WO2014048291A1 - 一种能动与非能动相结合的应急停堆系统及方法 - Google Patents

一种能动与非能动相结合的应急停堆系统及方法 Download PDF

Info

Publication number
WO2014048291A1
WO2014048291A1 PCT/CN2013/084045 CN2013084045W WO2014048291A1 WO 2014048291 A1 WO2014048291 A1 WO 2014048291A1 CN 2013084045 W CN2013084045 W CN 2013084045W WO 2014048291 A1 WO2014048291 A1 WO 2014048291A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
emergency
injection
reactor
shutdown
Prior art date
Application number
PCT/CN2013/084045
Other languages
English (en)
French (fr)
Inventor
赵侠
于勇
黄伟峰
赵斌
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Priority to GB1504153.6A priority Critical patent/GB2519920B/en
Publication of WO2014048291A1 publication Critical patent/WO2014048291A1/zh
Priority to ZA2015/02771A priority patent/ZA201502771B/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • G21C9/027Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by fast movement of a solid, e.g. pebbles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • G21C9/033Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by an absorbent fluid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/22Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to a reactor design technology, and particularly relates to an emergency shutdown system and method combining active and passive. Background technique
  • the main way to achieve emergency shutdown is to insert a control rod consisting of neutron poisons into the core to bring the reactor into a subcritical state.
  • the process of relying on the control rod to achieve emergency shutdown is:
  • the reactor protection system performs logic operations to generate the reactor emergency shutdown drive signal, and the emergency shutdown drive signal causes the shutdown circuit breaker line to lose power, and the shutdown circuit breaker opens, the rod
  • the power supply is de-energized, the control rod is dropped, and the reactor is shut down.
  • This type of emergency shutdown method has the potential to prevent the reactor from being shut down in an emergency.
  • the reactive control of the emergency shutdown method in the conventional design relative to the single-pressure water reactor nuclear power plant includes a chemical volume control system, and the boron concentration of the primary circuit water is adjusted by adding boric acid to the coolant to adjust the reactivity.
  • the traditional chemical volume control system cannot provide emergency boron injection in time, nor can it achieve high concentration boric acid injection. Therefore, it can only be used as a means of reactor power regulation and cannot be used as a means of emergency shutdown. Summary of the invention
  • the object of the present invention is to provide a combination of active and passive for the defects of the prior art.
  • the emergency shutdown system and method enhance the reliability of the reactor emergency shutdown system in the event of an accident and improve the safety of the reactor.
  • the technical solution of the present invention is as follows: An active shutdown system combined with active and passive, including a control rod emergency shutdown subsystem, a shutdown circuit breaker of the control rod emergency shutdown subsystem is connected with the reactor protection system, and receives Emergency shutdown signal from the reactor protection system and control rod drop; also includes emergency boron injection subsystem, emergency boron injection subsystem including concentrated boron storage tank, concentrated boron storage tank connected to reactor pressure vessel and core through injection pipeline, injection An injection pump is arranged on the pipeline, and the injection pump is connected with the reactor protection system, and receives the failure of the reactor protection system to achieve the emergency shutdown accident protection signal or the core neutron flux high signal and injects concentrated boron into the reactor pressure vessel and the reactor.
  • the active and passive combined emergency shutdown system as described above, wherein the concentrated boron storage tank is provided with an electric heating element for ensuring that the solution temperature is not lower than the boron crystallization temperature.
  • the emergency shutdown system combined with the active and the passive as described above, one end of the injection line is connected to the bottom of the concentrated boron storage tank, and the other end is connected to the injection pipe of the cold section of the reactor safety system.
  • the active and passive combined emergency shutdown system as described above, wherein the emergency boron injection system comprises two independent series, each series separately provided with a concentrated boron storage tank and an injection pipeline. Each series of concentrated boron capacity meets 100% injection capacity.
  • the active and passive combined emergency shutdown system as described above, wherein the concentrated boron storage tank is connected to the reactor boron and water; Further, in the emergency shutdown system combined with the active and the passive, as described above, wherein the concentration of the boron solution in the concentrated boron storage tank is 7000-9000 ppm, and the ambient temperature of the room where the boron injection box is located is higher than 90 O Oppm. Boric acid solution crystallization temperature limit.
  • An emergency shutdown method combining active and passive in the case of an accident, the reactor protection system sends a reactor emergency shutdown signal to the shutdown circuit breaker of the control rod emergency shutdown subsystem, and the emergency shutdown signal causes the shutdown to be shut down.
  • the power line is de-energized, the shutdown circuit breaker is opened, the control rod power is de-energized, and the control rod is dropped.
  • the reactor protection system sends a warning signal or heap to the emergency boron injection subsystem that fails to achieve an emergency shutdown accident.
  • the core neutron flux is high, and the emergency boron injection system starts the injection pump after receiving the signal, and injects concentrated boron into the reactor pressure vessel and the core to realize emergency shutdown.
  • the beneficial effects of the present invention are as follows:
  • the present invention provides an emergency shutdown system and method combining active and passive. When an accident occurs and an emergency shutdown is required, it can rely on the gravity of the control rod itself to be passively inserted. To achieve emergency shutdown, the reactor can be urgently shut down by injecting concentrated boric acid solution by active means when the passive means fails, which greatly improves the safety of the reactor.
  • FIG. 1 is a schematic diagram of the system composition and control logic of the present invention.
  • the emergency shutdown system combined with active and passive is based on the mature design ideas and risk guidance design methods of the second generation improved nuclear power plant safety system, relying on optimizing the original control rod power failure
  • the emergency boron injection system is added as a dynamic emergency shutdown means.
  • This kind of configuration is a combination of active and passive safety measures. It can realize reactor shutdown through passive control rod drop rod, and can realize safe shutdown of reactor through active emergency boron injection, making the emergency shutdown method redundant. Residuality and diversity, which improves reactor safety.
  • the active and passive combined emergency shutdown system comprises a control rod emergency shutdown subsystem and an emergency boron injection subsystem, and the shutdown circuit breaker of the control rod emergency shutdown subsystem is connected with the reactor protection system.
  • the emergency boron injection system includes a concentrated boron storage tank, and the concentrated boron storage tank is provided with electricity for ensuring that the solution temperature is not lower than the boron crystallization temperature
  • the heating element, the concentrated boron storage tank is connected to the reactor pressure vessel and the core through an injection pipeline, one end of the injection pipeline is connected to the bottom of the concentrated boron storage tank, and the other end is connected with the injection pipeline of the cold section of the reactor safety injection system, and the injection pipeline is provided with an injection pump.
  • the injection pump is connected to the reactor protection system, and receives the failure of the reactor protection system to achieve the emergency shutdown protection signal or the core neutron flux high signal and injects concentrated boron into the reactor pressure vessel and the core.
  • the concentrated boron storage tank is connected to the reactor boron and water replenishment system.
  • the active and passive combination of active and passive methods used in the above system is as follows: In the event of an accident, the reactor protection system issues a reactor emergency shutdown signal to the shutdown circuit breaker of the control rod emergency shutdown subsystem, the emergency shutdown signal The power failure of the shutdown circuit breaker is lost, the circuit breaker is opened, the power of the control rod is de-energized, and the control rod is dropped. When the control rod falls, the reactor protection system fails to provide emergency shutdown protection to the emergency boron injection system. Signal or core neutron flux high signal, the emergency boron injection system receives the signal and then starts the injection pump to inject concentrated boron into the reactor pressure vessel and the core to realize emergency shutdown.
  • a conventional pressurized water reactor for a nuclear power plant includes a reactor pressure vessel and a core 1, a steam generator 2, a voltage regulator 3, a main pump 4, a control rod emergency shutdown subsystem 5, and a nuclear power plant.
  • a reactor protection system which consists of related measuring instruments and control systems. In the event of an accident, the reactor protection system performs a logic operation to issue a reactor emergency shutdown drive signal (automatic shutdown signal or manual shutdown signal) that triggers the control rod drive system 5 in the reactor emergency shutdown system.
  • the emergency shutdown drive signal causes the shutdown circuit breaker 6 in the control bar emergency shutdown subsystem 5 to lose power, the shutdown circuit breaker 6 is opened, the control rod power supply is de-energized, the control rod is dropped, and the reactor is shut down.
  • the control rod fails to be inserted, it is confirmed that the control rod fails to achieve emergency shutdown (ATWS) by monitoring the parameters such as the reactor neutron fluence, and the reactor protection system fails to realize the emergency shutdown signal to the emergency boron injection system (ATWS).
  • the signal) or the core neutron flux is high, thereby initiating the emergency boron injection system 7.
  • the emergency boron implantation subsystem 7 is provided with two separate series, each having a capacity of 100% injection capacity.
  • Each series separately includes a concentrated boron storage tank 8 in which an electric heating element 9 for ensuring a solution temperature not lower than the crystallization temperature of boron is provided, and the concentrated boron storage tank 8 is connected to the reactor pressure through the injection line 11.
  • the container and the core, one end of the injection line 1 1 is connected to the bottom of the concentrated boron storage tank 8, and the other end is connected to the injection pipeline of the cold section of the reactor safety system, and the injection line 10 is provided with an injection pump 10 .
  • the concentrated boron storage tank 8 is connected to the reactor boron and water replenishment system.
  • the two series of two boron injection lines merge into an injection mother tube after entering the containment 12, and then can be subdivided into three injection lines connected to the three coolants of the reactor coolant system through the injection line of the cold section of the injection system. Pipe section.
  • this type of connection is only proposed as an embodiment, and those skilled in the art can completely inject concentrated boron into the reactor pressure vessel and the core by using other pipeline connections.
  • the emergency boron injection subsystem can be started automatically or manually, and the concentrated boron solution in the concentrated boron storage tank is injected into the reactor primary circuit.
  • the emergency boron injection system receives the ATWS signal, and injects concentrated boron into the reactor pressure vessel and the core to realize emergency shutdown.
  • the emergency boron injection system is simultaneously activated according to the reactor protection signal to ensure that the reactor remains in a safe shutdown state. .
  • the control rod group is in the normal position and the emergency boron injection pump is in standby. State; After the emergency shutdown signal is generated, the control rod is inserted into the emergency shutdown. If the control rod is inserted, the ATWS signal or the core neutron flux high signal will be generated to activate the emergency boron injection pump to absorb water from the concentrated boron storage tank.
  • the injection pump has sufficient head to ensure that the boric acid solution is injected into the core at any one circuit pressure to achieve safe reactor shutdown.
  • the present invention may also be provided with a boric acid recycle line for periodically circulating a boric acid solution in a concentrated boron storage tank, and a line and a valve for hydrating and supplementing the boric acid solution may be disposed on the concentrated boron storage tank.
  • the invention provides two ways for the emergency shutdown of the reactor, and the two methods are combined with each other to work together, thereby greatly improving the reliability of the emergency shutdown, thereby improving the safety of the reactor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种能动与非能动相结合的应急停堆系统及方法,包括控制棒应急停堆子系统和应急硼注入子系统,控制棒应急停堆子系统的停堆断路器与反应堆保护系统相连接,接收反应堆保护系统发出的紧急停堆信号并实现控制棒下落;应急硼注入子系统包括浓硼储罐和注入管线上的注入泵,浓硼储罐通过注入管线连接反应堆压力容器及堆芯,注入泵控制系统与反应堆保护系统相连接,接收反应堆保护系统发出的未能实现紧急停堆信号或堆芯中子通量高信号并将浓硼注入反应堆压力容器及堆芯,实现应急停堆。

Description

一种能动与非能动相结合的应急停堆系统及方法 技术领域
本发明属于反应堆设计技术, 具体涉及一种能动与非能动相结合的应急停 堆系统及方法。 背景技术
在核电站事故情况下, 实现应急停堆是保护反应堆安全的重要前提。 对于 传统压水堆设计来说, 应急停堆的主要实现途径是向堆芯中插入由中子毒物组 成的控制棒使反应堆立刻进入次临界状态。 这种依靠控制棒实现紧急停堆的过 程是: 反应堆保护系统进行逻辑运算, 产生反应堆紧急停堆驱动信号, 紧急停 堆驱动信号使停堆断路器线圏失电, 停堆断路器打开, 棒电源失电, 控制棒下 落, 反应堆停堆。 这种应急停堆方法存在控制棒不能下插导致反应堆不能紧急 停堆的潜在可能性。
当发生丧失正常给水和丧失厂外电源而未能紧急停堆这样最不利事故时, 需要启动辅助给水系统并且由事故緩解系统使汽轮机停机才能保证反应堆安 全, 而这两个条件不能确保实现。 也就是说, 传统设计中应急停堆手段相对单 压水堆核电站的反应性控制中包括化学容积控制系统, 通过向冷却剂中添 加硼酸调节一回路水的硼浓度, 从而对反应性进行调节。 目前, 传统的化学容 积控制系统无法及时提供应急硼注入, 也无法实现高浓度硼酸的注入, 因此, 其只能作为反应堆功率调节的手段, 并不能作为一种应急停堆的手段。 发明内容
本发明的目的在于针对现有技术的缺陷, 提供一种能动与非能动相结合 的应急停堆系统及方法, 增强事故情况下反应堆应急停堆系统的可靠性, 提高 反应堆的安全性。 本发明的技术方案如下: 一种能动与非能动相结合的应急停堆系统, 包括 控制棒应急停堆子系统, 控制棒应急停堆子系统的停堆断路器与反应堆保护系 统相连接, 接收反应堆保护系统发出的紧急停堆信号并实现控制棒下落; 还包 括应急硼注入子系统, 应急硼注入子系统包括浓硼储罐, 浓硼储罐通过注入管 线连接反应堆压力容器及堆芯, 注入管线上设有注入泵, 注入泵与反应堆保护 系统相连接, 接收反应堆保护系统发出的未能实现紧急停堆事故保护信号或堆 芯中子通量高信号并将浓硼注入反应堆压力容器及堆芯。 进一步, 如上所述的能动与非能动相结合的应急停堆系统, 其中, 在所述 的浓硼储罐内设有用于保证溶液温度不低于硼结晶温度的电加热元件。 进一步, 如上所述的能动与非能动相结合的应急停堆系统, 其中, 所述的 注入管线一端连接浓硼储罐底部, 另一端与反应堆安注系统冷段的注入管道相 连接。 进一步, 如上所述的能动与非能动相结合的应急停堆系统, 其中, 所述的 应急硼注入系统包括两个独立的系列, 每个系列单独设有一个浓硼储罐和一条 注入管线, 每个系列的浓硼容量均满足 100%注入能力。 进一步, 如上所述的能动与非能动相结合的应急停堆系统, 其中, 所述的 浓硼储罐与反应堆硼和水;^卜给系统相连接。 进一步, 如上所述的能动与非能动相结合的应急停堆系统, 其中, 所述的 浓硼储罐中硼溶液的浓度为 7000-9000ppm , 硼注箱所在房间的环境温度高于 90 O Oppm硼酸溶液结晶温度限值。 一种能动与非能动相结合的应急停堆方法, 在事故情况下, 反应堆保护系 统向控制棒应急停堆子系统的停堆断路器发出反应堆紧急停堆信号, 紧急停堆 信号使停堆断路器线圏失电, 停堆断路器打开, 控制棒电源失电, 控制棒下落; 当控制棒下落失效时, 反应堆保护系统向应急硼注入子系统发出未能实现紧急 停堆事故保护信号或堆芯中子通量高信号, 应急硼注入系统接收到信号后启动 注入泵, 将浓硼注入反应堆压力容器及堆芯, 实现应急停堆。 本发明的有益效果如下: 本发明提供了一种能动与非能动相结合的应急停 堆系统和方法, 当事故情况发生, 需要紧急停堆时, 既可以依靠控制棒自身重 力非能动的下插实现紧急停堆, 又可以在非能动手段失效时通过能动手段注入 浓硼酸溶液使反应堆紧急停闭, 极大地提高了反应堆的安全性。 附图说明
图 1为本发明的系统组成及控制逻辑示意图。
图中, 1.反应堆压力容器及堆芯 2.蒸汽发生器 3.稳压器 4.主泵 5.控制棒驱动系统 6.停堆断路器 7.应急硼注入系统 8.浓硼储罐 9.电 加热元件 1 0.注入泵 1 1.注入管线 12.安全壳 具体实施方式
能动与非能动相结合的应急停堆系统是在二代改进型核电厂安全系统的成 熟设计思路和风险指引的设计手段的基础上, 在优化原有的控制棒断电后依靠 重力下插的应急停堆手段之外, 增加应急硼注入系统作为能动的应急停堆手段。 该种配置属于能动与非能动相结合的安全措施, 既可以通过非能动的控制棒落 棒实现反应堆停闭, 也可以通过能动的应急硼注入实现反应堆安全停闭, 使应 急停堆手段具有冗余性和多样性, 从而提高了反应堆安全性。
本发明所提供的能动与非能动相结合的应急停堆系统, 包括控制棒应急停 堆子系统和应急硼注入子系统, 控制棒应急停堆子系统的停堆断路器与反应堆 保护系统相连接, 接收反应堆保护系统发出的紧急停堆信号并实现控制棒下落; 应急硼注入系统包括浓硼储罐, 在所述的浓硼储罐内设有用于保证溶液温度不 低于硼结晶温度的电加热元件, 浓硼储罐通过注入管线连接反应堆压力容器及 堆芯, 注入管线一端连接浓硼储罐底部, 另一端与反应堆安注系统冷段的注入 管道相连接, 注入管线上设有注入泵, 注入泵与反应堆保护系统相连接, 接收 反应堆保护系统发出的未能实现紧急停堆事故保护信号或堆芯中子通量高信号 并将浓硼注入反应堆压力容器及堆芯。 所述的浓硼储罐与反应堆硼和水补给系 统相连接。
上述系统所采用的能动与非能动相结合的应急停堆方法如下: 在事故情况 下, 反应堆保护系统向控制棒应急停堆子系统的停堆断路器发出反应堆紧急停 堆信号, 紧急停堆信号使停堆断路器线圏失电, 停堆断路器打开, 控制棒电源 失电, 控制棒下落; 当控制棒下落失效时, 反应堆保护系统向应急硼注入系统 发出未能实现紧急停堆事故保护信号或堆芯中子通量高信号, 应急硼注入系统 接收到信号后启动注入泵, 将浓硼注入反应堆压力容器及堆芯, 实现应急停堆。 下面结合附图和实施例对本发明进行详细的描述。
实施例
如图 1所示, 用于核电站的常规压水堆包括反应堆压力容器及堆芯 1、 蒸 汽发生器 2、 稳压器 3、 主泵 4 , 控制棒应急停堆子系统 5 , 另外, 核电厂设 计有反应堆保护系统, 由相关的测量仪表和控制系统等组成。 在发生事故时, 反应堆保护系统进行逻辑运算, 发出反应堆紧急停堆驱动信号 (自动停堆信号 或手动停堆信号), 触发反应堆应急停堆系统中的控制棒驱动系统 5。 紧急停堆 驱动信号使控制棒应急停堆子系统 5中的停堆断路器 6线圏失电, 停堆断路器 6打开, 控制棒电源失电, 控制棒下落, 反应堆停堆。 另外, 如果控制棒下插失 败, 通过监测反应堆中子注量等参数, 确认控制棒未能实现应急停堆(ATWS ), 反应堆保护系统向应急硼注入系统发出未能实现紧急停堆信号 (ATWS信号)或 堆芯中子通量高信号, 从而启动应急硼注入系统 7。
在本实施例中, 应急硼注入子系统 7设置了两个独立的系列, 每个系列的 容量为 1 00%注入能力。 每个系列单独包括一个浓硼储罐 8 , 在浓硼储罐 8 内设 有用于保证溶液温度不低于硼结晶温度的电加热元件 9 ,浓硼储罐 8通过注入管 线 1 1连接反应堆压力容器及堆芯, 注入管线 1 1一端连接浓硼储罐 8的底部, 另一端与反应堆安注系统冷段的注入管道相连接,注入管线 1 1上设有注入泵 1 0。 浓硼储罐 8 与反应堆硼和水补给系统相连接。 两个系列的两条硼注入管线在进 入安全壳 1 2后合并成一条注入母管, 然后可再分为三条注入管线通过安注系统 冷段的注入管道连接至反应堆冷却剂系统的三个冷管段。 当然, 这种连接方式 只是作为一种实施例提出, 本领域的技术人员完全可以采用其它管线连接方式 将浓硼注入反应堆压力容器及堆芯。
应急硼注入子系统可以自动启动, 也可以手动启动, 将浓硼储罐内的浓硼 溶液注入到反应堆一回路。 在控制棒下插失败时, 应急硼注入系统收到 ATWS信 号, 将浓硼注入反应堆压力容器及堆芯, 实现应急停堆。 另外, 在主蒸汽管道 断裂等事故工况下, 为了保证停堆深度, 防止反应堆重返临界, 在插入控制棒 后, 根据反应堆保护信号同时启动应急硼注入系统, 确保反应堆保持在安全停 闭状态。
在核电站正常运行期间, 控制棒组处于正常位置, 应急硼注入泵处于备用 状态; 紧急停堆信号产生后, 控制棒下插紧急停堆, 如果控制棒下插失效将产 生 ATWS信号或堆芯中子通量高信号从而启动应急硼注入泵从浓硼储罐吸水,硼 注入泵有足够的压头确保在任何一回路压力下向堆芯注入硼酸溶液, 从而实现 反应堆安全停堆。
另外, 本发明还可以设置硼酸再循环管线用以定期循环浓硼储罐内的硼 酸溶液, 浓硼储罐上可设置用于补水和补充硼酸溶液的管线及阀门。
本发明为反应堆的应急停堆提供了两条途径, 并且两种方式相互结合, 共同发挥作用, 从总体上大大提高了应急停堆实现的可靠性, 从而提高了反 应堆的安全性。
发明的精神和范围。 这样, 倘若对本发明的这些修改和变型属于本发明权利 要求及其同等技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1.一种能动与非能动相结合的应急停堆系统, 包括控制棒应急停堆子系统 ( 5 ), 控制棒应急停堆子系统(5 ) 的停堆断路器(6 ) 与反应堆保护系统相连 接, 接收反应堆保护系统发出的紧急停堆信号并实现控制棒下落; 其特征在于: 还包括应急硼注入子系统(7 ), 应急硼注入子系统(7 ) 包括浓硼储罐(8 ), 浓 硼储罐 ( 8 )通过注入管线( 11 )连接反应堆压力容器及堆芯( 1 ),注入管线( 1 1 ) 上设有注入泵(10 ), 注入泵(1 0 )与反应堆保护系统相连接, 接收反应堆保护 系统发出的未能实现紧急停堆信号或堆芯中子通量高信号并将浓硼注入反应堆 压力容器及堆芯。
2. 如权利要求 1 所述的能动与非能动相结合的应急停堆系统, 其特征在 于: 在所述的浓硼储罐(8 ) 内设有用于保证溶液温度不低于硼结晶温度的电加 热元件( 9 )0
3. 如权利要求 1或 2所述的能动与非能动相结合的应急停堆系统, 其特 征在于: 所述的注入管线( 11 )一端连接浓硼储罐 ( 8 )底部, 另一端与反应堆 安注系统冷段的注入管道相连接。
4. 如权利要求 1或 2所述的能动与非能动相结合的应急停堆系统, 其特 征在于: 所述的应急硼注入系统( 7 ) 包括两个独立的系列, 每个系列单独设有 一个浓硼储罐(8 )和一条注入管线(11 ), 每个系列的浓硼容量均满足 100%注 入能力。
5. 如权利要求 4 所述的能动与非能动相结合的应急停堆系统, 其特征在 于: 所述的浓硼储罐(8 )与反应堆硼和水补给系统相连接。
6. 如权利要求 1或 2所述的能动与非能动相结合的应急停堆系统, 其特 征在于: 所述的浓硼储罐中硼溶液的浓度为 7000-9000ppm, 硼注箱所在房间的 环境温度高于 9000ppm硼酸溶液结晶温度限值。
7. 一种能动与非能动相结合的应急停堆方法, 其特征在于: 在事故情 况下, 反应堆保护系统向控制棒应急停堆子系统的停堆断路器发出反应堆紧 急停堆驱动信号, 紧急停堆驱动信号使停堆断路器线圏失电, 停堆断路器打 开, 控制棒电源失电, 控制棒下落; 当控制棒下落失效时, 反应堆保护系统 向应急硼注入子系统发出未能实现紧急停堆事故保护信号或堆芯中子通量高 信号, 应急硼注入子系统接收到信号后启动注入泵, 将浓硼注入反应堆压力 容器及堆芯, 实现应急停堆。
PCT/CN2013/084045 2012-09-27 2013-09-24 一种能动与非能动相结合的应急停堆系统及方法 WO2014048291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1504153.6A GB2519920B (en) 2012-09-27 2013-09-24 Combined active and passive emergency shutdown system and method
ZA2015/02771A ZA201502771B (en) 2012-09-27 2015-04-23 Combined active and passive emergency shutdown system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210374796.8A CN102881340B (zh) 2012-09-27 2012-09-27 一种能动与非能动相结合的应急停堆系统及方法
CN201210374796.8 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014048291A1 true WO2014048291A1 (zh) 2014-04-03

Family

ID=47482632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084045 WO2014048291A1 (zh) 2012-09-27 2013-09-24 一种能动与非能动相结合的应急停堆系统及方法

Country Status (5)

Country Link
CN (1) CN102881340B (zh)
GB (1) GB2519920B (zh)
MY (1) MY171943A (zh)
WO (1) WO2014048291A1 (zh)
ZA (1) ZA201502771B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105526B1 (en) 2017-09-29 2021-08-31 Integrated Global Services, Inc. Safety shutdown systems and methods for LNG, crude oil refineries, petrochemical plants, and other facilities

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881340B (zh) * 2012-09-27 2015-09-23 中国核电工程有限公司 一种能动与非能动相结合的应急停堆系统及方法
CN104332207B (zh) * 2013-07-22 2017-01-18 中国核动力研究设计院 一种反应堆冷却剂丧失事故工况下自动停运冷却剂泵方法
US10304575B2 (en) * 2013-12-26 2019-05-28 Nuscale Power, Llc Actuating a nuclear reactor safety device
US20170140842A1 (en) * 2015-11-12 2017-05-18 Westinghouse Electric Company Llc Subcritical Reactivity Monitor Utilizing Prompt Self-Powered Incore Detectors
CN106887259A (zh) * 2015-12-15 2017-06-23 中国核动力研究设计院 一种核电厂快速安全停堆系统
US11024433B2 (en) 2016-12-30 2021-06-01 Nuscale Power, Llc Control rod damping system
CN109427422A (zh) * 2017-08-29 2019-03-05 华北电力大学 一种应急浓硼酸注入系统作为压水堆第二套停堆系统
RU184861U1 (ru) * 2018-04-10 2018-11-13 Акционерное общество "Центральный конструкторско-технологический институт арматуростроения" Ядерная паропроизводительная установка
CN109473185B (zh) * 2018-11-13 2022-07-29 中国核动力研究设计院 一种自动化学停堆系统的测试装置及其测试方法
CN109686465A (zh) * 2018-11-27 2019-04-26 中广核研究院有限公司 一种反应堆停堆故障的诊断方法
CN116313178B (zh) * 2023-04-13 2024-03-22 中国原子能科学研究院 反应堆及其反应性控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279892A (ja) * 1990-03-29 1991-12-11 Toshiba Corp 制御棒引抜監視装置トリップレベルのセットアップ方法
CN1447342A (zh) * 2003-04-04 2003-10-08 清华大学 应用于气冷反应堆的吸收球第二停堆系统
CN1783353A (zh) * 2004-12-03 2006-06-07 大亚湾核电运营管理有限责任公司 一种提高核电站安注系统整体可靠性的方法
CN101206928A (zh) * 2006-12-21 2008-06-25 数据系统及解决技术公司 核反应堆棒控制机构控制系统
CN102881340A (zh) * 2012-09-27 2013-01-16 中国核电工程有限公司 一种能动与非能动相结合的应急停堆系统及方法
CN202887744U (zh) * 2012-09-27 2013-04-17 中国核电工程有限公司 一种能动与非能动相结合的应急停堆系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118692A (ja) * 1984-11-13 1986-06-05 ウエスチングハウス エレクトリック コ−ポレ−ション 加圧水型原子炉発電システムの運転方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279892A (ja) * 1990-03-29 1991-12-11 Toshiba Corp 制御棒引抜監視装置トリップレベルのセットアップ方法
CN1447342A (zh) * 2003-04-04 2003-10-08 清华大学 应用于气冷反应堆的吸收球第二停堆系统
CN1783353A (zh) * 2004-12-03 2006-06-07 大亚湾核电运营管理有限责任公司 一种提高核电站安注系统整体可靠性的方法
CN101206928A (zh) * 2006-12-21 2008-06-25 数据系统及解决技术公司 核反应堆棒控制机构控制系统
CN102881340A (zh) * 2012-09-27 2013-01-16 中国核电工程有限公司 一种能动与非能动相结合的应急停堆系统及方法
CN202887744U (zh) * 2012-09-27 2013-04-17 中国核电工程有限公司 一种能动与非能动相结合的应急停堆系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105526B1 (en) 2017-09-29 2021-08-31 Integrated Global Services, Inc. Safety shutdown systems and methods for LNG, crude oil refineries, petrochemical plants, and other facilities
US12007132B2 (en) 2017-09-29 2024-06-11 Integrated Global Services, Inc. Safety shutdown systems and methods for LNG, crude oil refineries, petrochemical plants, and other facilities

Also Published As

Publication number Publication date
GB2519920B (en) 2018-08-08
GB2519920A (en) 2015-05-06
MY171943A (en) 2019-11-08
CN102881340A (zh) 2013-01-16
GB201504153D0 (en) 2015-04-29
CN102881340B (zh) 2015-09-23
ZA201502771B (en) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2014048291A1 (zh) 一种能动与非能动相结合的应急停堆系统及方法
Asmolov et al. New generation first-of-the kind unit–VVER-1200 design features
KR101242746B1 (ko) 원자력 발전소의 격납건물 외부 통합피동안전계통 시스템
US10950358B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
GB2523949A (en) High-pressure safe injection system for nuclear power stations
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
CN101720488B (zh) 在应急系统的闭合回路中使用纳米颗粒的核电设备及相关方法
CN202887744U (zh) 一种能动与非能动相结合的应急停堆系统
KR101234570B1 (ko) 냉각재 상실사고 완화가 가능한 일체형 원자로 및 그 완화방법
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
CN201788707U (zh) 一种用于保证核电站安全的安全系统
WO2014048290A1 (zh) 一种能动与非能动相结合的堆腔注水冷却系统
CN102903402A (zh) 一种先进的二次侧堆芯热量导出装置
CN111081399A (zh) 核电厂应急堆芯冷却系统
CN104766637B (zh) 安全注入成套系统
KR101463441B1 (ko) 고농축 붕산 주입 설비 및 이를 구비하는 안전주입계통
CN102568624A (zh) 高温超临界核反应堆
CN104969301A (zh) 压水反应堆减压系统
WO2015014046A1 (zh) 核电站蒸汽发生器辅助给水系统
CN202887749U (zh) 一种能动与非能动相结合的二次侧堆芯热量导出装置
Chun et al. Safety evaluation of small-break LOCA with various locations and sizes for SMART adopting fully passive safety system using MARS code
CN202887750U (zh) 一种先进的二次侧堆芯热量导出装置
JP2013113653A (ja) 加圧水型原子炉及び炉心崩壊熱除去方法
CN103426485B (zh) 一种防止反应堆堆内熔融物熔损压力容器的方法以及用于实施这种方法的系统
Zhang et al. Preliminary Study of Function Determination and Capacity of ACP600’s Reactor Emergency Borating System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1504153

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130924

WWE Wipo information: entry into national phase

Ref document number: 1504153.6

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841881

Country of ref document: EP

Kind code of ref document: A1