WO2015078163A1 - 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料 - Google Patents

制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料 Download PDF

Info

Publication number
WO2015078163A1
WO2015078163A1 PCT/CN2014/078919 CN2014078919W WO2015078163A1 WO 2015078163 A1 WO2015078163 A1 WO 2015078163A1 CN 2014078919 W CN2014078919 W CN 2014078919W WO 2015078163 A1 WO2015078163 A1 WO 2015078163A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
oxidized
composite material
preparing
electrospinning
Prior art date
Application number
PCT/CN2014/078919
Other languages
English (en)
French (fr)
Inventor
叶柏盈
赵利民
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2015078163A1 publication Critical patent/WO2015078163A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to the field of preparation of nano-oxidation, and more particularly to a method for preparing a high specific surface area oxidized composite and the oxidized composite. Background technique
  • NWs nanowires
  • oxidized nanowires oxidized nanowires
  • the conventional method of growing an oxidized nanowire is a chemical growth method such as a hydrothermal method in which an oxidized nanowire is grown on the surface of a metal layer substrate having a seed layer.
  • a chemical growth method such as a hydrothermal method in which an oxidized nanowire is grown on the surface of a metal layer substrate having a seed layer.
  • bubbles generated in the culture solution rise to the surface of the solution and are often captured by the surface of the substrate facing downward, which inhibits the growth of the oxidized nanowires on the surface of the large-area metal layer substrate.
  • the oxidized nanowires have poor growth orientation on the surface of the metal layer substrate, and the specific surface area is not high.
  • the technical problem to be solved by the present invention is to provide a method for preparing an oxidized composite material and the oxidized composite material, which increases the specific surface area per unit volume of the oxidized nano-column array.
  • an oxidized nano-film is formed on the substrate by electrospinning, and after calcination, an oxidation word is grown on the surface of the oxidized nano-film of the formed hexagram fiber phase with each oxidized nanowire as an axis.
  • the nano-pillars form an array of oxidized nano-pillars, which are hexagonal columns with predominant orientation on the (002) plane. Due to the relatively high width and height of the synthesized oxidized nano-columns (hexagonal columns), the specific surface area per unit volume of the oxidized nano-column array can be increased.
  • the oxidation word obtained by the present invention can be used for LEDs, solar cells or photocatalytic surfaces and the like.
  • the first technical solution adopted by the present invention is: A method for preparing an oxidized composite material, the method comprising the following steps:
  • the polyethylene polymer is added to the solvent, and after the polyethylene polymer is dissolved, the salt is added to the liquid, and then uniformly mixed to obtain an electrospinning solution; wherein the weight ratio of the polyethylene polymer to the salt is 1-5: 0.5-3;
  • the electrospinning solution obtained in the step (1) is added to an electrospinning device, and then the electrospinning solution is injected onto a substrate for electrospinning, and a polyethylene polymer/salt fiber membrane fiber spinning is obtained on the substrate. ;
  • the polyethylene-based polymer/salt fiber membrane obtained in the step (2) is calcined together with the substrate, and the calcination conditions are as follows: the temperature is raised to 500-600 ° C at a heating rate of 2-10 ° C/min, and the temperature is calcined 1-6. After cooling to room temperature, an oxidized nanofilm is obtained, which is composed of an oxidized nanowire of a hexagonal fiber crystal phase;
  • the oxidized nanofilm obtained in the step (3) is used as a seed layer, and the oxidized nano-column is grown on the seed layer with each oxidized nanowire as an axis to form an oxidized nano-column array, and the oxidized nano-membrane is obtained.
  • the salt is acetic acid, nitric acid, oxalic acid and a hydrate thereof;
  • the solvent is mercapto amide (DMF), ethanol (ethanol) Or tetrahydrofuran (THF);
  • the polyethylene polymer is polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP)
  • an electrospinning solution is doped with an oxide or a metal, the oxide is A1 2 0 3 or Sn0 2 , and the metal is Ag, Au, Pt or Cu.
  • the electrospinning solution is injected at a voltage of 10 kV to 20 kV, a receiving distance of 8 cm to 20 cm, and a pushing speed of 0.1 ml/hr to 1 ml/hr. Electrospinning onto the substrate.
  • the aforementioned method for preparing an oxidized composite material has a spinning time of from 30 seconds to 10 minutes.
  • the oxidized nanowire has a diameter of 200 nm to 300 nm.
  • a hydrothermal synthesis method or a microwave heating method is used to grow an oxidized nanometer with each oxidized nanowire as an axis in a salt solution containing a hydrogen and oxygen source.
  • the column is formed into an array of oxidized nanopillars.
  • the salt solution of the hydrogen and oxygen source is an aqueous solution of acetic acid, nitric acid or oxalic acid; the hydrogen and oxygen source used is sodium hydroxide, ammonia water, ammonium carbonate, or hexamethylene Tetraamine.
  • the hydrothermal synthesis method is: at 80-100 ° C, in a salt solution containing a hydrogen-oxygen source, each oxidized nanowire Oxidation of the nanorods for the axis for 2-12 hours.
  • the oxidized nano-column is a hexagonal column with a (002) plane dominant orientation, and the hexagonal column has a cross-sectional maximum width of 200 nm to 300 nm, and the hexagonal column height is 2-3 ⁇ ⁇ .
  • the thickness of the oxidized composite material is 5-8 ⁇ m.
  • the method further comprises obtaining a polyethylene-based polymer/salt fiber membrane in which the fiber spinning is ordered.
  • the substrate is placed in a receiving cavity of the carrier; wherein the carrier comprises a first carrier substrate, and a second surface disposed on a side surface of the first carrier substrate
  • the carrier substrate and the third carrier substrate, the second carrier substrate and the third carrier substrate are disposed in parallel and spaced apart, the first carrier substrate is provided with a first metal strip, and the third carrier substrate is provided with a first a second metal strip, the first metal strip is disposed in parallel with the second metal strip; the second carrier substrate and the first metal strip form a receiving cavity with the third carrier substrate and the second metal strip.
  • the foregoing method for preparing an oxidized composite material wherein the first metal strip and the second metal strip are used
  • the material is aluminum foil, copper foil, aluminum foil or copper foil;
  • the first carrier substrate, the second carrier substrate and the third carrier substrate are made of an insulating material such as glass.
  • the oxidized nanofilm is composed of a plurality of oxidized nanowires of a hexagonal fiber crystal phase.
  • the second technical solution provided by the present invention is: An oxidized composite material, which is produced by any of the above methods.
  • the third technical solution provided by the present invention is: an oxidized composite material comprising an oxidized nano film and an oxidized nano column array; wherein the oxidized nano film is composed of an oxidized nanowire of a hexagonal fiber crystal phase, The oxidized nano-column is grown on the axis of each oxidized nanowire to form the oxidized nano-pillar array, and the oxidized nano-column is a hexagonal column of (002) plane dominant orientation.
  • the hexagonal column has a cross-sectional maximum width of 200-300 nm and a hexagonal column height of 2-3 ⁇ .
  • the oxidized nanowire has a diameter of 200 to 300 nm.
  • the oxidized nanofilm is produced by calcining an electrospun polyethylene polymer/salt fiber membrane.
  • the oxidized composite material has a thickness of 5-8 ⁇ m.
  • the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase in parallel.
  • the nano-film of oxidized ruthenium per cubic micrometer is composed of 2-3 oxidized nanowires on average, and the oxidized nano-columns are intertwined with each other.
  • the oxidized composite material obtained by the present invention grows an oxidized nano-column on the oxidized nano-sheet of each of the oxidized nano-films which are calcined into a hexa-fibrillary crystal phase to form an oxidized nano-column array.
  • the oxidized column is grown into a hexagonal column with a (002) plane dominant orientation. Since the width and height of the synthetic oxidation nano-column are relatively high, the surface area per unit volume can be increased.
  • the oxidized composite material obtained by the present invention can be used for ZnO-based LEDs, solar cells, photocatalytic surfaces, and the like. Oxygen of the invention
  • the preparation process of the composite material is simple. DRAWINGS
  • Fig. 1 is an XRD spectrum of an oxidized nanofilm composed of oxidized nanowires after electrospinning, in which an oxidized word is deposited on a gold-plated silicon chip.
  • Fig. 2 is a topographical view of an oxidized nanofilm optical illuminator (1000 times) composed of oxidized nanowires after electrospinning in the first embodiment.
  • Fig. 3 is a topographical view showing the SEM (10000 times) of an oxidized nanofilm composed of oxidized nanowires after electrospinning in the first embodiment.
  • Figure 4 is a schematic view of a carrier of a substrate used in a second embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view showing a carrier of a substrate used in a second embodiment of the present invention.
  • Fig. 6 is a view showing the process of electrospinning on a carrier of a substrate used in the second embodiment of the present invention.
  • Fig. 7 is a view showing the state after electrospinning is completed on the carrier of the substrate used in the second embodiment of the present invention.
  • Figure 8 is a process of removing a substrate from a carrier of a substrate used in a second embodiment of the present invention.
  • Fig. 9 is a view showing the morphology of an oriented oxidized nanofilm before electrospinning in an optical microscope (1000 times) according to a second embodiment of the present invention.
  • Fig. 10 is a view showing the morphology of an oxidized nano-membrane-oxidized nano-pillar array composite obtained by growing an oxidized nano-column on an oriented oxidized nano-film according to a second embodiment of the present invention at SEM (500 times).
  • Fig. 11 is a view showing the morphology of an oxidized nano-membrane-oxidized nano-pillar array composite obtained by growing an oxidized nano-column on an oriented oxidized nano-film according to a second embodiment of the present invention at SEM (2000 times).
  • an oxidized nano-sheet-oxidized nano-pillar array composite obtained by growing an oxidized nano-column on an oriented oxidized nano-film, in SEM (10000) The appearance under the times).
  • a method of preparing an oxidized composite material comprising the steps of:
  • the polyethylene-based polymer is added to the solvent, and after the polyethylene-based polymer is dissolved, the salt is added to the liquid, and then uniformly mixed to obtain an electrospinning solution.
  • the weight ratio of the polyethylene polymer to the salt is 1-5: 0.5-3.
  • l-5 g of a polyethylene-based polymer is added per 10 ml of the solvent, and then salt is added to the mixed solution, and 0.5-3 g of the salt is added per 10 ml of the mixed solution.
  • the salt may be acetic acid, nitric acid, oxalic acid and hydrates thereof.
  • the solvent may be mercapto amide (DMF), ethanol or tetrahydrofuran (THF).
  • the polyethylene-based polymer may be polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP).
  • the electrospinning solution is doped with an oxide or a metal to enhance the performance of the oxidation in a specific aspect
  • the oxide may be A1 2 0 3 or Sn0 2
  • the metal may be Ag, Au, Pt Or Cu.
  • the electrospinning solution obtained in the step (1) is introduced into an electrospinning apparatus, and then the electrospinning solution is injected onto a substrate to be electrospun, and a polyethylene-based polymer/salt fiber membrane is obtained on the substrate.
  • the electrospinning device used in the present invention is a conventional commercially available electrospinning device. Specifically, the electrospinning solution obtained in the step (1) is added to a liquid feeding device such as an injection needle of an electrospinning device, the needle is made of metal such as stainless steel, the needle is connected to a high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 10kV-20kV and receiving distance of 8cm-20cm, the electrospinning solution is injected onto the substrate through the spraying device to perform electrospinning with a micro pump at a pushing speed of 0.1ml/hr-lml/hr. A polyethylene-based polymer/salt fiber membrane was obtained on the substrate.
  • the present invention has no special requirements on the substrate, and conventional substrates can be applied to the present invention, such as gold plating. Silicon chip.
  • the polyethylene-based polymer/salt fiber membrane obtained in the step (2) is calcined together with the substrate, and the calcination conditions are as follows: the temperature is raised to 500-600 ° C at a heating rate of 2-10 ° C/min, and the temperature is calcined 1-6. Hour; then cooled to room temperature to obtain an oxidized nanofilm.
  • the obtained oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase having a diameter of 200 nm to 300 nm.
  • Fig. 1 is a view showing an XRD spectrum of an oxidized nanofilm composed of oxidized nanowires in this step of a preferred embodiment of the present invention. It can be seen from Fig. 1 that ZnO is a hexagonal fiber ore phase, and the strongest peak is 002.
  • Fig. 2 is a topographical view of a preferred embodiment of this step of an oxidized nanofilm optical microscope (1000 times) composed of oxidized nanowires.
  • Figure 3 is a topographical view of a preferred embodiment of the oxidized nanofilm SEM (10000 times) consisting of oxidized nanowires. It can be seen from Fig. 2 and Fig.
  • the oxidized nanofilm of the present invention is composed of oxidized nanowires. It can be seen from the SEM image that the nanocolumn is in the shape of a hexagonal column, and it can be seen that the oxidation growth is the dominant orientation of the (002) plane.
  • the oxidized nanofilm obtained in the step (3) is used as a seed layer, and an oxidized column is grown on the seed layer to form an oxidized nano-array, and a composite material of an oxidized nano-membrane-oxidized nano-pillar array is obtained.
  • the oxidized nano-column is grown in a salt solution containing a hydrogen-oxygen source by hydrothermal synthesis or microwave heating.
  • the hydrothermal synthesis method is a method for synthesizing an oxidized nanorod array by hydrothermal method.
  • the salt solution containing the hydrogen and oxygen source is an aqueous solution of acetic acid, nitric acid or oxalic acid; the source of hydrogen and oxygen used is sodium hydroxide, ammonia water, ammonium carbonate, or hexamethylenetetramine.
  • Add the salt to a container containing deionized water (sealing bottle or hydrothermal kettle), and then inject a portion of the deionized water at a concentration of 5 to 50 mM (mmol per liter).
  • a hydrogen-oxygen source such as a drop of ammonia water
  • a hydrogen-containing oxygen source 80-100 ° C (for example, using an oven).
  • the oxidation column is grown for 2-12 hours.
  • the oxidized nano-column obtained in this step is a hexagonal column of (002) plane dominant orientation, the hexagonal column has a maximum cross-section width of 200-300 nm, and the hexagonal column height is 2-3 ⁇ .
  • the oxidized composite material comprising an oxidized nano-film and an oxidized nano-column array, wherein the oxidized nano-column is vertically grown on one side surface of the oxidized nano-film to constitute the oxidized word
  • the nano-pillar array, the oxidized nano-column is a hexagonal column with a (002) plane dominant orientation.
  • the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase, the oxidized nanowire having a diameter of 200-300 nm, and the obtained oxidized composite material having a thickness of 5-8 ⁇ m.
  • the oxidized composite material obtained by the invention grows an oxidized nano-column on a seed layer of an oxidized nano-film which is calcined into a hexagonal fiber ore crystal phase to form an oxidized nano-column array, and the oxidized nano-column grows into a (002) plane.
  • Advantageously oriented hexagonal column Since the width and height of the synthetic oxidized nanocolumn are relatively high, the surface area per unit volume can be increased.
  • the present invention employs a second embodiment in order to obtain an oxidized venous film composed of oxidized nanowires of a hexagonal fiber crystal phase.
  • the second embodiment will be described in detail below.
  • This embodiment has an electrospinning step different from that of the first embodiment described above, and further includes obtaining a polyethylene-based polymer/salt fiber membrane in which fiber spinning is arranged in an orderly manner. Prior to electrospinning, the substrate is
  • the carrier comprises a first carrier substrate 1, a second carrier substrate 2 and a third carrier substrate 3 disposed on one side of the first carrier substrate, the second carrier substrate 2 and the third carrier substrate 3 being parallel and spaced apart Settings.
  • a first metal strip 4 is provided on the second carrier base 2, the first metal strip 4 being disposed along a side of the second carrier substrate 2 which is parallel to the third carrier substrate.
  • a second metal strip 5 is provided on the third carrier substrate 3, and the second metal strip 5 is disposed along a side of the third carrier substrate 3 which is parallel to the second carrier substrate 2.
  • the second carrier substrate 2 and the first metal strip 4 form a receiving cavity with the third carrier substrate 3 and the second metal strip 5.
  • Fig. 6 is a view showing the process of electrospinning in this embodiment, in which an electrospinning liquid is sprayed onto a substrate 6 via an electrospinning device 7, to form an oxidized nanowire 8.
  • Fig. 7 shows the state after the electrospinning is completed in this embodiment.
  • Figure 8 is a process of the embodiment for removing the substrate from the carrier. It can be seen from Fig. 6-8 that the oxidized nanofilm is composed of oxidized nanowires in parallel. In this embodiment, each cubic micron oxidized nanofilm is composed of 2-3 oxidized nanowires on average, and the oxidized nanopillars are intertwined with each other. For example, the total surface area of the oxidized nanofilm is 4.15 ⁇ 2 , and there are an average of 2.56 oxidized nanowires per cubic micrometer of oxidized nanofilm.
  • the emitter is positively charged and the metal strip on the carrier is grounded, thus An electric field is generated.
  • the electrospinning itself can be regarded as a positively charged fiber, which is strongly deposited on a grounded carrier under an electric field.
  • the spinning moves to the vicinity of the metal strip, due to the opposite electrical properties of the two, the two ends of the metal strip are subjected to the maximum Coulomb force attraction under the action of Coulomb force, so the two ends of the spinning are pulled. And make it perpendicular to the direction of the metal strip.
  • the spinning between the metal strips is positively charged. The ordered arrangement between the spinning is enhanced by the electrostatic repulsion between the spinning.
  • the first metal strip and the second metal strip are made of aluminum foil, copper foil, aluminum sheet or copper sheet; the first carrier substrate, the second carrier substrate and the third carrier substrate are made of an insulating material. For example, glass.
  • the electrospinning solution obtained in the step (1) is added to an electrospinning device, and then the electrospinning liquid is sprayed onto a substrate placed in a receiving chamber of the carrier to be electrospun, and polyethylene polymerization is obtained on the substrate.
  • the oxidized nanofilm obtained after calcination is composed of the oxidized nanowires of the hexagonal fiber crystal phase.
  • the oxidized nanofilm has a certain orientation, so that the oxidized nano-pillars grown on the oxidized nanowires are more ordered, and the obtained specific surface area is larger.
  • the oxidized composite material of this embodiment has a larger specific surface area.
  • the carrier is used for electrospinning to prepare a polyethylene polymer/salt fiber membrane, which has the advantages of simple process and high repeatability, and only needs to be replaced every time for preparation, and the prepared polyethylene polymer/salt fiber membrane has The order is high, and after oxidation, the oxidized nanowires are arranged in parallel, so that the oxidized nano-pillars grown thereon have a larger specific surface area. It is understood that this should not be construed as limiting the scope of the claims.
  • the composite material of the oxidized nano-membrane-oxidized nano-pillar array obtained in this embodiment has a thickness of 5 ⁇ m, and the diameter of the oxidized nano-line constituting the oxidized nano-film is 300 nm, and the size of the oxidized nano-column is 300 nm in diameter and the height is 2 ⁇ ⁇ . .
  • the electrospinning solution obtained in the step (1) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 15kV and receiving distance of 14cm, a micro pump was used to push the speed of 0.5ml/hr, and the electrospinning solution was injected onto the base gold-plated silicon chip for electrospinning, and PVP/salt was obtained on the substrate. Fiber membrane.
  • the fiber membrane obtained in the step (2) is calcined together with the substrate in a high-temperature furnace under the conditions of: raising the temperature to 500 ° C at a heating rate of 10 ° C / min, calcining at a constant temperature for 1 hour; and then cooling to room temperature to obtain oxidation. Recall the nano film.
  • Figure 1 shows the XRD spectrum of the oxidized nanofilm composed of oxidized nanowires in this step. It can be seen from Fig. 1 that ZnO is a hexagonal fiber crystal phase, and the strongest peak is the (002) plane.
  • Fig. 2 is a topographical view of the oxidized nanofilm optical microscope (1000 times) composed of oxidized nanowires in this step.
  • Fig. 3 is a topographical view of the SEM (10000 times) of the oxidized nanofilm composed of the oxidized nanowires in this step. It can be seen from Fig. 2 and Fig. 3 that the oxidized nanofilm is composed of oxidized nanowires.
  • the obtained oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase, and the diameter of the oxidized nanowire is 300 nm.
  • nitric acid 0.238 g was added to a sealed bottle containing 250 ml of deionized water, and then 40 ml of deionized water was injected. After the nitric acid was dissolved, 1 ml of aqueous ammonia (25% by weight) was added dropwise, and then uniformly mixed, and then at 90°. The reaction was carried out for 5 hours in an oven at C to grow the oxidized nano-column.
  • the oxidized nano-column obtained in this step is a hexagonal column of (002) plane dominant orientation, the hexagonal column has a maximum cross-sectional width of 300 nm, and the hexagonal column height is 2 ⁇ .
  • the composite material of the oxidized nanofilm-oxidized nano-pillar array obtained in this embodiment has a thickness of 8 ⁇ . m, the oxidized nanowire constituting the oxidized nanofilm has a diameter of 300 nm, and the oxidized nano-column has a diameter of 300 nm and a height of 2 ⁇ m.
  • the electrospinning solution obtained in the step (1) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 15kV and receiving distance of 14cm, a micro pump was used to push the speed of 0.5ml/hr, and the electrospinning solution was injected onto the base gold-plated silicon chip for electrospinning, and PVP/salt was obtained on the substrate. Fiber membrane.
  • the fiber membrane obtained in the step (2) is calcined together with the substrate in a high temperature furnace under the following conditions: heating to 600 ° C at a heating rate of 5 ° C / min, constant temperature calcination for 2 hours; and then cooling to room temperature to obtain oxidation Recall the nano film.
  • the oxidized nanofilm is composed of oxidized nanowires.
  • the obtained oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase, and the diameter of the oxidized nanowire is 300.
  • nitric acid 0.238 g was added to a sealed bottle containing 250 ml of deionized water, and then injected.
  • the oxidized nano-column obtained in this step is a hexagonal column with a (002) plane dominant orientation, the hexagonal column has a maximum cross-sectional width of 300 nm, and the hexagonal column height is 2 ⁇ .
  • the thickness of the composite obtained in the present comparative example was 1.5 ⁇ m, and the diameter of the oxidized nanowire constituting the oxidized nanofilm was 120 nm, and the size of the oxidized nano-column was 120 nm in diameter and 0.8 ⁇ m in height.
  • PVP polyvinylpyrrolidone
  • DMF mercapto amide
  • the electrospinning solution obtained in the step (1) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 15kV and receiving distance of 14cm, a micro pump was used to push the speed of 0.5ml/hr, and the electrospinning solution was injected onto the base gold-plated silicon chip for electrospinning, and PVP/salt was obtained on the substrate. Fiber membrane.
  • the fiber membrane obtained in the step (2) is calcined together with the substrate in a high-temperature furnace under the conditions of: raising the temperature to 450 ° C at a heating rate of 2 ° C / min, calcining at a constant temperature for 3 hours; then cooling to room temperature to obtain oxidation Recall the nano film.
  • nitric acid 0.238 g was added to a sealed bottle containing 250 ml of deionized water, and then 40 ml of deionized water was injected. After the nitric acid was dissolved, 1 ml of aqueous ammonia (28% by weight) was added dropwise, and then uniformly mixed, and then at 90 ° C. The reaction was carried out for 5 hours in an oven to grow the oxidized nano-column.
  • the thickness of the composite obtained in this comparative example was 1.3 ⁇ m, and the diameter of the oxidized nanowire constituting the oxidized nanofilm was 150 nm, and the size of the oxidized nano-column was 150 nm and the height was 1 ⁇ m.
  • the electrospinning solution obtained in the step (1) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 15kV and receiving distance of 14cm, a micro pump was used to push the speed of 0.5ml/hr, and the electrospinning solution was injected onto the base gold-plated silicon chip for electrospinning, and PVP/salt was obtained on the substrate. Fiber membrane.
  • the fiber membrane obtained in the step (2) is calcined together with the substrate in a high-temperature furnace under the following conditions: the temperature is raised to 650 ° C at a heating rate of 2 ° C / min, and the temperature is calcined for 3 hours; then cooled to room temperature to obtain an oxidation word.
  • Nano film is calcined together with the substrate in a high-temperature furnace under the following conditions: the temperature is raised to 650 ° C at a heating rate of 2 ° C / min, and the temperature is calcined for 3 hours; then cooled to room temperature to obtain an oxidation word.
  • nitric acid 0.238 g was added to a sealed bottle containing 250 ml of deionized water, and then 40 ml of deionized water was injected. After the nitric acid was dissolved, 1 ml of aqueous ammonia (28% by weight) was added dropwise, and then uniformly mixed, and then at 90 ° C. The reaction was carried out for 5 hours in an oven to grow the oxidized nano-column.
  • the oxidized nanofilm obtained by calcination of the comparative example is larger than 600 °C, and the oxidized crystal grains become larger, and the ZnO nano-column grown thereon under the same hydrothermal method is large, so that the specific surface area is affected.
  • the composite material of the oxidized nanofilm-oxidized nano-pillar array obtained in this embodiment has a thickness of 6 ⁇ m, the thickness of the oxidized nano-film is 200 nm, and the size of the oxidized nano-column is 200 nm and the height is 2 ⁇ m.
  • Electrospinning The electrospinning solution obtained in the step (1) is added to the injection needle tube, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded.
  • the substrate-plated silicon chip is placed in a receiving cavity of the carrier as shown in FIGS. 4 and 5.
  • FIG. 9 is a topography of an oriented oxidized nanofilm under an optical microscope (1000 times).
  • the fiber membrane obtained in the step (2) is calcined together with the substrate in a high-temperature furnace under the following conditions: the temperature is raised to 500 ° C at a heating rate of 10 ° C / min, and the temperature is calcined for 1 hour; then cooled to room temperature to obtain an oxidation word.
  • Nano film is calcined together with the substrate in a high-temperature furnace under the following conditions: the temperature is raised to 500 ° C at a heating rate of 10 ° C / min, and the temperature is calcined for 1 hour; then cooled to room temperature to obtain an oxidation word.
  • the obtained oxidized nanofilm was composed of a plurality of oxidized nanowires of a hexagonal fiber crystal phase, and the diameter of the oxidized nanowire was 200 nm.
  • nitric acid 0.238 g was added to a sealed bottle containing 250 ml of deionized water, and then 40 ml of deionized water was injected. After the nitric acid was dissolved, 1 ml of aqueous ammonia (28% by weight) was added dropwise, and then uniformly mixed, and then at 90 ° C. The reaction was carried out for 5 hours in an oven to grow the oxidized nano-column.
  • the oxidized nano-column obtained in this step is a hexagonal column of (002) plane dominant orientation, and the hexagonal column has a maximum cross-sectional width of 200 nm.
  • the height of the hexagonal column is 2 ⁇ ⁇ .
  • Fig. 10 is a view showing the morphology of an oxidized nanofilm-oxidized nano-pillar array composite obtained by growing an oxidized nano-column on an oriented oxidized nano-film in this example under SEM (500 times).
  • Fig. 11 is a view showing the morphology of an oxidized nano-membrane-oxidized nano-pillar array composite obtained by growing an oxidized nano-column on an oriented oxidized ruthenium film in this example under SEM (2000 times).
  • Fig. 12 is a view showing the morphology of an oxidized nanofilm-oxidized nano-pillar array composite obtained by growing an oxidized nano-column on an oriented oxidized nano-film in this example under SEM (10000 times
  • an oxidized nanofilm is formed on the substrate by electrospinning-calcination, and the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase, which may be disordered or parallel.
  • an oxidized nano-column is grown on the surface of the oxidized nano-film with each oxidized nanowire as an axis to form an oxidized nano-pillar array, which is a hexagonal column with an (002) plane dominant orientation. Due to The synthesized zinc oxide nanocolumn (hexagonal column) has a relatively high width and height, and can increase the specific surface area per unit volume of the oxidized nano-column array.
  • the zinc oxide obtained by the present invention can be used for LEDs, solar cells or photocatalytic surfaces and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料。该方法包括:(1)配制氧化锌纳米膜用静电纺丝液;(2)静电纺丝;(3)煅烧,将步骤(2)所得聚乙烯类聚合物/锌盐纤维膜连同基底一起进行煅烧,煅烧条件为:按照2-10°C/min的升温速率升温至500-600°C,恒温煅烧1-6小时;然后冷却到室温,得到氧化锌纳米膜,所述氧化锌纳米膜由六边纤锌矿晶相的氧化锌纳米线构成;以及(4)生长氧化锌纳米柱阵列,得到氧化锌纳米膜-氧化锌纳米柱阵列的复合材料。本发明增加了氧化锌纳米柱阵列单位体积里的比表面积。

Description

制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料 技术领域
本发明涉及纳米氧化辞的制备领域, 尤其是涉及一种高比表面积的氧化 辞复合材料的制备方法及该氧化辞复合材料。 背景技术
2006年, 美国佐治亚理工学院教授王中林等成功地在纳米尺度范围内将 机械能转换成电能, 研制出世界上最小的发电机-纳米发电机。 纳米发电机的 基本原理是: 当纳米线(NWs, 例如氧化辞纳米线)在外力下动态拉伸时, 纳米线中生成压电电势, 相应瞬变电流在两端流动以平衡费米能级。
常规生长氧化辞纳米线的方法为化学生长方法, 例如水热法, 使氧化辞 纳米线在带有种子层的金属层基底表面生长。 以往, 在氧化辞纳米线生长过 程中,培养液中产生的气泡上升到溶液表面且时常被面朝下的基底表面捕获, 抑制了氧化辞纳米线在大面积金属层基底表面上均勾生长。 发明内容
常规生长纳米线的方法, 例如水热法, 氧化辞纳米线在金属层基底表面 生长取向度较差, 比表面积不高。 本发明解决的技术问题是提供一种制备氧 化辞复合材料的方法及该氧化辞复合材料, 增加了氧化辞纳米柱阵列单位体 积里的比表面积。 本发明釆用静电纺丝法在基底上生成氧化辞纳米膜, 经煅烧后, 在生成 的六边纤辞矿晶相的氧化辞纳米膜表面上以每根氧化辞纳米线为轴生长氧化 辞纳米柱以形成氧化辞纳米柱阵列, 该氧化辞纳米柱是在 (002)面优势取向的 六角柱。 由于合成的氧化辞纳米柱(六角柱) 的宽高比较高, 可以增加氧化 辞纳米柱阵列单位体积里的比表面积。 本发明所得氧化辞可以用于 LED、 太 阳能电池或光催化表面等。 为了解决上述技术问题, 本发明釆用的第一技术方案是: 一种制备氧化 辞复合材料的方法, 该方法包括以下步骤:
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将聚乙烯类聚合物加入到溶剂中, 待聚乙烯类聚合物溶解后, 向液体中 加入辞盐, 然后混合均匀得到静电纺丝液; 其中, 聚乙烯类聚合物与辞盐的 重量比为 1-5: 0.5-3;
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 注射到基底上进行静电纺丝, 在基底上获得聚乙烯类聚合物 /辞盐纤维膜纤维 纺丝;
( 3 )煅烧
将步骤(2 ) 所得聚乙烯类聚合物 /辞盐纤维膜连同基底一起进行煅烧, 煅烧条件为: 按照 2-10°C/min的升温速率升温至 500-600 °C , 恒温煅烧 1-6小 时; 然后冷却到室温, 得到氧化辞纳米膜, 所述氧化辞纳米膜由六边纤辞矿 晶相的氧化辞纳米线构成; 以及
( 4 )生长氧化辞纳米柱阵列
以步骤(3 )所得氧化辞纳米膜为种子层, 在所述种子层上以每根氧化辞 纳米线为轴, 生长氧化辞纳米柱以形成氧化辞纳米柱阵列, 得到氧化辞纳米 膜 -氧化辞纳米柱阵列的复合材料。
前述的制备氧化辞复合材料的方法, 步骤(1 ) 中, 所述辞盐是醋酸辞、 硝酸辞、草酸辞及它们的水合物;所述溶剂是曱基曱酰胺 (DMF), 乙醇 (ethanol) 或四氢呋喃 (THF);所述聚乙烯类聚合物是聚乙烯醇 (PVA)或聚乙烯吡咯烷酮 (PVP)„
前述的制备氧化辞复合材料的方法, 步骤(1 )中, 在静电纺丝液中掺杂 氧化物或金属, 氧化物是 A1203或 Sn02, 金属是 Ag、 Au、 Pt或 Cu。
前述的制备氧化辞复合材料的方法, 步骤(2 )中, 在电压为 10kV-20kV, 接收距离为 8cm-20cm, 推动速度 O.lml/hr-lml/hr条件下, 将静电纺丝液注射 到基底上进行静电纺丝。
前述的制备氧化辞复合材料的方法, 纺丝时间为 30秒到 10分钟。
前述的制备氧化辞复合材料的方法, 步骤(3 )中, 所述氧化辞纳米线的 直径为 200nm-300nm。
前述的制备氧化辞复合材料的方法, 步骤(4 )中, 釆用水热合成法或微 波加热法, 在含氢氧源的辞盐溶液中, 以每根氧化辞纳米线为轴生长氧化辞 纳米柱以形成氧化辞纳米柱阵列。
前述的制备氧化辞复合材料的方法,所述含氢氧源的辞盐溶液是醋酸辞、 硝酸辞或草酸辞的水溶液; 所用氢氧源是氢氧化钠、 氨水、 碳酸铵、 或六亚 曱基四胺。
前述的制备氧化辞复合材料的方法, 步骤(4 ) 中, 所述水热合成法为: 在 80-100 °C下, 在含氢氧源的辞盐溶液中, 以每根氧化辞纳米线为轴生长氧 化辞纳米柱 2-12小时。
前述的制备氧化辞复合材料的方法, 步骤(4 )中, 所述氧化辞纳米柱是 (002)面优势取向的六角柱, 所述六角柱横截面最大宽度为 200nm-300nm, 六 角柱高度为 2-3 μ πι。
前述的制备氧化辞复合材料的方法, 所述氧化辞复合材料的厚度是 5-8 μ m。
前述的制备氧化辞复合材料的方法, 步骤(2 )中, 该方法还包括得到纤 维纺丝有序排列的聚乙烯类聚合物 /辞盐纤维膜。
前述的制备氧化辞复合材料的方法, 静电纺丝之前, 将基底放置在载体 的容置腔中; 其中, 该载体包括第一载体底材, 设置在第一载体底材一侧表 面的第二载体底材和第三载体底材, 第二载体底材和第三载体底材平行并间 隔设置, 在第二载体底材上设有第一金属条, 在第三载体底材上设有第二金 属条, 第一金属条与第二金属条平行设置; 第二载体底材和第一金属条, 与 第三载体底材和第二金属条之间形成容置腔。
前述的制备氧化辞复合材料的方法, 所述第一金属条和第二金属条所用 材质是铝箔、 铜箔、 铝片或铜片; 所述第一载体底材、 第二载体底材和第三 载体底材所用材质是绝缘材料, 例如玻璃。
前述的制备氧化辞复合材料的方法, 所述氧化辞纳米膜由六边纤辞矿晶 相的氧化辞纳米线平行构成。
前述的制备氧化辞复合材料的方法,每立方微米氧化辞纳米膜平均由 2-3 才艮氧化辞纳米线构成 , 氧化辞纳米柱彼此交缠。
本发明提供的第二技术方案是: 一种氧化辞复合材料, 釆用上述任一项 方法制成。
本发明提供的第三技术方案是: 一种氧化辞复合材料, 包括氧化辞纳米 膜和氧化辞纳米柱阵列; 所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米 线构成, 氧化辞纳米柱以每根氧化辞纳米线为轴生长, 构成所述氧化辞纳米 柱阵列, 所述氧化辞纳米柱是 (002)面优势取向的六角柱。
前述的氧化辞复合材料, 所述六角柱横截面最大宽度为 200-300nm, 六 角柱高度为 2-3 μ πι。
前述的氧化辞复合材料, 所述氧化辞纳米线的直径为 200-300nm。
前述的氧化辞复合材料, 所述氧化辞纳米膜经由煅烧静电纺丝聚乙烯类 聚合物 /辞盐纤维膜制成。
前述的氧化辞复合材料, 所述氧化辞复合材料的厚度为 5-8 μ πι。
前述的氧化辞复合材料, 所述氧化辞纳米膜由六边纤辞矿晶相的的氧化 辞纳米线平行构成。
前述的氧化辞复合材料, 每立方微米氧化辞纳米膜平均由 2-3根氧化辞 纳米线构成, 氧化辞纳米柱彼此交缠。
本发明所得氧化辞复合材料 , 在经煅烧成六边纤辞矿晶相的氧化辞纳米 膜种子层上, 以每根的氧化辞纳米线为轴生长氧化辞纳米柱以形成氧化辞纳 米柱阵列, 氧化辞纳米柱生长成 (002)面优势取向的六角柱。 由于合成氧化辞 纳米柱的宽高比较高, 可以增加单位体积里的表面积。 本发明所得氧化辞复 合材料可用于以 ZnO为基础的 LED、 太阳能电池、 光催化表面等。 本发明氧 化辞复合材料制备工艺简单。 附图说明
图 1 是静电纺丝经煅烧后由氧化辞纳米线构成的氧化辞纳米膜 XRD谱 图, 其中氧化辞沉积在镀金的硅芯片上。
图 2是第一具体实施方式静电纺丝经煅烧后由氧化辞纳米线构成的氧化 辞纳米膜光学显 镜 (1000倍)下的形貌图。
图 3是第一具体实施方式静电纺丝经煅烧后由氧化辞纳米线构成的氧化 辞纳米膜 SEM(10000倍)下的形貌图。
图 4是本发明第二具体实施方式所用基底的载体示意图。
图 5是本发明第二具体实施方式所用基底的载体剖面示意图。
图 6是在本发明第二具体实施方式所用基底的载体上进行静电纺丝的过 程。
图 7是在本发明第二具体实施方式所用基底的载体上完成静电纺丝后的 状态。
图 8是从本发明第二具体实施方式所用基底的载体上取下基底的过程。 图 9是本发明第二具体实施方式静电纺丝煅烧前的有取向性氧化辞纳米 膜在光学显微镜 (1000倍)下的形貌。
图 10 是本发明第二具体实施方式在有取向性的氧化辞纳米膜上生长氧 化辞纳米柱得到的氧化辞纳米膜-氧化辞纳米柱阵列复合材料在 SEM(500倍) 下的形貌。
图 11 是本发明第二具体实施方式在有取向性的氧化辞纳米膜上生长氧 化辞纳米柱得到的氧化辞纳米膜-氧化辞纳米柱阵列复合材料在 SEM(2000倍) 下的形貌。
图 12 是本发明第二具体实施方式在有取向性的氧化辞纳米膜上生长氧 化辞纳米柱得到的氧化辞纳米膜 -氧化辞纳米柱阵列复合材料在 SEM(10000 倍)下的形貌。 具体实施方式
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明。
下面详细说明一下本发明的第一具体实施方式。
一种制备氧化辞复合材料的方法, 该方法包括以下步骤:
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将聚乙烯类聚合物加入到溶剂中, 待聚乙烯类聚合物溶解后, 向液体中 加入辞盐, 然后混合均匀得到静电纺丝液。 其中, 聚乙烯类聚合物与辞盐的 重量比为 1-5: 0.5-3。 例如, 每 10 ml溶剂中加入 l-5g聚乙烯类聚合物, 然 后向混合溶液中加入辞盐, 每 10 ml的混合溶液加入 0.5-3g辞盐。
所述辞盐可以是醋酸辞、 硝酸辞、 草酸辞及它们的水合物。 所述溶剂可 以是曱基曱酰胺 (DMF), 乙醇 (ethanol)或四氢呋喃 (THF)。 所述聚乙烯类聚合 物可以是聚乙烯醇 (PVA)或聚乙烯吡咯烷酮 (PVP)。
优选的, 在该步骤中, 在静电纺丝液中掺杂氧化物或金属以增进氧化辞 在特定方面的性能, 氧化物可以是 A1203或 Sn02, 金属可以是 Ag、 Au、 Pt 或 Cu。
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 注射到基底上进行静电纺丝, 在基底上获得聚乙烯类聚合物 /辞盐纤维膜。
本发明所用静电纺丝装置为常规市售静电纺丝装置。具体的,将步骤(1 ) 所得静电纺丝液加入到静电纺丝装置的给液装置例如注射针管中, 针头为金 属如不锈钢, 将针头接高压源, 接收端接地。 然后在电压为 10kV-20kV, 接 收距离为 8cm-20cm条件下, 用微量泵以推动速度 0.1ml/hr-lml/hr, 将静电纺 丝液通过喷射装置注射到基底上进行静电纺丝, 在基底上获得聚乙烯类聚合 物 /辞盐纤维膜。
本发明对基底没有特殊要求, 常规基底均可以应用于本发明, 例如镀金 的硅芯片。
( 3 )煅烧
将步骤(2 ) 所得聚乙烯类聚合物 /辞盐纤维膜连同基底一起进行煅烧, 煅烧条件为: 按照 2-10°C/min的升温速率升温至 500-600 °C , 恒温煅烧 1-6小 时; 然后冷却到室温, 得到氧化辞纳米膜。
所得氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 该氧化辞纳 米线的直径为 200nm-300nm。
图 1所示是本发明一个优选实施例的该步骤由氧化辞纳米线构成的氧化 辞纳米膜 XRD谱图。 由图 1可以看出 ZnO是六边纤辞矿晶相, 最强的峰为 002面。 图 2是一个优选实施例该步骤由氧化辞纳米线构成的氧化辞纳米膜 光学显微镜 (1000倍)下的形貌图。 图 3是一个优选实施例该步骤由氧化辞纳 米线构成的氧化辞纳米膜 SEM(10000倍)下的形貌图。 由图 2和图 3可以看 出本发明氧化辞纳米膜由氧化辞纳米线构成。通过 SEM图可看出纳米柱是六 角柱形状, 由此可以看出氧化辞生长是 (002)面优势取向的。
( 4 )生长氧化辞纳米柱阵列
以步骤(3 )所得氧化辞纳米膜为种子层, 在所述种子层上生长氧化辞纳 米柱以形成氧化辞纳米阵列, 得到氧化辞纳米膜 -氧化辞纳米柱阵列的复合材 料。 本发明釆用水热合成法或微波加热法, 在含氢氧源的辞盐溶液中生长氧 化辞纳米柱。
水热合成法是一种水热法合成氧化辞纳米棒阵列的方法。 具体的所述含 氢氧源的辞盐溶液是醋酸辞、 硝酸辞或草酸辞的水溶液; 所用氢氧源是氢氧 化钠、 氨水、 碳酸铵、 或六亚曱基四胺。 将辞盐加入到装有去离子水的容器 (封口瓶或水热釜) 中, 然后再注入部分去离子水, 辞盐的浓度为 5~50mM (毫摩尔每升)。 待辞盐溶解后再加入氢氧源(如滴入氨水)混合均勾, 然后 在 80-100°C下 (例如利用烘箱), 将步骤(3 ) 所得氧化辞纳米膜置于含氢氧 源的辞盐溶液中, 使氧化辞纳米柱生长 2-12小时。
本步骤所得氧化辞纳米柱是 (002)面优势取向的六角柱, 所述六角柱横截 面最大宽度为 200-300nm, 六角柱高度为 2-3 μ πι。 根据上述方法得到了氧化辞复合材料, 该氧化辞复合材料包括氧化辞纳 米膜和氧化辞纳米柱阵列, 氧化辞纳米柱垂直生长在所述氧化辞纳米膜的一 侧表面上构成所述氧化辞纳米柱阵列, 所述氧化辞纳米柱是 (002)面优势取向 的六角柱。 所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 所述 氧化辞纳米线的直径为 200-300nm, 所得氧化辞复合材料的厚度是 5-8 μ m。
本发明所得氧化辞复合材料 , 在经煅烧成六边纤辞矿晶相的氧化辞纳米 膜种子层上生长氧化辞纳米柱以形成氧化辞纳米柱阵列, 氧化辞纳米柱生长 成 (002)面优势取向的六角柱。 由于合成氧化辞纳米柱的宽高比较高, 可以增 加单位体积里的表面积。
本发明为了得到由六边纤辞矿晶相的氧化辞纳米线平行构成的氧化辞纳 米膜, 釆用了第二具体实施方式。 下面详细说明第二具体实施方式。
该实施方式具有与上述第一实施方式不同的静电纺丝步骤, 还包括得到 纤维纺丝有序排列的聚乙烯类聚合物 /辞盐纤维膜。 在静电纺丝之前, 将基底
6放置在载体(如图 4和图 5所示)的容置腔中。该载体包括第一载体底材 1 , 设置在第一载体底材一侧表面的第二载体底材 2和第三载体底材 3 , 第二载 体底 2和第三载体底材 3平行并间隔设置。 在第二载体底 2上设有第一金属 条 4, 第一金属条 4沿第二载体底材 2的与第三载体底材平行的边设置。 在 第三载体底材 3上设有第二金属条 5 , 第二金属条 5沿第三载体底材 3的与 第二载体底材 2平行的边设置。 第二载体底材 2和第一金属条 4, 与第三载 体底材 3和第二金属条 5之间形成容置腔。
图 6是该实施方式进行静电纺丝的过程, 经由静电纺丝设备 7将静电纺 丝液喷射到基底 6上, 形成氧化辞纳米线 8。 图 7是该实施方式完成静电纺 丝后的状态。 图 8是该实施方式从载体上取下基底的过程。 由图 6-图 8可以 看出氧化辞纳米膜由氧化辞纳米线平行构成。 该实施方式中, 每立方微米氧 化辞纳米膜平均由 2-3根氧化辞纳米线构成, 氧化辞纳米柱彼此交缠。 例如, 氧化辞纳米膜的总表面积是 4.15 μ πι2, 每立方微米氧化辞纳米膜里平均有 2.56根氧化辞纳米线。
在静电纺丝时, 射出头接正电, 而载体上的金属条接地, 因而在其之间 产生一电场。 而静电纺丝的本身可以视为带正电的纤维, 在电场下受力沉积 在接地的载体上。 当纺丝移动到金属条的附近时, 由于两者的电性相反, 在 库伦力的作用下, 纺丝在金属条上的两端受最大的库伦力吸引力, 因此拉扯 纺丝的两端并使其与金属条的方向垂直。 另一方面, 不同于在金属条上的部 分, 在金属条间的纺丝会带正电。 由于纺丝间的静电排斥而加强了纺丝间的 有序排列。
所述第一金属条和第二金属条所用材质是铝箔、 铜箔、 铝片或铜片; 所 述第一载体底材、 第二载体底材和第三载体底材所用材质是绝缘材质, 例如 玻璃。
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 喷射到放置在载体的容置腔中的基底上进行静电纺丝, 在基底上获得聚乙烯 类聚合物 /辞盐纤维膜。 煅烧后所得氧化辞纳米膜由六边纤辞矿晶相的氧化辞 纳米线平行构成。 本实施方式中氧化辞纳米膜具有一定的取向性, 使得生长 在氧化辞纳米线上的氧化辞纳米柱更有有序性, 得到的比表面积更大。 也就 是说, 当以平行丝为种子层时, 由于平行丝的密度很高, 水热合成法合成的 氧化辞纳米柱彼此交缠使表面成为有序的氧化辞地毯。 该具体实施方式的氧 化辞复合材料比表面积更大。 使用该载体进行静电纺丝制备聚乙烯类聚合物 / 辞盐纤维膜, 具有工艺简单, 重复性高, 每次制备只需更换基底即可, 制备 的聚乙烯类聚合物 /辞盐纤维膜有序性高, 经煅烧后氧化辞纳米线平行排列 , 使得在其上生长的氧化辞纳米柱具有更大的比表面积。 当理解的是, 这不应被理解为对本发明权利要求范围的限制。 实施例 1
本实施例所得氧化辞纳米膜-氧化辞纳米柱阵列的复合材料厚度为 5 μ m, 构成氧化辞纳米膜的氧化辞纳米线直径为 300nm, 氧化辞纳米柱尺寸为 直径 300nm, 高度 2 μ πι。
下面说明该复合材料的制备方法 ( 1 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均勾得到静电纺丝液。
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 15kV, 接收距离为 14cm条件下, 用微量泵 以推动速度 0.5ml/hr, 将静电纺丝液注射到基底镀金的硅芯片上进行静电纺 丝, 在基底上获得 PVP/辞盐纤维膜。
( 3 )煅烧
将步骤(2 )所得纤维膜膜连同基底一起在高温炉中进行煅烧, 煅烧条件 为: 按照 10°C/min的升温速率升温至 500°C , 恒温煅烧 1小时; 然后冷却到 室温, 得到氧化辞纳米膜。
图 1所示是该步骤由氧化辞纳米线构成的氧化辞纳米膜 XRD谱图。由图 1可以看出 ZnO是六边纤辞矿晶相, 最强的峰为(002 )面。 图 2是该步骤由 氧化辞纳米线构成的氧化辞纳米膜光学显微镜 (1000倍)下的形貌图。 图 3是 该步骤由氧化辞纳米线构成的氧化辞纳米膜 SEM(10000 倍)下的形貌图。 由 图 2和图 3可以看出氧化辞纳米膜由氧化辞纳米线构成。 所得氧化辞纳米膜 由六边纤辞矿晶相的氧化辞纳米线构成, 该氧化辞纳米线的直径为 300nm。
( 4 )生长氧化辞纳米柱阵列
将 0.238g硝酸辞加入到装有 250ml去离子水的封口瓶中, 然后再注入 40ml去离子水, 待硝酸辞溶解后再滴入 1ml氨水(重量百分比为 25% )混合 均匀, 然后在 90°C下在烘箱中反应 5小时, 使氧化辞纳米柱生长。
本步骤所得氧化辞纳米柱是 (002)面优势取向的六角柱, 所述六角柱横截 面最大宽度为 300nm, 六角柱高度为 2 μ πι。 实施例 2
本实施例所得氧化辞纳米膜-氧化辞纳米柱阵列的复合材料厚度为 8 μ m, 构成氧化辞纳米膜的氧化辞纳米线直径为 300nm, 氧化辞纳米柱尺寸为 直径 300nm, 高度 2μπι。 下面说明该复合材料的制备方法
(1 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M)緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均勾得到静电纺丝液。
(2)静电纺丝
将步骤( 1 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 15kV, 接收距离为 14cm条件下, 用微量泵 以推动速度 0.5ml/hr, 将静电纺丝液注射到基底镀金的硅芯片上进行静电纺 丝, 在基底上获得 PVP/辞盐纤维膜。
( 3 )煅烧
将步骤(2)所得纤维膜膜连同基底一起在高温炉中进行煅烧, 煅烧条件 为: 按照 5°C/min的升温速率升温至 600 °C , 恒温煅烧 2小时; 然后冷却到室 温, 得到氧化辞纳米膜。
经由 XRD检测可以看出氧化辞纳米膜由氧化辞纳米线构成。所得氧化辞 纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 该氧化辞纳米线的直径为 300
(4)生长氧化辞纳米柱阵列
将 0.238g硝酸辞加入到装有 250ml去离子水的封口瓶中, 然后再注入
40ml去离子水, 待硝酸辞溶解后再滴入 1ml氨水(重量百分比 28% )混合均 匀, 然后在 90°C下在烘箱中反应 5小时, 使氧化辞纳米柱生长。
本步骤所得氧化辞纳米柱是 (002)面优势取向的六角柱, 所述六角柱横截 面最大宽度为 300nm, 六角柱高度为 2μπι 对比例 1
本对比例所得复合材料厚度为 1.5μπι, 构成氧化辞纳米膜的氧化辞纳米 线直径为 120nm, 氧化辞纳米柱尺寸为直径 120nm, 高度 0.8μπι。 下面说明 该复合材料的制备方法
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均匀得到静电纺丝液。
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 15kV, 接收距离为 14cm条件下, 用微量泵 以推动速度 0.5ml/hr, 将静电纺丝液注射到基底镀金的硅芯片上进行静电纺 丝, 在基底上获得 PVP/辞盐纤维膜。
( 3 )煅烧
将步骤(2 )所得纤维膜膜连同基底一起在高温炉中进行煅烧, 煅烧条件 为: 按照 2°C/min的升温速率升温至 450°C , 恒温煅烧 3小时; 然后冷却到室 温, 得到氧化辞纳米膜。
( 4 )生长氧化辞纳米柱阵列
将 0.238g硝酸辞加入到装有 250ml去离子水的封口瓶中, 然后再注入 40ml去离子水, 待硝酸辞溶解后再滴入 1ml氨水(重量百分比 28% )混合均 匀, 然后在 90°C下在烘箱中反应 5小时, 使氧化辞纳米柱生长。
本对比例 ZnO/PVP复合纤维膜中, PVP燃烧不完全, 纺丝可能仍有 PVP 的存在, 造成在纺丝中的氧化辞微晶粒无法聚集并成长, 降低了氧化辞的结 晶性。 造成在其上生长的氧化辞纳米柱的密度下降, 晶柱较小, 晶面优选取 向改变等。 对比例 2
本对比例所得复合材料厚度为 1.3 μ πι, 构成氧化辞纳米膜的氧化辞纳米 线直径为 150nm, 氧化辞纳米柱尺寸为 150nm, 高度 1 μ πι。 下面说明该复合 材料的制备方法
( 1 ) 配制氧化辞纳米膜用静电纺丝液 将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均勾得到静电纺丝液。
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 15kV, 接收距离为 14cm条件下, 用微量泵 以推动速度 0.5ml/hr, 将静电纺丝液注射到基底镀金的硅芯片上进行静电纺 丝, 在基底上获得 PVP/辞盐纤维膜。
( 3 )煅烧
将步骤(2 )所得纤维膜连同基底一起在高温炉中进行煅烧,煅烧条件为: 按照 2°C/min的升温速率升温至 650°C , 恒温煅烧 3小时; 然后冷却到室温, 得到氧化辞纳米膜。
( 4 )生长氧化辞纳米柱阵列
将 0.238g硝酸辞加入到装有 250ml去离子水的封口瓶中, 然后再注入 40ml去离子水, 待硝酸辞溶解后再滴入 1ml氨水(重量百分比 28% )混合均 匀, 然后在 90 °C下在烘箱中反应 5小时, 使氧化辞纳米柱生长。
本对比例大于 600 °C煅烧所得的氧化辞纳米膜, 氧化辞晶粒变大, 在相 同水热法的条件下在其上生长的 ZnO纳米柱较大, 因此会影响比表面积。 实施例 3
本实施例所得氧化辞纳米膜-氧化辞纳米柱阵列的复合材料厚度为 6 μ m, 氧化辞纳米膜厚度为 200nm, 氧化辞纳米柱尺寸为直径 200nm, 高度 2 μ m。 下面说明该复合材料的制备方法
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均勾得到静电纺丝液。
( 2 )静电纺丝 将步骤( 1 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 将基底镀金的硅芯片放置到如图 4和图 5所示的载体的容 置腔中。
在电压为 15kV,接收距离为 14cm条件下,用微量泵以推动速度 0.5ml/hr, 将静电纺丝液注射到基底镀金的硅芯片上进行静电纺丝, 在基底上获得 PVP/ 辞盐纤维膜。 图 9是有取向性氧化辞纳米膜在光学显微镜 (1000倍)下的形貌。
( 3 )煅烧
将步骤( 2 )所得纤维膜连同基底一起在高温炉中进行煅烧,煅烧条件为: 按照 10°C/min的升温速率升温至 500°C , 恒温煅烧 1小时; 然后冷却到室温, 得到氧化辞纳米膜。
所得氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线平行构成, 该氧化 辞纳米线的直径为 200nm。
( 4 )生长氧化辞纳米柱阵列
将 0.238g硝酸辞加入到装有 250ml去离子水的封口瓶中, 然后再注入 40ml去离子水, 待硝酸辞溶解后再滴入 1ml氨水(重量百分比 28% )混合均 匀, 然后在 90°C下在烘箱中反应 5小时, 使氧化辞纳米柱生长。
本步骤所得氧化辞纳米柱是 (002)面优势取向的六角柱, 所述六角柱横截 面最大宽度为 200nm。 六角柱高度为 2 μ πι。 图 10是该实施例在有取向性的 氧化辞纳米膜上生长氧化辞纳米柱得到的氧化辞纳米膜-氧化辞纳米柱阵列 复合材料在 SEM(500倍)下的形貌。 图 11是该实施例在有取向性的氧化辞纳 米膜上生长氧化辞纳米柱得到的氧化辞纳米膜-氧化辞纳米柱阵列复合材料 在 SEM(2000倍)下的形貌。 图 12是该实施例在有取向性的氧化辞纳米膜上 生长氧化辞纳米柱得到的氧化辞纳米膜-氧化辞纳米柱阵列复合材料在 SEM(10000倍)下的形貌。
本发明釆用静电纺丝法-煅烧在基底上生成氧化辞纳米膜, 该氧化辞纳米 膜由六边纤辞矿晶相的氧化辞纳米线构成, 可以是无序的也可以是平行的。 然后在氧化辞纳米膜表面上以每根氧化辞纳米线为轴生长氧化辞纳米柱以形 成氧化辞纳米柱阵列, 该氧化辞纳米柱是在 (002)面优势取向的六角柱。 由于 合成的氧化锌纳米柱(六角柱) 的宽高比较高, 可以增加氧化辞纳米柱阵列 单位体积里的比表面积。 本发明所得氧化锌可以用于 LED、 太阳能电池或光 催化表面等。

Claims

权 利 要 求 书
1. 一种制备氧化辞复合材料的方法, 该方法包括以下步骤:
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将聚乙烯类聚合物加入到溶剂中, 待聚乙烯类聚合物溶解后, 向液体中 加入辞盐, 然后混合均匀得到静电纺丝液; 其中, 聚乙烯类聚合物与辞盐的 重量比为 1-5: 0.5-3 ;
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 注射到基底上进行静电纺丝, 在基底上获得聚乙烯类聚合物 /辞盐纤维膜; ( 3 )煅烧
将步骤(2 ) 所得聚乙烯类聚合物 /辞盐纤维膜连同基底一起进行煅烧, 煅烧条件为: 按照 2-10°C/min的升温速率升温至 500-600 °C , 恒温煅烧 1-6小 时; 然后冷却到室温, 得到氧化辞纳米膜, 所述氧化辞纳米膜由六边纤辞矿 晶相的氧化辞纳米线构成; 以及
( 4 )生长氧化辞纳米柱阵列
以步骤(3 )所得氧化辞纳米膜为种子层, 在所述种子层上以每根氧化辞 纳米线为轴, 生长氧化辞纳米柱以形成氧化辞纳米柱阵列, 得到氧化辞纳米 膜 -氧化辞纳米柱阵列的复合材料。
2. 根据权利要求 1所述的制备氧化辞复合材料的方法, 其特征在于, 步 骤(1 ) 中, 所述辞盐是醋酸辞、 硝酸辞、 草酸辞及它们的水合物; 所述溶剂 是曱基曱酰胺, 乙醇或四氢呋喃; 所述聚乙烯类聚合物是聚乙烯醇或聚乙烯 吡略烷酮。
3. 根据权利要求 1或 2所述的制备氧化辞复合材料的方法,其特征在于, 步骤(1 ) 中, 在静电纺丝液中掺杂氧化物或金属, 氧化物是 A1203或 Sn02, 金属是 Ag、 Au、 Pt或 Cu。
4. 根据权利要求 1-3任一项所述的制备氧化辞复合材料的方法, 其特征 在于, 步骤(2 ) 中, 在电压为 10kV-20kV, 接收距离为 8cm-20cm, 推动速 度 0.1ml/hr-lml/hr条件下, 将静电纺丝液注射到基底上进行静电纺丝。
5. 根据权利要求 4所述的制备氧化辞复合材料的方法, 其特征在于, 纺 丝时间为 30秒到 10分钟。
6. 根据权利要求 1-5任一项所述的制备氧化辞复合材料的方法, 其特征 在于, 步骤(3 ) 中, 所述氧化辞纳米线的直径为 200nm-300nm。
7. 根据权利要求 1-6任一项所述的制备氧化辞复合材料的方法, 其特征 在于, 步骤(4 ) 中, 釆用水热合成法或微波加热法, 在含氢氧源的辞盐溶液 中, 以每根氧化辞纳米线为轴生长氧化辞纳米柱以形成氧化辞纳米柱阵列。
8. 根据权利要求 7所述的制备氧化辞复合材料的方法, 其特征在于, 所 述含氢氧源的辞盐溶液是醋酸辞、 硝酸辞或草酸辞的水溶液; 所用氢氧源是 氢氧化钠、 氨水、 碳酸铵、 或六亚曱基四胺。
9. 根据权利要求 8所述的制备氧化辞复合材料的方法, 其特征在于, 步 骤(4 ) 中, 所述水热合成法为: 在 80-100°C下, 在含氢氧源的辞盐溶液中, 以每根氧化辞纳米线为轴生长氧化辞纳米柱 2-12小时。
10. 根据权利要求 1-9任一项所述的制备氧化辞复合材料的方法,其特征 在于, 步骤(4 )中, 所述氧化辞纳米柱是 (002)面优势取向的六角柱, 所述六 角柱横截面最大宽度为 200nm-300nm, 六角柱高度为 2-3 μ πι。
11. 根据权利要求 1-10任一项所述的制备氧化辞复合材料的方法, 其特 征在于, 所述氧化辞复合材料的厚度是 5-8 μ πι。
12. 根据权利要求 1 所述的制备氧化辞复合材料的方法, 其特征在于, 步骤(2 ) 中, 该方法还包括得到纤维纺丝有序排列的聚乙烯类聚合物 /辞盐 纤维膜。
13. 根据权利要求 12所述的制备氧化辞复合材料的方法, 其特征在于, 静电纺丝之前, 将基底放置在载体的容置腔中; 其中, 该载体包括第一载体 底材, 设置在第一载体底材一侧表面的第二载体底材和第三载体底材, 第二 载体底材和第三载体底材平行并间隔设置, 在第二载体底材上设有第一金属 条, 在第三载体底材上设有第二金属条, 第一金属条与第二金属条平行设置; 第二载体底材和第一金属条,与第三载体底材和第二金属条之间形成容置腔。
14. 根据权利要求 13所述的制备氧化辞复合材料的方法, 其特征在于, 所述第一金属条和第二金属条所用材质是铝箔、 铜箔、 铝片或铜片; 所述第 一载体底材、 第二载体底材和第三载体底材所用材质是绝缘材料。
15. 根据权利要求 13或 14所述的制备氧化辞复合材料的方法, 其特征 在于, 所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线平行构成。
16. 根据权利要求 15所述的制备氧化辞复合材料的方法, 其特征在于, 每立方微米氧化辞纳米膜平均由 2-3根氧化辞纳米线构成, 氧化辞纳米柱彼 此交缠。
17. 一种氧化辞复合材料, 釆用权利要求 1-16任一项所述的方法制成。
18. 一种氧化辞复合材料, 其特征在于, 包括氧化辞纳米膜和氧化辞纳 米柱阵列; 所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 氧化 辞纳米柱以每根氧化辞纳米线为轴生长, 构成所述氧化辞纳米柱阵列, 所述 氧化辞纳米柱是 (002)面优势取向的六角柱。
19. 根据权利要求 18所述的氧化辞复合材料, 其特征在于, 所述六角柱 横截面最大宽度为 200-300nm, 六角柱高度为 2-3 μ πι。
20. 根据权利要求 18或 19所述的氧化辞复合材料, 其特征在于, 所述 氧化辞纳米线的直径为 200-300nm。
21. 根据权利要求 18-20任一项所述的氧化辞复合材料, 其特征在于, 所 述氧化辞纳米膜经由煅烧静电纺丝聚乙烯类聚合物 /辞盐纤维膜制成。
22. 根据权利要求 18-21任一项所述的氧化辞复合材料, 其特征在于, 所 述氧化辞复合材料的厚度为 5-8 μ m。
23. 根据权利要求 18所述的氧化辞复合材料, 其特征在于, 所述氧化辞 纳米膜由六边纤辞矿晶相的氧化辞纳米线平行构成。
24. 根据权利要求 23所述的氧化辞复合材料, 其特征在于, 每立方微米 氧化辞纳米膜平均由 2-3根氧化辞纳米线构成, 氧化辞纳米柱彼此交缠。
PCT/CN2014/078919 2013-11-29 2014-05-30 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料 WO2015078163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310626956.8 2013-11-29
CN201310626956.8A CN104671277B (zh) 2013-11-29 2013-11-29 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料

Publications (1)

Publication Number Publication Date
WO2015078163A1 true WO2015078163A1 (zh) 2015-06-04

Family

ID=53198290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078919 WO2015078163A1 (zh) 2013-11-29 2014-05-30 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料

Country Status (2)

Country Link
CN (1) CN104671277B (zh)
WO (1) WO2015078163A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241484A (zh) * 2019-05-30 2019-09-17 江苏理工学院 一种ZnO/CNF复合材料的制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712316B (zh) * 2015-09-23 2017-12-26 哈尔滨理工大学 一种氧化锌纳米线阵列/碳纳米纤维复合材料的制备
CN107237121B (zh) * 2017-07-19 2019-08-02 清华大学深圳研究生院 一种复合材料及其制备方法
CN113353969B (zh) * 2021-06-29 2023-07-04 科迈特新材料有限公司 一种高活性纳米氧化锌的制备方法
CN116282131A (zh) * 2023-03-28 2023-06-23 上海腾灵建设集团有限公司 硫化锌/氧化锌纳米复合材料的制备方法及产品和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769548A (zh) * 2005-10-10 2006-05-10 天津大学 制备一维取向的纳米二氧化钛管状晶薄膜的方法
CN101009228A (zh) * 2006-12-22 2007-08-01 中国科学院上海硅酸盐研究所 高度取向的氧化锌纳米柱阵列的超声辅助水溶液制备方法
CN101011656A (zh) * 2007-01-26 2007-08-08 福建师范大学 一种可作为光催化剂使用的氧化锌纳米纤维膜的制备方法
CN101244895A (zh) * 2007-02-16 2008-08-20 中国科学院上海硅酸盐研究所 控制ZnO纳米柱阵列密度的方法
CN101396653A (zh) * 2008-10-23 2009-04-01 福建师范大学 生物柴油专用的氧化锌纳米纤维催化剂制备方法
CN101396652A (zh) * 2008-10-23 2009-04-01 福建师范大学 一种酯交换反应中使用的氧化锌纳米纤维催化剂制备方法
CN101396654A (zh) * 2008-10-23 2009-04-01 福建师范大学 生物柴油专用的掺杂稀土离子的氧化锌纳米纤维催化剂制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607735B (zh) * 2008-06-18 2011-01-12 中国科学院理化技术研究所 氧化锌与二氧化钛复合薄膜材料及其制备方法
CN103204700A (zh) * 2013-04-07 2013-07-17 上海大学 一种高晶粒取向氧化锌纳米纤维的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769548A (zh) * 2005-10-10 2006-05-10 天津大学 制备一维取向的纳米二氧化钛管状晶薄膜的方法
CN101009228A (zh) * 2006-12-22 2007-08-01 中国科学院上海硅酸盐研究所 高度取向的氧化锌纳米柱阵列的超声辅助水溶液制备方法
CN101011656A (zh) * 2007-01-26 2007-08-08 福建师范大学 一种可作为光催化剂使用的氧化锌纳米纤维膜的制备方法
CN101244895A (zh) * 2007-02-16 2008-08-20 中国科学院上海硅酸盐研究所 控制ZnO纳米柱阵列密度的方法
CN101396653A (zh) * 2008-10-23 2009-04-01 福建师范大学 生物柴油专用的氧化锌纳米纤维催化剂制备方法
CN101396652A (zh) * 2008-10-23 2009-04-01 福建师范大学 一种酯交换反应中使用的氧化锌纳米纤维催化剂制备方法
CN101396654A (zh) * 2008-10-23 2009-04-01 福建师范大学 生物柴油专用的掺杂稀土离子的氧化锌纳米纤维催化剂制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241484A (zh) * 2019-05-30 2019-09-17 江苏理工学院 一种ZnO/CNF复合材料的制备方法和应用

Also Published As

Publication number Publication date
CN104671277B (zh) 2017-02-15
CN104671277A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2015078163A1 (zh) 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料
Siddheswaran et al. Preparation and characterization of ZnO nanofibers by electrospinning
Jia et al. Flexible ceramic fibers: Recent development in preparation and application
Ghafari et al. Investigating process-structure relations of ZnO nanofiber via electrospinning method
Dong et al. Morphology evolution of one-dimensional ZnO nanostructures towards enhanced photocatalysis performance
CN105057003B (zh) 一种二氧化钛纳米复合薄膜制备方法
Singh Synthesis and growth of ZnO nanowires
CN101513998B (zh) 一种有序氧化石墨烯薄膜的制备方法
CN103966701B (zh) 一种多孔碳化硅纳米纤维的制备方法
Han et al. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method
CN102108552B (zh) 一种NiCo2O4纳米晶体薄膜的制备方法及其在制备半导体光电器件的应用
Hu et al. Morphological controlled preparation and photocatalytic activity of zinc oxide
CN104698041A (zh) 基于氧化锌纳米结构的乙醇传感器及其制备方法
KR101583593B1 (ko) 탄소나노구조체-금속 복합체 또는 탄소나노구조체-금속산화물 복합체로 구성된 나노 다공막 및 이의 제조방법
Chandraiah et al. Preparation and characterization of SnO2 nanofibers by electrospinning
CN102605468A (zh) 一种制备硫化镍纳米纤维的方法
CN203772790U (zh) 基于氧化锌纳米结构的乙醇传感器
CN104310459B (zh) 一种氧化锌纳米棒的制备方法
Xue et al. Synthesis and assembly of zinc hydroxide sulfate large flakes: Application in gas sensor based on a novel surface mount technology
Fang et al. Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes
Li et al. Recent advances in one-dimensional electrospun semiconductor nanostructures for UV photodetector applications: a review
Park et al. Effects of processing parameters on the synthesis of TiO 2 nanofibers by electrospinning
WO2015081665A1 (zh) 基于氧化锌纳米结构的传感器及其制备方法
KR101071704B1 (ko) 백금계 나노섬유 및 그의 제조방법
Yan et al. Hydro/solvo-thermal synthesis of ZnO crystallite with particular morphology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865464

Country of ref document: EP

Kind code of ref document: A1