WO2015078351A1 - 识别器件类别的电路、电路板、终端设备及信号控制器 - Google Patents

识别器件类别的电路、电路板、终端设备及信号控制器 Download PDF

Info

Publication number
WO2015078351A1
WO2015078351A1 PCT/CN2014/092123 CN2014092123W WO2015078351A1 WO 2015078351 A1 WO2015078351 A1 WO 2015078351A1 CN 2014092123 W CN2014092123 W CN 2014092123W WO 2015078351 A1 WO2015078351 A1 WO 2015078351A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification
series
resistance
resistor
output signal
Prior art date
Application number
PCT/CN2014/092123
Other languages
English (en)
French (fr)
Inventor
徐顺海
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2015078351A1 publication Critical patent/WO2015078351A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/73Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by creating or determining hardware identification, e.g. serial numbers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/44Program or device authentication

Definitions

  • the present invention relates to the field of model identification technology, and in particular, to a circuit, a circuit board, a terminal device and a signal controller for identifying a device category.
  • the resistor 108 is soldered with two types of resistors. This approach enables measurement of the identification resistance by applying a GPIO signal to a corresponding measurement port on the signal controller 120. After power-on, the GPIO signal is applied to the corresponding measurement port.
  • the GPIO signal includes 1 (high level signal), 0 (low level signal) or high impedance three states, which can identify 81 (4 interfaces total 3 4 kinds) ) a combination.
  • the disadvantage of this method is that when it is used for model measurement of a large number of products, the number of resistance and detection signal lines required for soldering on the single board is large, which causes a problem of complicated identification circuit and high recognition cost.
  • the embodiment of the invention provides a circuit, a circuit board, a terminal device and a signal controller for identifying a device category, so as to solve the problem that the identification circuit is complicated and the recognition cost is high in the existing identification circuit technology.
  • an embodiment of the present invention provides a circuit for identifying a device category, wherein the circuit includes:
  • N identification resistors connected in series one end of the N identification resistors connected in series is connected in series with the other end of the measuring resistor, and the other ends of the N identification resistors connected in series are grounded; a natural number greater than one;
  • the signal controller comprising at least one analog-to-digital detection signal port, at least N-1 universal input/output signal ports, wherein an analog-to-digital detection signal port is connected to the measuring resistor and the Between the identification resistors directly connected to the measuring resistors, N-1 general-purpose input and output signal ports are respectively connected between the two identification resistors connected in series through the universal input and output signal lines;
  • the signal controller determines a resistance value of the N identification resistors connected in series by an analog-to-digital detection signal input from an analog-to-digital detection signal port and a general-purpose input/output signal output from a general-purpose input/output signal port, and the measurement resistance, and The class of the device is identified based on the resistance of the N identification resistors connected in series.
  • the signal controller determines, by using an analog-to-digital detection signal input by the analog-to-digital detection signal port, a general-purpose input and output signal output by the universal input/output signal port, and the measurement resistance.
  • the resistance values of the N identification resistors connected in series include:
  • the general-purpose input and output signal ports are set to a low level one by one, and the voltage values of the N-1 analog-to-digital detection signal ports are obtained;
  • the obtained voltage value of the N-1 modulus detecting signal port, and the output value of all the general-purpose input and output signal ports Determine the resistance of each identification resistor.
  • the method between the measuring resistor and the identification resistor directly connected to the measuring resistor determines the resistance value of each identification resistor, and specifically includes:
  • the resistance and the supply voltage determine the identification resistance between the general-purpose input and output signal port that is not set low and the low-level general-purpose input and output signal port, and the identification resistance connected to the measurement resistor.
  • the sum of the series resistance values, and the resistance value of each of the identification resistors is determined according to the sum of the series resistance values determined one by one.
  • the signal controller identifies the type of the device according to the resistance values of the N identification resistors connected in series, and specifically includes:
  • an embodiment of the present invention provides a circuit board including the above-mentioned circuit for identifying a device category.
  • the signal controller is a processor chip on the circuit board.
  • an embodiment of the present invention provides a terminal device, including the foregoing circuit board.
  • an embodiment of the present invention provides a signal controller for identifying a category of a device, where the device includes:
  • N identification resistors connected in series one end of the N identification resistors connected in series is connected in series with the other end of the measuring resistor, and the other ends of the N identification resistors connected in series are grounded; a natural number greater than one;
  • the signal controller includes at least one analog-to-digital detection signal port, at least N-1 universal input/output signal ports, wherein an analog-to-digital detection signal port is adapted to be connected to the measuring resistor and the Between the identification resistors directly connected to the measuring resistors, N-1 general-purpose input and output signal ports are respectively connected between the two identification resistors connected in series through the universal input and output signal lines;
  • the signal controller determines a resistance value of the N identification resistors connected in series by an analog-to-digital detection signal input from an analog-to-digital detection signal port and a general-purpose input/output signal output from a general-purpose input/output signal port, and the measurement resistance, and The class of the device is identified based on the resistance of the N identification resistors connected in series.
  • the series connection is determined by using the identification resistors in series, and the analog-to-digital detection signal input by the analog-digital detection signal port in the signal controller, the general-purpose input/output signal output from the general-purpose input/output signal port, and the measurement resistance are used to determine the series connection.
  • the resistance values of the respective identification resistors are combined to identify the type of the device, and the circuit of the identification device category uses fewer components, simple lines, and easy measurement, which not only improves the types of identification device types, but also improves the types of identification devices. It also reduces the complexity of the circuit that identifies the device class and reduces the cost of identification.
  • FIG. 2 is a schematic structural diagram of a circuit according to Embodiment 1 of the present invention.
  • Embodiment 3 is a flowchart of a method provided by Embodiment 1 of the present invention.
  • FIG. 5 is an equivalent circuit diagram corresponding to step 302 provided in Embodiment 1 of the present invention.
  • FIG. 6 is an equivalent circuit diagram corresponding to step 303 provided in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of two identification resistor circuits according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural diagram of a circuit according to Embodiment 2 of the present invention.
  • Embodiment 9 is a flow chart of a method provided in Embodiment 2 of the present invention.
  • the present invention provides a circuit, a circuit board, a terminal device and a signal controller for identifying a device category.
  • a first embodiment of the present invention provides a circuit for identifying a device class for identifying a board or a device requiring identification.
  • the embodiment of the present invention needs to solder a plurality of resistor combinations of different resistance values in series on different boards to identify the type of the device or the board.
  • the identification resistors connected in series are three. The circuit diagram is shown in FIG. 2.
  • the circuit includes: a measuring resistor, three identification resistors and a signal controller connected in series; wherein one end of the measuring resistor and the power supply Connected, the other end of the measuring resistor is connected to one end of three identification resistors connected in series, and the other ends of the three identification resistors connected in series are grounded, in the embodiment of the invention, from the power supply side to the ground side Direction, defining three identification resistors connected in series are an identification resistor R1, an identification resistor R2 and an identification resistor R3; the signal controller includes at least one analog-to-digital detection AD signal port and at least two general-purpose input and output GPIO signal ports.
  • an AD signal port is connected between the measuring resistor and the identification resistor R1 through the AD signal line
  • the GPIO1 signal port is connected between the identification resistor R1 and the identification resistor R2 through the GPIO1 signal line
  • the GPIO2 signal port is connected through the GPIO2 signal line.
  • the measuring resistor when the resistance of the identification resistor is 0, the measuring resistor can protect the circuit.
  • the resistance of the measuring resistor is a known resistance value, which needs to be limited to a suitable area and needs to be set according to the power supply voltage.
  • the signal controller may be an external controller; or may be a processor chip on the measurement board, such as a high-pass chip.
  • the signal controller determines the resistance of the identification resistor R1, the identification resistor R2, and the identification resistor R3 through the AD signal input by the AD port and the GPIO1 signal and the GPIO2 signal respectively outputted by the GPIO1 port and the GPIO2 port, as shown in FIG. 3, which specifically includes:
  • Step 301 Set the output value of the GPIO1 port and the GPIO2 port to a high impedance, and the AD port obtains the voltage value of the AD signal 1;
  • the setting of the output values of the GPIO1 port and the GPIO2 port to high impedance includes: vacating the GPIO1 signal line and the GPIO2 signal line.
  • the equivalent circuit corresponding to FIG. 2 is as shown in FIG. 4, and the voltage value 1 of the AD signal obtained by the AD port is R1+.
  • Step 302 Set the output value of the GPIO1 port to a high impedance, set the output value of the GPIO2 port to a low level, and the AD port obtains the voltage value 2 of the AD signal;
  • the setting of the output value of the GPIO2 port to a low level indicates that the GPIO2 signal line will short circuit the identification resistor R3.
  • the step 302 corresponds to the equivalent circuit of FIG. 2, as shown in FIG. 5, and the voltage value 2 of the AD signal obtained by the AD port is the voltage value of R1+R2.
  • Step 303 Set the output values of the GPIO1 port and the GPIO2 port to a low level, and the AD port obtains an AD signal. Voltage value of 3;
  • the step 303 corresponds to the equivalent circuit of FIG. 2, and the voltage value 3 of the AD signal obtained by the AD port is the voltage value of R1.
  • Step 304 Calculate the current of the measured resistance according to the voltage value 1, the voltage value 2, and the voltage value 3 of the AD signal obtained by the AD port, and calculate the current according to the current value of the power supply voltage and the measured resistance, respectively, and calculate R1+ according to the current. Resistance of R2+R3, R1+R2, R1;
  • R1+R2+R3 the voltage value of the AD signal 1/the current of the measuring resistor
  • R1+R2 the voltage value of the AD signal 2/the current of the measuring resistor
  • R1 voltage value of the AD signal 3 / current of the measuring resistor.
  • Step 305 Calculate, according to the calculation result, the resistance values of each of the three identification resistors;
  • R2 is the difference between R1+R2 and R1
  • R3 is the difference between R1+R2+R3 and R1+R2.
  • Step 306 rounding off the ratio of the resistance of each identification resistor to the resistance of the reference resistor R, so that the resistance of the identification resistor is an integer multiple of the reference resistance R;
  • the resistance of the calculated identification resistance may not be an integer in the above calculation process, it is necessary to change the resistance of the identification resistance by the reference resistance R to an integer, thereby determining the class of the identification device according to the resistance combination of the obtained identification resistance. .
  • Step 307 According to the combination of the identification resistance R1, the identification resistance R2 and the resistance of the identification resistor R3, and the correspondence between the resistance combination of the identification resistor and the identification circuit, the type of the circuit is obtained.
  • the minimum accuracy of the resistance measurement is R (ie, R is the reference resistance), the measurement can only distinguish the integer multiple of R, and the resistance resistance level is 1R to 8R.
  • R1+R2 For example, if +R3 is 8R, the initial value can be obtained as shown in Table 1:
  • each resistor has a total of 9 values of 0R-8R, but a single resistor, two resistors in series, and three resistors in series must also be between 0R-8R.
  • the three identifications are connected in series by connecting three identification resistors in series, and simultaneously using the AD signal input by the AD port in the signal controller and the GPIO signal output by the GPIO signal port.
  • the resistance value of the resistor wherein compared with the prior art, the number of components used is small, the circuit is simple, the measurement is easy, and the identification cost is low; by connecting the identification resistors in series, the recognition accuracy and identification of the resistance value are greatly improved.
  • Device The number of species.
  • the GPIO1 signal port and the GPIO2 signal port can also be set as an input module to read the level.
  • the input value of the GPIO1 signal port and the GPIO2 signal port is used to determine the device type. .
  • the low level is 0-0.8V
  • the 2.7-3.3V is high level.
  • the input value is 0.
  • the input value is 1.
  • the identification circuit model is judged based on the combination of the input values of the GPIO1 signal port or the GPIO2 signal port. In Fig. 7, four types of models can be combined according to two identification resistors.
  • the second embodiment of the present invention provides a circuit for identifying the device category, and specifically clarifies the circuit by using N identification resistors, as shown in FIG.
  • the circuit includes:
  • N identification resistors 802 connected in series one end of the N identification resistors connected in series is connected in series with the other end of the measuring resistor, and the other ends of the N identification resistors connected in series are grounded;
  • N is a natural number greater than one;
  • the signal controller includes at least one analog-to-digital detection signal port, at least N-1 universal input/output signal ports, wherein an analog-to-digital detection signal port is connected to the measuring resistor and the Between the identification resistors directly connected to the measuring resistors, N-1 universal input and output signal ports are respectively connected between each two identification resistors connected in series through a universal input and output signal line; the signal controller is used to pass the mode
  • the analog-to-digital detection signal input to the digital detection signal port and the universal input/output signal output from the universal input/output signal port and the measurement resistance determine the resistance values of the N identification resistors connected in series, and are connected in series according to the The resistance of the N identification resistors identifies the device class.
  • the signal controller is configured to determine a resistance value of the N identification resistors connected in series, and the determining method is as shown in FIG.
  • Step 901 Set all general-purpose input and output signal ports to high impedance, and the analog-to-digital detection signal port obtains the Measuring a voltage value between the resistor and the identification resistor directly connected to the measuring resistor;
  • the voltage value measured by the AD signal port is the voltage value n of R1+R2+...+Rn.
  • Step 902 Set the general-purpose input/output signal port to a low level one by one according to the direction from the ground side to the power source side, and obtain voltage values of N-1 analog-to-digital detection signal ports;
  • the obtained voltage values of the N-1 AD signal ports include: R1+R2+...+Rn-1 voltage value n-1, R1+R2+...+Rn-2 voltage value n-2, ...
  • the voltage value of R1+R2 and the voltage value of R1 are 1.
  • Step 903 Detect a voltage value between the measurement resistor and the identification resistor directly connected to the measurement resistor, the obtained voltage value of the N-1 modulus detection signal port, and output of all general-purpose input and output signal ports.
  • R' (supply voltage - the voltage value of the AD signal port) / the resistance of the measuring resistor, the voltage value n of R1+R2+...+Rn, the voltage value of R1+R2+...+Rn-1, n- 1.
  • R1 voltage value 1 are substituted one by one to obtain R1+R2+...+Rn, R1+R2+... ...+Rn-1, R1+R2+...+Rn-2, R1+R2, R1 resistance.
  • Step 904 Determine a resistance value of each identification resistor according to the determined sum of the series resistance values
  • R2 (R1+R2)-R1
  • R3 (R1+R2+R3)-(R1+R2)
  • Rn (R1+R2+...+ Rn)-(R1+R2+...+Rn-1), thereby obtaining the resistance of each identification resistor.
  • Step 905 Acquire a correspondence between the resistance values of the N identification resistors connected in series and the device model, and identify the category of the device according to the correspondence relationship and the resistance values of the N identification resistors connected in series.
  • the identification resistors are connected in series, and the analog-to-digital detection signal input from the analog-to-digital detection signal port in the signal controller, the general-purpose input/output signal output from the general-purpose input/output signal port, and the measurement resistor are used to determine the series connection.
  • Each of the identification resistors recognizes the type of the device, and the circuit of the identification device class uses fewer components, simple lines, and easy measurement, which not only improves the types of identification device types, but also reduces the circuit for identifying the device category. The complexity reduces the cost of identification.
  • a third embodiment of the present invention further provides a circuit board comprising the circuit for identifying the device class as described in any one of Embodiments 1 to 2.
  • the signal controller is a processor chip on the circuit board.
  • a fourth embodiment of the present invention further provides a terminal device comprising the circuit board as described in Embodiment 3.
  • the terminal device may be a mobile terminal, such as a mobile phone, a tablet computer, a notebook computer, an e-book, etc., or may be other terminals, such as a desktop computer, a set top box, and the like.
  • a fifth embodiment of the present invention also provides a signal controller for identifying a category of a device, the device comprising:
  • N identification resistors connected in series one end of the N identification resistors connected in series is connected in series with the other end of the measuring resistor, and the other ends of the N identification resistors connected in series are grounded; a natural number greater than one;
  • the signal controller includes at least one analog-to-digital detection signal port, at least N-1 universal input/output signal ports, wherein an analog-to-digital detection signal port is adapted to be connected to the measuring resistor and the Between the identification resistors directly connected to the measuring resistors, N-1 general-purpose input and output signal ports are respectively connected between the two identification resistors connected in series through the universal input and output signal lines;
  • the signal controller determines a resistance value of the N identification resistors connected in series by an analog-to-digital detection signal input from an analog-to-digital detection signal port and a general-purpose input/output signal output from a general-purpose input/output signal port, and the measurement resistance, and The class of the device is identified based on the resistance of the N identification resistors connected in series.
  • the signal controller may be a processor chip or a separate component, which is not limited herein.
  • aspects of the present invention, or possible implementations of various aspects may be To be embodied as a system, method or computer program product.
  • aspects of the invention, or possible implementations of various aspects may be in the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, etc.), or a combination of software and hardware aspects, They are collectively referred to herein as "circuits," “modules,” or “systems.”
  • aspects of the invention, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium includes, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing, such as random access memory (RAM), read only memory (ROM), Erase programmable read-only memory (EPROM or flash memory), optical fiber, portable read-only memory (CD-ROM).
  • the processor in the computer reads the computer readable program code stored in the computer readable medium such that the processor is capable of performing the various functional steps specified in each step of the flowchart, or a combination of steps; A device that functions as specified in each block, or combination of blocks.
  • the computer readable program code can execute entirely on the user's computer, partly on the user's computer, as a separate software package, partly on the user's computer and partly on the remote computer, or entirely on the remote computer or server.
  • the functions noted in the various steps in the flowcharts or in the blocks in the block diagrams may not occur in the order noted. For example, two steps, or two blocks, shown in succession may be executed substantially concurrently or the blocks may be executed in the reverse order.

Abstract

一种识别器件类别的电路、电路板、终端设备及信号控制器。其通过测量电阻(801)、识别电阻(802)和信号控制器(803)实现对器件类别的识别,将识别电阻(802)进行串联,并利用信号控制器(803)中的模数检测信号端口(AD)输入的模数检测信号、通用输入输出信号端口(GPIO)输出的通用输入输出信号和测量电阻(801),来确定串联在一起的各个识别电阻的阻值,从而对器件的类别进行识别,该识别器件类别的电路使用元器件少、线路简单、容易测量,不仅提高了识别器件类别的种类,并且减少了识别器件类别的电路的复杂度,降低了识别成本。

Description

识别器件类别的电路、电路板、终端设备及信号控制器 技术领域
本发明涉及型号识别技术领域,特别涉及一种识别器件类别的电路、电路板、终端设备及信号控制器。
背景技术
目前的软件通用平台化开发中,需要自动识别软件运行的环境,例如:产品类型、LCD(液晶显示器,Liquid Crystal Display)器件型号、射频的频段等,以便在软件运行中针对硬件做不同处理。
目前在区分单板或器件型号时,通常在不同单板上焊接多个不同阻值的电阻,通过使用GPIO(通用输入输出,General Purpose Input Output)信号测量单板上对应的电阻,进而获得该多个不同电阻的阻值。根据单板上对应电阻的不同阻值以及顺序组合,以及配合软件来区分测试单板或器件的型号。下面通过图1说明其实现方式:
根据设备器件列表对第一识别电阻101、第二识别电阻102、第三识别电阻103、第四识别电阻104和第一测量电阻105、第二测量电阻106、第三测量电阻107、第四测量电阻108两种类型的电阻进行焊接。该种方式通过对信号控制器120上的对应的测量端口施加GPIO信号实现对识别电阻的测量。开机后,在对应的测量端口上施加GPIO信号,GPIO信号包括1(高电平信号)、0(低电平信号)或是高阻3种状态,能够识别81(4个接口共34种)种组合。
该方法的缺点是:当用于大量产品进行型号测量时,该方法需要的焊接在单板上的电阻和检测信号线的数量多,造成识别电路复杂、识别成本高的问题。
发明内容
本发明实施例提供了一种识别器件类别的电路、电路板、终端设备及信号控制器,以解决现有识别电路技术中识别电路复杂、识别成本高的问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
第一方面,本发明实施例提供一种识别器件类别的电路,其特征在于,该电路包括:
测量电阻,所述测量电阻的一端与电源连接;
串联在一起的N个识别电阻,所述串联在一起的N个识别电阻的一端与所述测量电阻的另一端串联连接,所述串联在一起的N个识别电阻的另一端接地;所述N为大于1的自然数;
信号控制器,信号控制器包括至少一个模数检测信号端口、至少N-1个通用输入输出信号端口,其中,一个模数检测信号端口通过模数检测信号线连接于所述测量电阻和与所述测量电阻直接相连的识别电阻之间,N-1个通用输入输出信号端口通过通用输入输出信号线分别连接于每两个串联在一起的识别电阻之间;
所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,并根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
在第一方面的第一种可能的实现方式中,所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,具体包括:
将所有通用输入输出信号端口置位为高阻,模数检测信号端口获得所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值;
按照接地侧至电源侧的方向,逐一将通用输入输出信号端口置位为低电平,获得N-1个模数检测信号端口的电压值;
根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获得的所述N-1个模数检测信号端口的电压值,以及所有通用输入输出信号端口的输出值,确定每一个识别电阻的阻值。
结合所述第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获取的所述N-1个模数检测信号端口的电压值,以及所有通用输入输出信号端口的输出值,确定每一个识别电阻的阻值,具体包括:
根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获取的所述N-1个模数检测信号端口的电压值、所有通用输入输出信号端口的输出值,以及测量 电阻和电源电压,逐一确定未被置位过低电平的通用输入输出信号端口与置位于低电平的通用输入输出信号端口之间的识别电阻,到与测量电阻相连的识别电阻的之间串联阻值之和,并根据逐一确定的该串联阻值之和确定每一个识别电阻的阻值。
在第一方面的第三种可能的实现方式中,所述信号控制器根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别,具体包括:
获取所述串联在一起的N个识别电阻的阻值与器件型号的对应关系,根据所述对应关系以及所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
第二方面,本发明实施例提供一种电路板,包括上述的识别器件类别的电路,
其中,所述信号控制器为所述电路板上的处理器芯片。
第三方面,本发明实施例提供一种终端设备,包括上述的电路板。
第四方面,本发明实施例提供一种信号控制器,用于识别器件的类别,所述器件上包括:
测量电阻,所述测量电阻的一端与电源连接;
串联在一起的N个识别电阻,所述串联在一起的N个识别电阻的一端与所述测量电阻的另一端串联连接,所述串联在一起的N个识别电阻的另一端接地;所述N为大于1的自然数;
所述信号控制器包括至少一个模数检测信号端口、至少N-1个通用输入输出信号端口,其中,一个模数检测信号端口适于通过模数检测信号线连接于所述测量电阻和与所述测量电阻直接相连的识别电阻之间,N-1个通用输入输出信号端口适于通过通用输入输出信号线分别连接于每两个串联在一起的识别电阻之间;
所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,并根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
本发明实施例中,通过将识别电阻进行串联,并利用信号控制器中的模数检测信号端口输入的模数检测信号、通用输入输出信号端口输出的通用输入输出信号和测量电阻,来确定串联在一起的各个识别电阻的阻值,从而对器件的类别进行识别,该识别器件类别的电路使用元器件少、线路简单、容易测量,不仅提高了识别器件类别的种类, 并且减少了识别器件类别的电路的复杂度,降低了识别成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的识别电路结构图;
图2是本发明实施例1提供的电路结构示意图;
图3是本发明实施例1提供的方法流程图;
图4是本发明实施例1提供的步骤301对应的等效电路图;
图5是本发明实施例1提供的步骤302对应的等效电路图;
图6是本发明实施例1提供的步骤303对应的等效电路图;
图7是本发明实施例1提供的2个识别电阻电路结构示意图;
图8是本发明实施例2提供的电路结构示意图;
图9是本发明实施例2提供的方法流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术识别电路使用的元器件多、识别种类少等不足,本发明提供了一种识别器件类别的电路、电路板、终端设备及信号控制器。
实施例1
本发明第一个实施例提供了一种识别器件类别的电路,用于对单板或需要识别型号的器件进行识别。对于需要识别型号的器件或单板,本发明实施例需要在不同单板上串联焊接多个不同阻值的电阻组合,从而对器件或单板的类别进行识别。本发明实施例以 串联在一起的识别电阻为3个为例,该电路图如图2所示,该电路包括:测量电阻、串联在一起的3个识别电阻和信号控制器;其中,所述测量电阻的一端与电源连接,所述测量电阻的另一端与串联在一起的3个识别电阻的一端连接,该串联在一起的3个识别电阻的另一端接地,在本发明实施例中,从电源侧至接地侧的方向,定义串联在一起的3个识别电阻分别为识别电阻R1、识别电阻R2和识别电阻R3;所述信号控制器包括至少一个模数检测AD信号端口、至少2个通用输入输出GPIO信号端口,其中,一个AD信号端口通过AD信号线连接于所述测量电阻和识别电阻R1之间,GPIO1信号端口通过GPIO1信号线连接于识别电阻R1和识别电阻R2之间,GPIO2信号端口通过GPIO2信号线连接于识别电阻R2和识别电阻R3之间。
其中,当识别电阻的阻值为0时,测量电阻可以对电路起到保护作用。该测量电阻的阻值为已知阻值,该阻值需要限制在合适的区域内,且需要根据电源电压进行设定。
在本发明实施例中,信号控制器可以为外部控制器;也可以为测量单板上的处理器芯片,比如高通芯片。
信号控制器通过AD端口输入的AD信号和GPIO1端口、GPIO2端口分别输出的GPIO1信号和GPIO2信号,确定识别电阻R1、识别电阻R2和识别电阻R3的阻值,如图3所示,具体包括:
步骤301:将GPIO1端口和GPIO2端口的输出值置位为高阻,AD端口获得AD信号的电压值1;
其中,将GPIO1端口和GPIO2端口的输出值置位为高阻包括:将GPIO1信号线和GPIO2信号线悬空。
在本发明实施例中,将GPIO1端口和GPIO2端口的输出值置位为高阻后,对应于图2的等效电路如图4所示,AD端口获得的AD信号的电压值1为R1+R2+R3的电压值。
步骤302:将GPIO1端口的输出值置位为高阻,将GPIO2端口的输出值置位为低电平,AD端口获得AD信号的电压值2;
其中,将GPIO2端口的输出值置位为低电平表明,该GPIO2信号线将识别电阻R3短路。
在本发明实施例中,该步骤302对应于图2的等效电路如图5所示,AD端口获得的AD信号的电压值2为R1+R2的电压值。
步骤303:将GPIO1端口和GPIO2端口的输出值均置位为低电平,AD端口获得AD信号 的电压值3;
在本发明实施例中,该步骤303对应于图2的等效电路如图6所示,AD端口获得的AD信号的电压值3为R1的电压值。
步骤304:根据AD端口获得的AD信号的电压值1、电压值2和电压值3,以及根据电源电压和测量电阻的阻值,分别计算得到测量电阻的电流,并根据电流分别计算得到R1+R2+R3、R1+R2、R1的阻值;
测量电阻的电流=(电源电压-AD信号的电压值)/测量电阻的阻值;
R1+R2+R3=AD信号的电压值1/测量电阻的电流;
R1+R2=AD信号的电压值2/测量电阻的电流;
R1=AD信号的电压值3/测量电阻的电流。
步骤305:根据上述计算结果,分别计算得到该三个识别电阻中每个识别电阻的阻值;
其中,根据上述可以获得R1的阻值,则R2为R1+R2与R1的差值,R3为R1+R2+R3与R1+R2的差值。
步骤306:将每个识别电阻的阻值和基准电阻R的阻值的比值四舍五入,使得识别电阻的阻值为基准电阻R的整数倍;
由于在上述计算过程中,计算得到的识别电阻的阻值可能不是整数,因此需要由基准电阻R对识别电阻的阻值化为整数,从而根据得到的识别电阻的阻值组合确定识别器件的类别。
步骤307:根据识别电阻R1、识别电阻R2和识别电阻R3的阻值的组合,以及预先获取的识别电阻的阻值组合与识别电路的类别的对应关系,得到该电路的类别的型号。
结合AD信号的测量量程及阻值边界容错问题,设电阻测量最小精度为R(即R为基准电阻),测量只能区分R的整数倍,电阻阻值级别为1R到8R.以R1+R2+R3为8R为例,初步计算能得到的取值组合如下表1所示:
表1
Figure PCTCN2014092123-appb-000001
这个方法的限制条件是:每个电阻有0R-8R共9种取值,但是单个电阻、两个电阻串联、三个电阻串联的值也必须在0R-8R之间。
总计共有:9+8+7+6+5+4+3+2+1=45种组合,如果去除0R,保守计算也有36种组合。如过不去除0R的情况下,利用3个识别电阻和1个测量电阻依照顺序能够有:45+36+28+21+15+10+6+3+1=165种组合方式,即能够通过将该4个电阻根据电阻阻值的顺序依次焊接在165种不同电路板上,进而区分该165种电路板的型号。
其中,本发明实施例提供的方案与现有技术方案的比较结果如表2所示,如下:
表2
Figure PCTCN2014092123-appb-000002
由表2可知,本发明实施例通过将3个识别电阻串联连接在一起,同时利用信号控制器中的AD端口输入的AD信号和GPIO信号端口输出的GPIO信号,确定串联在一起的3个识别电阻的阻值,其中相对于现有技术而言,使用的元器件数量少、线路简单、容易测量、识别成本低;通过将识别电阻串联在一起,大大提高了电阻阻值的识别精度和识别器件 种类的数量。
在本发明实施例中,还可以通过将GPIO1信号端口、GPIO2信号端口设置为输入模块,读取电平,如图7所示,利用GPIO1信号端口和GPIO2信号端口的输入值,判断器件的类别。其中,在电源电压为3.3V的模式下,低电平为0-0.8V,2.7-3.3V为高电平,当GPIO1信号端口或GPIO2信号端口测量值处于低电平时,则输入值为0;当GPIO1信号端口或GPIO2信号端口测量值处于高电平时,则输入值为1。根据GPIO1信号端口或GPIO2信号端口的输入值的组合判断识别电路型号。图7中根据两个识别电阻可以组合4种型号。
随着芯片工艺水平的提升,AD采样精度的提升,在电路不改变的前提下,能达到更多的采样组合。
实施例2
根据第一个实施例中对3个识别电阻的详细阐述,本发明第二个实施例提供了一种识别器件类别的电路,具体阐述利用N个识别电阻对电路进行识别,如图8所示,该电路包括:
测量电阻801,所述测量电阻的一端与电源连接;
串联在一起的N个识别电阻802,所述串联在一起的N个识别电阻的一端与所述测量电阻的另一端串联连接,所述串联在一起的N个识别电阻的另一端接地;所述N为大于1的自然数;
信号控制器803,信号控制器包括至少一个模数检测信号端口、至少N-1个通用输入输出信号端口,其中,一个模数检测信号端口通过模数检测信号线连接于所述测量电阻和与所述测量电阻直接相连的识别电阻之间,N-1个通用输入输出信号端口通过通用输入输出信号线分别连接于每两个串联在一起的识别电阻之间;所述信号控制器用于通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,并根据所述串联在一起的N个识别电阻的阻值对所述器件类别进行识别。
在本发明实施例中,所述信号控制器用于确定所述串联在一起的N个识别电阻的阻值,该确定方法如图9所示,具体包括:
步骤901:将所有通用输入输出信号端口置位为高阻,模数检测信号端口获得所述 测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值;
其中,将所有GPIO信号端口置位为高阻,则AD信号端口测量的电压值为R1+R2+……+Rn的电压值n。
步骤902:按照接地侧至电源侧的方向,逐一将通用输入输出信号端口置位为低电平,获得N-1个模数检测信号端口的电压值;
其中,获得的N-1个AD信号端口的电压值包括:R1+R2+……+Rn-1的电压值n-1、R1+R2+……+Rn-2的电压值n-2、……、R1+R2的电压值2、R1的电压值1。
步骤903:根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获取的所述N-1个模数检测信号端口的电压值、所有通用输入输出信号端口的输出值,以及测量电阻和电源电压,逐一确定未被置位过低电平的通用输入输出信号端口与置位于低电平的通用输入输出信号端口之间的识别电阻,到与测量电阻相连的识别电阻的之间串联阻值之和。
根据公式R’=(电源电压-AD信号端口的电压值)/测量电阻的阻值,将R1+R2+……+Rn的电压值n、R1+R2+……+Rn-1的电压值n-1、R1+R2+……+Rn-2的电压值n-2、……、R1+R2的电压值2、R1的电压值1逐一代入,得到R1+R2+……+Rn、R1+R2+……+Rn-1、R1+R2+……+Rn-2、R1+R2、R1的阻值。
步骤904:根据确定的该串联阻值之和确定每一个识别电阻的阻值;
由于步骤803中得到R1的阻值,因此,R2=(R1+R2)-R1,R3=(R1+R2+R3)-(R1+R2),……,Rn=(R1+R2+……+Rn)-(R1+R2+……+Rn-1),从而得到每个识别电阻的阻值。
步骤905:获取所述串联在一起的N个识别电阻的阻值与器件型号的对应关系,根据所述对应关系以及所述串联在一起的N个识别电阻的阻值对器件的类别进行识别。
本发明实施例通过将识别电阻进行串联,并利用信号控制器中的模数检测信号端口输入的模数检测信号、通用输入输出信号端口输出的通用输入输出信号和测量电阻,来确定串联在一起的各个识别电阻的阻值,从而对器件的类别进行识别,该识别器件类别的电路使用元器件少、线路简单、容易测量,不仅提高了识别器件类别的种类,并且减少了识别器件类别的电路的复杂度,降低了识别成本。
实施例3
本发明第三个实施例还提供了一种电路板,包括如实施例1~实施例2中任一个实施例所述的识别器件类别的电路。
其中,所述信号控制器为所述电路板上的处理器芯片。
实施例4
本发明第四个实施例还提供了一种终端设备,包括如实施例3所述的电路板。所述终端设备可以是移动终端,比如手机,平板电脑,笔记本电脑,电子书等等,也可以是其他终端,比如台式电脑,机顶盒等等.
实施例5
本发明第五个实施例还提供了一种信号控制器,用于识别器件的类别,所述器件上包括:
测量电阻,所述测量电阻的一端与电源连接;
串联在一起的N个识别电阻,所述串联在一起的N个识别电阻的一端与所述测量电阻的另一端串联连接,所述串联在一起的N个识别电阻的另一端接地;所述N为大于1的自然数;
所述信号控制器包括至少一个模数检测信号端口、至少N-1个通用输入输出信号端口,其中,一个模数检测信号端口适于通过模数检测信号线连接于所述测量电阻和与所述测量电阻直接相连的识别电阻之间,N-1个通用输入输出信号端口适于通过通用输入输出信号线分别连接于每两个串联在一起的识别电阻之间;
所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,并根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
其中,该信号控制器可以是一种处理器芯片,也可以是单独的一个部件,在此不做限定。
很显然,本实施例可以参考前述实施例的内容,其相关的内容不再赘述。
本领域普通技术人员将会理解,本发明的各个方面、或各个方面的可能实现方式可 以被具体实施为系统、方法或者计算机程序产品。因此,本发明的各方面、或各个方面的可能实现方式可以采用完全硬件实施例、完全软件实施例(包括固件、驻留软件等等),或者组合软件和硬件方面的实施例的形式,在这里都统称为“电路”、“模块”或者“系统”。此外,本发明的各方面、或各个方面的可能实现方式可以采用计算机程序产品的形式,计算机程序产品是指存储在计算机可读介质中的计算机可读程序代码。
计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质包含但不限于电子、磁性、光学、电磁、红外或半导体系统、设备或者装置,或者前述的任意适当组合,如随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、光纤、便携式只读存储器(CD-ROM)。
计算机中的处理器读取存储在计算机可读介质中的计算机可读程序代码,使得处理器能够执行在流程图中每个步骤、或各步骤的组合中规定的功能动作;生成实施在框图的每一块、或各块的组合中规定的功能动作的装置。
计算机可读程序代码可以完全在用户的计算机上执行、部分在用户的计算机上执行、作为单独的软件包、部分在用户的计算机上并且部分在远程计算机上,或者完全在远程计算机或者服务器上执行。也应该注意,在某些替代实施方案中,在流程图中各步骤、或框图中各块所注明的功能可能不按图中注明的顺序发生。例如,依赖于所涉及的功能,接连示出的两个步骤、或两个块实际上可能被大致同时执行,或者这些块有时候可能被以相反顺序执行。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

  1. 一种识别器件类别的电路,其特征在于,该电路包括:
    测量电阻,所述测量电阻的一端与电源连接;
    串联在一起的N个识别电阻,所述串联在一起的N个识别电阻的一端与所述测量电阻的另一端串联连接,所述串联在一起的N个识别电阻的另一端接地;所述N为大于1的自然数;
    信号控制器,信号控制器包括至少一个模数检测信号端口、至少N-1个通用输入输出信号端口,其中,一个模数检测信号端口通过模数检测信号线连接于所述测量电阻和与所述测量电阻直接相连的识别电阻之间,N-1个通用输入输出信号端口通过通用输入输出信号线分别连接于每两个串联在一起的识别电阻之间;
    所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,并根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
  2. 如权利要求1所述的识别器件类别的电路,其特征在于,所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,具体包括:
    将所有通用输入输出信号端口置位为高阻,模数检测信号端口获得所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值;
    按照接地侧至电源侧的方向,逐一将通用输入输出信号端口置位为低电平,获得N-1个模数检测信号端口的电压值;
    根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获得的所述N-1个模数检测信号端口的电压值,以及所有通用输入输出信号端口的输出值,确定每一个识别电阻的阻值。
  3. 如权利要求2所述的识别器件类别的电路,其特征在于,所述根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获取的所述N-1个模数检测信号端口的电压值,以及所有通用输入输出信号端口的输出值,确定每一个识别电阻的阻值,具体包括:
    根据所述测量电阻和与所述测量电阻直接相连的识别电阻之间的电压值、获取的所 述N-1个模数检测信号端口的电压值、所有通用输入输出信号端口的输出值,以及测量电阻和电源电压,逐一确定未被置位过低电平的通用输入输出信号端口与置位于低电平的通用输入输出信号端口之间的识别电阻,到与测量电阻相连的识别电阻的之间串联阻值之和,并根据逐一确定的该串联阻值之和确定每一个识别电阻的阻值。
  4. 如权利要求1所述的识别器件类别的电路,其特征在于,所述信号控制器根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别,具体包括:
    获取所述串联在一起的N个识别电阻的阻值与器件型号的对应关系,根据所述对应关系以及所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
  5. 一种电路板,其特征在于,包括如权利要求1~4中任一项所述的识别器件类别的电路,
    其中,所述信号控制器为所述电路板上的处理器芯片。
  6. 一种终端设备,其特征在于,包括如权利要求5所述的电路板。
  7. 一种信号控制器,用于识别器件的类别,所述器件上包括:
    测量电阻,所述测量电阻的一端与电源连接;
    串联在一起的N个识别电阻,所述串联在一起的N个识别电阻的一端与所述测量电阻的另一端串联连接,所述串联在一起的N个识别电阻的另一端接地;所述N为大于1的自然数;
    其特征在于:
    所述信号控制器包括至少一个模数检测信号端口、至少N-1个通用输入输出信号端口,其中,一个模数检测信号端口适于通过模数检测信号线连接于所述测量电阻和与所述测量电阻直接相连的识别电阻之间,N-1个通用输入输出信号端口适于通过通用输入输出信号线分别连接于每两个串联在一起的识别电阻之间;
    所述信号控制器通过模数检测信号端口输入的模数检测信号和通用输入输出信号端口输出的通用输入输出信号和所述测量电阻确定所述串联在一起的N个识别电阻的阻值,并根据所述串联在一起的N个识别电阻的阻值对所述器件的类别进行识别。
PCT/CN2014/092123 2013-11-27 2014-11-25 识别器件类别的电路、电路板、终端设备及信号控制器 WO2015078351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310617062.2 2013-11-27
CN201310617062.2A CN103675531B (zh) 2013-11-27 2013-11-27 识别器件类别的电路、电路板、终端设备及信号控制器

Publications (1)

Publication Number Publication Date
WO2015078351A1 true WO2015078351A1 (zh) 2015-06-04

Family

ID=50313693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092123 WO2015078351A1 (zh) 2013-11-27 2014-11-25 识别器件类别的电路、电路板、终端设备及信号控制器

Country Status (2)

Country Link
CN (1) CN103675531B (zh)
WO (1) WO2015078351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113220619A (zh) * 2021-04-30 2021-08-06 山东英信计算机技术有限公司 一种分配pcie信道带宽的方法、系统及介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675531B (zh) * 2013-11-27 2017-01-25 华为终端有限公司 识别器件类别的电路、电路板、终端设备及信号控制器
CN106033116A (zh) * 2015-03-13 2016-10-19 乐星产电(无锡)有限公司 变频器容量识别装置及识别方法
CN106556752A (zh) * 2015-09-25 2017-04-05 鸿富锦精密工业(武汉)有限公司 Gpio接口侦测电路
CN105653288B (zh) * 2015-12-31 2019-06-21 高新兴物联科技有限公司 一种模块产品软件自动识别硬件的方法和装置
CN108091349B (zh) * 2016-11-23 2021-05-11 成都鼎桥通信技术有限公司 语音质量检测系统、方法及pesq控制终端
CN108809159B (zh) * 2017-05-01 2022-01-04 日本电产株式会社 无刷直流电动机、识别其种类的识别方法及识别装置
CN109946520A (zh) * 2017-12-20 2019-06-28 展讯通信(上海)有限公司 产品配置识别系统及方法
CN108551346B (zh) * 2018-04-17 2020-08-18 深圳市沃特沃德股份有限公司 通讯终端中频段的控制方法及装置
CN110123140A (zh) * 2019-05-28 2019-08-16 九阳股份有限公司 一种电加热壶
CN111323734A (zh) * 2020-03-28 2020-06-23 芜湖航翼集成设备有限公司 一种飞机武器外挂装置导通性通用检测系统及其检测方法
CN113932938A (zh) * 2020-06-29 2022-01-14 广东美的厨房电器制造有限公司 检测电路、控制方法、烹饪器具和计算机可读存储介质
CN113933558A (zh) * 2021-10-13 2022-01-14 江苏斯菲尔电气股份有限公司 一种可自动识别电流互感器规格并设置变比的仪表

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201047857Y (zh) * 2007-06-08 2008-04-16 王悦 一种可以自动识别不同类型扩展模块的万用表
JP2009122798A (ja) * 2007-11-13 2009-06-04 Panasonic Corp スイッチ入力認識装置
CN101483528A (zh) * 2009-02-23 2009-07-15 福建星网锐捷网络有限公司 一种模块化通信设备和管理模块
CN201859203U (zh) * 2010-11-03 2011-06-08 中航华东光电有限公司 具有模数转换器的单片机或微处理器的按键检测电路
CN103675531A (zh) * 2013-11-27 2014-03-26 华为终端有限公司 识别器件类别的电路、电路板、终端设备及信号控制器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2260003B (en) * 1991-09-28 1995-06-14 Motorola Israel Ltd Option board identification
US6460094B1 (en) * 1998-07-08 2002-10-01 Microsoft Corporation Peripheral device configured to detect the type of interface to which it is connected and configuring itself accordingly
US7890284B2 (en) * 2002-06-24 2011-02-15 Analog Devices, Inc. Identification system and method for recognizing any one of a number of different types of devices
CN100370264C (zh) * 2003-07-28 2008-02-20 华为技术有限公司 一种自动识别电路板类型的方法
CN101097534B (zh) * 2006-06-27 2010-09-15 中兴通讯股份有限公司 一种实现单板板类型识别与检测的方法与系统
US7948246B2 (en) * 2007-10-31 2011-05-24 Sony Ericsson Mobile Communications Ab Electronic device utilizing impedance and/or resistance identification to identify an accessory device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201047857Y (zh) * 2007-06-08 2008-04-16 王悦 一种可以自动识别不同类型扩展模块的万用表
JP2009122798A (ja) * 2007-11-13 2009-06-04 Panasonic Corp スイッチ入力認識装置
CN101483528A (zh) * 2009-02-23 2009-07-15 福建星网锐捷网络有限公司 一种模块化通信设备和管理模块
CN201859203U (zh) * 2010-11-03 2011-06-08 中航华东光电有限公司 具有模数转换器的单片机或微处理器的按键检测电路
CN103675531A (zh) * 2013-11-27 2014-03-26 华为终端有限公司 识别器件类别的电路、电路板、终端设备及信号控制器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113220619A (zh) * 2021-04-30 2021-08-06 山东英信计算机技术有限公司 一种分配pcie信道带宽的方法、系统及介质

Also Published As

Publication number Publication date
CN103675531B (zh) 2017-01-25
CN103675531A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015078351A1 (zh) 识别器件类别的电路、电路板、终端设备及信号控制器
TWI546545B (zh) 輔助測試電路及具有該輔助測試電路之晶片及電路板
CN102654543B (zh) 电容式触摸屏的测试方法及其测试设备
CN103293771A (zh) 液晶配向检查机及方法
US8239815B2 (en) System and method for inspecting layout of a printed circuit board
CN106872881B (zh) 一种电路板测试装置、方法及系统
TWI500945B (zh) 電路板之測試系統
US9921208B2 (en) Apparatus and methods for reducing electrical shock hazard from biosensor meters
TW201336295A (zh) 相機模組閃屏偵測裝置及相機模組閃屏偵測方法
US8970464B2 (en) Systems and methods for measuring sheet resistance
KR102168688B1 (ko) 구동 칩 및 이를 포함하는 표시 장치
CN103048611A (zh) Cob模组通用测试方式
CN204463780U (zh) 短路棒治具
US20180136270A1 (en) Product self-testing method
CN112418590B (zh) 一种印制电路板元器件检测方法及系统
US20130096859A1 (en) Resistance determining system
US20130127445A1 (en) Test fixture with load
US9608435B2 (en) Electronic device and motherboard
US20120242362A1 (en) Test apparatus
CN113567834A (zh) 小卡电路通路测试方法、装置、计算机设备及存储介质
WO2016046917A1 (ja) 電気製品の組み立て工程の管理方法
US10698531B2 (en) Inspection device and inspection method
CN112731111B (zh) 一种新型pcba器件失效短路测试方法
US20230136914A1 (en) Sensor device for detecting electrical defects based on resonance frequency
US20130285689A1 (en) Method for detecting working state of i/o pins of electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865501

Country of ref document: EP

Kind code of ref document: A1