WO2015078421A1 - 用于车辆的遥控转向系统及具有该遥控转向系统的车辆 - Google Patents

用于车辆的遥控转向系统及具有该遥控转向系统的车辆 Download PDF

Info

Publication number
WO2015078421A1
WO2015078421A1 PCT/CN2014/092715 CN2014092715W WO2015078421A1 WO 2015078421 A1 WO2015078421 A1 WO 2015078421A1 CN 2014092715 W CN2014092715 W CN 2014092715W WO 2015078421 A1 WO2015078421 A1 WO 2015078421A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
steering system
oil
remote
remote steering
Prior art date
Application number
PCT/CN2014/092715
Other languages
English (en)
French (fr)
Inventor
任毅
杨胜麟
刘彦
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2015078421A1 publication Critical patent/WO2015078421A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/09Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by means for actuating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/22Alternative steering-control elements, e.g. for teaching purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/10Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of power unit
    • B62D5/12Piston and cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/30Safety devices, e.g. alternate emergency power supply or transmission means to ensure steering upon failure of the primary steering means
    • B62D5/32Safety devices, e.g. alternate emergency power supply or transmission means to ensure steering upon failure of the primary steering means for telemotor systems

Definitions

  • the present invention relates to the field of automotive technology, and more particularly to a remote steering system for a vehicle and a vehicle having the same.
  • Automotive steering systems can be divided into mechanical steering systems and power steering systems.
  • the mechanical steering system uses the driver's physical strength as the steering power source.
  • All the force transmitting members are mechanical structures, mainly composed of the operating mechanism, the steering gear and the steering transmission mechanism.
  • the power steering system is a steering system that uses both the driver's physical strength and the engine power as a steering power source, and the power steering system adds a steering urging device, which is mainly a hydraulic steering urging device, when the driver turns the steering wheel, The steering urging device assists in completing the steering action and reduces the torque of the driver turning the steering wheel.
  • the related art known to the inventors proposes a remote steering system for remote-controlled driving, which has both manual and automatic steering modes, and can realize functions such as automatic parking, but the remote steering system of the related art as known to the inventors
  • the structure is complicated, the control is cumbersome, the cost is high, the practicability is poor, and the remote control driving in the related art is developed based on the electric power steering device (EPS), and the electric power steering device (EPS) technology is not particularly mature, especially for For vehicles with heavy front axle loads, high-power brushless motors need to be developed.
  • EPS electric power steering
  • the steering device has the largest load, and the electric power steering device ( The motor of EPS) generates a lot of heat and causes the motor to enter the self-protection mode, which greatly reduces the life of the electric power steering (EPS) motor.
  • the present invention aims to solve at least one of the above technical problems in the prior art to some extent.
  • Another object of the present invention is to provide a vehicle including the above-described remote steering system.
  • a remote steering system for a vehicle includes: a steering power cylinder provided with an inner chamber separating the steering cylinder into a left chamber and a right chamber a power cylinder piston of the chamber; a rotary valve having an oil inlet, a return port, a left port, and a right port, wherein the left port of the rotary valve passes through the first control valve and the left a chamber is connected, a right port of the rotary valve is connected to the right chamber through a second control valve; a third control valve, the third control valve has an inlet and an outlet, and the outlet is The oil inlet is connected; and the oil pump, the oil outlet of the oil pump is respectively connected to the inlet, the first control valve and the second control valve.
  • the remote steering system according to the embodiment of the present invention has a simple structure, convenient control, and low cost.
  • the remote steering system has a manual steering mode and a remote steering mode: the oil pump sequentially passes through the third control valve, the rotary valve when the remote steering system is in the manual steering mode The first control valve supplies oil to the left chamber, or supplies oil to the right chamber through the third control valve, the rotary valve, and the second control valve; When the remote steering system is in the remote steering mode, the oil pump supplies oil to the left chamber through the first control valve or supplies oil to the right chamber through the second control valve.
  • the remote steering system has a manual steering mode and a remote steering mode.
  • the driver can manually operate the steering wheel to control the vehicle to turn left, turn right or go straight, and the driver needs to remotely control the vehicle.
  • the driver can conveniently remotely control the vehicle to turn left or right.
  • the driver can be in the car, and of course, can also be remotely controlled outside the vehicle, which is convenient to operate and simple to control.
  • a remote steering system for a vehicle further includes a pressure sensor for detecting oil pressure at the oil inlet, the remote steering system being in the remote steering mode and The remote steering system switches from the remote steering mode to the manual steering mode when the pressure sensor detects that the oil pressure exceeds a predetermined value.
  • each of the first control valve and the second control valve has a first normally open, a second normally open, and a normally closed, wherein the first normally open of the first control valve Connected to the left port, the second normal opening of the first control valve is connected to the left chamber; the first normal opening of the second control valve is connected to the right port, a second normal opening of the second control valve is connected to the right chamber; an oil outlet of the oil pump is respectively connected with an inlet of the third control valve, a normally closed port of the first control valve, and the first The normally closed ports of the two control valves are connected.
  • the first normal opening of the first control valve when the first control valve is powered down, the first normal opening of the first control valve is electrically connected to the second normal opening of the first control valve, and the first control valve is powered on.
  • the normally closed port of the first control valve is electrically connected to the second normal opening of the first control valve; when the second control valve is powered off, the first normal opening of the second control valve is The second normal opening of the second control valve is turned on, and when the second control valve is powered on, the normally closed port of the second control valve is electrically connected to the second normal opening of the second control valve.
  • the first control valve, the second control valve, and the third control valve are both powered down when the remote steering system is in the manual steering mode, and the remote steering system is In the remote steering mode, the third control valve is powered up to reduce the opening, one of the first control valve and the second control valve is powered up and the other is powered down.
  • the first control valve, the second control valve, and the third control valve are both when the remote steering system is in the remote steering mode and manually intervening in a steering wheel of the vehicle Power down.
  • each of the first control valve, the second control valve, and the third control valve has a pressure feedback oil path connected to the oil inlet port, the remote control steering The system is in the remote steering mode and the hand When the steering wheel of the vehicle is dynamically intervened, the oil pressure of the pressure feedback oil passage drives a corresponding one of the first control valve, the second control valve, and the third control valve to be powered down.
  • the third control valve is a control valve having a flow regulating function.
  • the first control valve and the second control valve are both control valves having a flow regulating function.
  • the first control valve and the second control valve are both electromagnetically directional valves, and the third control valve is an electromagnetic proportional valve.
  • the first control valve and the second control valve are both electromagnetic proportional valves
  • the third control valve is an electromagnetic reversing valve.
  • the first control valve, the second control valve, and the third control valve are all control valves having a flow regulating function.
  • the first control valve, the second control valve, and the third control valve are all electromagnetic proportional valves.
  • the oil pump is driven by a motor, and a speed governing mechanism is disposed between the motor and the oil pump.
  • piston rods are respectively disposed on both sides of the power cylinder piston, and the piston rods on each side extend outwardly from the respective chambers to respectively drive the steering knuckles on the side of the vehicle.
  • the first control valve and the second control valve are integrated on the steering power cylinder.
  • the first control valve and the second control valve are integrated.
  • a vehicle according to another embodiment of the present invention includes a remote steering system for a vehicle according to the above-described embodiments of the present invention.
  • FIG. 1 is a schematic diagram of a remote steering system for a vehicle when the vehicle is traveling straight according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a remote steering system in a manual steering mode when the vehicle is turned left according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a remote steering system in a manual steering mode when a vehicle is turned right in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a remote steering system in a remote steering mode when the vehicle is turned left in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a remote steering system in a remote steering mode when the vehicle is turned right in accordance with an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a remote steering system for a vehicle in accordance with an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • FIG. 1 is a schematic diagram of a remote steering system in a vehicle when traveling straight
  • FIG. 2 is a schematic diagram of a vehicle turning left in a manual steering mode of a remote steering system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the vehicle when the vehicle is turned to the left in the remote steering mode according to the embodiment of the present invention
  • FIG. 5 is a schematic diagram of the remote control steering system according to the embodiment of the present invention. Schematic diagram of the steering system when the vehicle turns right in the remote steering mode.
  • the solid line between two different components can represent the pipeline, and the arrows on the solid line schematically represent the flow direction of the oil, two different components.
  • the dashed line between them may represent an electrical connection, and the arrow on the dashed line schematically represents the transmission of an electrical signal.
  • the remote steering system may include a steering power cylinder 11, a rotary valve 2, a first control valve 31, a second control valve 32, a third control valve 33, and an oil pump 4.
  • a power cylinder piston 12 is provided in the inner cavity of the steering power cylinder 11, and the power piston 12 isolates the inner cavity of the steering power cylinder 11 into the left chamber 14 and the right chamber 15.
  • the steering power cylinder 11 may be an elongated cylindrical hydraulic cylinder, and the power cylinder piston 12 is disposed in the inner cavity of the steering power cylinder 11, and the power cylinder piston 12 is sealed from the inner wall of the steering power cylinder 11.
  • the hydraulic oil and the hydraulic oil in the right chamber 15 cannot flow through the power cylinder piston 12 to each other.
  • the power cylinder piston 12 is reciprocally movable within the steering cylinder 11 in the axial direction of the steering cylinder 11, whereby the volumes of the left chamber 14 and the right chamber 15 are variable, for example, the power cylinder piston 12 is moved to the left. (refer to FIGS. 3 and 5), the volume of the left chamber 14 becomes smaller, the volume of the right chamber 15 becomes larger, and the power cylinder piston 12 moves to the right (refer to FIGS. 2 and 4). The volume of the right chamber 15 becomes smaller, and the volume of the left chamber 14 becomes larger accordingly.
  • the piston rods 13 are respectively disposed on both sides of the power cylinder piston 12.
  • the left and right sides of the power cylinder piston 12 are provided with piston rods 13.
  • the piston rods 13 on each side extend outwardly from the respective chambers respectively to be adapted to drive the knuckle on the side of the vehicle, that is, the left piston rod 13 extends from the inside of the left chamber 14 to the left side beyond the steering.
  • the power cylinder 11 and the left end of the left piston rod 13 are adapted to be coupled to a steering knuckle on the left side of the vehicle to drive the left knuckle action.
  • the right piston rod 13 extends from the inside of the right chamber 15 to the right side beyond the steering power cylinder 11, and the right end of the right piston rod 13 is adapted to be coupled to the steering knuckle on the right side of the vehicle to drive the steering of the right side. Festival action.
  • the piston rod 13 and the power cylinder piston 12 may be integrally formed.
  • the power cylinder piston 12 and the piston rod 13 may also be separate structures and then assembled.
  • the rotary valve 2 has an oil inlet port 21, a return oil port 22, a left port port 23 and a right port port 24, and the left port port 23 of the rotary valve 2 passes through the first control valve 31.
  • the right port 24 of the rotary valve 2 is connected to the right chamber 15 via a second control valve 32.
  • the rotary valve 2 is not directly connected to the left chamber 14 and the right chamber 15, but is indirectly connected by a corresponding control valve.
  • the valve core of the rotary valve 2 (ie, the rotary valve type steering control valve) is rotatable about its axis to control the flow rate of the oil.
  • the rotary valve 2 has an oil inlet 21, a return port 22, and a left portion that communicate with each other.
  • the oil port 23 and the right port 24, the left port 23 is adapted to communicate with the left chamber 14, and the right port 24 is adapted to communicate with the right chamber 15, when the valve is rotated clockwise through a small
  • the pressure oil supplied from the oil outlet of the oil pump 4 can be supplied to the right port 24 (shown schematically) through the oil inlet port 21, at which time the left port 23 is blocked.
  • the pressure oil supplied from the oil outlet of the oil pump 4 can be supplied to the left port 23 through the oil inlet port 21 (schematically illustrated), and the right port is at this time. 24 was cut off.
  • the oil inlet port 21, the oil return port 22, the left port port 23 and the right port port 24 communicate with each other, and the valve core of the rotary valve 2 rotates in a certain direction in a small direction.
  • the oil inlet port 21 and the right oil port 24 communicate while the left oil port 23 and the oil return port 22 communicate, or the oil inlet port 21 and the left port port 23 communicate with each other while the right port port 24 and the oil return port are connected. 22 connected.
  • the rotation valve 2 can be assembled in the same manner as in the prior art, for example, the steering gear is a rack and pinion mechanical steering gear (not limited thereto), and the rack and pinion mechanical steering Steering power cylinder 11
  • the rotary valve 2 and the rotary valve 2 may be integrally formed to constitute an integral power steering gear, but the present invention is not limited thereto.
  • the power cylinder piston 12 can be integrally formed with the steering rack.
  • the front end of the torsion bar is connected to the steering gear by a pin, the rear end is connected to the valve core, and the valve core is fixed to the end of the steering shaft, so that the steering shaft can pass through the torsion bar.
  • Drive steering gear drive is
  • the left chamber 14 and the right chamber 15 communicate with each other (when the rotary valve 2 is in the neutral position, the respective ports of the rotary valve 2 communicate with each other, so the left chamber 14 and the right chamber 15 through the rotary valve 2 intercommunication), the oil flows back to the oil tank through the oil return port 22, so the steering power cylinder 11 does not work at all, and the vehicle is in a straight running condition, as shown in FIG.
  • the steering wheel is turned, the steering shaft and the valve core are rotated clockwise (schematically), the power cylinder piston 12 and the steering rack are temporarily unable to move due to the road surface steering resistance transmitted from the knuckle arm, so the steering gear Temporarily it cannot rotate with the steering shaft.
  • the torque transmitted from the steering shaft to the steering gear can only cause a slight torsional deformation of the torsion bar, so that the steering shaft (ie, the valve core) can be rotated by a predetermined angle relative to the steering gear (ie, the valve sleeve), thereby rotating the valve.
  • the right chamber 15 of the steering power cylinder 11 is made into a high pressure oil inlet chamber, and the left chamber 14 is a low pressure oil return chamber.
  • the hydraulic force acting on the power cylinder piston 12 to the left assists the steering gear to force the steering rack to begin to act, thereby driving the steering knuckle to deflect the wheel to the right.
  • the steering gear itself also starts to rotate in the same direction as the steering shaft. If the steering wheel continues to rotate, the torsional deformation of the torsion bar will always exist, and the right steering position of the rotary valve 2 will remain unchanged. Once the steering wheel stops rotating, the steering power is maintained. The cylinder 11 temporarily continues to work, causing the steering gear to continue to rotate, so that the torsional deformation of the torsion bar is reduced until the torsion bar returns to a free state, the rotary valve 2 returns to the neutral position, and the steering power cylinder 11 stops working. At this time, the steering wheel stops. If the station is stationary at a predetermined position, the wheel angle remains constant.
  • the third control valve 33 has an inlet 331 and an outlet 332.
  • the outlet 332 is connected to the oil inlet 21 of the rotary valve 2, and the inlet 331 is connected to the first control valve 31 and the second control valve 32, respectively.
  • the oil pump 4 is connected to the inlet 331.
  • the oil outlet of the oil pump 4 is connected to the first control valve 31, the second control valve 32 and the third control valve 33, respectively, and the oil pump 4 can supply oil to one of the first control valve 31 and the second control valve 32. / or supply the third control valve 33.
  • the remote steering system has a manual steering mode and a remote steering mode.
  • the oil pump 4 sequentially supplies oil to the left chamber 14 through the third control valve 33, the rotary valve 2, and the first control valve 31. Or, the third control valve 33, the rotary valve 2, and the second control valve 32 supply oil to the right chamber 15. As shown in Figure 4 and Figure 5, the remote steering system is at In the remote steering mode, the oil pump 4 supplies oil to the left chamber 14 through the first control valve 31, or supplies oil to the right chamber 15 through the second control valve 32.
  • the oil pump 4 pumps the oil to the third control valve 33
  • the third control valve 33 pumps the oil. It is output to the rotary valve 2, and the rotary valve 2 outputs the oil to the first control valve 31 through the left port 23, and the oil passes through the first control valve 31 and enters the left chamber 14, and the left chamber 14
  • the oil pressure is increased to push the power cylinder piston 12 to the right, and the power cylinder piston 12 drives the knuckle action through the piston rod 13 to rotate the wheel to the left.
  • the right chamber 15 is compressed by the power cylinder piston 12, the oil in the right chamber 15 passes through the second control valve 32 and the rotary valve 2, and then flows back from the oil return port 22 of the rotary valve 2 to the oil tank.
  • the oil pump 4 pumps the oil to the third control valve 33, and the third control valve 33 outputs the oil to The rotary valve 2, the rotary valve 2 outputs the oil to the second control valve 32 through the right port 24, the oil passes through the second control valve 32 and enters the right chamber 15, and the oil pressure in the right chamber 15 Increasing, thereby pushing the power cylinder piston 12 to the left, the power cylinder piston 12 drives the knuckle action through the piston rod 13 to rotate the wheel to the right.
  • the left chamber 14 is compressed by the power cylinder piston 12, the oil in the left chamber 14 passes through the first control valve 31 and the rotary valve 2, and then flows back from the oil return port 22 of the rotary valve 2 to the oil tank.
  • the driver can remotely control the steering system of the vehicle. If the driver controls the steering wheel of the vehicle to rotate to the left, the oil pump 4 pumps the oil to the first control valve 31. The oil enters into the left chamber 14 through the first control valve 31, and the oil pressure in the left chamber 14 increases, thereby pushing the power cylinder piston 12 to the right, and the power cylinder piston 12 drives the steering knuckle through the piston rod 13. Action to turn the wheel to the left. At this time, since the right chamber 15 is compressed by the power cylinder piston 12, the oil in the right chamber 15 passes through the second control valve 32 and the rotary valve 2, and then flows back from the oil return port 22 of the rotary valve 2 to the oil tank.
  • the driver can remotely control the steering system of the vehicle. If the driver turns the steering wheel of the vehicle to the right, the oil pump 4 pumps the oil to the second control valve 32. The oil enters the right chamber 15 through the second control valve 32, and the oil pressure in the right chamber 15 increases, thereby pushing the power cylinder piston 12 to the left, and the power cylinder piston 12 drives the knuckle through the piston rod 13. Action to turn the wheel to the right. At this time, since the left chamber 14 is compressed by the power cylinder piston 12, the oil in the left chamber 14 passes through the first control valve 31 and the rotary valve 2, and then flows back from the oil return port 22 of the rotary valve 2 to the oil tank.
  • the remote steering system has a manual steering mode and a remote steering mode, and the driver can manually operate the steering wheel to control the vehicle to turn left, turn right or go straight, when remote steering of the vehicle is required, as in
  • the driver can conveniently remotely control the vehicle to turn left or right.
  • the driver can be in the vehicle, and of course, can also be remotely controlled outside the vehicle, which is convenient to operate and simple to control.
  • the remote control button can be set on the control panel of the vehicle center console, and can also be integrated on the car key, so that the user can remotely control the vehicle outside, and the remote control button can also be separately set.
  • the third control valve 33 is a control valve having a flow regulating function, in other words, the third control valve 33 regulates the flow of hydraulic oil flowing through the third control valve 33.
  • the first control valve 31 and the second control valve 32 are both electromagnetically directional valves, and the third control valve 33 is an electromagnetic proportional valve.
  • the opening degree of the third control valve 33 it is possible to control the flow of oil flowing to the first control valve 31 or the second control valve 32 to the rotary valve 2 and the rotary valve 2 per unit time, thereby realizing the power cylinder.
  • the control of the speed of the piston 12 allows the steering response of the wheel and the steering speed to be controlled within a certain range.
  • first control valve 31 and the second control valve 32 are both control valves having a flow regulating function.
  • first control valve 31 and the second control valve 32 are both electromagnetic proportional valves, and the third control valve 33 is an electromagnetic reversing valve.
  • the first control valve 31, the second control valve 32, and the third control valve 33 are all control valves having a flow regulating function. In some embodiments, the first control valve 31, the second control valve 32, and the third control valve 33 are all electromagnetic proportional valves.
  • the remote steering system of some embodiments also achieves wheel steering response and steering speed control.
  • the first control valve 31, the second control valve 32, and the third control valve 33 are all electrically controlled valves, they have a commutation and/or flow adjustment function, and thus can be controlled.
  • the switch i.e., ECU
  • the remote control steering system may be in a manual steering mode, and the controller controls the three control valves. When a part of the power is on, the remote steering system can be in the remote steering mode, which not only saves energy but also facilitates control.
  • the first control valve 31 has a first normal opening 311, a second normal opening 312, and a normally closed port 313, and the second control valve 32 has a first normal opening 321, a second normal opening 322, and a normally closed port 323.
  • the first normally opening 311 of the first control valve 31 is connected to the left port 23, and the second opening 312 of the first control valve 31 is connected to the left chamber 14.
  • the first normally open opening 321 of the second control valve 32 is connected to the right port 24 and the second normally open opening 322 of the second control valve 32 is connected to the right chamber 15.
  • the inlet 331 of the third control valve 33 is connected to the normally closed port 313 of the first control valve 31 and the normally closed port 323 of the second control valve 32, respectively.
  • the first control valve 31 and the second control valve 32 are both electromagnetically directional valves and the third control valve 33 is an electromagnetic proportional valve. Further, when the controller controls the first control valve 31 to be powered down, the first normal opening 311 of the first control valve 31 and the second normal opening 312 of the first control valve 31 are turned on, and the normally closed port of the first control valve 31 is closed. 313 is blocked from the second normal opening 312 of the first control valve 31, and the first control valve 31 is normally closed when the controller controls the first control valve 31 to be powered on. The port 313 is electrically connected to the second normally opening 312 and the first normal opening 311 of the first control valve 31 and the second normal opening 312 of the first control valve 31 are blocked.
  • the controller controls the second control valve 32 to be powered down the first normal opening 321 of the second control valve 32 and the second normal opening 322 of the second control valve 32 are turned on, and the normally closed port of the second control valve 32 is closed. 323 is blocked from the second normally opening 322 of the second control valve 32.
  • the controller controls the second control valve 32 to be powered up the normally closed port 323 of the second control valve 32 and the second normally opening 322 of the second control valve 32 are The first normally open opening 321 of the second control valve 32 and the second normally open opening 322 of the second control valve 32 are blocked.
  • the third control valve 33 When the controller controls the third control valve 33 to be powered down, the third control valve 33 has the largest opening degree, and when the controller controls the third control valve 33 to be powered up, the opening degree of the third control valve 33 is decreased, but the present invention Not limited to this.
  • the controller may control the first control valve 31, the second control valve 32, and the third control valve 33 to be powered down.
  • the controller may control the third control valve 33 to be powered up to reduce the opening degree and control the first control valve 31 to be powered up while controlling the second control valve 32 to remain powered down.
  • the controller can control the third control valve 33 to be powered on to reduce the opening degree and control the second control valve 32 to be powered up, while controlling the first control valve 31 to remain at the same time. Power down.
  • the first control valve 31, the second control valve 32, and the third control valve 33 are powered down when the remote steering system is in the remote steering mode and manually intervenes, i.e., manually turns the steering wheel. Specifically, if the steering wheel is manually intervened during the remote left-turning condition, the first control valve 31 and the third control valve 33 are switched from the power-on state to the power-down state, and the steering wheel is manually intervened in the remote right-turning condition.
  • the second control valve 32 and the third control valve 33 are switched from the power-on state to the power-down state, so that the remote steering system is switched from the remote steering mode to the manual steering mode, that is, the manual steering mode takes precedence over the remote steering mode, thereby ensuring driving. Safety.
  • first control valve 31, the second control valve 32, and the third control valve 33 each have a pressure feedback oil passage, and the pressure feedback oil passage 314 of the first control valve 31 communicates with the oil inlet port 21, and the second control valve
  • the pressure feedback oil passage 324 of 32 is in communication with the oil inlet port 21, and the pressure feedback oil passage 334 of the third control valve 33 is in communication with the oil inlet port 21, and the pressure feedback oil is in the remote steering mode when the remote steering system is in the remote steering mode and manually intervenes in the steering wheel.
  • the oil pressure of the road will increase (the state of the rotary valve is changed after manual intervention, so the oil pressure at the inlet of the rotary valve will rise rapidly), so that the corresponding control valve will be powered down under the action of the oil pressure, ie
  • the spool of the corresponding control valve is driven by the oil pressure to move from the power-on position to the power-down position.
  • the pressure feedback oil passage 334 of the third control valve 33 will drive the third control valve 33 to be powered down, while the pressure feedback oil passage 314 of the first control valve 31 will The first control valve 31 is driven to be powered down.
  • the pressure feedback oil passage 334 of the third control valve 33 will drive the third control valve 33 to be powered down, while the pressure feedback oil passage 324 of the second control valve 32 will The second control valve 32 is driven to be powered down, thereby ensuring manual priority and greatly improving driving safety.
  • the first control valve 31 and the second control valve 32 are electromagnetic reversing valves
  • the third control valve 33 is an electromagnetic proportional valve.
  • the operation principle of the remote steering system according to an embodiment of the present invention will be briefly described.
  • the controller can control that the first control valve 31, the second control valve 32, and the third control valve 33 are not energized, the three valves are in the initial position, and the oil is discharged from the oil pump 4 The third control valve 33 and the rotary valve 2 are then returned to the fuel tank.
  • the controller can control that the first control valve 31, the second control valve 32, and the third control valve 33 are not energized, and all three valves are in the initial position, the oil
  • the liquid enters the rotary valve 2 from the oil pump 4 via the third control valve 33, and the steering wheel is manually rotated clockwise, and the oil flows out from the right port 24 of the rotary valve 2, through the first constant opening 321 of the second control valve 32 and
  • the second normally opening 322 then enters into the right chamber 15 of the steering power cylinder 11, and the power cylinder piston 12 moves to the left to drive the vehicle steering wheel to the right by the steering knuckle.
  • the oil in the left chamber 14 passes through the second normal opening 312 of the first control valve 31, the first normal opening 311 and the left port 23, and then enters the rotary valve 2, and then returns to the oil from the rotary valve 2.
  • Port 22 is returned to the tank.
  • the controller can control the third control valve 33 to be powered up to reduce the opening degree, the front control pressure of the third control valve 33 is gradually increased, and the controller also controls the first
  • the control valve 31 is powered off in the initial position, and the second control valve 32 is controlled to be energized, so that the normally closed port 323 and the second normally opening 322 of the second control valve 32 are turned on, and the oil flows out through the second control valve through the oil pump 4.
  • the normally closed port 323 and the second normally open opening 322 of 32 enter into the right chamber 15, pushing the power cylinder piston 12 to the left, so that the steering wheel is turned to the right.
  • the first control valve 31 is still in the power-off state, and the oil in the left chamber 14 sequentially passes through the second normal opening 312 of the first control valve 31, the first normal opening 311, and the left port 23, and then enters the rotation.
  • the valve 2 is then returned from the oil return port 22 of the rotary valve 2 to the fuel tank to achieve a rightward turn in the remote control mode.
  • the opening degree of the third control valve 33 is gradually reduced, but the present invention is not limited thereto.
  • the third control valve 33 can also be completely closed, and can be flexibly set according to actual needs for those skilled in the art.
  • the oil inlet port 21 and the right oil port 24 of the rotary valve 2 are illustrated here.
  • the left port 23 (or the right port 24) communicates with the oil return port 22
  • the pressure of the oil inlet port 21 rises rapidly, and the pressure of the oil inlet port 21 passes through the first control valve 31, the second After the pressure feedback oil path feedback of the control valve 32 and the third control valve 33, the oil pressure of the pressure feedback oil circuit will push the second control valve 32 and the third control valve 33 to be powered down and reset, and the remote steering system will enter the manual steering mode.
  • the first control valve 31 and the second control valve 32 may be integrated on the steering power cylinder 11, which makes the remote steering system more compact and convenient to arrange.
  • the present invention is not limited thereto, and in another embodiment of the present invention, the first control valve 31 and the second control valve 32 may be integrated into one body.
  • the first control valve 31 and the second control valve 32 may also be integrated on the steering gear, connected to the steering power cylinder 11 through a pipe, or the first control valve 31 and the second control valve 32 may be independent of each other, through pipes to each other. connection.
  • the first control valve 31, the second control valve 32 and the third control valve 33 can be constructed as a one-piece valve block structure, which is installed on the existing hydraulic steering gear, reduces the oil pipe and reduces the cost.
  • the arrangement of the first control valve 31, the second control valve 32 and the third control valve 33 can be made by those skilled in the art upon reading the disclosure of the specification herein, in combination with the basic knowledge of the hydraulic field.
  • the form and the assembly manner are improved, so that the remote control steering system according to the embodiment of the present invention can be adapted to different vehicle models, so that the remote control steering system structure according to the embodiment of the present invention is more compact, simple, lower in cost, and wider in application range.
  • the oil pump 4 can be directly driven by the engine of the vehicle. Since the engine speed is constantly changing, the oil pump 4 can have a flow regulating mechanism and an overflow mechanism, and the flow output of the oil pump 4 can be controlled to a smaller one. Within the range of variation, the maximum oil pressure is constant, that is, those skilled in the art can set the output flow rate and maximum oil pressure of the oil pump 4 according to the requirements of the remote control steering system.
  • the oil pump 4 may be directly driven by a separate motor, that is, the oil pump 4 is not directly driven by the engine.
  • the output speed of the oil pump 4 is adjustable.
  • a speed governing mechanism may be disposed between the oil pump 4 and the motor, and the speed governing mechanism may be a single-row single-stage planetary gear mechanism and/or a single-row two-stage planetary.
  • a gear mechanism and/or a Lavina planetary gear mechanism such that the oil pump 4 is driven by a separate drive motor and a speed governing mechanism is added to adjust the output speed of the oil pump 4 such that the first control valve 31 and the second control valve 32
  • the third control valve 33 and the third control valve 33 may both be electromagnetic reversing valves, and the response speed of the vehicle steering and the steering speed can be controlled by adjusting the pumping amount of the oil pump 4.
  • the maximum speed of the motor output to the oil pump through the speed regulating mechanism can be set, so that the oil pump can be in the rated working condition at the maximum speed, so that the overflow mechanism can be eliminated and the cost can be reduced.
  • the invention is not limited thereto.
  • the remote steering system further includes a pressure sensor (not shown) for detecting oil pressure at the oil inlet port 21, and the pressure sensor detecting the oil inlet port when the remote steering system is in the remote steering mode
  • the remote steering system switches from the remote steering mode to the manual steering mode, for example, controlling one of the first control valve 31 and the second control valve 32 to be powered down and controlling the third control valve 33 to be powered down, Thereby entering the manual steering mode.
  • the remote steering system when the remote steering system is in the remote steering mode, if the rotary valve 2 is manually intervened, for example, the driver drives the rotary valve 2 by rotating the steering wheel, the conduction state of the rotary valve 2 changes, and the rotary valve 2 advances.
  • the oil pressure of the oil port 21 is increased, and at this time, the ECU can force the first control valve 31 after the pressure sensor 6 detects that the pressure exceeds a predetermined value.
  • the second control valve 32 is powered down while forcing the third control valve 33 to be powered down, forcing the remote steering system to enter the manual steering mode, so that the manual steering mode takes precedence over the remote steering mode, thereby greatly improving vehicle safety and ensuring driving safety.
  • predetermined values may be adaptively set in accordance with a remote steering system and/or other factors applied to different vehicles, as will be readily understood by those of ordinary skill in the art.
  • first control valve 31, the second control valve 32, and the third control valve 33 may each be a solenoid valve, and the specific working states thereof, such as the power-on and power-off states, may be controlled by the controller. It should be easy to understand for those skilled in the art to control accordingly.
  • a vehicle according to an embodiment of the present invention includes a remote steering system according to the above embodiment of the present invention.
  • Vehicles in accordance with some embodiments of the invention may be cars, buses, trucks, trucks, SUVs, and the like.

Abstract

一种车辆遥控转向系统,包括:转向动力缸(11),所述转向动力缸(11)内设有将所述转向动力缸(11)的内腔隔离成左部腔室(14)和右部腔室(15)的动力缸活塞(12);转阀(2),所述转阀具有进油口、回油口、左部油口和右部油口,所述转阀(2)的左部油口通过第一控制阀(31)与所述左部腔室(14)相连,所述转阀(2)的右部油口通过第二控制阀(32)与所述右部腔室(15)相连;第三控制阀(33),具有进口和出口,所述出口与所述进油口相连;以及油泵(4),所述油泵(4)的出油口分别与所述进口、所述第一控制阀(31)和所述第二控制阀(32)相连。还公开了一种包括该遥控转向系统的车辆。该遥控转向系统结构简单、控制方便且成本低。

Description

用于车辆的遥控转向系统及具有该遥控转向系统的车辆 技术领域
本发明涉及汽车技术领域,尤其是涉及一种用于车辆的遥控转向系统及具有该遥控转向系统的车辆。
背景技术
汽车转向系统可以分为机械转向系统和动力转向系统。机械转向系统以驾驶员的体力作为转向动力源,所有传力件都是机械结构,主要由操纵机构、转向器和转向传动机构组成。动力转向系统是兼用驾驶员体力和发动机动力为转向动力源的转向系统,动力转向系统增设了转向加力装置,该转向加力装置主要为液压转向加力装置,在驾驶员转动转向盘时,转向加力装置辅助完成转向动作,减少驾驶员转动转向盘的力矩。
发明人所了解的相关技术中提出了用于遥控驾驶的遥控转向系统,具有手动和自动两种转向模式,可以实现诸如自动泊车的功能,但是发明人所了解的相关技术中的遥控转向系统的结构复杂、控制繁琐且成本高,实用性较差,并且相关技术中的遥控驾驶都是基于电动助力转向装置(EPS)开发的,电动助力转向装置(EPS)技术上不是特别成熟,尤其对于前轴载荷较重的汽车,需要开发大功率的无刷电机,在遥控驾驶过程中,电动助力转向装置(EPS)会经常进行原地转向,此时转向装置的负载最大,电动助力转向装置(EPS)的电机会产生很大热量而导致电机进入自我保护模式,大大降低了电动助力转向装置(EPS)电机的寿命。
发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为此,本发明的一个目的在于提出一种用于车辆的遥控转向系统,该遥控转向系统结构简单、控制方便且成本低。
本发明的另一个目的在于提出一种车辆,该车辆包括上述的遥控转向系统。
根据本发明的一方面实施例的用于车辆的遥控转向系统,包括:转向动力缸,所述转向动力缸内设有将所述转向动力缸的内腔隔离成左部腔室和右部腔室的动力缸活塞;转阀,所述转阀具有进油口、回油口、左部油口和右部油口,所述转阀的左部油口通过第一控制阀与所述左部腔室相连,所述转阀的右部油口通过第二控制阀与所述右部腔室相连;第三控制阀,所述第三控制阀具有进口和出口,所述出口与所述进油口相连;以及油泵,所述油泵的出油口分别与所述进口、所述第一控制阀和所述第二控制阀相连。
根据本发明实施例的遥控转向系统结构简单、控制方便且成本低。
在一些实施例中,所述遥控转向系统具有手动转向模式和遥控转向模式:在所述遥控转向系统处于所述手动转向模式时,所述油泵依次通过所述第三控制阀、所述转阀、所述第一控制阀向所述左部腔室内供油,或者通过所述第三控制阀、所述转阀、所述第二控制阀向所述右部腔室内供油;在所述遥控转向系统处于所述遥控转向模式时,所述油泵通过所述第一控制阀向所述左部腔室内供油,或者通过所述第二控制阀向所述右部腔室内供油。
根据本发明实施例的遥控转向系统具有手动转向模式和遥控转向模式,在车辆正常行驶时,驾驶员可手动操作转向盘从而控制车辆向左转向、向右转向或直行,在需要驾驶员遥控车辆转向时,如在车辆自动泊车时,驾驶员可方便地遥控车辆向左或向右转动,此时驾驶员可在车内,当然也可在车外遥控,操作方便,控制简单。
在一些实施例中,用于车辆的遥控转向系统还包括压力传感器,所述压力传感器用于检测所述进油口处的油压力,在所述遥控转向系统处于所述遥控转向模式且所述压力传感器检测到所述油压力超过预定值时,所述遥控转向系统从所述遥控转向模式切换为所述手动转向模式。
在一些实施例中,所述第一控制阀和所述第二控制阀中的每一个均具有第一常开口、第二常开口和常闭口,其中所述第一控制阀的第一常开口与所述左部油口相连,所述第一控制阀的第二常开口与所述左部腔室相连;所述第二控制阀的第一常开口与所述右部油口相连,所述第二控制阀的第二常开口与所述右部腔室相连;所述油泵的出油口分别与所述第三控制阀的进口、所述第一控制阀的常闭口和所述第二控制阀的常闭口相连。
在一些实施例中,所述第一控制阀掉电时,所述第一控制阀的第一常开口与所述第一控制阀的第二常开口导通,所述第一控制阀上电时,所述第一控制阀的常闭口与所述第一控制阀的第二常开口导通;所述第二控制阀掉电时,所述第二控制阀的第一常开口与所述第二控制阀的第二常开口导通,所述第二控制阀上电时,所述第二控制阀的常闭口与所述第二控制阀的第二常开口导通。
在一些实施例中,在所述遥控转向系统处于所述手动转向模式时所述第一控制阀、所述第二控制阀和所述第三控制阀均掉电,在所述遥控转向系统处于所述遥控转向模式时,所述第三控制阀上电以减小开度,所述第一控制阀和所述第二控制阀之一上电且另一个掉电。
在一些实施例中,在所述遥控转向系统处于所述遥控转向模式且手动干预所述车辆的转向盘时,所述第一控制阀、所述第二控制阀和所述第三控制阀均掉电。
在一些实施例中,所述第一控制阀、所述第二控制阀和所述第三控制阀中的每一个均具有与所述进油口相连的压力反馈油路,在所述遥控转向系统处于所述遥控转向模式且手 动干预所述车辆的转向盘时,所述压力反馈油路的油压力驱动所述第一控制阀、所述第二控制阀和所述第三控制阀中的相应控制阀掉电。
在一些实施例中,所述第三控制阀为具有流量调节功能的控制阀。
在一些实施例中,所述第一控制阀和所述第二控制阀均为具有流量调节功能的控制阀。
在一些实施例中,所述第一控制阀和所述第二控制阀均为电磁换向阀,所述第三控制阀为电磁比例阀。
在一些实施例中,所述第一控制阀和所述第二控制阀均为电磁比例阀,所述第三控制阀为电磁换向阀。
在一些实施例中,所述第一控制阀、所述第二控制阀和所述第三控制阀均为具有流量调节功能的控制阀。
在一些实施例中,所述第一控制阀、所述第二控制阀和所述第三控制阀均为电磁比例阀。
在一些实施例中,所述油泵由电机驱动,所述电机与所述油泵之间设置有调速机构。
在一些实施例中,所述动力缸活塞的两侧面上分别设置有活塞杆,每一侧的所述活塞杆分别从相应的腔室内向外延伸出以适于驱动车辆该侧的转向节。
在一些实施例中,所述第一控制阀和所述第二控制阀集成在所述转向动力缸上。
在一些实施例中,所述第一控制阀和所述第二控制阀集成为一体。
根据本发明另一方面实施例的车辆,包括根据本发明上述实施例中的用于车辆的遥控转向系统。
附图说明
图1是根据本发明实施例的用于车辆的遥控转向系统在车辆直行时的示意图;
图2是根据本发明实施例的遥控转向系统处于手动转向模式车辆左转时的示意图;
图3是根据本发明实施例的遥控转向系统处于手动转向模式车辆右转时的示意图;
图4是根据本发明实施例的遥控转向系统处于遥控转向模式车辆左转时的示意图;
图5是根据本发明实施例的遥控转向系统处于遥控转向模式车辆右转时的示意图;
图6是根据本发明实施例的用于车辆的遥控转向系统的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“左”、“右”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面参考图1-图6详细描述根据本发明实施例的用于车辆的遥控转向系统。图1为根据本发明实施例的遥控转向系统在车辆直行时的示意图,图2为根据本发明实施例的遥控转向系统手动转向模式下车辆左转时的示意图,图3为根据本发明实施例的遥控转向系统处于手动转向模式下车辆右转时的示意图,图4为根据本发明实施例的遥控转向系统在遥控转向模式下车辆左转时的示意图,图5为根据本发明实施例的遥控转向系统在遥控转向模式下车辆右转时的示意图。并且需要说明的是,在图1-图5所示的示例中,两个不同部件之间的实线可以代表管路,实线上的箭头示意性地表示油的流动方向,两个不同部件之间的虚线可以表示电气连接,虚线上的箭头示意性地表示电信号的传递。
如图1-图5所示,根据本发明实施例的遥控转向系统可以包括转向动力缸11、转阀2、第一控制阀31、第二控制阀32、第三控制阀33和油泵4。
转向动力缸11的内腔中设有动力缸活塞12,动力活塞12将转向动力缸11的内腔隔离成左部腔室14和右部腔室15的。具体而言,转向动力缸11可以是细长形柱状的液压油缸,动力缸活塞12设在转向动力缸11的内腔中,动力缸活塞12与转向动力缸11的内壁密封 且可移动地配合以将转向动力缸11的内腔隔离成左部腔室14和右部腔室15,左部腔室14和右部腔室15彼此独立,即左部腔室14内的液压油和右部腔室15内的液压油无法通过动力缸活塞12而相互流通。
动力缸活塞12沿转向动力缸11的轴向在转向动力缸11内可往复运动,由此左部腔室14和右部腔室15的体积是可变化的,例如动力缸活塞12向左运动(参照图3和图5所示),则左部腔室14的体积变小,右部腔室15的体积变大,又如动力缸活塞12向右运动(参照图2和图4所示),则右部腔室15的体积变小,左部腔室14的体积相应变大。
在一些实施例中,动力缸活塞12的两侧面上分别设置有活塞杆13,例如,动力缸活塞12的左侧面和右侧面上均设置有活塞杆13。每一侧的活塞杆13分别从相应的腔室内向外延伸出以适于驱动车辆该侧的转向节,也就是说,左侧的活塞杆13从左部腔室14内向左侧延伸超出转向动力缸11,左侧的活塞杆13的左端适于与车辆左侧的转向节相连,以驱动该左侧的转向节动作。同样,右侧的活塞杆13从右部腔室15内向右侧延伸超出转向动力缸11,右侧的活塞杆13的右端适于与车辆右侧的转向节相连,以驱动该右侧的转向节动作。活塞杆13与动力缸活塞12可以是一体形成的,当然动力缸活塞12与活塞杆13也可以是分体结构然后装配在一起。
参照图1-图5所示,转阀2具有进油口21、回油口22、左部油口23和右部油口24,转阀2的左部油口23通过第一控制阀31与左部腔室14相连,转阀2的右部油口24通过第二控制阀32与右部腔室15相连。换言之,转阀2与左部腔室14和右部腔室15并非直接相连,而是通过相应的控制阀间接相连。
可以理解的是,转阀2的具体构造和工作原理为本领域的技术人员所熟知。具体而言,转阀2(即转阀式转向控制阀)的阀心可绕其轴线转动来控制油液的流量,转阀2具有互相连通的进油口21、回油口22、左部油口23和右部油口24,左部油口23适于与左部腔室14连通,右部油口24适于与右部腔室15连通,当阀心顺时针转过一个很小的预定角度时,从油泵4的出油口供给的压力油经进油口21可以供给到右部油口24(示意说明),此时左部油口23被隔断。当阀心逆时针转过一个很小的预定角度时,从油泵4的出油口供给的压力油经进油口21可供给到左部油口23(示意说明),此时右部油口24被隔断。换言之,转阀2处于中立位置时,进油口21、回油口22、左部油口23和右部油口24互相连通,在转阀2的阀心沿某一方向转过很小的预定角度后,进油口21和右部油口24连通同时左部油口23和回油口22连通、或者进油口21和左部油口23连通同时右部油口24和回油口22连通。
在一些实施例中,转阀2的装配方式可采用与现有技术相同的装配方式,例如以转向器为齿轮齿条式机械转向器为例(不限于此),该齿轮齿条式机械转向器、转向动力缸11 和转阀2可以作成一体结构,构成整体式动力转向器,但是本发明并不限于此。动力缸活塞12可与转向齿条制成一体,扭杆的前端用销与转向齿轮连接,后端与阀心连接,阀心又与转向轴的末端固定在一起,因而转向轴可通过扭杆带动转向齿轮传动。
在转阀2处于中立位置时,左部腔室14和右部腔室15相通(转阀2处于中立位置时,转阀2的各个油口互通,因此左部腔室14和右部腔室15通过转阀2互通),油液经过回油口22流回油箱,因此转向动力缸11完全不起作用,此时车辆处于直行工况,参照图1所示。当刚一开始转动转向盘、转向轴连同阀心被顺时针(示意说明)转动时,因为受到转向节臂传来的路面转向阻力,动力缸活塞12和转向齿条暂时不能运动,因此转向齿轮暂时也不能随转向轴转动。
这样,由转向轴传到转向齿轮的转矩只能使扭杆产生少许扭转变形,使转向轴(即阀心)得以相对转向齿轮(即阀套)转过不大的预定角度,从而转阀2使转向动力缸11的右部腔室15成为高压的进油腔,左部腔室14成为低压的回油腔。作用在动力缸活塞12上向左的液压作用力,帮助转向齿轮迫使转向齿条开始动作,从而驱动转向节带动车轮向右偏转。
同时,转向齿轮本身也开始与转向轴同向转动,若转向盘继续转动,扭杆的扭转变形便一直存在,转阀2所处的右转向位置也不变,一旦转向盘停止转动,转向动力缸11暂时继续工作,致使转向齿轮继续转动,使扭杆的扭转变形减小,直到扭杆恢复自由状态,转阀2回到中立位置,转向动力缸11停止工作,此时,转向盘即停驻在某一预定位置上不动,则车轮转角保持一定。
对于转向盘逆时针转动时,扭杆、转阀2阀心的转动方向以及动力缸活塞12的移动方向均与上述相反,转向轮向左偏转,这里不再详细描述。
可以理解的是,上述说明仅是示意性的,不能理解为是对本发明的暗示或限制。对于本领域的技术人员而言,在阅读了说明书上述公开内容的基础之上,可以结合现有技术对上述技术方案或技术特征进行替换和/或修改。
参照图1-图5所示,第三控制阀33具有进口331和出口332,出口332与转阀2的进油口21相连,进口331分别与第一控制阀31和第二控制阀32相连,油泵4与进口331相连。换言之,油泵4的出油口分别与第一控制阀31、第二控制阀32和第三控制阀33相连,油泵4可以将油液供给第一控制阀31和第二控制阀32之一和/或供给第三控制阀33。
根据本发明实施例的遥控转向系统具有手动转向模式和遥控转向模式。
具体地,在遥控转向系统处于手动转向模式时,参照图2和图3所示,油泵4依次通过第三控制阀33、转阀2、第一控制阀31向左部腔室14内供油,或者通过第三控制阀33、转阀2、第二控制阀32向右部腔室15内供油。如图4和图5所示,在遥控转向系统处于 遥控转向模式时,油泵4通过第一控制阀31向左部腔室14内供油,或者通过第二控制阀32向右部腔室15内供油。
更具体地,参照图2所示,在遥控转向系统处于手动转向模式时,若驾驶员向左转动转向盘,油泵4将油液泵给第三控制阀33,第三控制阀33将油输出给转阀2,转阀2通过左部油口23将油液输出给第一控制阀31,油液通过第一控制阀31后进入到左部腔室14内,左部腔室14内油压力增大,从而推动动力缸活塞12向右移动,动力缸活塞12通过活塞杆13驱动转向节动作,使车轮向左转动。此时,由于右部腔室15被动力缸活塞12压缩,右部腔室15内的油液通过第二控制阀32、转阀2后从转阀2的回油口22回流至油箱。
同样,参照图3所示,在遥控转向系统处于手动转向模式时,若驾驶员向右转动转向盘,油泵4将油液泵给第三控制阀33,第三控制阀33将油输出给转阀2,转阀2通过右部油口24将油液输出给第二控制阀32,油液通过第二控制阀32后进入到右部腔室15内,右部腔室15内油压力增大,从而推动动力缸活塞12向左移动,动力缸活塞12通过活塞杆13驱动转向节动作,使车轮向右转动。此时,由于左部腔室14被动力缸活塞12压缩,左部腔室14内的油液通过第一控制阀31、转阀2后从转阀2的回油口22回流油箱。
参照图4所示,在遥控转向系统处于遥控转向模式时,驾驶员可遥控车辆转向系统工作,若驾驶员控制车辆转向轮向左转动时,油泵4将油液泵给第一控制阀31,油液通过第一控制阀31进入到左部腔室14内,左部腔室14内油压力增大,从而推动动力缸活塞12向右移动,动力缸活塞12通过活塞杆13驱动转向节动作,使车轮向左转动。此时,由于右部腔室15被动力缸活塞12压缩,右部腔室15内的油液通过第二控制阀32、转阀2后从转阀2的回油口22回流油箱。
参照图5所示,在遥控转向系统处于遥控转向模式时,驾驶员可遥控车辆转向系统工作,若驾驶员遥控车辆转向轮向右转动时,油泵4将油液泵给第二控制阀32,油液通过第二控制阀32进入到右部腔室15内,右部腔室15内油压力增大,从而推动动力缸活塞12向左移动,动力缸活塞12通过活塞杆13驱动转向节动作,使车轮向右转动。此时,由于左部腔室14被动力缸活塞12压缩,左部腔室14内的油液通过第一控制阀31、转阀2后从转阀2的回油口22回流油箱。
由此,根据本发明实施例的遥控转向系统具有手动转向模式和遥控转向模式,驾驶员可手动操作转向盘从而控制车辆向左转向、向右转向或直行,在需要遥控车辆转向时,如在车辆自动泊车时,驾驶员可方便地遥控车辆向左或向右转动,此时驾驶员可在车内,当然也可在车外遥控,操作方便,控制简单。
可以理解的是,驾驶员遥控车辆转向时,遥控按钮可以设置在车辆中控台的控制面板上,当然也可集成在车钥匙上,方便用户在车外遥控,当然遥控按钮也可单独设置在一个 便携式转向遥控器上。
在一些实施例中,第三控制阀33为具有流量调节功能的控制阀,换言之,第三控制阀33可调节流经第三控制阀33的液压油的流量。在该一些实施例中,第一控制阀31和第二控制阀32均为电磁换向阀,第三控制阀33为电磁比例阀。
由此,通过控制第三控制阀33的开度,从而可控制流向转阀2以及转阀2流向第一控制阀31或第二控制阀32单位时间内的油液流量,进而实现对动力缸活塞12动作速度的控制,使车轮转向响应以及转向速度在一定范围内可控。
在另一些实施例中,第一控制阀31和第二控制阀32均为具有流量调节功能的控制阀。在该一些实施例中,第一控制阀31和第二控制阀32均为电磁比例阀,第三控制阀33为电磁换向阀。这样,通过对第一控制阀31和第二控制阀32开度的调节,同样可实现车轮转向响应以及转向速度的控制。
在本发明的再一些实施例中,第一控制阀31、第二控制阀32和第三控制阀33均为具有流量调节功能的控制阀。在该一些实施例中,第一控制阀31、第二控制阀32和第三控制阀33均为电磁比例阀。该一些实施例的遥控转向系统同样可实现车轮转向响应以及转向速度的控制。
需要说明的是,在上述的实施例中,由于第一控制阀31、第二控制阀32和第三控制阀33均为电控阀,具有换向和/或流量调节功能,因此可以通过控制器(即,ECU)来控制切换该三个阀的上电和掉电状态可以实现不同模式的切换,这将在下面给出更加详细地描述。由于车辆大量时间均处于手动操作状态,因此,优选地,在控制器控制该三个控制阀处于掉电状态时,遥控转向系统可处于手动转向模式,而在控制器控制该三个控制阀中的一部分处于上电状态时,遥控转向系统可处于遥控转向模式,这样不仅节约能耗,同时控制方便。
在一些实施例中,第一控制阀31具有第一常开口311、第二常开口312和常闭口313,第二控制阀32具有第一常开口321、第二常开口322和常闭口323,其中第一控制阀31的第一常开口311与左部油口23相连,第一控制阀31的第二常开口312与左部腔室14相连。第二控制阀32的第一常开口321与右部油口24相连,第二控制阀32的第二常开口322与右部腔室15相连。第三控制阀33的进口331分别与第一控制阀31的常闭口313和第二控制阀32的常闭口323相连。
在一些实施例中,第一控制阀31和第二控制阀32均为电磁换向阀且第三控制阀33为电磁比例阀。进一步,在控制器控制第一控制阀31掉电时,第一控制阀31的第一常开口311和第一控制阀31的第二常开口312导通,且第一控制阀31的常闭口313与第一控制阀31的第二常开口312隔断,在控制器控制第一控制阀31上电时,第一控制阀31的常闭 口313与第二常开口312导通且第一控制阀31的第一常开口311和第一控制阀31的第二常开口312隔断。
同样,在控制器控制第二控制阀32掉电时,第二控制阀32的第一常开口321和第二控制阀32的第二常开口322导通,且第二控制阀32的常闭口323与第二控制阀32的第二常开口322隔断,在控制器控制第二控制阀32上电时,第二控制阀32的常闭口323与第二控制阀32的第二常开口322导通且第二控制阀32的第一常开口321和第二控制阀32的第二常开口322隔断。
在控制器控制第三控制阀33掉电时,第三控制阀33开度最大,在控制器控制第三控制阀33上电时,第三控制阀33的开度减小,但是,本发明并不限于此。
在遥控转向系统处于手动转向模式时,控制器可控制第一控制阀31、第二控制阀32和第三控制阀33均掉电,在遥控转向系统处于遥控转向模式时,如遥控左转工况,如图4所示,则控制器可控制第三控制阀33上电以减小开度且控制第一控制阀31上电,同时控制第二控制阀32仍处于掉电。又如遥控右转工况,如图5所示,则控制器可控制第三控制阀33上电以减小开度且控制第二控制阀32上电,同时控制第一控制阀31仍处于掉电.
优选地,根据本发明的一个实施例,在遥控转向系统处于遥控转向模式且手动干预即手动转动转向盘时,第一控制阀31、第二控制阀32和第三控制阀33均掉电。具体地,在遥控左转工况时若手动干预转向盘,则第一控制阀31和第三控制阀33从上电状态转换为掉电状态,在遥控右转工况时若手动干预转向盘,则第二控制阀32和第三控制阀33从上电状态转换为掉电状态,从而遥控转向系统从遥控转向模式切换为手动转向模式,即手动转向模式优先于遥控转向模式,进而保证行车安全。
更具体地,第一控制阀31、第二控制阀32和第三控制阀33均具有压力反馈油路,第一控制阀31的压力反馈油路314与进油口21连通,第二控制阀32的压力反馈油路324与进油口21连通,第三控制阀33的压力反馈油路334与进油口21连通,在遥控转向系统处于遥控转向模式且手动干预转向盘时,压力反馈油路的油压力将增大(手动干预后转阀导通状态发生变化,因此转阀的进油口油压力会迅速上升),从而在该油压力的作用下将驱动相应控制阀掉电,即由该油压力驱动相应控制阀的阀芯从上电位置移动至掉电位置。
换言之,遥控左转工况时若手动干预转阀2,则第三控制阀33的压力反馈油路334将驱动第三控制阀33掉电,同时第一控制阀31的压力反馈油路314将驱动第一控制阀31掉电。同样,遥控右转工况时若手动干预转阀2,则第三控制阀33的压力反馈油路334将驱动第三控制阀33掉电,同时第二控制阀32的压力反馈油路324将驱动第二控制阀32掉电,从而保证手动优先,大大提高了行车安全性。
下面以第一控制阀31和第二控制阀32为电磁换向阀、第三控制阀33为电磁比例阀为 例,简单描述根据本发明实施例的遥控转向系统的工作原理。
在车辆直行时,如图1所示,控制器可控制第一控制阀31、第二控制阀32和第三控制阀33都不通电,三个阀都处于初始位置,油液从油泵4经第三控制阀33和转阀2后流回油箱。
在遥控转向系统处于手动转向模式时:如图3所示,控制器可控制第一控制阀31、第二控制阀32和第三控制阀33都不通电,三个阀都处于初始位置,油液从油泵4经第三控制阀33后进入转阀2,手动顺时针转动转向盘,油液从转阀2的右部油口24流出,经过第二控制阀32的第一常开口321和第二常开口322后进入到转向动力缸11的右部腔室15内,动力缸活塞12向左运动以通过转向节驱动车辆转向轮右转。同时,左部腔室14内的油液依次通过第一控制阀31的第二常开口312、第一常开口311以及左部油口23后进入转阀2,再从转阀2的回油口22回流至油箱。
如图2所示,手动逆时针转动转向盘时,车辆转向轮将向左转动,其原理与上述大致相同,请参照上面的描述,这里不再详细说明。
在遥控转向系统处于遥控转向模式时:如图5所示,控制器可控制第三控制阀33上电以减小开度,第三控制阀33前端压力逐渐增大,控制器还控制第一控制阀31掉电处于初始位置,且控制第二控制阀32通电换向,使得第二控制阀32的常闭口323和第二常开口322导通,油液经油泵4流出经过第二控制阀32的常闭口323和第二常开口322进入到右部腔室15内,推动动力缸活塞12向左移动,从而转向轮向右转向。此时第一控制阀31仍处于断电状态,左部腔室14内的油液依次通过第一控制阀31的第二常开口312、第一常开口311以及左部油口23后进入转阀2,再从转阀2的回油口22回流至油箱,实现遥控模式下的向右转向。
同样,参照图4所示,在遥控模式下向左转向时,第一控制阀31通电,第二控制阀32断电,其原理与上面的描述大致相同,这里不再赘述。
应当理解的是,在遥控转向模式下,第三控制阀33的开度逐渐减小,但是本发明并不限于此。例如可选地,第三控制阀33也可完全关闭,对于本领域的技术人员而言,可以根据实际需要灵活设定。
参照图5所示,在遥控转向系统处于遥控转向模式下,若人为手动转动转向盘,使得转阀2的进油口21和右部油口24(或左部油口23,这里为示意说明)导通,而左部油口23(或右部油口24)与回油口22连通,则进油口21的压力会迅速上升,进油口21压力经第一控制阀31、第二控制阀32和第三控制阀33的压力反馈油路反馈后,压力反馈油路的油压将推动第二控制阀32和第三控制阀33掉电复位,遥控转向系统将进入手动转向模式。
根据本发明的一个实施例,第一控制阀31和第二控制阀32可以集成在转向动力缸11上,这样使得遥控转向系统结构更加紧凑,同时方便布置。
但是,本发明并不限于此,在本发明的另一个实施例中,第一控制阀31和第二控制阀32可集成为一体。或者,第一控制阀31和第二控制阀32也可集成在转向器上,通过管道与转向动力缸11连接,或者第一控制阀31和第二控制阀32也可互相独立,通过管道彼此连接。再者,第一控制阀31、第二控制阀32和第三控制阀33可制作成一个整体式阀块结构,安装于现有的液压转向器上,减少油管,降低成本。
简言之,本领域的技术人员在阅读了说明书此处公开内容的基础之上,结合液压领域的基本知识,可以对第一控制阀31、第二控制阀32和第三控制阀33的布置形式、装配方式进行改进,以使得根据本发明实施例的遥控转向系统可以适应不同车型,使根据本发明实施例的遥控转向系统结构更加紧凑、简单,成本更低,适用范围更广。
在一些实施例中,油泵4可由车辆的发动机直接驱动,由于发动机的转速时刻在变,因此该油泵4可以具有流量调节机构和溢流机构,该油泵4输出的流量可以控制在一个较小的变动范围内,最大油压恒定,也就是说,本领域的技术人员可以根据遥控转向系统的要求设定油泵4的输出流量和最大油压。
但是,本发明并不限于此,在本发明的另一些实施例,油泵4也可直接由单独的电机驱动,即油泵4并非由发动机直接驱动。在该实施例中,优选地,油泵4的输出转速可调,例如油泵4与电机之间可以设置调速机构,调速机构可以是单排单级行星齿轮机构和/或单排双级行星齿轮机构和/或拉维娜行星齿轮机构,这样油泵4由单独的驱动电机驱动,并增设调速机构,从而使得油泵4的输出转速可调,这样第一控制阀31和第二控制阀32和第三控制阀33可均为电磁换向阀,通过调节油泵4的泵油量可以控制车辆转向的响应速度以及转向速度。而且,通过设置单独的电机以及调速机构,可以设定电机通过调速机构输出给油泵的最大转速,使得该最大转速下油泵可处于额定工况,这样可以取消溢流机构,降低成本。但是,本发明并不限于此。
在一些实施例中,遥控转向系统还包括压力传感器(图未示出),压力传感器用于检测进油口21处的油压力,在遥控转向系统处于遥控转向模式时并且压力传感器检测进油口21处的油压力超过预定值时,遥控转向系统从遥控转向模式切换为手动转向模式,例如控制第一控制阀31和第二控制阀32之一掉电且控制第三控制阀33掉电,从而进入手动转向模式。
具体地,在遥控转向系统处于遥控转向模式时,若有手动干预转阀2,例如驾驶员通过转动转向盘驱动转阀2动作,从而转阀2的导通状态发生变化,转阀2的进油口21的油压力会增高,此时ECU可根据压力传感器6检测到该压力超过预定值后,强迫第一控制阀31 或第二控制阀32掉电同时强迫第三控制阀33掉电,迫使遥控转向系统进入手动转向模式,使得手动转向模式优先于遥控转向模式,从而大大提高车辆安全性,保证行车安全。
应当理解,上述的“预定值”可以根据应用于不同车辆上的遥控转向系统和/或其它因素而适应性设定,这对于本领域的普通技术人员而言,都是容易理解的。
另外,需要说明一点,在一些实施例中,第一控制阀31、第二控制阀32和第三控制阀33均可为电磁阀,其具体工作状态例如上电和掉电状态均可由控制器来相应控制,这对于本领域的技术人员而言,应当都是容易理解的。
下面简单描述根据本发明实施例的车辆。
根据本发明实施例的车辆,包括根据本发明上述实施例中描述的遥控转向系统。
根据本发明一些实施例的车辆可以是轿车、客车、卡车、货车、SUV等。
可以理解的是,根据本发明实施例的车辆的其他结构例如变速器、差速器、减速器等均已为现有技术,且为本领域的普通技术人员所熟知,因此这里不再一一详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种用于车辆的遥控转向系统,其特征在于,包括:
    转向动力缸,所述转向动力缸内设有将所述转向动力缸的内腔隔离成左部腔室和右部腔室的动力缸活塞;
    转阀,所述转阀具有进油口、回油口、左部油口和右部油口,所述转阀的左部油口通过第一控制阀与所述左部腔室相连,所述转阀的右部油口通过第二控制阀与所述右部腔室相连;
    第三控制阀,所述第三控制阀具有进口和出口,所述出口与所述进油口相连;以及
    油泵,所述油泵的出油口分别与所述进口、所述第一控制阀和所述第二控制阀相连。
  2. 根据权利要求1所述的用于车辆的遥控转向系统,其特征在于,所述遥控转向系统具有手动转向模式和遥控转向模式:
    在所述遥控转向系统处于所述手动转向模式时,所述油泵依次通过所述第三控制阀、所述转阀、所述第一控制阀向所述左部腔室内供油,或者通过所述第三控制阀、所述转阀、所述第二控制阀向所述右部腔室内供油;
    在所述遥控转向系统处于所述遥控转向模式时,所述油泵通过所述第一控制阀向所述左部腔室内供油,或者通过所述第二控制阀向所述右部腔室内供油。
  3. 根据权利要求2所述的用于车辆的遥控转向系统,其特征在于,还包括:压力传感器,所述压力传感器用于检测所述进油口处的油压力,在所述遥控转向系统处于所述遥控转向模式且所述压力传感器检测到所述油压力超过预定值时,所述遥控转向系统从所述遥控转向模式切换为所述手动转向模式。
  4. 根据权利要求2所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀和所述第二控制阀中的每一个均具有第一常开口、第二常开口和常闭口,其中
    所述第一控制阀的第一常开口与所述左部油口相连,所述第一控制阀的第二常开口与所述左部腔室相连;
    所述第二控制阀的第一常开口与所述右部油口相连,所述第二控制阀的第二常开口与所述右部腔室相连;
    所述油泵的出油口分别与所述第三控制阀的进口、所述第一控制阀的常闭口和所述第二控制阀的常闭口相连。
  5. 根据权利要求4所述的用于车辆的遥控转向系统,其特征在于,
    所述第一控制阀掉电时,所述第一控制阀的第一常开口与所述第一控制阀的第二常开口导通,所述第一控制阀上电时,所述第一控制阀的常闭口与所述第一控制阀的第二常开口导通;
    所述第二控制阀掉电时,所述第二控制阀的第一常开口与所述第二控制阀的第二常开口导通,所述第二控制阀上电时,所述第二控制阀的常闭口与所述第二控制阀的第二常开口导通。
  6. 根据权利要求5所述的用于车辆的遥控转向系统,其特征在于,在所述遥控转向系统处于所述手动转向模式时所述第一控制阀、所述第二控制阀和所述第三控制阀均掉电,在所述遥控转向系统处于所述遥控转向模式时,所述第三控制阀上电以减小开度,所述第一控制阀和所述第二控制阀之一上电且另一个掉电。
  7. 根据权利要求6所述的用于车辆的遥控转向系统,其特征在于,在所述遥控转向系统处于所述遥控转向模式且手动干预所述车辆的转向盘时,所述第一控制阀、所述第二控制阀和所述第三控制阀均掉电。
  8. 根据权利要求7所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀、所述第二控制阀和所述第三控制阀中的每一个均具有与所述进油口相连的压力反馈油路,在所述遥控转向系统处于所述遥控转向模式且手动干预所述车辆的转向盘时,所述压力反馈油路的油压力驱动所述第一控制阀、所述第二控制阀和所述第三控制阀中的相应控制阀掉电。
  9. 根据权利要求1-8中任一项所述的用于车辆的遥控转向系统,其特征在于,所述第三控制阀为具有流量调节功能的控制阀。
  10. 根据权利要求1-9中任一项所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀和所述第二控制阀均为具有流量调节功能的控制阀。
  11. 根据权利要求1-8中任一项所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀和所述第二控制阀均为电磁换向阀,所述第三控制阀为电磁比例阀。
  12. 根据权利要求1-8中任一项所述所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀和所述第二控制阀均为电磁比例阀,所述第三控制阀为电磁换向阀。
  13. 根据权利要求1-8中任一项所述所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀、所述第二控制阀和所述第三控制阀均为具有流量调节功能的控制阀。
  14. 根据权利要求1-8中任一项所述所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀、所述第二控制阀和所述第三控制阀均为电磁比例阀。
  15. 根据权利要求1-14中任一项所述的用于车辆的遥控转向系统,其特征在于,所述油泵由电机驱动,所述电机与所述油泵之间设置有调速机构。
  16. 根据权利要求1-15中任一项所述的用于车辆的遥控转向系统,其特征在于,所述动力缸活塞的两侧面上分别设置有活塞杆,每一侧的所述活塞杆分别从相应的腔室内向外延伸出以适于驱动车辆该侧的转向节。
  17. 根据权利要求1-16中任一项所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀和所述第二控制阀集成在所述转向动力缸上。
  18. 根据权利要求1-17中任一项所述的用于车辆的遥控转向系统,其特征在于,所述第一控制阀和所述第二控制阀集成为一体。
  19. 一种车辆,其特征在于,包括遥控转向系统,所述遥控转向系统为根据权利要求1-18中任一项所述的遥控转向系统。
PCT/CN2014/092715 2013-11-29 2014-12-01 用于车辆的遥控转向系统及具有该遥控转向系统的车辆 WO2015078421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310628353.1 2013-11-29
CN201310628353.1A CN104670313B (zh) 2013-11-29 2013-11-29 用于车辆的遥控转向系统及具有该遥控转向系统的车辆

Publications (1)

Publication Number Publication Date
WO2015078421A1 true WO2015078421A1 (zh) 2015-06-04

Family

ID=53198399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092715 WO2015078421A1 (zh) 2013-11-29 2014-12-01 用于车辆的遥控转向系统及具有该遥控转向系统的车辆

Country Status (2)

Country Link
CN (1) CN104670313B (zh)
WO (1) WO2015078421A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571358A (zh) * 2021-07-26 2021-10-29 歌尔科技有限公司 扳机按键装置、电子设备以及电子系统
CN115320706A (zh) * 2022-08-25 2022-11-11 吉林大学 基于负载口独立控制实现非道路车辆线控转向的液压系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108100033A (zh) * 2018-01-10 2018-06-01 西安合众思壮导航技术有限公司 转向油液分配器
CN110432840B (zh) * 2019-08-22 2021-09-14 合肥云驾智能科技有限公司 一种洗地机自动转向装置及其控制方法
CN111524347B (zh) * 2020-04-13 2022-05-06 东风柳州汽车有限公司 一种预介入的远程遥控泊车控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085391B2 (ja) * 1990-10-09 1996-01-24 ダンフォス アクチェセルスカベト 車両用液圧式ステアリング装置
DE10164392A1 (de) * 2001-12-28 2003-07-10 Bosch Rexroth Ag Hydraulische Lenkeinrichtung
CN2633703Y (zh) * 2003-07-01 2004-08-18 浙江杭叉工程机械股份有限公司 起升、转向共用一个电机的叉车液压装置
CN101233040A (zh) * 2005-07-27 2008-07-30 博世雷克斯罗思股份公司 电动液压转向系统
DE102010043372A1 (de) * 2009-11-06 2011-05-12 Deere & Company, Moline Fahrzeuglenksystem
CN203681647U (zh) * 2013-11-29 2014-07-02 比亚迪股份有限公司 用于车辆的遥控转向系统及具有其的车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412642B2 (ja) * 1993-11-08 2003-06-03 マツダ株式会社 自動車の操舵制御装置
JP3731956B2 (ja) * 1996-12-02 2006-01-05 光洋精工株式会社 ステアリング装置
JP4247986B2 (ja) * 2003-12-10 2009-04-02 株式会社小松製作所 車両のステアリング制御装置
CN202827716U (zh) * 2012-09-12 2013-03-27 上海宝冶集团有限公司 用于遥控装载机的转向电液控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085391B2 (ja) * 1990-10-09 1996-01-24 ダンフォス アクチェセルスカベト 車両用液圧式ステアリング装置
DE10164392A1 (de) * 2001-12-28 2003-07-10 Bosch Rexroth Ag Hydraulische Lenkeinrichtung
CN2633703Y (zh) * 2003-07-01 2004-08-18 浙江杭叉工程机械股份有限公司 起升、转向共用一个电机的叉车液压装置
CN101233040A (zh) * 2005-07-27 2008-07-30 博世雷克斯罗思股份公司 电动液压转向系统
DE102010043372A1 (de) * 2009-11-06 2011-05-12 Deere & Company, Moline Fahrzeuglenksystem
CN203681647U (zh) * 2013-11-29 2014-07-02 比亚迪股份有限公司 用于车辆的遥控转向系统及具有其的车辆

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571358A (zh) * 2021-07-26 2021-10-29 歌尔科技有限公司 扳机按键装置、电子设备以及电子系统
CN113571358B (zh) * 2021-07-26 2023-12-22 歌尔科技有限公司 扳机按键装置、电子设备以及电子系统
CN115320706A (zh) * 2022-08-25 2022-11-11 吉林大学 基于负载口独立控制实现非道路车辆线控转向的液压系统
CN115320706B (zh) * 2022-08-25 2023-09-19 吉林大学 基于负载口独立控制实现非道路车辆线控转向的液压系统

Also Published As

Publication number Publication date
CN104670313B (zh) 2017-07-04
CN104670313A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2015078421A1 (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
JP3108715B2 (ja) サーボ制御装置特に自動車のパワーステアリング装置
KR101203299B1 (ko) 파워 스티어링 장치
KR101575482B1 (ko) 전동구동장치 통합형 전동식 파워스티어링 시스템 및 그 제어방법
JP4109402B2 (ja) 車両の油圧式パワーステアリング装置
CN104670306B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN104670301B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
JPS6366707B2 (zh)
KR101481302B1 (ko) 친환경 차량의 전기 유압식 파워 스티어링 장치의 제어 방법
CN110667698A (zh) 应急转向系统以及搅拌车
CN104670311B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN104670308B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN104670316A (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN104670300B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN104670315B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN210882300U (zh) 一种转向器后置电液转向系统
CN104670314B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN103895700A (zh) 一种转向装置及遥控转向系统
KR101550980B1 (ko) 전동구동장치 통합형 전동식 파워스티어링 시스템 및 그 제어방법
CN104670299A (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
JP5382865B2 (ja) パワーステアリング機構
CN104670320B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN104670302B (zh) 用于车辆的遥控转向系统及具有该遥控转向系统的车辆
CN116752605A (zh) 一种基于电控泵的正流量液压系统及装载机
JPH05272466A (ja) 油圧ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865240

Country of ref document: EP

Kind code of ref document: A1