WO2023057660A1 - Equipo portátil de boración de aguas en flujo continuo - Google Patents

Equipo portátil de boración de aguas en flujo continuo Download PDF

Info

Publication number
WO2023057660A1
WO2023057660A1 PCT/ES2021/070725 ES2021070725W WO2023057660A1 WO 2023057660 A1 WO2023057660 A1 WO 2023057660A1 ES 2021070725 W ES2021070725 W ES 2021070725W WO 2023057660 A1 WO2023057660 A1 WO 2023057660A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
boric acid
equipment
continuous flow
mixer
Prior art date
Application number
PCT/ES2021/070725
Other languages
English (en)
French (fr)
Inventor
Daniel Arturo ALCARAZ PIETERS
Julie TRAINO
Adoración ARNALDOS GONZÁLVEZ
Amparo Trinidad Ponce Serrano
Judith BARBERO
Original Assignee
Ingenieria Y Marketing, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingenieria Y Marketing, S.A. filed Critical Ingenieria Y Marketing, S.A.
Priority to PCT/ES2021/070725 priority Critical patent/WO2023057660A1/es
Publication of WO2023057660A1 publication Critical patent/WO2023057660A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/22Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • G21C9/033Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by an absorbent fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the object of the present invention is equipment for dissolving boron compounds in a continuous flow of water to keep the reactor of a nuclear power plant below criticality conditions, in addition to cooling the reactor pool or spent fuel pools.
  • a reaction occurs in which the fuel is immersed in a solution of borated water, which allows a self-sustaining fission reaction.
  • Boron is a neutron scavenger that is ideal for neutralizing the reaction of nuclear fuel.
  • the use of boron solutions depending on the concentration of boron in the water makes it possible to keep the fission reaction stable, increase it, or stop the reaction when the concentrations are high.
  • the cooling of the circuits, primaries, and storage pools is carried out using borated water.
  • borated water supply facilities may not be available for use in times of emergency where it is required to the extent enough, so it is necessary to have an external means of supplying perforated water that maintains the cooling of the systems and the reduction of the reaction.
  • the safety systems of a nuclear power plant include a set of electrical accumulators that are capable of supplying all the systems for a few tens of hours, and also a set of generators, normally driven by Diesel engines, which are activated immediately and automatically when the detects a power failure in the control panel.
  • a mobile installation for the supply of perforated water, in continuous flow, comprising means of adaptation of an external water source and regulation of said source, a mixing device of the corresponding components, and pumping devices, all This is contained in a 20-foot shipping container.
  • KR 2012 0039161 discloses an apparatus for the automatic control of the boron concentration in a nuclear reactor to carry out the necessary daily load.
  • It comprises a temperature indicator, a power distribution signal in the axial direction, and a control rod position signal.
  • SE 98 00940 A describes a shutdown system for a PWR or BWR nuclear reactor, in which devices are arranged that allow boron to be introduced into the coolant. Also disclosed is a method for such shutdown that includes the addition of boron to the coolant to reduce levels of radioactivity in the reactor core.
  • JP 2012 083113 describes a control device that controls the flow rate and the concentration of boron in a tank for controlling the volume of coolant to be supplied to the reactor. The mixing ratio between a boric acid solution with a target concentration of the primary coolant is determined.
  • a neutron absorbing material is supplied, made up of granules of oxides or salts that have a high neutron absorption capacity, made up of silica, sodium oxide, gadolinium oxide, boron oxide, among others.
  • US 4844856 A describes a process for the automatic regulation of the soluble boron content of the cooling water of a pressurized nuclear reactor; the boration zones of the boration means and the dissolution means are determined a priori, in correspondence with pairs of valves of two control parameters, relative to the position of the regulating group of the reactor in the core and the deviation of the imbalance of axial energy.
  • US 4582672 A describes a method for the prevention of inadvertent criticality in a nuclear fuel electric power generation unit, in which water with a large amount of boron is injected into the reactor, to maintain the reactor in subcritical conditions.
  • CA 1136778 Al describes an apparatus for the addition of boron to the primary coolant of a water-cooled nuclear reactor system. Boric acid is injected into the primary coolant to ensure a cessation of reactivity in the event of an accident.
  • the method involves heating molten boric acid and a water solution in a storage vessel creating enough pressure for the generated steam cushion to inject the solution into the reactor coolant.
  • WO 2013/158691 Al relates to a mobile boration system having a number of components that are mobile and include a water source, a H2B03 powder supply, a mixer for mixing the solution capable of providing a solution of boric acid with minimal air entrainment and optional heat exchanger(s), the system being capable of being transported to a nuclear power plant facility by land, sea or air.
  • the document EP 2600351 Al describes an assembly and a method for the injection of water of a neutron absorbing element for the cooling of the core of a nuclear reactor in a crisis situation, which has a main pipe that includes an end for the connection to a water supply and another end for connection to a circuit connected to a primary circuit of a nuclear reactor, where a pump and a water heating device are provided between the ends of the pipe.
  • An injector allows continuous injection of water, eg fresh water, into the pipeline into a neutron absorbing powder, eg borate, and a mechanical mixer mixes and dissolves the powder with the water.
  • a control unit controls and monitors the flow of water and the flow of the injected powder.
  • Document PCTES2013070820 is the closest document of the state of the art to the present invention. Said document described continuous flow water boration equipment that did not depend on the facilities of the plant itself, and that allowed it to be easily transported and used as a borated water supplier by connecting it to a power source, for example, a portable generator and by connecting it to a water supply.
  • a power source for example, a portable generator and by connecting it to a water supply.
  • the equipment that is the object of the present invention comprises a smaller number of elements than the equipment described in the previous document, which leads to greater reliability (since there are fewer components that may cause malfunctions) and greater ease of assembly and Of transport.
  • the present invention consists of continuous flow water boration equipment, which can be easily transported and allows quick use, simply by connecting the corresponding pipes and the power source, such as a portable generator.
  • a mechanical mixer capable of facilitating the dissolution of boric acid in water.
  • the mechanical mixer is a cylindrical mixer with a frustoconical base, comprising a stirring blade and baffle plates.
  • the mixer incorporates electrical resistances to compensate for the heat loss caused by the endothermic reaction of dissolving boric acid in water, avoiding the crystallization of boric acid in case of low ambient and water temperatures.
  • the raw water inlet line comprises means for regulating the raw water inlet flow rate to the mixer.
  • the water inlet line is fed by both a main line and a secondary raw water inlet line that allows a second raw water supply source to be connected.
  • the equipment includes a surplus line, which allows operation with flows lower than the minimum operating flow of a supply pump.
  • At least one water outlet line from the mixer the equipment includes a second water outlet from the mixer, which makes it possible to inject borated water into a second consumer, for example, a tanker truck.
  • the boric acid feeding system is formed in the first place by a support structure in which a sack of boric acid is deposited, one of the so-called “big bags", normally with a capacity for 1000 kg of product.
  • the support structure is preferably arranged on a lifting system, for example, a telescopic structure, which allows it to be raised to facilitate the disposal of the bags of boric acid by means of a forklift or a lifting crane, even when said structure is above the top surface of the container.
  • a lifting system for example, a telescopic structure, which allows it to be raised to facilitate the disposal of the bags of boric acid by means of a forklift or a lifting crane, even when said structure is above the top surface of the container.
  • the container comprises an opening with a removable or retractable cover to allow said structure to protrude above its upper surface.
  • the structure can also comprise upper and lower covers that can be removed or retracted manually or automatically.
  • the opening of the bags occurs when their presence in the structure is detected by sensors, by means of a set of blades that act automatically, producing cuts in the lower part of the bag that allow its contents to be emptied.
  • the structure includes a set of "massagers" for the bag made up of a set of pneumatic cylinders that press on it and ensure that all the product inside the bag is emptied.
  • the boric acid sacks Under the structure for emptying the boric acid sacks, there is a conical tank that allows the product spilled from the sack to be stored for a period of time in which the empty sack is replaced by a new sack full of product.
  • the system has a warning system that the product in the bag has been emptied, so that an operator can remove the emptied bag and place a new bag on the structure.
  • the product poured into the conical tank is directed towards a conveyor that transports the powdered boric acid to the mixer, adjusting the concentration of boric acid in the mixer water by varying the speed of said conveyor.
  • the speed of the conveyor can be adjusted automatically depending on the parameters of the required concentration.
  • the conveyor is an auger that directs the boric acid powder from the bottom of the conical tank to the top of the mixer, from where Boric acid is poured into the mixer.
  • a crushing system preferably formed by a roller crusher. This system ensures that boric acid agglomerations or stones are not formed, so the boric acid is supplied to the powder mixer, which facilitates and optimizes its dissolution in raw water.
  • a collection system connected to a boric acid dust suction system, with self-cleaning filters, and a confinement system for said boric acid dust. Said system prevents particles in the air, or that have not been directed towards the conical tank, from remaining in the atmosphere of the container, which can pose a risk to the operators.
  • a monitoring and control system made up of the following elements: o Automaton: Manages the different instrumentation signals, alarms for abnormal operating values, and the execution of the different automatisms (water level management in the mixer, flow regulation input and output of water in the mixer, management of the speed of the boric acid conveyor depending on the input water flow to regulate the concentration of boric acid in the water, control of the water temperature and activation of the resistances heaters, it also regulates the operation of the boric acid bag opening blades when their presence is detected in the support structure, valve management of the valves of the main and secondary outlet lines to supply a single flow of borated water, one flow of borated water and another of raw water, or two flows of borated water, etc.).
  • o HMI screen (Human Machine Interface): Allows the visualization of the operating status of the system, as well as making the pertinent adjustments (required boron concentration, operating mode, etc.).
  • o Remote surveillance device Through this device, the operator can know the operating status of the system from a distance, receiving alarms when the system requires attention (change of boric acid bag, malfunction of some component, etc.). In this way, the operators are in a protected zone during the operation of the system, minimizing the doses received.
  • a shielding system that protects the most radiosensitive elements, such as the electrical panel with the automaton and all the instrumentation.
  • the container has a hook for a truck with the "Ampliroll” system, which is a hook moved hydraulically with hydraulic cylinders, installed on a conventional chassis that picks up container boxes from the ground and mounts them on the chassis and leaves them in place. empty container boxes to be filled.
  • the equipment is complemented by a generator set to power the equipment systems electrically,
  • the equipment has housings for storing tools and auxiliary elements.
  • Figure 1 shows a schematic view of the portable equipment for boronizing water in continuous flow, according to an embodiment option of the present invention.
  • Figure 2 shows a P&ID diagram of the portable equipment for continuous flow water boration, according to an embodiment option of the present invention.
  • the continuous flow portable water boration equipment is integrated into a container (1), preferably a 20-foot container.
  • Said container includes a hook (2) for a truck with the "Ampliroll" system.
  • the portable continuous flow water boration equipment comprises a raw water inlet line (17) to the mixer (3) and a borated water outlet line from the mixer. (twenty-one)
  • the raw water inlet line (17) is fed both by a main inlet line (18) and by a secondary raw water inlet line (19) that allows a second raw water supply source to be connected.
  • the equipment also includes an outlet line (21) for borated water from the mixer (3).
  • Said borated water outlet line (21) is divided into a main outlet line (22) and a secondary outlet line (23), so that it is possible to inject borated water into a second consumer, for example, a tanker truck. .
  • bypass line (24) between the input line (17) and the main output line (22) so that raw water can be injected into a first consumer through the main output line (22) and borated water through the secondary outlet line (23) to a second consumer.
  • the regulation of the flows of said lines (21,22,23,24) is regulated by means of a set of valves, preferably solenoid valves operated through an automaton installed in the equipment.
  • a cylindrical mixer (3) with a frustoconical base, which includes a stirring blade and baffle plates.
  • the mixer incorporates electrical resistances to compensate for the heat loss caused by the endothermic reaction of dissolving boric acid in water, avoiding the crystallization of boric acid in case of reduced ambient and water temperatures.
  • the mixer (3) comprises an inlet for raw water (4) from the inlet line (17), an inlet for powdered boric acid (5), and an outlet (6) for borated water directed towards the outlet line (21) of borated water.
  • the equipment includes components that allow the system to be adapted to an external raw water source and regulate its operating point, as well as pumping means for the water outlet lines (21, 22, 23).
  • the injection of borated water into the consumer or consumers is carried out by means of a centrifugal pump with a wet rotor, where the pump sucks directly from the bottom of the mixer.
  • a support structure (7) is also installed in which a bag (8) of boric acid ("big bag") is deposited.
  • the support structure (7) is installed on a telescopic structure (9), capable of raising the support structure (7) to facilitate the supply of bags (8) of boric acid.
  • a set of blades (12) that act automatically when the presence of a bag (8) of boric acid is detected, producing cuts in the lower part of the bag (8). that allow its contents to be emptied onto a conical tank (10).
  • the system has a warning system that the product in the bag has been emptied, so that an operator can remove the emptied bag and place a new bag on the structure (7).
  • the function of the conical tank (10) is to accommodate a sufficient quantity of product so that the feeding of boric acid does not stop while the empty bag (8) is removed and a bag full of product is provided.
  • the structure includes a set of "massagers" for the bag made up of a set of pneumatic cylinders (11) that press on it and guarantee that all the product inside the bag is emptied. .
  • the collection system is made up of a collection ring (13) through which the dust is sucked and directed towards a confinement tank (14).
  • the aspirated air is evacuated after passing through a set of self-cleaning filters.
  • the product poured into the conical tank (10) is poured onto a conveyor (16), which in the embodiment shown is an adjustable speed auger, which transports the powdered boric acid from the bottom of the conical tank (10) towards the boric acid inlet (5) arranged at the top of the mixer (3), from where the boric acid is poured into the mixer (3).
  • a roll crusher (15) is arranged between the conical tank and the conveyor. This system ensures that boric acid agglomerations or stones are not formed, so the boric acid is supplied to the powder mixer, which facilitates and optimizes its dissolution in raw water.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Equipo portátil de boración de aguas en flujo continuo automatizado y transportable en un contendedor; que no requiere la presencia de un operador durante su funcionamiento una vez se ha cargado el ácido bórico en el equipo; que comprende un conjunto de líneas de entrada y de salida que permiten dotar de agua borada a varios consumidores, permitiendo también un suministro combinado de agua bruta/agua borada; y que permite ajustar de forma automática el caudal, concentración, temperatura, y salida del agua borada suministrada

Description

EQUIPO PORTÁTIL DE BORACIÓN DE AGUAS EN FLUJO CONTINUO
Sector de la invención
La presente invención tiene por objeto un equipo para la disolución de compuestos de boro en un flujo continuo de agua para mantener el reactor de una central nuclear por debajo de las condiciones de criticidad, además de refrigerar la piscina del reactor o las de combustible gastado.
Es notorio el problema surgido en la central termonuclear de Fukushima, Japón en la que la falta de refrigeración de los distintos reactores produjo un descontrol de la reacción con las consecuencias que todos conocemos, provocando una difusión de radiactividad en todo el entorno, habiéndose tenido que evacuar la población civil.
En las centrales nucleares se produce una reacción en la que el combustible se encuentra inmerso en una solución de agua borada, lo que permite una reacción de fisión autosostenida. El boro es un captador de neutrones que resulta idóneo para neutralizar la reacción del combustible nuclear. La utilización de disoluciones de boro en función de la concentración del boro en el agua permite mantener estable la reacción de fisión, incrementarla, o detener la reacción cuando las concentraciones son elevadas.
La refrigeración de los circuitos, primarios, y piscinas de almacenamiento se realiza mediante agua borada.
En las centrales suele haber tanques de almacenamiento provistos de agua con compuestos de boro en disolución, por ejemplo, ácido bórico, habitualmente mantenidas a cierta temperatura para evitar la precipitación y mantener la concentración deseada. Sin embargo, esos tanques tienen dimensiones limitadas y no son capaces de abastecer un flujo continuado más allá de unas pocas horas, en el caso de que ello resulte necesario.
Por lo tanto, es posible que las instalaciones de suministro de agua borada no estén disponibles para su utilización en los momentos de emergencia en los que se requiere en la medida suficiente, por lo que se hace necesario disponer de un medio externo de suministro de agua horada que mantenga la refrigeración de los sistemas y la reducción de la reacción.
Los sistemas de seguridad de una central nuclear incluyen un conjunto de acumuladores eléctricos que son capaces de suministrar a todos los sistemas durante unas decenas de horas, y también un conjunto de generadores, normalmente accionados mediante motores Diesel, que se activan inmediata y automáticamente cuando se detecta un fallo de suministro eléctrico en la central.
Así, normalmente no resultará imprescindible dicha refrigeración externa durante las primeras horas, por lo que es suficiente tener disponible el sistema tras algunas horas desde que se produce el fallo de la central.
Así, se propone una instalación móvil para el suministro de agua horada, en flujo continuo, comprendiendo medios de adaptación de una fuente de agua externa y de regulación de dicha fuente, un dispositivo de mezclado de los correspondientes componentes, y dispositivos de bombeo, todo ello contenido en un contendor marítimo de 20 pies.
Antecedentes de la invención
KR 2012 0039161 divulga un aparato para el control automático de la concentración de boro en un reactor nuclear para realizar la carga diaria necesaria.
Comprende un indicador de temperatura, una señal de distribución de energía en dirección axial y una señal de posición de una varilla de control.
SE 98 00940 A describe un sistema de parada de un reactor nuclear PWR o BWR, en el se disponen dispositivos que permiten que se introduzca boro en el refrigerante. También se describe un método para dicha parada que incluye la adición de boro en el refrigerante para reducir los niveles de radiactividad en el núcleo del reactor.
JP 2012 083113 describe un dispositivo de control que controla el caudal y la concentración de boro en un tanque de control del volumen del refrigerante que se ha de suministrar al reactor. Se determina la relación de mezcla entre una solución de ácido bórico con una concentración objetivo del refrigerante del primario.
DE 3618966 Al describe una disposición para salvaguardar la cámara de combustible de un reactor nuclear contra el sobrecalentamiento. Se suministra un material absorbente de neutrones, formado por gránulos de óxidos o sales que tienen una alta capacidad de absorción de neutrones, formado por sílice, oxido de sodio, óxido de gadolinio, óxido de boro, entre otros.
US 4844856 A describe un proceso para la regulación automática del contenido de boro soluble del agua de refrigeración de un reactor nuclear presurizado; las zonas de boración de los medios de boración y los medios de disolución se determinan a priori, en correspondencia con pares de válvulas de dos parámetros de control, relativos a la posición del grupo de regulación del reactor en el núcleo y la desviación del imbalance de energía axial.
US 4582672 A describe un método para la prevención de la criticidad inadvertida en una unidad de generación de energía eléctrica de combustible nuclear, en el que se inyecta al reactor agua con gran cantidad de boro, para mantener el reactor en condiciones subcríticas.
CA 1136778 Al describe un aparato para la adición de boro al refrigerante del primario de un sistema de reactor nuclear refrigerado por agua. Se inyecta ácido bórico en el refrigerante del primario para asegurar un cese de la reactividad en caso de accidente. El método comprende el calentamiento de ácido bórico fundido y una solución de agua en una vasija de almacenamiento creando la suficiente presión para que el colchón de vapor que se genera inyecte la solución en el refrigerante del reactor.
El documento WO 2013/158691 Al se refiere a un sistema de boración móvil que tiene una serie de componentes que son móviles e incluyen una fuente de agua, un suministro de polvo de H2B03, un mezclador para mezclar la solución capaz de proporcionar una solución de ácido bórico con un arrastre mínimo de aire y un intercambiador o intercambiadores de calor opcionales, siendo el sistema capaz de ser transportado a una instalación de una central nuclear por tierra, mar o aire.
El documento EP 2600351 Al describe un conjunto y un método para la inyección de agua de un elemento absorbente de neutrones para la refrigeración del núcleo de un reactor nuclear en una situación de crisis, que tiene una tubería principal que incluye un extremo para la conexión a un suministro de agua y otro extremo para la conexión a un circuito conectado a un circuito primario de un reactor nuclear, donde una bomba y un dispositivo de calentamiento de agua se proporcionan entre los extremos de la tubería. Un inyector permite la inyección continua de agua, por ejemplo, agua dulce, en la tubería a un polvo absorbente de neutrones, por ejemplo, borato, y un mezclador mecánico mezcla y disuelve el polvo con el agua. Una unidad de control controla y supervisa el flujo de agua y el flujo del polvo inyectado.
Si bien todas estas invenciones contemplan distintos modos de introducir agua borada en el reactor, todas ellas se integran en el proceso ordinario de trabajo de la central, no resuelven el problema en caso de producirse el descontrol de dicha central o una catástrofe, en la que se hace necesario disponer de agua borada en grandes cantidades, sin que ello pueda depender de las instalaciones de la propia central, ya que pueden dejar de estar operativas.
El documento PCTES2013070820 es el documento más próximo del estado de la técnica a la presente invención. Dicho documento describía un equipo de boración de agua en flujo continuo que no dependía de las instalaciones de la propia central, y que permitía ser transportado fácilmente, y ser utilizado como suministrador de agua borada mediante su conexión a una fuente de energía, por ejemplo, un generador portátil y mediante su conexión a un abastecimiento de agua.
La presente invención presenta las siguientes ventajas respecto al documento PCTES2013070820:
• Es un sistema más compacto y más fácilmente transportable. Mientras que en el anterior equipo se transportaba en dos contenedores, este equipo se puede transportar mediante un único contendor.
• Es un sistema más simple. El equipo objeto de la presente invención comprende un menor número de elementos que el equipo descrito en el documento anterior, lo que conlleva una mayor fiabilidad (ya que hay un menor número de componentes susceptibles de producir malfuncionamiento,) y una mayor facilidad de montaje y de transporte.
Es un sistema más seguro para los operarios, ya que comprende sistemas que eliminan la presencia de polvo de ácido bórico en la atmosfera del contenedor que transporta el equipo, que puede ser perjudicial para la salud de los operarios si se ven expuestos al mismo.
• Es un sistema con mayor grado de automatización, en el que únicamente se hace necesaria la labor de un operario en la carga de los sacos de ácido bórico, pudiendo realizarse dicha carga mediante una grúa externa o una carretilla elevadora.
• Mediante el equipo objeto de la presente invención, se produce un mayor aprovechamiento de los materiales, ya que incorpora medios que mejoran y garantizan el vaciado de los sacos de polvo de ácido bórico.
• Es un equipo más versátil, ya que incorpora más líneas de entrada de agua, una línea de excedente para que se pueda trabajar con un caudal inferior al caudal mínimo de funcionamiento de la bomba de alimentación, y diferentes líneas de salida de agua que pueden configurarse mediante un conjunto de válvulas para distribuir varios flujos de agua borada, o agua borada y agua bruta, en función de las necesidades requeridas.
Descripción de la invención
La presente invención consiste en un equipo de boración de aguas en flujo continuo, que puede ser fácilmente transportada y que permite su utilización rápida, sin más que la mera conexión de los conductos correspondientes y a la fuente de energía, tal como un generador portátil.
El equipo está formado por los siguientes elementos:
• Un mezclador mecánico susceptible de facilitar la disolución de ácido bórico en agua., Preferentemente, el mezclador mecánico es un mezclador cilindrico con base troncocónica, que comprende una pala de agitación y placas deflectoras. Preferentemente, el mezclador incorpora resistencias eléctricas para compensar la pérdida de calor ocasionada por la reacción endotérmica de disolución de ácido bórico en agua, evitando la cristalización de ácido bórico en caso de temperatura ambiental y del agua reducidas. • Al menos una línea de entrada de agua bruta al mezclador con una boca de entrada. Preferentemente, la línea de entrada de agua bruta comprende medios para la regulación del caudal de entrada de agua bruta al mezclador. Opcionalmente, la línea de entrada de agua está alimentada tanto por una línea principal como por una línea secundaria de entrada de agua bruta que permite conectar una segunda fuente de abastecimiento de agua bruta.
• Opcionalmente, el equipo comprende una línea de excedente, que permite operar con caudales inferiores al caudal mínimo de funcionamiento de una bomba de abastecimiento.
• Al menos una línea de salida de agua del mezclador. Opcionalmente, el equipo comprende una segunda salida de agua del mezclador, lo que permite inyectar agua borada en un segundo consumidor, por ejemplo, un camión cisterna. Opcionalmente existe una línea de bypass entre la línea de entrada y al menos una de las líneas de salida, que permite inyectar agua borada en un primer consumidor y agua bruta en un segundo consumidor, en paralelo.
• Un sistema de alimentación de ácido bórico hacia el reactor.
El sistema de alimentación de ácido bórico está formado en primer lugar por una estructura de soporte en la que se deposita un saco de ácido bórico, de los denominados "big bags", normalmente con una capacidad para 1000 kg de producto.
La estructura de soporte está dispuesta preferentemente sobre un sistema de elevación, por ejemplo, una estructura telescópica, que permite elevarlo para facilitar la disposición de los sacos de ácido bórico mediante una carretilla o una grúa de elevación, incluso encontrándose dicha estructura por encima de la superficie superior del contenedor. En este último caso, el contendor comprende una abertura con una cubierta retirable o retraíble para permitir que dicha estructura asome por encima de su superficie superior. La estructura puede comprender además unas tapas superior e inferior retirables o retraíbles de forma manual o automática.
La abertura de los sacos se produce cuando se detecta su presencia en la estructura mediante sensores, mediante un conjunto de cuchillas que actúan de forma automática, produciendo cortes en la parte inferior del saco que permiten que el contenido del mismo se vacíe.
Opcionalmente, para que el contenido del saco de ácido bórico se vacíe íntegramente, la estructura comprende un conjunto de "masajeadores" del saco formados por un conjunto de cilindros neumáticos que presionan sobre este y garantizan que todo el producto del interior del saco sea vaciado.
Bajo la estructura de vaciado de los sacos de ácido bórico, se dispone un depósito cónico que permite almacenar el producto vertido desde el saco durante un periodo de tiempo en el que se sustituye el saco vacío por un nuevo saco lleno de producto. El sistema cuenta con un sistema de aviso de que el producto del saco se ha vaciado, para que un operario retire el saco vaciado y disponga un nuevo saco sobre la estructura.
El producto vertido en el depósito cónico se dirige hacía un transportador que transporta el ácido bórico en polvo hacia el mezclador, ajustándose la concentración de ácido bórico en el agua del mezclador mediante la variación de la velocidad de dicho transportador. La velocidad del transportador es susceptible de ajustarse automáticamente en función de los parámetros de la concentración requerida, Preferentemente, el transportador es un tornillo sinfín que dirige el ácido bórico en polvo desde la parte inferior del depósito cónico hacia la parte superior del mezclador, desde donde se vierte el ácido bórico al mezclador.
Entre el depósito cónico y el transportador, se dispone un sistema triturador, preferentemente formado por una trituradora de rodillos. Mediante este sistema se asegura que no se formen aglomeraciones o piedras de ácido bórico, por lo que el ácido bórico se suministra al mezclador en polvo lo que facilita y optimiza su disolución en el agua bruta.
Entre la estructura de vaciado y el depósito cónico, se dispone un sistema de captación conectado a un sistema de aspirado del polvo de ácido bórico, con filtros autolimpiables, y un sistema de confinamiento de dicho polvo de ácido bórico. Dicho sistema evita que las partículas en el aire, o que no se han dirigido hacia el depósito cónico se queden en la atmosfera del contenedor, lo que puede suponer un riesgo para los operarios. Un sistema de vigilancia y control formado por los siguientes elementos: o Autómata: Gestiona las diferentes señales de instrumentación, las alarmas por valores anormales de funcionamiento, y la ejecución de los diferentes automatismos (gestión del nivel de agua en el mezclador, regulación de caudales de entrada y de salida de agua en el mezclador, gestión de la velocidad del transportador de ácido bórico en función del caudal de agua de entrada para regular la concentración de ácido bórico en el agua, control de la temperatura del agua y accionamiento de las resistencias calefactoras, además regula el funcionamiento de las cuchillas de apertura de los sacos de ácido bórico cuando se detecta la presencia de los mismos en la estructura de soporte, gestión de las válvulas de las válvulas de las líneas de salida principal y secundaria para suministrar un único flujo de agua borada, un flujo de agua borada y otro de agua bruta, o dos flujos de agua borada, etcétera). o Pantalla IHM (interfaz humano máquina): Permite la visualiza on del estado operativo del sistema, así como la realización de los ajustes pertinentes (concentración de boro requerida, modo de funcionamiento, etcétera). o Dispositivo de televigilancia: A través de este dispositivo el operador puede conocer el estado operativo del sistema a distancia, recibiendo las alarmas cuando el sistema requiere su atención (cambio de saco de ácido bórico, malfuncionamiento de algún componente, etcétera). De este modo los operadores se encuentran en una zona protegida durante la operación del sistema, minimizando las dosis recibidas.
• Un sistema de blindaje que protege los elementos de mayor radiosensibilidad, como el cuadro eléctrico con el autómata y toda la instrumentación.
• Opcionalmente, el contendor cuenta con un gancho para un camión con sistema "Ampliroll", que es un gancho movido hidráulicamente con cilindros hidráulicos, instalado en un chasis convencional que recoge cajas contenedoras del suelo y las monta sobre el chasis y deja en el lugar cajas contenedoras vacías para ser llenadas. De esta forma la carga y la descarga del equipo de boración se puede producir de forma más fácil y rápida, lo que es deseable en situaciones de emergencia. El equipo se complementa con un grupo electrógeno para alimentar eléctricamente los sistemas del equipo,
• Opcionalmente, el equipo dispone de alojamientos para el guardado de herramientas y elementos auxiliares.
Breve descripción de los dibujos
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de figuras en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1 muestra una vista esquemática del equipo portátil de boración de aguas en flujo continuo, según una opción de realización de la presente invención.
La figura 2 muestra un diagrama P&ID del equipo portátil de boración de aguas en flujo continuo, según una opción de realización de la presente invención.
Descripción de los modos de realización de la invención
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede observar en ellas un ejemplo de realización preferente de la invención, la cual comprende las partes y elementos que se indican y describen en detalle a continuación.
Como se ha descrito anteriormente, el equipo portátil de boración de aguas en flujo continuo está integrado en un contenedor (1), preferentemente un contenedor de 20 pies. Dicho contenedor comprende un gancho (2) para la para un camión con sistema "Ampliroll".
El equipo portátil de boración de aguas en flujo continuo comprende una línea de entrada (17) de agua bruta al mezclador (3) y una línea de salida de agua borada del mezclador. (21) La línea de entrada (17) de agua bruta está alimentada tanto por una línea de entrada principal (18) como por una línea de entrada secundaria (19) de agua bruta que permite conectar una segunda fuente de abastecimiento de agua bruta.
Conectada a la línea de entrada de agua (17) existe además una línea de excedente (20), que permite operar con caudales inferiores al caudal mínimo de funcionamiento de la comba de abastecimiento. De esta forma, por dicha línea de excedente se evacúa el caudal de agua sobrante una vez ha sido impulsado por la bomba.
El equipo comprende además una línea de salida (21) de agua borada del mezclador (3). Dicha línea de salida (21) de agua borada se divide en una línea de salida principal (22) y una línea de salida secundaria (23), de forma que es posible inyectar agua borada en un segundo consumidor, por ejemplo, un camión cisterna.
Existe además una línea de bypass (24) entre la línea de entrada (17) y la línea de salida principal (22) por lo que se puede inyectar agua bruta en un primer consumidor a través de la línea de salida principal (22) y agua borada a través de la línea de salida secundaria (23) a un segundo consumidor. La regulación de los flujos de dichas líneas (21,22,23,24) se regula mediante un conjunto de válvulas, preferentemente electroválvulas operadas a través de un autómata instalado en el equipo.
En el interior del contenedor (1) se dispone un mezclador (3) cilindrico con base troncocónica, que comprende una pala de agitación y placas deflectoras. El mezclador incorpora resistencias eléctricas para compensar la pérdida de calor ocasionada por la reacción endotérmica de disolución de ácido bórico en agua, evitando la cristalización de ácido bórico en caso de temperatura ambiental y del agua reducidas.
El mezclador (3) comprende una boca de entrada de agua bruta (4) procedente de la línea de entrada (17), una entrada de ácido bórico (5) en polvo, y una boca de salida (6) de agua borada dirigida hacia la línea de salida (21) de agua borada. El equipo comprende componentes que permiten adaptar el sistema a una fuente de agua bruta externa y regular su punto de funcionamiento, además de medios de bombeo para las líneas de salida de agua (21, 22, 23). Preferentemente, la inyección de agua borada en el consumidor o consumidores se realiza mediante una bomba centrifuga de rotor húmedo, donde la bomba aspira directamente desde el fondo del mezclador. En el contendor (1) se instala además una estructura (7) de soporte en la que se deposita un saco (8) de ácido bórico ("big bag").
La estructura de soporte (7) está instalada sobre una estructura telescópica (9), susceptible de elevar la estructura (7) de soporte para facilitar el suministro de sacos (8) de ácido bórico.
En la parte inferior de la estructura (7) se disponen un conjunto de cuchillas (12) que actúan de forma automática cuando se detecta la presencia de un saco (8) de ácido bórico, produciendo cortes en la parte inferior del saco (8) que permiten que el contenido del mismo se vacíe sobre un depósito cónico (10). El sistema cuenta con un sistema de aviso de que el producto del saco se ha vaciado, para que un operario retire el saco vaciado y disponga un nuevo saco sobre la estructura (7). La función del depósito cónico (10) es la de alojar una cantidad de producto suficiente para que no se detenga la alimentación del ácido bórico mientras que se retira el saco (8) vacío y se proporciona un saco lleno de producto.
Para que el contenido del saco de ácido bórico se vacíe íntegramente, la estructura comprende un conjunto de "masajeadores" del saco formados por un conjunto de cilindros neumáticos (11) que presionan sobre este y garantizan que todo el producto del interior del saco sea vaciado.
Entre la estructura de vaciado y el depósito cónico, se dispone un sistema de captación conectado a un sistema de aspirado del polvo de ácido bórico, con filtros autolimpiables, y un sistema de confinamiento de dicho polvo de ácido bórico. Dicho sistema evita que las partículas en el aire, o que no se han dirigido hacia el depósito cónico se queden en la atmosfera del contenedor, lo que puede suponer un riesgo para los operarios. El sistema de captación está formado por un anillo de captación (13) a través del cual se aspira el polvo y se dirige hacia un depósito de confinamiento (14). El aire aspirado se evacúa previo paso por un conjunto de filtros autolimpiables.
El producto vertido en el depósito cónico (10) se vierte sobre un transportador (16), que en la realización mostrada es un tornillo sinfín de velocidad regulable, que transporta el ácido bórico en polvo desde la parte inferior del depósito cónico (10) hacia la boca de entrada de ácido bórico (5) dispuesta en la parte superior del mezclador (3), desde donde se vierte el ácido bórico al mezclador (3). Entre el depósito cónico y el transportador, se dispone una trituradora de rodillos (15). Mediante este sistema se asegura que no se formen aglomeraciones o piedras de ácido bórico, por lo que el ácido bórico se suministra al mezclador en polvo lo que facilita y optimiza su disolución en el agua bruta.

Claims

REIVINDICACIONES
1.- Equipo portátil de boración de aguas en flujo continuo, que comprende:
• Un mezclador (3) mecánico. El mezclador (3) comprende una boca de entrada de agua bruta (4) una entrada de ácido bórico (5) en polvo, y una boca de salida (6) de agua borada dirigida hacia una línea de salida (21) de agua borada; donde el mezclador incorpora resistencias eléctricas.
• Una línea de entrada (17) de agua bruta al mezclador (3) provista de medios de regulación del caudal;
• Un sistema de alimentación de ácido bórico en polvo provisto de un transportador (16) de velocidad variable del ácido bórico en polvo hacia la entrada de ácido bórico (5) del mezclador (3);
• Una línea de salida (21) del mezclador provista de medios de bombeo y medios de regulación del caudal; caracterizado porque: el equipo se integra en un contenedor (1) de transporte; y porque sistema de alimentación de ácido bórico en polvo provisto de un sistema de detección y apertura automática de un saco (8) de ácido bórico en polvo; y porque el equipo comprende un sistema de vigilancia y control formado por los siguientes elementos: o Un autómata que gestiona las diferentes señales de instrumentación, las alarmas por valores anormales de funcionamiento, y la ejecución de los siguientes automatismos:
■ Gestión del nivel de agua en el mezclador mediante la regulación de caudales de entrada y de salida de agua en el mezclador;
■ Gestión de la velocidad del transportador de ácido bórico en función del caudal de agua de entrada para regular la concentración de ácido bórico; Control de la temperatura del agua y accionamiento de las resistencias eléctricas del mezclador,
■ Gestión del sistema de detección y apertura automática de un saco de ácido bórico en polvo o Dispositivo de televigilancia a través del cual el operador puede conocer el estado operativo del sistema a distancia, recibiendo las alarmas cuando el sistema requiere su atención.
2.- Equipo portátil de boración de aguas en flujo continuo, según la reivindicación 1, caracterizado porque el sistema de vigilancia y control comprende además una pantalla IHM (interfaz humano máquina) que permite la visualization del estado operativo del sistema, así como la realización de los ajustes pertinentes.
3.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 2, caracterizado porque conectada a la línea de entrada de agua (17) existe además una línea de excedente (20), que permite operar con caudales inferiores al caudal mínimo de funcionamiento de una bomba de abastecimiento.;
4.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 3, caracterizado porque la línea de salida (21) de agua borada se divide en una línea de salida principal (22) y una línea de salida secundaria (23), donde el autómata regula el funcionamiento de las válvulas de las líneas de salida en función de los requerimientos de los consumidores.
5.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque existe además una línea de bypass (24) entre la línea de entrada (17) y una línea de salida, donde el autómata regula el funcionamiento de las válvulas de las líneas de entrada (17) y de bypass (24) en función de los requerimientos de los consumidores.
6 Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 5, caracterizado porque la línea de entrada (17) de agua bruta está alimentada tanto por una línea de entrada principal (18) como por una línea de entrada secundaria (19) de agua bruta.
7.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 6, caracterizado porque el mezclador (3) es un mezclador cilindrico con base troncocónica, que comprende una pala de agitación y placas deflectoras.
8.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 7, caracterizado porque la inyección de agua borada en el consumidor o consumidores se realiza mediante una bomba centrifuga de rotor húmedo, donde la bomba aspira directamente desde el fondo del mezclador (3).
9.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque el transportador (16) es un tornillo sinfín.
10.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 9, caracterizado porque el sistema de alimentación de ácido bórico comprende una estructura de soporte (7) de un saco de ácido bórico en polvo desde el que se vierte el ácido bórico al transportador (16).
11.- Equipo portátil de boración de aguas en flujo continuo, según la reivindicación 10, caracterizado porque la estructura de soporte (7) está instalada sobre una estructura telescópica (9), susceptible de elevar la estructura de soporte (7) para facilitar el suministro de sacos (8) de ácido bórico.
12.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 10 a 11, caracterizado porque bajo la estructura de soporte (7) se dispone un depósito cónico en el que se vierte el ácido bórico, donde el sistema de vigilancia y control produce un aviso cuando el producto del saco (8) se ha vaciado.
13.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 10 a 12, caracterizado porque la estructura de soporte (7) comprende un conjunto de "masajeadores" del saco formados por un conjunto de cilindros neumáticos (11) que presionan sobre este y garantizan que todo el producto del interior del saco sea vaciado.
15
14.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 10 a 13, caracterizado porque en la estructura de soporte (7) se dispone un sistema de captación conectado a un sistema de aspirado del polvo de ácido bórico, con filtros autolimpiables, y un sistema de confinamiento de dicho polvo de ácido bórico.
15. Equipo portátil de boración de aguas en flujo continuo, la reivindicación 14, caracterizado porque el sistema de captación está formado por un anillo de captación (13) a través del cual se aspira el polvo y se dirige hacia un depósito de confinamiento (14).
16.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 15, caracterizado porque el sistema de detección y apertura automática de un saco (8) de ácido bórico en polvo comprende un conjunto de cuchillas (12) que cortan la parte inferior del saco.
17.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 16 caracterizado porque el sistema comprende una trituradora de rodillos (15) por la que pasa el ácido bórico en polvo antes de disponerse sobre el transportador (16).
18.- Equipo portátil de boración de aguas en flujo continuo, según cualquiera de las reivindicaciones 1 a 17 caracterizado porque el contendor (1) cuenta además con un gancho (2) para un camión con sistema "Ampliroll".
16
PCT/ES2021/070725 2021-10-05 2021-10-05 Equipo portátil de boración de aguas en flujo continuo WO2023057660A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070725 WO2023057660A1 (es) 2021-10-05 2021-10-05 Equipo portátil de boración de aguas en flujo continuo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070725 WO2023057660A1 (es) 2021-10-05 2021-10-05 Equipo portátil de boración de aguas en flujo continuo

Publications (1)

Publication Number Publication Date
WO2023057660A1 true WO2023057660A1 (es) 2023-04-13

Family

ID=85803206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070725 WO2023057660A1 (es) 2021-10-05 2021-10-05 Equipo portátil de boración de aguas en flujo continuo

Country Status (1)

Country Link
WO (1) WO2023057660A1 (es)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1136778A (en) 1978-02-20 1982-11-30 Max Stiefel Method and apparatus for boron addition to primary coolant of a water cooled nuclear reactor system
US4582672A (en) 1982-08-11 1986-04-15 Westinghouse Electric Corp. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric powering generating unit
DE3618966A1 (de) 1986-06-05 1987-12-10 Gattys Tech Anordnung zur sicherung der brennkammer von kernreaktoren gegen ueberhitzung
US4844856A (en) 1983-04-21 1989-07-04 Framatome Process for automatic regulation of the soluble boron content of the cooling water of a pressurized water nuclear reactor
US20030227819A1 (en) * 2002-04-11 2003-12-11 Mobius Technologies, Inc., A California Corporation Control system and method for continuous mixing of slurry with removal of entrained bubbles
KR20120039161A (ko) 2010-10-15 2012-04-25 한국수력원자력 주식회사 원자로 붕소농도 자동제어장치
JP2012083113A (ja) 2010-10-06 2012-04-26 Mitsubishi Heavy Ind Ltd 制御装置および制御方法
EP2600351A1 (fr) 2011-11-30 2013-06-05 Areva NP Ensemble et procédé d'injection d'eau d'un élément absorbeur de neutrons pour le refroidissement d'un coeur d'un réacteur nucléaire en situation de crise.
WO2013158691A1 (en) 2012-04-19 2013-10-24 Westinghouse Electric Company Llc Mobile boration system
WO2015079075A1 (es) * 2013-11-26 2015-06-04 Ingenieria Y Marketing, S.A. Equipo portátil de boración de aguas en flujo continuo
KR20190100718A (ko) * 2018-02-21 2019-08-29 정찬세 비상시 원자력 발전소 냉각 및 전기 공급장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1136778A (en) 1978-02-20 1982-11-30 Max Stiefel Method and apparatus for boron addition to primary coolant of a water cooled nuclear reactor system
US4582672A (en) 1982-08-11 1986-04-15 Westinghouse Electric Corp. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric powering generating unit
US4844856A (en) 1983-04-21 1989-07-04 Framatome Process for automatic regulation of the soluble boron content of the cooling water of a pressurized water nuclear reactor
DE3618966A1 (de) 1986-06-05 1987-12-10 Gattys Tech Anordnung zur sicherung der brennkammer von kernreaktoren gegen ueberhitzung
US20030227819A1 (en) * 2002-04-11 2003-12-11 Mobius Technologies, Inc., A California Corporation Control system and method for continuous mixing of slurry with removal of entrained bubbles
JP2012083113A (ja) 2010-10-06 2012-04-26 Mitsubishi Heavy Ind Ltd 制御装置および制御方法
KR20120039161A (ko) 2010-10-15 2012-04-25 한국수력원자력 주식회사 원자로 붕소농도 자동제어장치
EP2600351A1 (fr) 2011-11-30 2013-06-05 Areva NP Ensemble et procédé d'injection d'eau d'un élément absorbeur de neutrons pour le refroidissement d'un coeur d'un réacteur nucléaire en situation de crise.
WO2013158691A1 (en) 2012-04-19 2013-10-24 Westinghouse Electric Company Llc Mobile boration system
WO2015079075A1 (es) * 2013-11-26 2015-06-04 Ingenieria Y Marketing, S.A. Equipo portátil de boración de aguas en flujo continuo
KR20190100718A (ko) * 2018-02-21 2019-08-29 정찬세 비상시 원자력 발전소 냉각 및 전기 공급장치

Similar Documents

Publication Publication Date Title
US10210957B2 (en) Portable apparatus for the boration of continuously flowing water
CN101740147B (zh) 一种核电站乏燃料的干式竖井贮存系统及其贮存方法
ES2534410T3 (es) Conjunto y procedimiento de inyección de agua de un elemento absorbente de neutrones para la refrigeración de un núcleo de un reactor nuclear en situación de crisis
US4194842A (en) Method for binding liquid-containing radioactive wastes and kneading machine therefor
CN101720489A (zh) 在应急情况下使用纳米颗粒的核电设备及相关方法
US4196169A (en) System for disposing of radioactive waste
EP3998615A1 (en) Nuclear power plant containment filtering and discharging system and method
JP2009540313A (ja) 核燃料製造における、臨界予防装置および方法
US3362883A (en) Disposal system for contaminated hydrogen from a nuclear reactor
US7676017B2 (en) Vacuum actuated anhydrous ammonia feed system for pH adjustment of boiler condensate/feed water
CN111863297A (zh) 具有穿孔柱形插入件的核燃料碎片容器
WO2023057660A1 (es) Equipo portátil de boración de aguas en flujo continuo
CN109243634A (zh) 反应堆安全系统
CN102201269A (zh) 球床高温气冷堆乏燃料装料装置
US11355255B2 (en) System and method for reducing atmospheric release of radioactive materials caused by severe accident
CN106647840B (zh) 放射性废树脂贮槽的超压联锁保护系统及控制方法
CN110354645B (zh) 一种安全壳过滤排放系统非能动在线补液装置及方法
CN113241200A (zh) 一种燃料盐回路系统及运行方法
CN109599192B (zh) 一种地下核电站堆腔注入系统
CN218422688U (zh) 一种聚碳酸酯催化剂配置装置
KR20100016166A (ko) 핵분열성 물질 함유 폐기물용 폐기 안정화 및 포장 시스템
CN218494989U (zh) 垃圾发电厂除灰系统
CN104064239A (zh) 一种核电站低中水平放射性活性炭处理方法
USRE27598E (en) Disposal system for contaminated hydrogen from a nuclear reactor
CN214752969U (zh) 一种用于核电站树脂装载的水力输送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021959805

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021959805

Country of ref document: EP

Effective date: 20240506