, desde una primera posición, de transporte, a una segunda posición, de operación.
Puesto que los componentes de mezcla se suministran en sacas de gran capacidad, de las denominadas "big bag" con capacidad de unos 1000 Kg es necesario un medio de suministro que evite la necesidad de maquinaria adicional para el funcionamiento.
Al menos dicha primera unidad, de suministro y dosificación, comprende integrada al menos una grúa. De preferencia se dispone una grúa por cada dosificador. Se ha previsto que la grúa esté integrada en la cubierta, de modo que cuando la cubierta se eleva proporciona capacidad de tránsito por debajo de la misma de los contenedores de producto. Dicha grúa es un elemento deslizante, y está formada por una deslizadera a lo largo de la cual se desplaza un polipasto. Está previsto que dicha deslizadera esté formada por una viga longitudinal, que en posición de transporte puede estar retraída, si fuera telescópica, o plegada, en case de ser articulada.
De acuerdo con la invención, en la unidad de suministro y dosificación se sitúan dos líneas de vertido para los compuestos que se han de suministrar al agua para su disolución. Uno de estos compuestos es habitualmente ácido bórico (H3B03), en el que una disolución acuosa tiene un pH muy bajo. Puesto que es indeseable que los fluidos que circulan en el reactor y en los circuitos auxiliares tengan un pH demasiado bajo, este pH bajo debido al ácido bórico debe ser corregido mediante la adición de un componente básico. Dicho componente básico puede ser hidróxido de sodio (NaOH), o de modo preferido una sal borada, tal como tetraborato de sodio (Bórax).
En cualquier caso, se trata de obtener un pH próximo a 7, y preferentemente algo superior, de modo que se minimicen los procesos de corrosión ácida en los distintos circuitos.
Cada uno de los productos se situará sobre una unidad de suministro; cada unidad de suministro está formada por una tolva receptora, en la que existen sensores de carga y nivel; las tolvas podrán estar vibradas para disgregar los elementos apelmazados, y además podrán contar con un dispositivo triturador para moler los gránulos y facilitar la posterior disolución.
En cada unidad de suministro se dispone un alimentador, posiblemente realizado mediante un tornillo sinfín, cuya velocidad está sincronizada con la de otros alimentadores en función de las concentraciones requeridas de cada producto. Cuando una tolva esté próxima a vaciarse, el sistema dará una señal de alarma para que mediante la grúa de la unidad alimentadora se pueda suministrar una nueva saca de producto.
Las unidades de suministro, normalmente dos, concurren en una unidad receptora, provista a su vez de los medios sensores y correspondiente alimentador a la línea de suministro de agua. Dicha línea de suministro de agua está provista de los medios de filtrado correspondientes para evitar la incorporación de impurezas al circuito, y está provista de medios calefactores si el agua está fuera de rangos de temperatura adecuados; serán inadecuados cuando el agua se sitúe por debajo de 4 °C, en cuyo caso habrá que activar los medios calefactores. Además, comprenderá un caudalímetro para determinar la cantidad de mezcla de productos que se han de suministrar. En la zona de suministro de la mezcla de productos al flujo de agua la presión del agua es próxima a la atmosférica, de modo que el suministro pueda realizarse por vertido. Se disponen a continuación medios de bombeo a un tanque de disolución, o reactor. El reactor comprende:
· Una línea de entrada general, del flujo de agua provisto de los compuestos borados; en esta línea se realiza un premezclado de los productos con el efluente de entrada;
• Una línea de recirculación;
• Una línea de suministro;
· Un motor integrado en un hueco practicado en la parte superior;
• Registros de venteo, provistos de filtros;
• Una pala de agitación vinculada al motor superior, registros de acceso para limpieza;
• Una envoltura aislante de protección, que permita una mínima caída de temperatura en el interior del reactor, en el caso de que la temperatura exterior sea extremadamente baja;
Aunque no está previsto en una realización principal, es posible que el reactor, la línea de entrada y/o alguno de los componentes comprenda medios calefactores para garantizar las condiciones de suministro.
De acuerdo con una realización, la pala de agitación consiste en un rodete formado por un disco perpendicular al eje de giro, provisto de paletas radiales perpendiculares a dicho disco.
Así, en función de parámetros predeterminados, se mide el caudal entrante, y se aporta la cantidad de mezcla de productos a dicho caudal, éste se conduce al tanque de mezclado, y se saca el flujo necesario para la aplicación específica, siendo el resto recirculado en el tanque de mezclado.
Breve descripción de los dibujos
Con objeto de ¡lustrar la explicación que va a seguir, adjuntamos a la presente memoria descriptiva siete hojas de dibujos, en las que en ocho figuras se representa, a título de ejemplo y sin carácter limitativo, la esencia de la presente invención, y en las que:
La figura 1 muestra una vista de un esquema del equipo de la invención;
La figura 2 muestra una vista en planta de una primera unidad dosificadora;
La figura 3 muestra una vista lateral de la unidad de la figura 2 en una primera posición, de transporte;
La figura 4 muestra una vista lateral de la unidad de las figuras
2 y 3 en una segunda posición, de funcionamiento; La figura 5 muestra una vista en planta de una segunda unidad, mezcladora y de bombeo;
La figura 6 muestra una vista frontal de la unidad de la figura
5;
La figura 7 muestra una vista lateral de la unidad de las figuras
5 y 6; y
La figura 8 muestra una vista posterior de la unidad de las figuras 5 a 7, en que se pueden observar medios de bombeo.
Descripción del modo preferente de realización de la invención
La invención, conforme se ha descrito, consiste en un equipo para la boración de agua en flujo continuo, para ser utilizada especialmente en instalaciones nucleares, a causa del poder neutrófago del boro. De acuerdo con una realización preferida, el equipo está formado fundamentalmente por dos unidades a saber:
• Una primera unidad (1) de dosificación; esta primera unidad comprende un mecanismo dosificador (11,12,13), y un dispositivo de carga del mecanismo dosificador; y
• Una segunda unidad (2), que comprende un mecanismo mezclador (21) y los medios de bombeo (5,16,17) necesarios.
Según otra realización sería posible integrar las dos unidades (1,2) en una sola, aunque por movilidad es menos preferido; en este caso, las conexiones entre las dos unidades podrían ser permanentes.
La línea de entrada (18) está provista de un filtro (3) que permite eliminar las partículas que circulan con el agua, y está eventualmente de un cuerpo calefactor (20) para que el agua tenga una temperatura mínima de operación (por encima de 3 °C). Por debajo de dicha temperatura el cuerpo calefactor (20) estará conectado y calentará el agua en la medida necesaria para poder procederse al proceso de disolución.
A la línea de entrada se suministra uno o más compuestos de boro, normalmente bórax y un regulador de pH . El dispositivo de suministro se encuentra en la primera unidad (1). Dicha primera unidad (1) comprende una tolva receptora (11,12) para cada uno de los componentes, y está provista de trituradores (31,32) y dosificadores (41,42). Los componentes se introducen en una tolva mezcladora (13), que comprende a su vez un dosificador (43), que vierten sobre un cuerpo de introducción (14) del producto mezclado a la línea del flujo de agua entrante, ya a la temperatura mínima de operación. Dicho cuerpo de introducción (14) está aislado de dicha línea de flujo mediante la correspondiente válvula (15). Dicha primera unidad (1) está integrada en una jaula o contenedor que sustenta el conjunto de elementos de recepción, filtrado, calefactado del agua. Dicha jaula o contenedor está formada por un cuerpo base (51) y por una cubierta (52). La cubierta (52) está unida al cuerpo base por un conjunto de cuerpos extensibles (55). Dichos cuerpos extensibles pueden estar formados por cilindros neumáticos, hidráulicos, o deslizaderas mecánicas accionadas por motores eléctricos o manualmente. En su accionamiento, los cuerpos extensibles se extienden elevando la cubierta (52), y con ella uno o más cuerpos-grúa (54) integrado en dicha cubierta (52). El cuerpo- grúa (54) está formado por un polipasto que puede deslizarse a lo largo de una barra o viga (53), como hemos dicho solidaria a la cubierta. Según una opción preferente, dicha barra o viga (53) es susceptible de extensión por articulación de una porción extrema, telescópicamente, o por acoplamiento mecánica de un suplemento. Así, el polipasto puede deslizarse desde la vertical de una zona de posicionamiento de "big bags" o grandes sacas contenedoras de producto, hasta la zona de dosificación correspondiente, pudiendo verter y llenar la tolva correspondiente con facilidad. Normalmente cada una de las tolvas receptoras tendrá un correspondiente cuerpo- grúa (54). El vertido de las tolvas receptoras (11,12) se conduce a la tolva mezcladora (13), y de ésta al cuerpo de introducción (14), y la mezcla es bombeada a la segunda unidad, mediante, por ejemplo una bomba (4).
La segunda unidad (2) comprende el reactor (21). Comprende también medios de impulsión (5) de la mezcla entrante a dicho reactor, una bomba de impulsión (17) de la mezcla para su utilización exterior, así como una bomba de recirculación (16) que a través de la línea (10) reintroduce en el reactor el producto no utilizado. El reactor (21) consiste en una cuba provista o conformando una cubierta (28), a la que por razones de maximizar la capacidad con la mínima altura se ha provisto de una concavidad (7) en la que se aloja un motor (6). El motor (6) está prolongado en un eje (61) que en su parte inferior mueve una pala (62) de impulsión. La pala (62) está formada preferentemente por un disco perpendicular al eje, del que emergen, en un plano paralelo al eje motor, paletas radiales o dispuestas excéntricamente.
El equipo se complementa con un grupo electrógeno para alimentar eléctricamente los sistemas del equipo, y un armario para el alojamiento de herramientas y elementos auxiliares, tales como mangueras de unión de las unidades entre sí.

Claims

REIVIN DICACIONES
1.- Equipo portátil de boración de aguas en flujo continuo, caracterizado por comprender:
· unos conjuntos dosificadores, provistos de los correspondientes trituradores y alimentadores,
• un alimentador al circuito de agua,
• un medidor y/o un regulador de caudal para adecuar la concentración de los productos suministrados al agua,
· medios de bombeo para llevar la mezcla a un reactor mezclador;
• un reactor con un mezclador mecánico;
• una línea de recirculación del mezclador;
• medios de bombeo de suministro.
2.- Equipo portátil de boración de aguas en flujo continuo, según la reivindicación 1, caracterizado por estar formado por dos unidades:
• Una primera unidad, que comprende un mecanismo dosificador, y un dispositivo de carga del mecanismo dosificador; y
• Una segunda unidad, que comprende un mecanismo mezclador y los medios de bombeo para impulsar la disolución hacia la instalación en la que es necesaria.
3. - Equipo portátil de boración de aguas en flujo continuo, según la reivindicación 2, caracterizado por que las unidades están formadas por elementos independientes, susceptibles de ser conectados entre sí por medio de las correspondientes conducciones, cada una de dichas unidades estando configurada en una jaula o contenedor portador.
4. - Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 2 a 3, caracterizado por que la primera unidad está formada por dos partes:
• una parte inferior, que soporta el conjunto de elementos, y • una parte superior que sustenta la cubierta, y que es susceptible de elevación telescópica por medios mecánicos, hidráulicos, neumáticos o eléctricos, desde una primera posición, de transporte, a una segunda posición, de operación.
5. - Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 2 a 4, caracterizado por que al menos la primera unidad (1), de suministro y dosificación, comprende integrada al menos una grúa.
6. - Equipo portátil de boración de aguas en flujo continuo, según cualquiera las reivindicaciones 2 a 5, caracterizado por que comprende una grúa por cada dosificador primario.
7.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera las reivindicaciones 5 a 6, caracterizado por que la grúa está formada por una deslizadera a lo largo de la cual se desplaza un polipasto.
8.- Equipo portátil de boración de aguas en flujo continuo, según la reivindicación 7, caracterizado por que la grúa es extensible, de modo que en una posición de transporte está plegada o retraída y en una posición de operación es extendida o desplegada.
9.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 8, caracterizado por que los conjuntos dosificadores constituyen unidades de suministro, cada uno de ellos comprendiendo correspondientes trituradores y alimentadores.
10.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 9, caracterizado por que el alimentador al circuito de agua constituye una línea de suministro de agua que está provista de los medios de filtrado, y está provista de medios calefactores.
11. - Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 2 a 10, caracterizado por que el reactor comprende :
• Una línea de entrada general, del flujo de agua provisto de los compuestos borados;
• Una línea de recirculación;
• Una línea de suministro;
• Un motor integrado en un hueco practicado en la parte superior;
• Registros de venteo
• Una pala de agitación vinculada al motor superior;
• Registros de acceso para limpieza;
• Una envoltura aislante de protección térmica.
12. - Equipo portátil de boración de aguas en flujo continuo, según la reivindicación 11, caracterizado por que la pala de agitación consiste en un rodete formado por un disco perpendicular al eje de giro, provisto de paletas radiales o dispuestas excéntricamente perpendiculares a dicho disco.
13. - Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 2 a 11, caracterizado por que comprende medios calefactores en el reactor, en la línea de entrada o en alguno de los componentes.
14. - Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 13, caracterizado por que comprende un grupo electrógeno para alimentar eléctricamente los sistemas del equipo, y un armario para el alojamiento de herramientas y elementos auxiliares, tales como mangueras de unión de las unidades entre sí.
PCT/ES2013/070820 2013-11-26 2013-11-26 Equipo portátil de boración de aguas en flujo continuo WO2015079075A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/ES2013/070820 WO2015079075A1 (es) 2013-11-26 2013-11-26 Equipo portátil de boración de aguas en flujo continuo
EP13898404.2A EP3076399B1 (en) 2013-11-26 2013-11-26 Portable device for the boration of continuously flowing water
US15/038,778 US10210957B2 (en) 2013-11-26 2013-11-26 Portable apparatus for the boration of continuously flowing water
ES13898404T ES2723433T3 (es) 2013-11-26 2013-11-26 Dispositivo portátil para la boración de un flujo continuo de agua

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070820 WO2015079075A1 (es) 2013-11-26 2013-11-26 Equipo portátil de boración de aguas en flujo continuo

Publications (1)

Publication Number Publication Date
WO2015079075A1 true WO2015079075A1 (es) 2015-06-04

Family

ID=53198405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070820 WO2015079075A1 (es) 2013-11-26 2013-11-26 Equipo portátil de boración de aguas en flujo continuo

Country Status (4)

Country Link
US (1) US10210957B2 (es)
EP (1) EP3076399B1 (es)
ES (1) ES2723433T3 (es)
WO (1) WO2015079075A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978380A (zh) * 2016-10-25 2018-05-01 广东核电合营有限公司 一种核电站安全壳喷淋系统的钠离子控制装置
WO2023057660A1 (es) * 2021-10-05 2023-04-13 Ingenieria Y Marketing, S.A. Equipo portátil de boración de aguas en flujo continuo

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076399B1 (en) * 2013-11-26 2019-01-09 Ingeniería Y Marketing, S.A. Portable device for the boration of continuously flowing water
US11266959B2 (en) * 2014-10-08 2022-03-08 Versum Materials Us, Llc Low pressure fluctuation apparatuses for blending fluids, and methods of using the same
JP6849574B2 (ja) * 2017-11-07 2021-03-24 株式会社神戸製鋼所 混合装置
KR102280747B1 (ko) * 2019-02-27 2021-07-21 서재광 요소수 제조장치 및 방법
WO2022129593A1 (en) * 2020-12-17 2022-06-23 Dsm Ip Assets B.V. Apparatus and method for dissolving powders in solvents

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1136778A (en) 1978-02-20 1982-11-30 Max Stiefel Method and apparatus for boron addition to primary coolant of a water cooled nuclear reactor system
US4582672A (en) 1982-08-11 1986-04-15 Westinghouse Electric Corp. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric powering generating unit
DE3618966A1 (de) 1986-06-05 1987-12-10 Gattys Tech Anordnung zur sicherung der brennkammer von kernreaktoren gegen ueberhitzung
US4844856A (en) 1983-04-21 1989-07-04 Framatome Process for automatic regulation of the soluble boron content of the cooling water of a pressurized water nuclear reactor
SE9800940L (sv) 1998-03-20 1999-03-02 Asea Brown Boveri Nukleär anläggning och förfarane för att stänga av en nukleär anläggning
FR2800504A1 (fr) * 1999-11-02 2001-05-04 Framatome Sa Procede et dispositif d'injection d'une solution aqueuse renfermant un element absorbeur de neutrons dans une canalisation d'un circuit primaire d'un reacteur nucleaire refroidi par de l'eau sous pression
US20100239062A1 (en) * 2009-03-19 2010-09-23 Korea Atomic Energy Research Institute Coolant with dispersed neutron poison micro-particles, used in scwr emergency core cooling system
KR20120039161A (ko) 2010-10-15 2012-04-25 한국수력원자력 주식회사 원자로 붕소농도 자동제어장치
JP2012083113A (ja) 2010-10-06 2012-04-26 Mitsubishi Heavy Ind Ltd 制御装置および制御方法
EP2600351A1 (fr) * 2011-11-30 2013-06-05 Areva NP Ensemble et procédé d'injection d'eau d'un élément absorbeur de neutrons pour le refroidissement d'un coeur d'un réacteur nucléaire en situation de crise.
GB2497756A (en) * 2011-12-19 2013-06-26 Charles Donald Ingham A process for the rapid shut-down of nuclear fission reactions
WO2013158691A1 (en) * 2012-04-19 2013-10-24 Westinghouse Electric Company Llc Mobile boration system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830473A (en) * 1973-02-22 1974-08-20 Standard Brands Inc Starch paste apparatus
DE2832684C2 (de) * 1978-07-26 1985-02-07 Brown Boveri Reaktor GmbH, 6800 Mannheim Einrichtung zur Borierung des Primärkreislaufes einer wassergekühlten Kernreaktoranlage
US4724084A (en) * 1986-03-28 1988-02-09 The Boeing Company System for removing toxic organics and metals from manufacturing wastewater
DE3616894A1 (de) * 1986-05-20 1987-11-26 Laempe Joachim Vorrichtung zum mischen von sand fuer giessereiformen oder kerne
US4898474A (en) * 1987-10-21 1990-02-06 Benjamin Lipson Self-contained, adjustable disperser and mixer
IT1257556B (it) * 1992-11-27 1996-01-30 Lawer Srl Dispositivo per la preparazione di miscele, ad esempio per la preparazione di soluzioni di tintoria in impianti tessili.
JP3595892B2 (ja) * 1995-12-20 2004-12-02 有限会社勝製作所 合成樹脂原料の攪拌装置
WO2000074833A1 (en) * 1999-06-04 2000-12-14 Parmenlo, Llc Centralized bicarbonate mixing system
US6568842B1 (en) * 2000-06-13 2003-05-27 United States Lime And Minerals, Inc. High capacity mobile lime slaker
US6994464B2 (en) * 2002-04-11 2006-02-07 Mobius Technologies, Inc Control system and method for continuous mixing of slurry with removal of entrained bubbles
EP3076399B1 (en) * 2013-11-26 2019-01-09 Ingeniería Y Marketing, S.A. Portable device for the boration of continuously flowing water

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1136778A (en) 1978-02-20 1982-11-30 Max Stiefel Method and apparatus for boron addition to primary coolant of a water cooled nuclear reactor system
US4582672A (en) 1982-08-11 1986-04-15 Westinghouse Electric Corp. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric powering generating unit
US4844856A (en) 1983-04-21 1989-07-04 Framatome Process for automatic regulation of the soluble boron content of the cooling water of a pressurized water nuclear reactor
DE3618966A1 (de) 1986-06-05 1987-12-10 Gattys Tech Anordnung zur sicherung der brennkammer von kernreaktoren gegen ueberhitzung
SE9800940L (sv) 1998-03-20 1999-03-02 Asea Brown Boveri Nukleär anläggning och förfarane för att stänga av en nukleär anläggning
FR2800504A1 (fr) * 1999-11-02 2001-05-04 Framatome Sa Procede et dispositif d'injection d'une solution aqueuse renfermant un element absorbeur de neutrons dans une canalisation d'un circuit primaire d'un reacteur nucleaire refroidi par de l'eau sous pression
US20100239062A1 (en) * 2009-03-19 2010-09-23 Korea Atomic Energy Research Institute Coolant with dispersed neutron poison micro-particles, used in scwr emergency core cooling system
JP2012083113A (ja) 2010-10-06 2012-04-26 Mitsubishi Heavy Ind Ltd 制御装置および制御方法
KR20120039161A (ko) 2010-10-15 2012-04-25 한국수력원자력 주식회사 원자로 붕소농도 자동제어장치
EP2600351A1 (fr) * 2011-11-30 2013-06-05 Areva NP Ensemble et procédé d'injection d'eau d'un élément absorbeur de neutrons pour le refroidissement d'un coeur d'un réacteur nucléaire en situation de crise.
GB2497756A (en) * 2011-12-19 2013-06-26 Charles Donald Ingham A process for the rapid shut-down of nuclear fission reactions
WO2013158691A1 (en) * 2012-04-19 2013-10-24 Westinghouse Electric Company Llc Mobile boration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978380A (zh) * 2016-10-25 2018-05-01 广东核电合营有限公司 一种核电站安全壳喷淋系统的钠离子控制装置
WO2023057660A1 (es) * 2021-10-05 2023-04-13 Ingenieria Y Marketing, S.A. Equipo portátil de boración de aguas en flujo continuo

Also Published As

Publication number Publication date
EP3076399A1 (en) 2016-10-05
US10210957B2 (en) 2019-02-19
EP3076399B1 (en) 2019-01-09
US20170076825A1 (en) 2017-03-16
ES2723433T3 (es) 2019-08-27
EP3076399A4 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2015079075A1 (es) Equipo portátil de boración de aguas en flujo continuo
ES2534410T3 (es) Conjunto y procedimiento de inyección de agua de un elemento absorbente de neutrones para la refrigeración de un núcleo de un reactor nuclear en situación de crisis
KR101447514B1 (ko) 해상 소형 원전용 안전 시스템
ES2408982T3 (es) Central nuclear que emplea nanopartículas en sistemas de emergencia y procedimiento relacionado
KR101889580B1 (ko) 자급식 비상 사용후 핵연료 저장조 냉각 시스템
ES2431148T3 (es) Central nuclear que emplea nanopartículas en circuitos cerrados de sistemas de emergencia y procedimiento relacionado
CA2694900C (en) Ph adjusting system and ph adjusting method
ES2899675T3 (es) Reactor de sales fundidas
JP2014534413A5 (es)
EP2839472B1 (en) Mobile boration system
CN104508753A (zh) 用于核反应堆的深度防御安全范例
WO2008108929A2 (en) Nuclear power plant using nanoparticles in emergency situations and related method
CN108511089A (zh) 熔盐堆装卸料系统
Rufus et al. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors
CN109243634A (zh) 反应堆安全系统
JP4764412B2 (ja) pH調整装置
WO2023057660A1 (es) Equipo portátil de boración de aguas en flujo continuo
CN103680661A (zh) 核电站固体废物处理系统
CN212256935U (zh) 一种海上浮动双反应堆的屏蔽装置
JP4374243B2 (ja) 沸騰水型原子力発電プラントにおける使用済燃料貯蔵設備
US8263030B1 (en) Controlled in-situ dissolution of an alkali metal
CN209087415U (zh) 紧凑型化学停堆系统
US20230139794A1 (en) Process and installation for the destruction of radioactive sodium
JP2883672B2 (ja) 高レベル放射性廃棄物の固化処理、貯蔵、処分に関する方法と設備
ES2961705T3 (es) Sistema de refrigeración de contenedor de seguridad

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898404

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013898404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15038778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE