WO2015081665A1 - 基于氧化锌纳米结构的传感器及其制备方法 - Google Patents

基于氧化锌纳米结构的传感器及其制备方法 Download PDF

Info

Publication number
WO2015081665A1
WO2015081665A1 PCT/CN2014/078023 CN2014078023W WO2015081665A1 WO 2015081665 A1 WO2015081665 A1 WO 2015081665A1 CN 2014078023 W CN2014078023 W CN 2014078023W WO 2015081665 A1 WO2015081665 A1 WO 2015081665A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidized
nanostructure
salt
sensor
tin
Prior art date
Application number
PCT/CN2014/078023
Other languages
English (en)
French (fr)
Inventor
叶柏盈
王珊
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310655418.1A external-priority patent/CN104698041B/zh
Priority claimed from CN201310655536.2A external-priority patent/CN104701404B/zh
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2015081665A1 publication Critical patent/WO2015081665A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of sensors, in particular to an ultraviolet light sensor based on an oxidized nanostructure, an ethanol sensor and a preparation method thereof. Background technique
  • NWs nanowires
  • oxidized nanowires oxidized nanowires
  • Oxidation nanowires are used as semiconductor materials and can be applied to ultraviolet photosensors and ethanol sensors.
  • the ultraviolet photosensor converts ultraviolet light that is irradiated on the oxidized nanowire into electrical energy and outputs it from the electrode.
  • the existing ethanol sensor and ultraviolet photosensor have the defects of low sensitivity, long response time and complicated preparation process due to the preparation method of the oxidation nanowire.
  • the conventional method of growing an oxidized nanowire is a chemical growth method such as a hydrothermal method in which an oxidized nanowire is grown on the surface of a metal layer substrate having a seed layer.
  • a chemical growth method such as a hydrothermal method in which an oxidized nanowire is grown on the surface of a metal layer substrate having a seed layer.
  • bubbles generated in the culture solution rise to the surface of the solution and are often captured by the surface of the substrate facing downward, which inhibits the uniform growth of the oxidized nanowires on the surface of the metal substrate.
  • the oxidized nanowires have poor growth orientation on the surface of the metal layer substrate, and the specific surface area is not high.
  • the technical problem solved by the invention is to provide a sensor based on an oxygenated nanostructure and a preparation method thereof, which increase the specific surface area of the oxidized nanostructure, and has the characteristics of high sensitivity and short response time.
  • the output current is output from the two pairs of electrodes outward.
  • the sensor output current increases approximately linearly with the intensity of the UV light, increasing the sensitivity to small current changes.
  • the sensor of the present invention can sense the decrease in electrical resistance caused by the absorption of ethanol on the surface of the oxidized surface, and the responsiveness of the ethanol sensor changes approximately linearly with the concentration of the increased ethanol gas in the environment.
  • an electrospinning-calcination method is used to form an oxidized nanofilm on an interdigital electrode, and the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase.
  • the first technical solution used in the present invention is: a sensor based on an oxidized nanostructure, comprising two sets of electrodes forming an interdigital electrode, and an oxidation word disposed on at least one surface of the interdigital electrode Nanofilm
  • the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase
  • the two sets of electrodes of the interdigital electrodes are non-conducting to form a signal output end of the sensor.
  • the oxidized nanofilm is composed of a plurality of oxidized nanowires of a hexagonal fiber crystal phase.
  • the oxidized nanowire is doped with silver oxide.
  • the oxidized nanowire is doped with tin dioxide.
  • the oxidized nanofilm is made of a polyethylene-based polymer-salt fiber membrane obtained by calcination electrospinning.
  • the aforementioned oxidized nanostructure-based sensor is made of a polyethylene-based polymer-salt-silver salt fiber membrane obtained by calcination electrospinning.
  • the salt includes acetic acid, nitric acid, oxalic acid and hydrate thereof;
  • the polyethylene-based polymer comprises polyvinyl alcohol PVA or polyvinylpyrrolidone PVP; Salts include silver acetate, silver nitrate or silver oxalate.
  • the aforementioned oxidized nanostructure-based sensor, the oxidized nanofilm is calcined by electrospinning
  • a polyethylene-based polymer obtained from silk is made of a salt-tin salt fiber membrane.
  • the salt includes acetic acid, nitric acid, oxalic acid and hydrate thereof;
  • the polyethylene-based polymer comprises polyvinyl alcohol PVA or polyvinylpyrrolidone PVP; Salts include tin chloride, tin acetate, tin nitrate or tin oxalate.
  • the diameter of the oxidized nanowire is
  • the oxidized nanofilm has a thickness of 500 nm to 1 ⁇ m.
  • an oxidized nano-column is further grown on each of the oxidized nanowires constituting the oxidized nanofilm, and an oxidized nano-column array is formed to form an oxidized word with an oxidized nano-column.
  • the nano-film, the oxidized nano-column is a hexagonal column of (002) plane dominant orientation.
  • the hexagonal column has a maximum cross section of 200-300 nm and a hexagonal column height of 2-3 ⁇ .
  • the oxidized nano-film having an oxidized nano-column has a thickness of 5-8 ⁇ m.
  • each cubic micron oxidized nanofilm is composed of 2-3 oxidized nanowires on average, and the oxidized nanopillars are intertwined with each other.
  • the aforementioned oxidized nanostructure-based sensor is formed by depositing or coating gold, indium tin metal oxide, silver, copper or aluminum on a substrate.
  • the substrate is silicon, glass or plexiglass.
  • the second technical solution adopted by the present invention is: A method for preparing a sensor based on an oxidized nanostructure, the method comprising:
  • the polyethylene polymer is added to the solvent, and after the polyethylene polymer is dissolved, the salt is added to the liquid, and then uniformly mixed to obtain an electrospinning solution; wherein the weight ratio of the polyethylene polymer to the salt is 1-5: 0.5-3;
  • Electrospinning The electrospinning solution obtained in the step (1) is added to the electrospinning device, and then the electrospinning solution is injected onto at least one surface of the two sets of electrodes forming the interdigital electrodes for electrospinning, at the interdigitated electrode Obtaining a polyethylene-based polymer-salt fiber film on at least one side surface;
  • the polyethylene-based polymer-salt fiber membrane obtained in the step (2) is calcined together with the interdigitated electrode, and the calcination conditions are as follows: the temperature is raised to 500-600 ° C at a heating rate of 2-10 ° C/min, and the constant temperature calcination is performed. -6 hours; and then cooled to room temperature to obtain an oxidized nanofilm composed of oxidized nanowires of the hexagonal fiber crystal phase.
  • the method further comprises obtaining a polyethylene-based polymer-salt fiber membrane in which the spun fibers are arranged in an orderly manner.
  • the method for preparing a sensor based on an oxidized nanostructure, prior to electrospinning, placing an interdigital electrode in a receiving cavity of a carrier wherein the carrier comprises a first carrier substrate disposed on the first carrier substrate a second carrier substrate and a third carrier substrate of the side surface, the second carrier substrate and the third carrier substrate are disposed in parallel and spaced apart, and the first carrier substrate is provided with a first metal strip on the second carrier substrate A second metal strip is disposed on the material, the first metal strip is disposed in parallel with the second metal strip; and the second carrier substrate and the first metal strip form a receiving cavity with the third carrier substrate and the second metal strip.
  • the material of the first metal strip and the second metal strip is aluminum foil, copper foil, aluminum sheet or copper sheet; the first carrier substrate and the second carrier bottom
  • the material used for the material and the third carrier substrate is an insulating material.
  • the oxidized nanofilm is composed of a plurality of oxidized nanowires of a hexagonal fiber crystal phase.
  • the salt includes acetic acid, nitric acid, oxalic acid and hydrate thereof;
  • the solvent includes mercapto amide MDF, ethanol Or tetrahydrofuran THF;
  • the polyethylene-based polymer comprises polyvinyl alcohol PVA or polyvinylpyrrolidone PVP.
  • a silver salt is added to the electrospinning solution, and then in the step (2), a polyethylene-based polymer is obtained on at least one side surface of the interdigital electrode.
  • a silver salt fiber membrane wherein the silver salt comprises silver acetate, silver nitrate or silver oxalate.
  • a tin salt is added to the electrospinning solution, and then in the step (2), a polyethylene-based polymer is obtained on at least one side surface of the interdigital electrode.
  • a tin salt fiber membrane wherein the tin salt comprises tin chloride, tin acetate, tin nitrate or tin oxalate.
  • the method for preparing a sensor based on an oxidized nanostructure in the step (2), electrospinning at a voltage of 10 kV to 20 kV, a receiving distance of 8 cm to 20 cm, and a pushing speed of 0.1 ml/hr to 1 ml/hr.
  • the liquid is injected onto the interdigitated electrode for electrospinning.
  • the aforementioned method for preparing a sensor based on an oxidized nanostructure has a spinning time of 30 seconds to 10 minutes.
  • the diameter of the oxidized nanowire is 200 nm to 300 nm.
  • the oxidized nanofilm has a thickness of 500 nm to 1 ⁇ m.
  • the method for preparing a sensor based on an oxidized nanostructure further comprising: step (4) growing an array of oxidized nanopillars
  • the oxidized nano-film obtained in the step (3) is used as a seed layer, and each of the oxidized nanowires is used as an axis to grow an oxidized nano-column to form an oxidized nano-column array, and an oxidized nano-film with an oxidized nano-column array is obtained. .
  • the hydrazine hydrothermal synthesis method or the microwave heating method is used to grow each of the oxidized nanowires in a salt solution containing a hydrogen and oxygen source.
  • the nanopillars are oxidized to form an array of oxidized nanopillars.
  • the salt solution of the hydrogen-containing oxygen source comprises an aqueous solution of acetic acid, nitric acid or oxalic acid;
  • the source of hydrogen and oxygen used comprises sodium hydroxide, ammonia water, ammonium carbonate, or Hexamethylenetetramine.
  • a silver salt is doped in the salt solution to obtain an oxidized nano column doped with silver; and the silver salt comprises silver acetate, silver nitrate or silver oxalate.
  • a tin salt is doped in the salt solution to obtain a tin-doped oxidized nano column;
  • the tin salt includes tin chloride, tin acetate, and nitrate Tin or oxalate.
  • the hydrothermal synthesis method is: oxidizing each salt in a salt solution containing a hydrogen and oxygen source at 80-100 ° C
  • the nanowires are grown for the axis of the oxidation of the nanocolumn for 2-12 hours.
  • the oxidized nano-column is a hexagonal column with a (002) plane dominant orientation, and the hexagonal column has a maximum cross section of 200 nm to 300 nm, and a hexagon The column height is 2-3 ⁇ ⁇ .
  • the oxidized nanofilm having the oxidized nano-column array has a thickness of 5-8 ⁇ m.
  • each cubic micron oxidized narration film is composed of 2-3 oxidized nanowires on average, and the oxidized nanopillars are intertwined with each other.
  • an electrode material is deposited or coated on a substrate to form two sets of electrodes in the shape of an interdigitated electrode.
  • the sensor of the invention has high sensitivity, fast response time and simple preparation process.
  • the sensor based on the oxidized nanostructure of the invention can be used as an ultraviolet photosensitive sensor, since the oxidized nanofilm spans over the interdigital electrode, and the two pairs of electrodes of the interdigital electrode are not electrically connected, and the ultraviolet light is irradiated in the oxidized nanometer.
  • the current output from the membrane is output outward from the two pairs of electrodes of the interdigital electrodes.
  • the senor based on the oxidized nanostructure of the present invention can be used as an ethanol sensor, since the oxidized nanofilm spans over the interdigital electrode, and the two pairs of electrodes of the interdigital electrode are not electrically connected, so when the oxidized nanowire When ethanol is adsorbed on the surface, the majority of the carrier (electron) concentration increases and the electric resistance decreases. The resulting change in resistance can be measured by an external circuit.
  • Figure 1 is a schematic view of an interdigital electrode.
  • Fig. 2 is an XRD spectrum of an oxidized nanofilm composed of oxidized nanowires after electrospinning, in which an oxidized word is deposited on a gold-plated silicon chip.
  • Fig. 3 is a topographical view of an oxidized nanofilm optical fluoroscopy (1000 times) composed of oxidized nanowires after electrospinning in the first embodiment.
  • 4 is a topographical view of an SEM (10000 times) of an oxidized nanofilm composed of oxidized nanowires after electrospinning in the first embodiment.
  • Fig. 5 is a schematic view showing the carrier of the interdigital electrode used in the second embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing the carrier of the interdigital electrode used in the second embodiment of the present invention.
  • Fig. 7 is a view showing the process of electrospinning on the carrier of the interdigital electrode used in the second embodiment of the present invention.
  • Fig. 8 is a view showing the state after electrospinning is completed on the carrier of the interdigital electrode used in the second embodiment of the present invention.
  • Fig. 9 is a view showing the process of removing the interdigital electrodes from the carrier of the interdigital electrodes used in the second embodiment of the present invention.
  • Fig. 10 is a view showing the morphology of an orientated oxidized nanofilm after electrospinning in an optical microscope (1000 times) according to a second embodiment of the present invention.
  • Fig. 11 is a view showing the morphology of an oxidized nano-sheet having an oxidized nano-column obtained by growing an oxidized nano-column on an oriented oxidized nano-film according to a third embodiment of the present invention at SEM (500 times).
  • Fig. 12 is a view showing the morphology of an oxidized nano-film having an oxidized nano-column obtained by growing an oxidized nano-column on an oriented oxidized nano-film according to a third embodiment of the present invention at SEM (2000 times).
  • Fig. 13 is a view showing the morphology of an oxidized nano-sheet having an oxidized nano-column obtained by growing an oxidized nano-column on an oriented oxidized nano-film according to a third embodiment of the present invention at SEM (10000 times).
  • Fig. 14 is a graph showing changes in the output current of the ultraviolet photosensor in accordance with the application of the ultraviolet light applied voltage in the second embodiment of the present invention.
  • Figure 15 is a graph showing the approximately linear relationship between the responsiveness of the ethanol sensor of Example 8 and the increased concentration of ethanol gas in the environment. detailed description
  • a sensor based on an oxidized nanostructure comprising two sets of electrodes forming an interdigital electrode, and an oxidized nanofilm disposed on at least one side surface of the interdigitated electrode; the oxidized nanofilm is oxidized by a crystal phase of a hexagonal fiber The composition of the nanowires.
  • Figure 1 is a schematic view showing the structure of the interdigital electrode.
  • the two sets of electrodes form an interdigitated shape and the two sets of electrodes are non-conducting to form a signal output of the sensor.
  • the interdigital electrodes of the present invention are made by a conventional method. Specifically, the electrode material is deposited or coated on the substrate to form two sets of electrodes in the shape of an interdigitated electrode.
  • the interdigital electrodes of the present invention have a thickness of about 50 nm to 100 nm.
  • the present invention has no particular specification for the substrate used for the interdigital electrodes, and conventional substrate materials can be applied to the present invention, such as silicon, glass or plexiglass.
  • the electrode material of the present invention is also not particularly specified, and for example, gold, indium tin metal oxide (ITO), silver, copper or aluminum can be applied to the present invention.
  • the coating or deposition method used in the present invention is also conventional, such as magnetron sputtering, electron beam or thermal evaporation, screen printing, or spin coating.
  • the oxidized nanofilm is made of calcined electrospun polyethylene polymer-salt fiber membrane with a diameter of
  • the oxidized nanowire is doped with silver oxide
  • the oxidized nanofilm is made of a calcined polyethylene polymer-salt-silver salt fiber membrane; or the oxidized nanowire is doped with tin dioxide, oxidized
  • the nanofilm is made of a calcined polyethylene-based polymer-salt-tin salt fiber membrane.
  • Fig. 2 is a view showing an XRD spectrum of an oxidized nanofilm composed of oxidized nanowires in this embodiment. It can be seen from Fig. 2 that ZnO is a hexagonal fiber crystal phase, and the strongest peak is the (002) plane.
  • Fig. 2 is a view showing an XRD spectrum of an oxidized nanofilm composed of oxidized nanowires in this embodiment. It can be seen from Fig. 2 that ZnO is a hexagonal fiber crystal phase, and the strongest peak is the (002) plane.
  • Fig. 2 is a view showing an XRD spectrum of an oxidized nanofilm composed of
  • FIG. 3 is a topographical view of the embodiment of the oxidized nanofilm optical microscope (1000 times).
  • Fig. 4 is a topographical view of the SEM (10000 times) of the oxidized nanofilm of this embodiment. It can be seen from Fig. 3 and Fig. 4 that the oxidized nanofilm of the present invention is composed of oxidized nanowires.
  • the preparation method of the oxidized nanofilm will be described in detail below.
  • the method comprises the following steps: (1) preparing an electrospinning solution for an oxidized nanofilm
  • the polyethylene-based polymer is added to the solvent, and after the polyethylene-based polymer is dissolved, the salt is added to the liquid, and then uniformly mixed to obtain an electrospinning solution.
  • the weight ratio of the polyethylene-based polymer to the salt is 1-5: 0.5-3.
  • the salt may be acetic acid, nitric acid, oxalic acid and hydrates thereof.
  • the solvent may be mercapto amide (DMF), ethanol or tetrahydrofuran (THF).
  • the polyethylene-based polymer may be polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP).
  • the electrospinning solution is doped with an oxide or a metal to enhance the performance of the oxidation in a specific aspect
  • the oxide may be A1 2 0 3 or Sn0 2
  • the metal may be Ag, Au, Pt Or Cu.
  • adding silver salt silver acetate, silver nitrate or silver oxalate
  • adding tin salt tin chloride, tin acetate, tin nitrate or tin oxalate
  • increasing the response sensitivity adding 1-10 of the weight of the electrospinning solution %.
  • the electrospinning solution obtained in the step (1) is added to the electrospinning device, and then the electrospinning solution is injected onto at least one surface of the two sets of electrodes forming the interdigital electrodes for electrospinning, at the interdigitated electrode A polyethylene-based polymer-salt fiber membrane is obtained on at least one side of the surface.
  • the electrospinning device used in the present invention is a conventional commercially available electrospinning device. Specifically, the electrospinning solution obtained in the step (1) is added to a liquid feeding device such as an injection needle of an electrospinning device, the needle is made of metal such as stainless steel, the needle is connected to a high voltage source, and the receiving end is grounded. Then, under the condition of a voltage of 10 kV to 20 kV and a receiving distance of 8 cm to 20 cm, the electrospinning solution is injected into the at least one surface of the interdigital electrode by a jetting device at a pushing speed of 0.1 ml/hr to 1 ml/hr.
  • Electrospinning was carried out, and a polyethylene-based polymer-salt fiber membrane was obtained on at least one side surface of the interdigital electrode.
  • a silver salt is added to the electrospinning liquid, a polyethylene-based polymer-salt-silver salt fiber film is obtained on at least one side surface of the interdigital electrode.
  • Silver salts include silver acetate, silver nitrate or silver oxalate.
  • a tin salt is added to the electrospinning liquid, a polyethylene-based polymer-salt-tin salt fiber membrane is obtained on at least one side surface of the interdigital electrode.
  • the tin salt can be tin chloride, tin acetate, tin nitrate or tin oxalate.
  • the polyethylene-based polymer-salt fiber membrane obtained in the step (2) is calcined together with the interdigitated electrode, and the calcination conditions are as follows: the temperature is raised to 500-600 ° C at a heating rate of 2-10 ° C / min, and the temperature is calcined. 1-6 hours; then cooled to room temperature to obtain an oxidized nanofilm.
  • the oxidized nanowire is doped with silver oxide.
  • tin salt is added to the electrospinning solution, The oxidized nanowire is doped with tin dioxide.
  • the obtained oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase having a diameter of 200 nm to 300 nm.
  • the thickness of the obtained oxidized nanofilm is 500 nm - 1 ⁇ ⁇ .
  • the oxidized nanofilm spans over the interdigital electrode and the two pairs of electrodes of the interdigital electrode are not electrically connected, the current output from the oxidized nanofilm induces ultraviolet light from the interdigital finger.
  • the two pairs of electrodes of the electrode are output to the outside.
  • the sensor of the present invention is used as an ethanol sensor, since the oxidized nanofilm spans over the interdigital electrode and the two pairs of electrodes of the interdigital electrode are not electrically connected, when the surface of the oxidized nanowire adsorbs ethanol, The majority of the carrier (electron) concentration increases and the resistance decreases. The resulting change in resistance can be measured by an external circuit.
  • the present invention employs a second embodiment in order to obtain an oxidized venous film composed of oxidized nanowires of a hexagonal fiber crystal phase.
  • the second embodiment will be described in detail below.
  • a sensor based on an oxidized nanostructure comprising two sets of electrodes forming an interdigital electrode, and an oxidized nanofilm disposed on at least one side surface of the interdigitated electrode; the oxidized nanofilm is oxidized by a crystal phase of a hexagonal fiber
  • the nanowires are formed in parallel.
  • This embodiment has an electrospinning step different from that of the first embodiment described above, and further includes obtaining a polyethylene-based polymer-de-salt fiber film (or a polyethylene-based polymer-salt-silver salt) which is arranged in a fiber-spinning order.
  • Fiber membrane, or polyethylene polymer - salt-tin salt fiber membrane Obtaining an ordered arrangement of polyethylene-based salt fiber membranes (or polyethylene-based polymers - salt-tin salt fiber membranes, or polyethylene-based polymers - salt-tin salt fiber membranes) including but not limited
  • the interdigital electrode 6 Prior to electrospinning, the interdigital electrode 6 is placed in a receiving cavity of a carrier (as shown in Figures 5 and 6).
  • the carrier comprises a first carrier substrate 1, a second carrier substrate 2 and a third carrier substrate 3 disposed on one side of the first carrier substrate, the second carrier substrate 2 and the third carrier substrate 3 being parallel and Interval setting.
  • a first metal strip 4 is provided on the second carrier substrate 2, the first metal strip 4 being disposed along a side of the second carrier substrate 2 that is parallel to the third carrier substrate.
  • a second metal strip 5 is provided on the third carrier substrate 3, and the second metal strip 5 is disposed along the side of the third carrier substrate 3 which is parallel to the second carrier substrate 2.
  • the second carrier substrate 2 and the first metal strip 4 form a receiving cavity with the third carrier substrate 3 and the second metal strip 5.
  • Fig. 7 is a view showing the process of electrospinning in this embodiment, by ejecting an electrospinning liquid onto the interdigital electrode 6 via an electrospinning device 7, to form an oxidized nanowire 8.
  • Figure 8 is the completion of this embodiment The state after electrospinning.
  • Figure 9 is a diagram of the process of removing the interdigital electrodes from the carrier in this embodiment. It can be seen from Fig. 7 - Fig. 9 that the oxidized nanofilm is composed of oxidized nanowires in parallel. In this embodiment, each cubic micron oxidized nanofilm is composed of 2-3 oxidized nanowires on average, and the oxidized nanopillars are intertwined with each other. For example, the total surface area of the oxidized nanofilm is 4.15 ⁇ m 2 , and there are an average of 2.56 oxidized nanowires per cubic micrometer of oxidized nanofilm.
  • Electrospinning itself can be considered as a positively charged fiber that is forced to deposit on a grounded carrier under an electric field.
  • the spinning moves to the vicinity of the metal strip, due to the opposite electrical properties of the two, the two ends of the metal strip are subjected to the maximum Coulomb force attraction under the action of Coulomb force, so the two ends of the spinning are pulled. And make it perpendicular to the direction of the metal strip.
  • the spinning between the metal strips is positively charged. The orderly alignment between the spinning is enhanced by the electrostatic repulsion between the spinning.
  • the first metal strip and the second metal strip are made of aluminum foil, copper foil, aluminum sheet or copper sheet; the first carrier substrate, the second carrier substrate and the third carrier substrate are made of an insulating material. For example, glass.
  • the electrospinning solution obtained in the step (1) is added to the electrospinning device, and then the electrospinning solution is sprayed onto the interdigitated electrode placed in the accommodating cavity of the carrier for electrospinning, and obtained on the interdigitated electrode.
  • the oxidized nanofilm obtained after calcination is composed of the oxidized nanowires of the hexagonal fiber crystal phase.
  • the third embodiment of the present invention further grows an oxidized nano-column with each of the oxidized nanowires constituting the oxidized nanofilm as an axis to form an array of oxidized nanopillars.
  • the oxidized nano-column is a hexagonal column with a (002) plane dominant orientation.
  • the hexagonal column has a maximum length of 200-300 nm and a hexagonal column height of 2-3 ⁇ .
  • the thickness of the oxidized nano-film with an oxidized nano-column is 5-8 ⁇ ⁇ .
  • the oxidized nanofilm obtained by the step (3) in the first embodiment or the second embodiment is used as a seed layer, and the oxidized nano-column is formed on each of the oxidized nanowires constituting the oxidized nano-film to form an oxidized nano-column.
  • Array an oxidized nanofilm with an array of oxidized nanopillars was obtained.
  • the hydrazine nano-column is grown in a salt solution containing a hydrogen-oxygen source by hydrothermal synthesis or microwave heating.
  • the hydrothermal synthesis method is a method for synthesizing an oxidized nanorod array by hydrothermal method.
  • the salt solution containing the hydrogen and oxygen source includes an aqueous solution of acetic acid, nitric acid or oxalic acid; the hydrogen and oxygen source used includes sodium hydroxide, ammonia water, ammonium carbonate, or hexamethylenetetramine.
  • the salt is added to a vessel (sealing bottle or hydrothermal kettle) containing deionized water, and then a portion of deionized water is injected, and the concentration of the salt is 5 to 50 mM (mmol per liter).
  • the salt solution is doped with a silver salt, which is silver acetate, silver nitrate or silver oxalate.
  • the concentration of the silver salt is 0.1 mM to 0.2 mM; or preferably, the salt solution is doped with a tin salt, which includes tin chloride, tin acetate, tin nitrate or tin oxalate.
  • concentration of tin salt is 5 mM ⁇ 10 mM.
  • the salt After the salt is dissolved, add a hydrogen and oxygen source (such as dripping ammonia), mix and homogenize, and then place the oxidized nanofilm obtained in step (3) on the hydrogen-containing oxygen source at 80-100 °C (for example, using an oven).
  • a hydrogen and oxygen source such as dripping ammonia
  • the oxidation column is grown for 2-12 hours.
  • the oxidized nanofilm with the oxidized nano-pillar array (preferably doped with silver or tin) obtained by the present invention can increase the specific surface area per unit volume due to the relatively high width and height of the synthesized oxidized nano-column.
  • the oxidized nanofilm may have a certain orientation.
  • the oxidized nanofilm obtained in the second embodiment is obtained by firing a polyethylene polymer-salt fiber membrane in which the spun fibers are arranged in an orderly manner.
  • the oxidized nano-pillars grown on the oxidized nanofilm are more ordered, and the obtained specific surface area is larger. That is to say, when the parallel filaments are used as the seed layer, since the density of the parallel filaments is high, the oxidized nano-columns synthesized by the hydrothermal synthesis method are intertwined with each other to make the surface an ordered oxidized carpet.
  • FIG. 10 is a view showing the morphology of an oriented oxidized nanofilm after electrospinning in an optical microscope (1000 times) in this embodiment.
  • Fig. 11 is a view showing the morphology of an oxidized nanofilm SEM (500 times) of an oxidized nano-column obtained by growing an oxidized nano-column on an oriented oxidized nano-film.
  • Fig. 12 is a view showing the morphology of an oxidized nano-film having an oxidized nano-column obtained by growing an oxidized nano-column on an oriented oxidized nano-film in the SEM (2000 times).
  • Example 13 is a view showing the morphology of an oxidized nano-film having an oxidized nano-column obtained by growing an oxidized nano-column on an oriented oxidized nano-film in this embodiment at SEM (10000 times). It is understood that this should not be construed as limiting the scope of the claims.
  • the size of the ultraviolet photosensitive sensor obtained in this embodiment is 2 cm X 2 cm, and the thickness of the oxidized nano film is 500 nm, and the diameter of the oxidized nanowire constituting the oxidized nano film is 300 nm.
  • the preparation method of the ultraviolet photosensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigital electrode for electrospinning, and PVP was obtained on the interdigital electrode. - Ag fiber membrane.
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are as follows: heating to 500 ° C at a heating rate of 10 ° C / min, calcination at a constant temperature for 1 hour; and then cooling to room temperature to obtain UV photosensor.
  • a voltage of 6V is respectively connected to one of the interdigital electrodes of the ultraviolet photosensor, and a 10 ⁇ resistor is connected in series in the circuit, and the voltage change across the resistor is measured by a three-meter meter.
  • the converted output current is 5.4 ⁇ 10 ⁇ 8 ⁇ .
  • the ultraviolet photosensitive sensor obtained in this embodiment has a size of 2 cm X 2 cm, and the thickness of the oxidized nano film is 600 nm, and the oxidized nano film is a parallel oxidized nanowire having a diameter of 300 nm.
  • the preparation method of the ultraviolet photosensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded.
  • the interdigital electrodes are placed into the receiving cavities of the carrier as shown in Figures 5 and 6.
  • a micro pump was used to push the speed of 0.1 ml-hr, and the electrospinning solution was injected onto the interdigitated electrode for electrospinning, and PVP-salt was obtained on the interdigitated electrode.
  • Ag fiber membrane At a voltage of 12 kV and a receiving distance of 16 cm, a micro pump was used to push the speed of 0.1 ml-hr, and the electrospinning solution was injected onto the interdigitated electrode for electrospinning, and PVP-salt was obtained on the interdigitated electrode.
  • Ag fiber membrane At a voltage of 12 kV and a receiving distance of 16 cm.
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are: heating to 500 ° C at a heating rate of 10 ° C / min, constant-temperature calcination for 1 hour; and then cooling to room temperature, A UV photosensor is obtained.
  • a voltage of 6V is respectively connected to one of the interdigital electrodes of the ultraviolet photosensor, and a 10 ⁇ resistor is connected in series in the circuit, and the voltage change across the resistor is measured by a three-meter meter.
  • the output current is converted to 7 ⁇ 10 ⁇ 8 ⁇ .
  • Fig. 14 is a graph showing changes in the output current of the ultraviolet photosensor in accordance with the increase in the applied voltage of the ultraviolet light in the present embodiment. As the applied voltage of the ultraviolet light increases, the corresponding ultraviolet light intensity increases, causing a significant linear increase in the output current of the ultraviolet light sensor. When the voltage value is increased to 6.0V, the output current is 7 ⁇ 1 ( ⁇ 8 ⁇ . The output current of the ultraviolet photosensor of the present invention increases approximately linearly with the applied voltage of the ultraviolet light, indicating that the ultraviolet photosensor has good sensitivity.
  • the ultraviolet photosensitive sensor obtained in this embodiment has a size of 2 cm X 2 cm, and the thickness of the oxidized nano film is 1 ⁇ ⁇ , and the oxidized nano film is a parallel oxidized nanowire having a diameter of 300 nm and further growing on the axis of the oxidized nanowire.
  • There is an oxidized nano column the oxidized nano column is a hexagonal column, the height is 2 ⁇ ⁇ , the maximum length of the cross section is 200 nm, and the thickness of the oxidized nano film with the oxidized nano column is 5 ⁇ .
  • the preparation method of the ultraviolet photosensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded.
  • the interdigital electrodes are placed into the receiving cavities of the carrier as shown in Figures 5 and 6.
  • a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigitated electrode for electrospinning, and PVP-salt was obtained on the interdigitated electrode.
  • Ag fiber membrane Under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigitated electrode for electrospinning, and PVP-salt was obtained on the interdigitated electrode.
  • Ag fiber membrane Under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigitated electrode for electrospinning, and PVP-salt was obtained on the interdigitated electrode.
  • Ag fiber membrane Under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are: heating to 500 ° C at a heating rate of 10 ° C / min, constant temperature calcination for 1 hour; and then cooling To room temperature.
  • nitric acid and 0.0242g of silver nitrate were added to a sealed bottle containing 250ml of deionized water, and then 40ml of deionized water was injected. After the nitric acid was dissolved, 1 ml of ammonia water (28% by weight) was added dropwise and mixed. Then, it was reacted in an oven at 90 ° C for 5 hours to grow an oxidized nano column to obtain an ultraviolet photosensitive sensor.
  • a voltage of 6V is respectively connected to one of the interdigital electrodes of the ultraviolet photosensor, and a 10 ⁇ resistor is connected in series in the circuit, and the voltage change across the resistor is measured by a three-meter meter.
  • the output current is converted to 8 ⁇ 10 ⁇ 8 ⁇ .
  • the size of the ultraviolet photosensitive sensor obtained in this embodiment is 2 cm X 2 cm, and the thickness of the oxidized nano film is
  • the diameter of the oxidized nanowire constituting the oxidized nanofilm was 300 nm.
  • the preparation method of the ultraviolet photosensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle tube, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigital electrode for electrospinning. A PVP-salt fiber membrane was obtained on the electrode.
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are as follows: heating to 500 ° C at a heating rate of 10 ° C / min, constant-temperature calcination for 1 hour; and then cooling to room temperature, UV photosensor.
  • the ultraviolet LED is turned on, a voltage of 6V is respectively connected to one of the interdigital electrodes of the ultraviolet photosensor, and a 10 ⁇ resistor is connected in series in the circuit, and the voltage change across the resistor is measured by a three-meter meter. After conversion, the output current is l xl (T 9 A).
  • the voltage becomes the value when no UV LED is illuminated.
  • Changing the UV LED to a green LED has no significant change in voltage.
  • the UV LED is turned on far from the device (about 5 cm) and the voltage does not change due to the LED being turned on.
  • the invention adopts an electrospinning method-calcination to form an oxidized nanofilm on the interdigital electrode, and the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase, which may be disordered or parallel. of. Then, it is preferred to grow an oxidized nano-column on the surface of the oxidized nano-film with each oxidized nanowire as an axis to form an oxidized nano-pillar array, which is a hexagonal column with an (002) plane dominant orientation.
  • the output current is output from the two pairs of electrodes, and the output current of the sensor increases linearly with the intensity of the ultraviolet light, thereby increasing the sensitivity to small current changes.
  • the size of the ethanol sensor obtained in this example was 2 cm x 2 cm, the thickness of the oxidized nano film was 500 nm, and the diameter of the oxidized nanowire constituting the oxidized nano film was 300 nm.
  • the preparation method of the ethanol sensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigital electrode for electrospinning, and PVP was obtained on the interdigital electrode. -Sn fiber membrane.
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are as follows: heating to 500 ° C at a heating rate of 10 ° C / min, constant-temperature calcination for 1 hour; and then cooling to room temperature, Ethanol sensor.
  • the ethanol sensor was placed on a hot plate at 250 ° C, and 40 ⁇ l of ethanol was dropped on a hot plate to evaporate ethanol gas through a microneedle.
  • An external voltage of 5 V is connected to one of the interdigital electrodes of the above-mentioned ethanol sensor, and a 10 ⁇ resistor is connected in series in the circuit, and a voltage change across the resistor is measured by a three-meter meter.
  • Example 5 In the case of an applied voltage of 5 V and an operating temperature of 250 ° C, 40 ⁇ l (microliter) of ethanol was injected, and after one minute, the voltage across the resistor was increased from 0.16 to 0.48V. After conversion, the resistance is reduced from 3.025 X 10 -8 ohms to 0.83 X 10- 8 ohms. The responsiveness is defined as the resistance when there is no ethanol / the resistance when there is ethanol vapor. The ethanol sensor response in Example 5 was 3.66.
  • Example 6 Example 6
  • the ethanol sensor obtained in this example has a size of 2 cm X 2 cm, and the thickness of the oxidized nano film is 600 nm, and the oxidized nano film is a parallel oxidized nanowire having a diameter of 300 nm.
  • the preparation method of the ethanol sensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded.
  • the interdigital electrodes are placed into the receiving cavities of the carrier as shown in Figures 5 and 6.
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are: heating to 500 ° C at a heating rate of 10 ° C / min, constant-temperature calcination for 1 hour; and then cooling to room temperature, Get an ethanol sensor.
  • the ethanol sensor was placed on a hot plate at 250 °C, and ethanol (40 L) was dropped on a hot plate by a microneedle tube to evaporate into ethanol gas.
  • An external voltage of 5 V is connected to one of the interdigital electrodes of the above-mentioned ethanol sensor, and a 10 ⁇ resistor is connected in series in the circuit, and a voltage change across the resistor is measured by a three-meter meter.
  • Example 7 At an applied voltage of 5 V and an operating temperature of 250 ° C, 40 ⁇ l of ethanol was injected, and after one minute, the voltage across the resistor rose from 0.16 to 0.72 V. After conversion, the resistance is reduced from 3.025 10 -8 ohms to 0.55 X 10 -8 ohms. The responsiveness is defined as the resistance when there is no ethanol / the resistance when there is ethanol vapor. The ethanol sensor response in Example 6 was 5.49.
  • Example 7 The responsiveness is defined as the resistance when there is no ethanol / the resistance when there is ethanol vapor.
  • the ethanol sensor obtained in this embodiment has a size of 2 cm X 2 cm, and the thickness of the oxidized nanofilm is 1 ⁇ m, and the oxidized nanofilm is a parallel oxidized nanowire having a diameter of 300 nm and further growing with the oxidized nanowire as an axis.
  • the oxidized nano-column, the oxidized nano-column is a hexagonal column, 2 ⁇ ⁇ high, and the maximum length of the cross section is 200 nm.
  • the preparation method of the ethanol sensor will be described below.
  • interdigital electrodes Using gold foil as a target, an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded.
  • the interdigital electrodes are placed into the receiving cavities of the carrier as shown in Figures 5 and 6.
  • the fiber membrane obtained in the step (3) was calcined together with the interdigitated electrode in a high-temperature furnace under the conditions of a temperature increase of 10 ° C / min to 500 ° C, a constant temperature calcination for 1 hour, and then cooling to room temperature.
  • nitric acid and 0.064 g of SnCl 2 '2H 2 0 were added to a sealed bottle containing 250 ml of deionized water, and then 40 ml of deionized water was injected. After the nitric acid and tin chloride were dissolved, 1 ml of ammonia water was added thereto. The mixture was uniformly mixed, and then reacted in an oven at 90 ° C for 5 hours to grow an oxidized nano column to obtain an ethanol sensor.
  • the ethanol sensor was placed on a hot plate at 250 °C, and ethanol (40 L) was dropped on a hot plate by a microneedle tube to evaporate into ethanol gas.
  • An external voltage of 5 V is connected to one of the fingers of the above-mentioned ethanol sensor, and a 10 ⁇ resistor is connected in series in the circuit, and the voltage change across the resistor is measured by a three-meter meter.
  • Example 7 The medium ethanol sensor has a response of 7.32.
  • Example 8
  • the ethanol sensor obtained in this example has a size of 2 cm x 2 cm, and the thickness of the oxidized nanofilm is 500 nm, and the diameter of the oxidized nanowire constituting the oxidized nanofilm is 300 nm.
  • the preparation method of the ethanol sensor will be described below.
  • an interdigital electrode was deposited on the silicon chip by magnetron sputtering, and the thickness of the electrode was about 70 nm.
  • the electrospinning solution obtained in the step (2) is added to the injection needle, the needle (stainless steel) is connected to the high voltage source, and the receiving end is grounded. Then, under the condition of voltage of 12kV and receiving distance of 16cm, a micro pump was used to push the speed of 0.1ml/hr, and the electrospinning solution was injected onto the interdigital electrode for electrospinning, and PVP was obtained on the interdigital electrode. Fiber membrane.
  • the fiber membrane obtained in the step (3) is calcined together with the interdigitated electrode in a high-temperature furnace, and the calcination conditions are as follows: heating to 500 ° C at a heating rate of 10 ° C / min, calcination at a constant temperature for 1 hour; and then cooling to room temperature to obtain Ethanol sensor.
  • the ethanol sensor was placed on a hot plate at 250 °C, and ethanol was dispensed onto the hot plate by a microneedle tube to evaporate into ethanol gas.
  • An external voltage of 5 V is connected to one of the interdigital electrodes of the above-mentioned ethanol sensor, and a 10 ⁇ resistor is connected in series in the circuit, and a voltage change across the resistor is measured by a three-meter meter.
  • the ethanol sensor can sense the decrease in electrical resistance caused by the absorption of ethanol on the surface of the oxidized surface, and the responsiveness of the ethanol sensor changes approximately linearly with the concentration of the increased ethanol gas in the environment. 0 changes to 40 ⁇ 1, the response changes from 1 to 1.22, and the response is sensitive.
  • the invention adopts an electrospinning method-calcination to form an oxidized nanofilm on the interdigital electrode, and the oxidized nanofilm is composed of an oxidized nanowire of a hexagonal fiber crystal phase, which may be disordered or parallel. of. Then, it is preferred to grow an oxidized nano-column on the surface of the oxidized nano-film with each oxidized nanowire as an axis to form an oxidized nano-pillar array, which is a hexagonal column with an (002) plane dominant orientation.
  • the sensor of the invention can sense the decrease of electrical resistance caused by the absorption of ethanol on the surface of the oxidized surface, and the responsiveness of the sensor changes linearly with the concentration of the increased ethanol gas in the environment.
  • the sensor has the characteristics of high sensitivity and short response time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种基于氧化锌纳米结构的传感器及其制备方法。该传感器包括形成叉指电极(6)的两组电极,以及设置在叉指电极(6)至少一侧表面的氧化锌纳米膜;氧化锌纳米膜由六边纤锌矿晶相的氧化锌纳米线(8)构成;叉指电极(6)的两组电极不导通,形成传感器的信号输出端。该传感器可用作紫外光敏传感器和乙醇传感器,增加了氧化锌纳米结构的比表面积,具有灵敏度高,响应时间短的特定。该传感器制备方法采用静电纺丝法-煅烧在叉指电极(6)上生成氧化锌纳米膜,氧化锌纳米膜由六边纤锌矿晶相的氧化锌纳米线(8)构成。

Description

基于氧化锌纳米结构的传感器及其制备方法 技术领域
本发明涉及传感器领域, 尤其是涉及一种基于氧化辞纳米结构的紫外光 敏传感器、 乙醇传感器及其制备方法。 背景技术
2006年, 美国佐治亚理工学院教授王中林等成功地在纳米尺度范围内将 机械能转换成电能, 研制出世界上最小的发电机-纳米发电机。 纳米发电机的 基本原理是: 当纳米线 (NWs, 例如氧化辞纳米线)在外力下动态拉伸时, 纳米线中生成压电电势, 相应瞬变电流在两端流动以平衡费米能级。
氧化辞纳米线作为半导体材料, 可以应用于紫外光敏传感器和乙醇传感 器。 紫外光敏传感器能够将照射在氧化辞纳米线的紫外光转化为电能, 从电 极向外输出。 现有乙醇传感器和紫外光敏传感器由于氧化辞纳米线的制备方 法, 具有灵敏度低、 响应时间长、 制备工艺复杂等缺陷。
常规生长氧化辞纳米线的方法为化学生长方法, 例如水热法, 使氧化辞 纳米线在带有种子层的金属层基底表面生长。 以往, 在氧化辞纳米线生长过 程中,培养液中产生的气泡上升到溶液表面且时常被面朝下的基底表面捕获, 抑制了氧化辞纳米线在金属层基底表面上均匀生长。 发明内容
常规生长纳米线的方法, 例如水热法, 氧化辞纳米线在金属层基底表面 生长取向度较差, 比表面积不高。 本发明解决的技术问题是提供一种基于氧 化辞纳米结构的传感器及其制备方法, 增加了氧化辞纳米结构的比表面积, 具有灵敏度高, 响应时间短的特点。
由于氧化辞纳米膜跨越在叉指电极之上, 而叉指电极的两对电极之间不 导通, 当紫外光照射在氧化辞纳米膜上, 所输出的电流从两对电极向外输出, 传感器输出电流随着紫外光强度呈近似线性的增加, 增加了对微小电流变化 的灵敏度。 另外, 本发明传感器可以感受因乙醇吸收在氧化辞表面所造成的 电阻下降, 乙醇传感器的响应度与环境里增加的乙醇气体浓度呈近似线性变 化。
本发明釆用静电纺丝法 -煅烧在叉指电极上生成氧化辞纳米膜, 该氧化辞 纳米膜由六边纤辞矿晶相的氧化辞纳米线构成。 或者, 优选的进一步以每根 氧化辞纳米线为轴生长氧化辞纳米柱以形成氧化辞纳米柱阵列, 该氧化辞纳 米柱是在 (002)面优势取向的六角柱。 由于合成的氧化辞纳米柱(六角柱) 的 宽高比较高, 可以增加氧化辞纳米柱阵列单位体积里的比表面积。
为了解决上述技术问题, 本发明釆用的第一技术方案是: 一种基于氧化 辞纳米结构的传感器, 包括形成叉指电极的两组电极, 以及设置在叉指电极 至少一侧表面的氧化辞纳米膜;
所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线构成;
所述叉指电极的两组电极不导通, 形成所述传感器的信号输出端。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米膜由六边纤辞矿 晶相的氧化辞纳米线平行构成。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米线中掺杂有氧化 银。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米线中掺杂有二氧 化锡。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米膜由煅烧静电纺 丝获得的聚乙烯类聚合物-辞盐纤维膜制成。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米膜由煅烧静电纺 丝获得的聚乙烯类聚合物 -辞盐 -银盐纤维膜制成。
前述的基于氧化辞纳米结构的传感器, 所述辞盐包括醋酸辞、 硝酸辞、 草酸辞及它们的水合物;所述聚乙烯类聚合物包括聚乙烯醇 PVA或聚乙烯吡 咯烷酮 PVP; 所述银盐包括醋酸银、 硝酸银或草酸银。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米膜由煅烧静电纺 丝获得的聚乙烯类聚合物 -辞盐 -锡盐纤维膜制成。
前述的基于氧化辞纳米结构的传感器, 所述辞盐包括醋酸辞、 硝酸辞、 草酸辞及它们的水合物; 所述聚乙烯类聚合物包括聚乙烯醇 PVA或聚乙烯 吡咯烷酮 PVP; 所述锡盐包括氯化锡、 醋酸锡、 硝酸锡或草酸锡。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米线的直径为
200-300nm。
前述的基于氧化辞纳米结构的传感器, 所述氧化辞纳米膜的厚度为 500nm-l μ m。
前述的基于氧化辞纳米结构的传感器, 以每根构成氧化辞纳米膜的氧化 辞纳米线为轴进一步生长有氧化辞纳米柱, 构成氧化辞纳米柱阵列, 形成带 有氧化辞纳米柱的氧化辞纳米膜, 所述氧化辞纳米柱是 (002)面优势取向的六 角柱。
前述的基于氧化辞纳米结构的传感器, 所述六角柱横截面最大长度为 200-300nm, 六角柱高度为 2-3 μ πι。
前述的基于氧化辞纳米结构的传感器, 所述带有氧化辞纳米柱的氧化辞 纳米膜的厚度为 5-8 μ πι。
前述的基于氧化辞纳米结构的传感器, 每立方微米氧化辞纳米膜平均由 2-3根氧化辞纳米线构成, 氧化辞纳米柱彼此交缠。
前述的基于氧化辞纳米结构的传感器, 所述叉指电极由在基板上沉积或 涂布金、 铟锡金属氧化物、 银、 铜或铝形成。
前述的基于氧化辞纳米结构的传感器, 所述基板是硅、 玻璃或有机玻璃。 为了解决上述技术问题, 本发明釆用的第二技术方案是: 一种基于氧化 辞纳米结构的传感器的制备方法, 该方法包括:
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将聚乙烯类聚合物加入到溶剂中, 待聚乙烯类聚合物溶解后, 向液体中 加入辞盐, 然后混合均匀得到静电纺丝液; 其中, 聚乙烯类聚合物与辞盐的 重量比为 1-5: 0.5-3;
( 2 )静电纺丝 将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 注射到形成叉指电极的两组电极的至少一侧表面上进行静电纺丝, 在叉指电 极的至少一侧表面上获得聚乙烯类聚合物-辞盐纤维膜; 以及
( 3 )煅烧
将步骤(2 ) 所得聚乙烯类聚合物-辞盐纤维膜连同叉指电极一起进行煅 烧, 煅烧条件为: 按照 2-10°C/min的升温速率升温至 500-600 °C, 恒温煅烧 1-6小时; 然后冷却到室温, 得到氧化辞纳米膜, 所述氧化辞纳米膜由六边纤 辞矿晶相的氧化辞纳米线构成。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(3 )中, 该方法 还包括得到纺丝纤维有序排列的聚乙烯类聚合物-辞盐纤维膜。
前述的基于氧化辞纳米结构的传感器的制备方法, 静电纺丝之前, 将叉 指电极放置在载体的容置腔中; 其中, 该载体包括第一载体底材, 设置在第 一载体底材一侧表面的第二载体底材和第三载体底材, 第二载体底材和第三 载体底材平行并间隔设置, 在第二载体底材上设有第一金属条, 在第三载体 底材上设有第二金属条, 第一金属条与第二金属条平行设置; 第二载体底材 和第一金属条, 与第三载体底材和第二金属条之间形成容置腔。
前述的基于氧化辞纳米结构的传感器的制备方法, 所述第一金属条和第 二金属条所用材质是铝箔、 铜箔、 铝片或铜片; 所述第一载体底材、 第二载 体底材和第三载体底材所用材质是绝缘材料。
前述的基于氧化辞纳米结构的传感器的制备方法, 所述氧化辞纳米膜由 六边纤辞矿晶相的氧化辞纳米线平行构成。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(1 )中, 所述辞 盐包括醋酸辞、 硝酸辞、 草酸辞及它们的水合物; 所述溶剂包括曱基曱酰胺 DMF, 乙醇 ethanol或四氢呋喃 THF;所述聚乙烯类聚合物包括聚乙烯醇 PVA 或聚乙烯吡咯烷酮 PVP。
前述的基于氧化辞纳米结构的传感器的制备方法, 在静电纺丝液中添加 银盐, 然后在步骤(2 ), 在叉指电极的至少一侧表面上获得聚乙烯类聚合物 -辞盐-银盐纤维膜; 其中所述银盐包括醋酸银、 硝酸银或草酸银。 前述的基于氧化辞纳米结构的传感器的制备方法, 在静电纺丝液中添加 锡盐, 然后在步骤(2 ), 在叉指电极的至少一侧表面上获得聚乙烯类聚合物 -辞盐-锡盐纤维膜; 其中所述锡盐包括氯化锡、 醋酸锡、 硝酸锡或草酸锡。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(2 )中, 在电压 为 10kV-20kV, 接收距离为 8cm-20cm, 推动速度 0.1ml/hr-lml/hr条件下, 将 静电纺丝液注射到叉指电极上进行静电纺丝。
前述的基于氧化辞纳米结构的传感器的制备方法, 纺丝时间为 30 秒到 10分钟。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(3 )中, 所述氧 化辞纳米线的直径为 200nm-300nm。
前述的基于氧化辞纳米结构的传感器的制备方法, 所述氧化辞纳米膜的 厚度为 500nm-l μ πι。
前述的基于氧化辞纳米结构的传感器的制备方法, 该方法还包括: 步骤 ( 4 )生长氧化辞纳米柱阵列
以步骤(3 )所得氧化辞纳米膜为种子层, 以每根氧化辞纳米线为轴, 生 长氧化辞纳米柱以形成氧化辞纳米柱阵列, 得到带有氧化辞纳米柱阵列的氧 化辞纳米膜。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(4 )中, 釆用水 热合成法或微波加热法, 在含氢氧源的辞盐溶液中, 以每根氧化辞纳米线为 轴生长氧化辞纳米柱以形成氧化辞纳米柱阵列。
前述的基于氧化辞纳米结构的传感器的制备方法, 所述含氢氧源的辞盐 溶液包括醋酸辞、 硝酸辞或草酸辞的水溶液; 所用氢氧源包括氢氧化钠、 氨 水、 碳酸铵、 或六亚曱基四胺。
前述的基于氧化辞纳米结构的传感器的制备方法, 在所述辞盐溶液中掺 杂银盐, 得到掺杂有银的氧化辞纳米柱; 所述银盐包括醋酸银、 硝酸银或草 酸银。
前述的基于氧化辞纳米结构的传感器的制备方法, 在所述辞盐溶液中掺 杂锡盐, 得到掺杂有锡的氧化辞纳米柱; 所述锡盐包括氯化锡、 醋酸锡、 硝 酸锡或草酸锡。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(4 )中, 所述水 热合成法为: 在 80-100 °C下, 在含氢氧源的辞盐溶液中, 以每根氧化辞纳米 线为轴生长氧化辞纳米柱 2-12小时。
前述的基于氧化辞纳米结构的传感器的制备方法, 步骤(4 )中, 所述氧 化辞纳米柱是 (002)面优势取向的六角柱, 所述六角柱横截面最大长度为 200nm-300nm, 六角柱高度为 2-3 μ πι。
前述的基于氧化辞纳米结构的传感器的制备方法, 在步骤(4 )中, 所述 带有氧化辞纳米柱阵列的氧化辞纳米膜厚度为 5-8 μ m。
前述的基于氧化辞纳米结构的传感器的制备方法, 每立方微米氧化辞纳 米膜平均由 2-3根氧化辞纳米线构成, 氧化辞纳米柱彼此交缠。
前述的基于氧化辞纳米结构的传感器的制备方法, 在基板上沉积或涂布 电极材料形成叉指电极形状的两组电极。
本发明传感器灵敏度高、 响应时间快, 制备工艺简单。 本发明基于氧化 辞纳米结构的传感器可以用作紫外光敏传感器, 由于氧化辞纳米膜跨越在叉 指电极之上, 而叉指电极的两对电极之间不导通, 紫外光照射在氧化辞纳米 膜所输出的电流从叉指电极的两对电极向外输出。 另外, 本发明基于氧化辞 纳米结构的传感器可以用作乙醇传感器, 由于氧化辞纳米膜跨越在叉指电极 之上, 而叉指电极的两对电极之间不导通, 因此当氧化辞纳米线表面吸附乙 醇时, 则氧化辞表面多数载流子 (电子) 浓度增加, 电阻减小。 产生的电阻 变化可以通过外部电路测量。 附图说明
图 1是叉指电极示意图。
图 2 是静电纺丝经煅烧后由氧化辞纳米线构成的氧化辞纳米膜 XRD谱 图, 其中氧化辞沉积在镀金的硅芯片上。
图 3是第一具体实施方式静电纺丝经煅烧后由氧化辞纳米线构成的氧化 辞纳米膜光学显敖镜 (1000倍)下的形貌图。 图 4是第一具体实施方式静电纺丝经煅烧后由氧化辞纳米线构成的氧化 辞纳米膜 SEM(10000倍)下的形貌图。
图 5是本发明第二具体实施方式所用叉指电极的载体示意图。
图 6是本发明第二具体实施方式所用叉指电极的载体剖面示意图。
图 7是在本发明第二具体实施方式所用叉指电极的载体上进行静电纺丝 的过程。
图 8是在本发明第二具体实施方式所用叉指电极的载体上完成静电纺丝 后的状态。
图 9是从本发明第二具体实施方式所用叉指电极的载体上取下叉指电极 的过程。
图 10 是本发明第二具体实施方式静电纺丝经煅烧后的有取向性氧化辞 纳米膜在光学显微镜 (1000倍)下的形貌。
图 11 是本发明第三具体实施方式在有取向性的氧化辞纳米膜上生长氧 化辞纳米柱得到的带有氧化辞纳米柱的氧化辞纳米膜在 SEM(500 倍)下的形 貌。
图 12 是本发明第三具体实施方式在有取向性的氧化辞纳米膜上生长氧 化辞纳米柱得到的带有氧化辞纳米柱的氧化辞纳米膜在 SEM(2000倍)下的形 貌。
图 13 是本发明第三具体实施方式在有取向性的氧化辞纳米膜上生长氧 化辞纳米柱得到的带有氧化辞纳米柱的氧化辞纳米膜在 SEM(10000 倍)下的 形貌。
图 14是本发明实施例 2中紫外光敏传感器输出电流随着紫外光外加电压 增加的变化曲线。
图 15是实施例 8乙醇传感器的响应度与环境里增加的乙醇气体浓度近似 线性变化关系图。 具体实施方式
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明。
下面详细说明一下本发明的第一具体实施方式。
一种基于氧化辞纳米结构的传感器, 包括形成叉指电极的两组电极, 以 及设置在叉指电极至少一侧表面的氧化辞纳米膜; 氧化辞纳米膜由六边纤辞 矿晶相的氧化辞纳米线构成。
图 1所示是叉指电极的结构示意图。 两组电极形成叉指形状且这两组电 极之间不导通, 形成所述传感器的信号输出端。 本发明叉指电极釆用常规方 法制成。 具体的, 在基板上沉积或涂布电极材料形成叉指电极形状的两组电 极。 本发明叉指电极厚度约为 50nm-100nm。
本发明对叉指电极所用基板没有特殊规定, 常规的基板材料均可应用于 本发明, 例如硅、 玻璃或有机玻璃。 本发明对电极材料也没有特殊规定, 例 如金、 铟锡金属氧化物(ITO )、 银、 铜或铝均可应用于本发明。 本发明釆用 的涂布或沉积方法也是现有常规的, 例如磁控溅射、 电子束或热蒸镀、 丝网 印刷、 或旋转涂布。
氧化辞纳米膜由煅烧静电纺丝聚乙烯类聚合物 -辞盐纤维膜制成, 直径为
200-300nm, 厚度为 500nm-l μ m。 优选的, 氧化辞纳米线中掺杂有氧化银, 氧化辞纳米膜由煅烧聚乙烯类聚合物-辞盐-银盐纤维膜制成;或者氧化辞纳米 线中掺杂有二氧化锡,氧化辞纳米膜由煅烧聚乙烯类聚合物 -辞盐 -锡盐纤维膜 制成。图 2所示是该实施方式由氧化辞纳米线构成的氧化辞纳米膜 XRD谱图。 由图 2可以看出 ZnO是六边纤辞矿晶相, 最强的峰为(002)面。 图 3是该实施 方式氧化辞纳米膜光学显微镜 (1000倍)下的形貌图。 图 4是该实施方式氧化 辞纳米膜 SEM(10000倍)下的形貌图。 由图 3和图 4可以看出本发明氧化辞 纳米膜由氧化辞纳米线构成。
下面详细说明一下氧化辞纳米膜的制备方法。 该方法包括以下步骤: ( 1 ) 配制氧化辞纳米膜用静电纺丝液
将聚乙烯类聚合物加入到溶剂中, 待聚乙烯类聚合物溶解后, 向液体中 加入辞盐, 然后混合均匀得到静电纺丝液。 其中, 聚乙烯类聚合物与辞盐的 重量比为 1-5: 0.5-3。 例如, 每 10 ml溶剂中加入 l-5g聚乙烯类聚合物, 然 后向混合溶液中加入辞盐, 每 10 ml的混合溶液加入 0.5-3g辞盐。 所述辞盐可以是醋酸辞、 硝酸辞、 草酸辞及它们的水合物。 所述溶剂可 以是曱基曱酰胺 (DMF), 乙醇 (ethanol)或四氢呋喃 (THF)。 所述聚乙烯类聚合 物可以是聚乙烯醇 (PVA)或聚乙烯吡咯烷酮 (PVP)。
优选的, 在该步骤中, 在静电纺丝液中掺杂氧化物或金属以增进氧化辞 在特定方面的性能, 氧化物可以是 A1203或 Sn02, 金属可以是 Ag、 Au、 Pt 或 Cu。 例如添加银盐(醋酸银、 硝酸银或草酸银), 或者添加锡盐(氯化锡、 醋酸锡、 硝酸锡或草酸锡) , 增加响应灵敏度, 添加比例为静电纺丝液重量 的 1-10%。
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 注射到形成叉指电极的两组电极的至少一侧表面上进行静电纺丝, 在叉指电 极的至少一侧表面上获得聚乙烯类聚合物-辞盐纤维膜。
本发明所用静电纺丝装置为常规市售静电纺丝装置。具体的,将步骤(1 ) 所得静电纺丝液加入到静电纺丝装置的给液装置例如注射针管中, 针头为金 属如不锈钢, 将针头接高压源, 接收端接地。 然后在电压为 10kV-20kV, 接 收距离为 8cm-20cm条件下, 用微量泵以推动速度 0.1ml/hr-lml/hr, 将静电纺 丝液通过喷射装置注射到叉指电极的至少一侧表面上进行静电纺丝, 在叉指 电极的至少一侧表面上获得聚乙烯类聚合物-辞盐纤维膜。 当在静电纺丝液中 添加银盐时,在叉指电极的至少一侧表面上获得聚乙烯类聚合物 -辞盐 -银盐纤 维膜。 银盐包括醋酸银、 硝酸银或草酸银。 当在静电纺丝液中添加锡盐时, 在叉指电极的至少一侧表面上获得聚乙烯类聚合物-辞盐-锡盐纤维膜。锡盐可 以是氯化锡、 醋酸锡、 硝酸锡或草酸锡。
( 3 )煅烧
将步骤(2 ) 所得聚乙烯类聚合物-辞盐纤维膜膜连同叉指电极一起进行 煅烧, 煅烧条件为: 按照 2-10°C/min的升温速率升温至 500-600 °C, 恒温煅 烧 1-6 小时; 然后冷却到室温, 得到氧化辞纳米膜。 当在静电纺丝液中添加 银盐时, 所述氧化辞纳米线中掺杂有氧化银。 当在静电纺丝液中添加锡盐时, 所述氧化辞纳米线中掺杂有二氧化锡。
所得氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 该氧化辞纳 米线的直径为 200nm-300nm。 所得氧化辞纳米膜的厚度是 500nm-l μ πι。
当本发明传感器用作紫外光敏传感器, 由于氧化辞纳米膜跨越在叉指电 极之上, 而叉指电极的两对电极之间不导通, 氧化辞纳米膜感应紫外线所输 出的电流从叉指电极的两对电极向外输出。 另外, 当本发明传感器用作乙醇 传感器, 由于氧化辞纳米膜跨越在叉指电极之上, 而叉指电极的两对电极之 间不导通, 因此当氧化辞纳米线表面吸附乙醇时, 则氧化辞表面多数载流子 (电子)浓度增加, 电阻减小。 产生的电阻变化可以通过外部电路测量。
本发明为了得到由六边纤辞矿晶相的氧化辞纳米线平行构成的氧化辞纳 米膜, 釆用了第二具体实施方式。 下面详细说明第二具体实施方式。
一种基于氧化辞纳米结构的传感器, 包括形成叉指电极的两组电极, 以 及设置在叉指电极至少一侧表面的氧化辞纳米膜; 氧化辞纳米膜由六边纤辞 矿晶相的氧化辞纳米线平行构成。
该实施方式具有与上述第一实施方式不同的静电纺丝步骤, 还包括得到 纤维纺丝有序排列的聚乙烯类聚合物 -辞盐纤维膜(或聚乙烯类聚合物-辞盐- 银盐纤维膜, 或聚乙烯类聚合物-辞盐-锡盐纤维膜)。得到有序排列的聚乙烯 类聚合物 -辞盐纤维膜(或聚乙烯类聚合物-辞盐-锡盐纤维膜, 或聚乙烯类聚 合物-辞盐-锡盐纤维膜) 包括但不局限于下列方法, 例如: 在静电纺丝之前, 将叉指电极 6放置在载体(如图 5和图 6所示) 的容置腔中。 该载体包括第 一载体底材 1, 设置在第一载体底材一侧表面的第二载体底材 2和第三载体 底材 3, 第二载体底材 2和第三载体底材 3平行并间隔设置。 在第二载体底 材 2上设有第一金属条 4, 第一金属条 4沿第二载体底材 2的与第三载体底 材平行的边设置。 在第三载体底材 3上设有第二金属条 5, 第二金属条 5沿 第三载体底材 3的与第二载体底材 2平行的边设置。 第二载体底材 2和第一 金属条 4, 与第三载体底材 3和第二金属条 5之间形成容置腔。
图 7是该实施方式进行静电纺丝的过程, 经由静电纺丝设备 7将静电纺 丝液喷射到叉指电极 6上, 形成氧化辞纳米线 8。 图 8是该实施方式完成静 电纺丝后的状态。 图 9是该实施方式从载体上取下叉指电极的过程。 由图 7- 图 9可以看出氧化辞纳米膜由氧化辞纳米线平行构成。 该实施方式中, 每立 方微米氧化辞纳米膜平均由 2-3根氧化辞纳米线构成, 氧化辞纳米柱彼此交 缠。 例如, 氧化辞纳米膜的总表面积是 4.15μπι2, 每立方微米氧化辞纳米膜里 平均有 2.56根氧化辞纳米线。
在静电纺丝时, 射出头接正电, 而载体上的金属条接地, 因而在其之间 产生一电场。 而静电纺丝的本身可以视为带正电的纤维, 在电场下受力沉积 在接地的载体上。 当纺丝移动到金属条的附近时, 由于两者的电性相反, 在 库伦力的作用下, 纺丝在金属条上的两端受最大的库伦力吸引力, 因此拉扯 纺丝的两端并使其与金属条的方向垂直。 另一方面, 不同于在金属条上的部 分, 在金属条间的纺丝会带正电。 由于纺丝间的静电排斥而加强了纺丝间的 有序排列。
该实施方式中第一金属条和第二金属条所用材质是铝箔、 铜箔、 铝片或 铜片; 第一载体底材、 第二载体底材和第三载体底材所用材质是绝缘材质, 例如玻璃。
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 喷射到放置在载体的容置腔中的叉指电极上进行静电纺丝, 在叉指电极上获 得聚乙烯类聚合物-辞盐纤维膜。 煅烧后所得氧化辞纳米膜由六边纤辞矿晶相 的氧化辞纳米线平行构成。
为了进一步提高氧化辞纳米膜的比表面积, 本发明的第三具体实施方式 以每根构成氧化辞纳米膜的氧化辞纳米线为轴进一步生长有氧化辞纳米柱, 构成氧化辞纳米柱阵列, 形成带有氧化辞纳米柱的氧化辞纳米膜。 氧化辞纳 米柱是 (002)面优势取向的六角柱, 该六角柱横截面最大长度为 200-300nm, 六角柱高度为 2-3 μ πι, 带有氧化辞纳米柱的氧化辞纳米膜厚度为 5-8 μ πι。
下面详细说明氧化辞纳米柱的生长方法。
以第一具体实施方式或第二具体实施方式步骤(3 )所得氧化辞纳米膜为 种子层, 以每根构成氧化辞纳米膜的氧化辞纳米线为轴生长氧化辞纳米柱以 形成氧化辞纳米阵列, 得到带有氧化辞纳米柱阵列的氧化辞纳米膜。 本发明 釆用水热合成法或微波加热法,在含氢氧源的辞盐溶液中生长氧化辞纳米柱。 水热合成法是一种水热法合成氧化辞纳米棒阵列的方法。 具体的所述含 氢氧源的辞盐溶液包括醋酸辞、 硝酸辞或草酸辞的水溶液; 所用氢氧源包括 氢氧化钠、 氨水、 碳酸铵、 或六亚曱基四胺。 将辞盐加入到装有去离子水的 容器(封口瓶或水热釜)中,然后再注入部分去离子水,辞盐的浓度为 5~50mM (毫摩尔每升)。 优选的, 在所述辞盐溶液中掺杂银盐, 所述银盐是醋酸银、 硝酸银或草酸银。 银盐的浓度为 0.1mM~0.2mM; 或优选的, 在所述辞盐溶液 中掺杂锡盐, 所述锡盐是包括氯化锡、 醋酸锡、 硝酸锡或草酸锡。 锡盐的浓 度为 5 mM ~10mM。
待辞盐溶解后再加入氢氧源 (如滴入氨水) 混合均勾, 然后在 80-100 °C 下(例如利用烘箱 ) , 将步骤(3 )所得氧化辞纳米膜置于含氢氧源的辞盐溶 液中, 使氧化辞纳米柱生长 2-12小时。
本发明所得带有氧化辞纳米柱阵列 (优选掺杂有银或锡) 的氧化辞纳米 膜, 由于合成氧化辞纳米柱的宽高比较高, 可以增加单位体积里的比表面积。
本实施方式中氧化辞纳米膜可以是具有一定的取向性, 例如第二实施方 式所得的氧化辞纳米膜, 由纺丝纤维有序排列的聚乙烯类聚合物-辞盐纤维膜 煅烧而成。 这样, 使得生长在该氧化辞纳米膜上的氧化辞纳米柱更有有序性, 得到的比表面积更大。 也就是说, 当以平行丝为种子层时, 由于平行丝的密 度很高, 水热合成法合成的氧化辞纳米柱彼此交缠使表面成为有序的氧化辞 地毯。图 10是该实施方式静电纺丝经煅烧后的有取向性氧化辞纳米膜在光学 显微镜 (1000倍)下的形貌。 图 11是该实施方式在有取向性的氧化辞纳米膜上 生长氧化辞纳米柱得到的带有氧化辞纳米柱的氧化辞纳米膜 SEM(500 倍)下 的形貌。图 12是该实施方式在有取向性的氧化辞纳米膜上生长氧化辞纳米柱 得到的带有氧化辞纳米柱的氧化辞纳米膜在 SEM(2000 倍)下的形貌。 图 13 是该实施方式在有取向性的氧化辞纳米膜上生长氧化辞纳米柱得到的带有氧 化辞纳米柱的氧化辞纳米膜在 SEM(10000倍)下的形貌。 当理解的是, 这不应被理解为对本发明权利要求范围的限制。 实施例
实施例 1
本实施例所得紫外光敏传感器尺寸为 2 cm X 2cm, 氧化辞纳米膜厚度为 500nm, 构成氧化辞纳米膜的氧化辞纳米线直径为 300nm。 下面说明该紫外 光敏传感器的制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中,待聚乙烯吡咯烷酮溶解后,再緩慢加入 0.9g醋酸辞和 0.068g硝 酸银, 然后混合均匀得到静电纺丝液。
( 3 )静电纺丝
将步骤( 2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 12kV, 接收距离为 16cm条件下, 用微量泵 以推动速度 0.1ml/hr,将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指 电极上获得 PVP-辞盐 -Ag纤维膜。
( 4 )煅烧
将步骤 ( 3 )所得纤维膜连同叉指电极一起在高温炉中进行煅烧, 煅烧条 件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷却 到室温, 得到紫外光敏传感器。
在紫外 LED打开的情况下, 以外加电压 6V分别连接上述紫外光敏传感 器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电表量 测电阻两端的电压变化, 经换算得到输出电流为 5.4χ 10·8Α。
当移动紫外 LED从器件表面到远处 (>2cm), 电压变为无紫外 LED照射 时的值。 改变紫外 LED为绿光 LED, 电压无明显变化。 在离器件较远的地 方 (约 5 cm)打开紫外 LED, 电压不因 LED的打开而变化。 实施例 2
本实施例所得紫外光敏传感器尺寸为 2 cm X 2cm,氧化辞纳米膜厚度为 600nm, 构成氧化辞纳米膜为平行氧化辞纳米线, 其直径为 300nm。 下面说 明紫外光敏传感器制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞和 0.068g 硝酸银, 然后混合均匀得到静电纺丝液。
( 3 )静电纺丝
将步骤(2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 将叉指电极放置到如图 5和图 6所示的载体的容置腔中。
在电压为 12kV,接收距离为 16cm条件下,用微量泵以推动速度 0.1ml-hr, 将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指电极上获得 PVP-辞盐 -Ag纤维膜。
( 4 )煅烧
将步骤(3 )所得纤维膜膜连同叉指电极一起在高温炉中进行煅烧, 煅烧 条件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷 却到室温, 得到紫外光敏传感器。
在紫外 LED打开的情况下, 以外加电压 6V分别连接上述紫外光敏传感 器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电表量 测电阻两端的电压变化, 经换算得到输出电流为 7χ 10·8Α。
当移动紫外 LED从器件表面到远处 (>2cm), 电压变为无紫外 LED照射 时的值。 改变紫外 LED为绿光 LED, 电压无明显变化。 在离器件较远的地 方 (约 5 cm)打开紫外 LED, 电压不因 LED的打开而变化。 图 14 是本实施例中紫外光敏传感器输出电流随着紫外光外加电压增加 的变化曲线。 随着紫外光外加电压的增加, 相应的紫外光照强度增加, 引起 紫外光敏传感器输出电流近似线性的显著增加。 当电压值增加到 6.0V时, 输 出电流为 7χ 1(Τ8Α。本发明紫外光敏传感器输出电流随着紫外光外加电压呈近 似线性的增加, 说明紫外光敏传感器具有良好的灵敏度。 实施例 3
本实施例所得紫外光敏传感器尺寸为 2 cm X 2cm,氧化辞纳米膜厚度为 1 μ πι, 构成氧化辞纳米膜为平行氧化辞纳米线, 其直径为 300nm, 以氧化辞 纳米线为轴进一步生长有氧化辞纳米柱, 氧化辞纳米柱为六角柱, 高 2 μ πι, 横截面最大长度为 200nm, 带有氧化辞纳米柱的氧化辞纳米膜厚度为 5 μ πι。 下面说明紫外光敏传感器制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞和 0.068g 硝酸银, 然后混合均匀得到静电纺丝液。
( 3 )静电纺丝
将步骤(2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 将叉指电极放置到如图 5和图 6所示的载体的容置腔中。
在电压为 12kV,接收距离为 16cm条件下,用微量泵以推动速度 0.1ml/hr, 将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指电极上获得 PVP-辞盐 -Ag纤维膜。
( 4 )煅烧
将步骤(3 )所得纤维膜连同叉指电极一起在高温炉中进行煅烧, 煅烧条 件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷却 到室温。
( 5 )生长氧化辞纳米柱阵列
将 0.238g硝酸辞与 0.0242g硝酸银加入到装有 250ml去离子水的封口瓶 中, 然后再注入 40ml去离子水, 待硝酸辞溶解后再滴入 lml氨水(重量百分 比 28% )混合均匀, 然后在 90 °C下在烘箱中反应 5小时, 使氧化辞纳米柱生 长, 得到紫外光敏传感器。
在紫外 LED打开的情况下, 以外加电压 6V分别连接上述紫外光敏传感 器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电表量 测电阻两端的电压变化, 经换算得到输出电流为 8χ 10·8Α。
当移动紫外 LED从器件表面到远处 (>2cm), 电压变为无紫外 LED照射 时的值。 改变紫外 LED为绿光 LED, 电压无明显变化。 在离器件较远的地 方 (约 5 cm)打开紫外 LED, 电压不因 LED的打开而变化。 实施例 4
本实施例所得紫外光敏传感器尺寸为 2 cm X 2cm,氧化辞纳米膜厚度为
500nm, 构成氧化辞纳米膜的氧化辞纳米线直径为 300nm。 下面说明该紫外 光敏传感器的制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均勾得到静电纺丝液。
( 3 )静电纺丝
将步骤(2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 12kV, 接收距离为 16cm条件下, 用微量泵 以推动速度 0.1ml/hr,将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指 电极上获得 PVP-辞盐纤维膜。
( 4 )煅烧
将步骤(3 )所得纤维膜连同叉指电极一起在高温炉中进行煅烧, 煅烧条 件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷却 到室温, 得到紫外光敏传感器。
在紫外 LED打开的情况下, 以外加电压 6V分别连接上述紫外光敏传感 器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电表量 测电阻两端的电压变化, 经换算后得到输出电流为 l xl(T9A。
当移动紫外 LED从器件表面到远处 (>2cm), 电压变为无紫外 LED照射 时的值。 改变紫外 LED为绿光 LED, 电压无明显变化。 在离器件较远的地 方 (约 5 cm)打开紫外 LED, 电压不因 LED的打开而变化。
本发明釆用静电纺丝法 -煅烧在叉指电极上生成氧化辞纳米膜, 该氧化辞 纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 可以是无序的也可以是平行 的。 然后优选的在氧化辞纳米膜表面上以每根氧化辞纳米线为轴生长氧化辞 纳米柱以形成氧化辞纳米柱阵列, 该氧化辞纳米柱是在 (002)面优势取向的六 角柱。 本发明传感器, 当紫外光照射在氧化辞纳米膜上, 所输出的电流从两 对电极向外输出, 传感器输出电流随着紫外光强度呈近似线性的增加, 增加 了对微小电流变化的灵敏度。 实施例 5
本实施例所得乙醇传感器尺寸为 2cmx2cm,氧化辞纳米膜厚度为 500nm, 构成氧化辞纳米膜的氧化辞纳米线直径为 300nm。 下面说明该乙醇传感器的 制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g 醋酸辞和 0.33g 的 SnCl2.2H20, 然后混合均匀得到静电纺丝液。
( 3 )静电纺丝
将步骤(2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 12kV, 接收距离为 16cm条件下, 用微量泵 以推动速度 0.1ml/hr,将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指 电极上获得 PVP-辞盐 -Sn纤维膜。
( 4 )煅烧
将步骤(3 )所得纤维膜连同叉指电极一起在高温炉中进行煅烧, 煅烧条 件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷却 到室温, 得到乙醇传感器。
封闭环境下, 将乙醇传感器放置在 250°C的加热板上, 由微量针管将乙 醇 40μ1滴在加热板上蒸发成乙醇气体。 以外加电压 5V分别连接上述乙醇传 感器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电表 量测电阻两端的电压变化。
在外加电压 5V、 操作温度 250°C的情况下, 注入乙醇 40μ1 (微升) , 经 一分钟后, 电阻两端的电压由 0.16升到 0.48V。 经换算, 电阻由 3.025 X 10-8 欧姆降到 0.83 X 10-8欧姆。 定义响应度为无乙醇时的电阻 /有乙醇蒸气时的电 阻。 实施例 5中乙醇传感器响应度为 3.66。 实施例 6
本实施例所得乙醇传感器尺寸为 2 cm X 2cm, 氧化辞纳米膜厚度为 600nm, 构成氧化辞纳米膜为平行氧化辞纳米线, 其直径为 300nm。 下面说 明乙醇传感器制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液 将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞和 0.33g 的 SnCl2.2H20, 然后混合均匀得到静电纺丝液。
( 3 )静电纺丝
将步骤( 2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 将叉指电极放置到如图 5和图 6所示的载体的容置腔中。
在电压为 12kV,接收距离为 16cm条件下,用微量泵以推动速度 0.1ml/hr, 将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指电极上获得 PVP-辞盐 -Sn纤维膜。
( 4 )煅烧
将步骤(3 )所得纤维膜膜连同叉指电极一起在高温炉中进行煅烧, 煅烧 条件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷 却到室温, 得到乙醇传感器。
封闭环境下, 将乙醇传感器放置在 250 °C的加热板上, 由微量针管将乙 醇(40 L )滴在加热板上蒸发成乙醇气体。 以外加电压 5V分别连接上述乙 醇传感器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用 电表量测电阻两端的电压变化。
在外加电压 5V、操作温度 250°C的情况下, 注入乙醇 40μ1, 经一分钟后, 电阻两端的电压由 0.16升到 0.72V。经换算,电阻由 3.025 10-8欧姆降到 0.55 X 10-8欧姆。 定义响应度为无乙醇时的电阻 /有乙醇蒸气时的电阻。 实施例 6 中乙醇传感器响应度为 5.49。 实施例 7
本实施例所得乙醇传感器尺寸为 2 cm X 2cm, 氧化辞纳米膜厚度为 1 μ m, 构成氧化辞纳米膜为平行氧化辞纳米线, 其直径为 300nm, 以氧化辞纳 米线为轴进一步生长有氧化辞纳米柱, 氧化辞纳米柱为六角柱, 高 2 μ πι, 横 截面最大长度为 200nm。 下面说明乙醇传感器制备方法。
( 1 )叉指电极的制备 以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞和 0.33g 的 SnCl2.2H20, 然后混合均匀得到静电纺丝液。
( 3 )静电纺丝
将步骤(2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 将叉指电极放置到如图 5和图 6所示的载体的容置腔中。
在电压为 12kV,接收距离为 16cm条件下,用微量泵以推动速度 0.1ml/hr, 将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指电极上获得 PVP-辞盐 -Sn纤维膜。
( 4 )煅烧
将步骤(3 )所得纤维膜膜连同叉指电极一起在高温炉中进行煅烧, 煅烧 条件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷 却到室温。
( 5 )生长氧化辞纳米柱阵列
将 0.238g硝酸辞与 0.064g SnCl2'2H20加入到装有 250ml去离子水的封口 瓶中, 然后再注入 40ml去离子水,待硝酸辞与氯化锡溶解后再滴入 lml氨水 (重量百分比 28% )混合均匀, 然后在 90°C下在烘箱中反应 5小时, 使氧化 辞纳米柱生长, 得到乙醇传感器。
封闭环境下, 将乙醇传感器放置在 250 °C的加热板上, 由微量针管将乙 醇 (40 L)滴在加热板上蒸发成乙醇气体。 以外加电压 5V分别连接上述乙醇 传感器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电 表量测电阻两端的电压变化。
在外加电压 5V、操作温度 250°C的情况下, 注入乙醇 40μ1, 经一分钟后, 电阻两端的电压由 0.16升到 0.96V。经换算, 电阻由 3.025 1(Τ8欧姆降到 0.4 x lO-8欧姆。 定义响应度为无乙醇时的电阻 /有乙醇蒸气时的电阻。 实施例 7 中乙醇传感器响应度为 7.32。 实施例 8
本实施例所得乙醇传感器尺寸为 2cm x 2cm, 氧化辞纳米膜厚度为 500nm, 构成氧化辞纳米膜的氧化辞纳米线直径为 300nm。 下面说明该乙醇 传感器的制备方法。
( 1 )叉指电极的制备
以金箔为靶材, 用磁控溅射在硅芯片上沉积叉指电极, 电极厚度约为 70 纳米。
( 2 ) 配制氧化辞纳米膜用静电纺丝液
将 22.7g聚乙烯吡咯烷酮(PVP, 分子量 1.3M )緩慢加入到 10ml曱基曱 酰胺 (DMF)中, 待聚乙烯吡咯烷酮溶解后, 再緩慢加入 0.9g醋酸辞, 然后混 合均勾得到静电纺丝液。
( 3 )静电纺丝
将步骤( 2 )所得静电纺丝液加入到注射针管中, 针头(不锈钢)接高压 源, 接收端接地。 然后在电压为 12kV, 接收距离为 16cm条件下, 用微量泵 以推动速度 0.1ml/hr,将静电纺丝液注射到叉指电极上进行静电纺丝,在叉指 电极上获得 PVP-辞盐纤维膜。
( 4 )煅烧
将步骤 ( 3 )所得纤维膜连同叉指电极一起在高温炉中进行煅烧, 煅烧条 件为: 按照 10°C/min的升温速率升温至 500°C, 恒温煅烧 1小时; 然后冷却 到室温, 得到乙醇传感器。
封闭环境下, 将乙醇传感器放置在 250 °C的加热板上, 由微量针管将乙 醇定量滴在加热板上蒸发成乙醇气体。 以外加电压 5V分别连接上述乙醇传 感器的叉指电极中的一组电极, 并将 10ΜΩ电阻串联在电路中, 用三用电表 量测电阻两端的电压变化。
在外加电压 5V、 操作温度 250°C的情况下, 注入乙醇 40μ1 (微升) , 经 一分钟后, 电阻两端的电压由 0.16 V升到 0.194V。 经换算, 电阻由 3.025 χ 10-8欧姆降到 2.477 10-8欧姆。 定义响应度为无乙醇时的电阻 /有乙醇蒸气时 的电阻。 实施例 8中乙醇传感器响应度为 1.22。
由图 14可以看出,本实施例中乙醇传感器可以感受因乙醇吸收在氧化辞 表面所造成的电阻下降, 乙醇传感器的响应度与环境里增加的乙醇气体浓度 呈近似线性变化, 当乙醇量从 0变化到 40μ1, 响应度从 1变化成 1.22, 响应 度灵敏。
本发明釆用静电纺丝法 -煅烧在叉指电极上生成氧化辞纳米膜, 该氧化辞 纳米膜由六边纤辞矿晶相的氧化辞纳米线构成, 可以是无序的也可以是平行 的。 然后优选的在氧化辞纳米膜表面上以每根氧化辞纳米线为轴生长氧化辞 纳米柱以形成氧化辞纳米柱阵列, 该氧化辞纳米柱是在 (002)面优势取向的六 角柱。 本发明传感器可以感受因乙醇吸收在氧化辞表面所造成的电阻下降, 传感器的响应度与环境里增加的乙醇气体浓度呈近似线性变化, 该传感器具 有灵敏度高, 响应时间短的特点。

Claims

权 利 要 求 书
1. 一种基于氧化辞纳米结构的传感器, 其特征在于, 包括形成叉指电极 的两组电极, 以及设置在叉指电极至少一侧表面的氧化辞纳米膜;
所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线构成;
所述叉指电极的两组电极不导通, 形成所述传感器的信号输出端。
2. 根据权利要求 1所述的基于氧化辞纳米结构的传感器, 其特征在于, 所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线平行构成。
3. 根据权利要求 1或 2所述的基于氧化辞纳米结构的传感器, 其特征在 于, 所述氧化辞纳米线中掺杂有氧化银。
4. 根据权利要求 1或 2所述的基于氧化辞纳米结构的传感器, 其特征在 于, 所述氧化辞纳米线中掺杂有二氧化锡。
5. 根据权利要求 1或 2所述的基于氧化辞纳米结构的传感器, 其特征在 于, 所述氧化辞纳米膜由煅烧静电纺丝获得的聚乙烯类聚合物-辞盐纤维膜制 成。
6. 根据权利要求 3所述的基于氧化辞纳米结构的传感器, 其特征在于, 所述氧化辞纳米膜由煅烧静电纺丝获得的聚乙烯类聚合物 -辞盐 -银盐纤维膜 制成。
7. 根据权利要求 6所述的基于氧化辞纳米结构的传感器, 其特征在于, 所述辞盐包括醋酸辞、 硝酸辞、 草酸辞及它们的水合物; 所述聚乙烯类聚合 物包括聚乙烯醇或聚乙烯吡咯烷酮; 所述银盐包括醋酸银、硝酸银或草酸银。
8. 根据权利要求 4所述的基于氧化辞纳米结构的传感器, 其特征在于, 所述氧化辞纳米膜由煅烧静电纺丝获得的聚乙烯类聚合物 -辞盐 -锡盐纤维膜 制成。
9. 根据权利要求 8所述的基于氧化辞纳米结构的传感器, 其特征在于, 所述辞盐包括醋酸辞、 硝酸辞、 草酸辞及它们的水合物; 所述聚乙烯类聚合 物包括聚乙烯醇或聚乙烯吡咯烷酮; 所述锡盐包括氯化锡、 醋酸锡、 硝酸锡 或草酸锡。
10. 根据权利要求 1-9任一项所述的基于氧化辞纳米结构的传感器,其特 征在于, 所述氧化辞纳米线的直径为 200-300nm。
11. 根据权利要求 1-10任一项所述的基于氧化辞纳米结构的传感器, 其 特征在于, 所述氧化辞纳米膜的厚度为 500nm-l μ πι0
12. 根据权利要求 1-11任一项所述的基于氧化辞纳米结构的传感器, 其 特征在于, 以每根构成氧化辞纳米膜的氧化辞纳米线为轴进一步生长有氧化 辞纳米柱, 构成氧化辞纳米柱阵列, 形成带有氧化辞纳米柱的氧化辞纳米膜, 所述氧化辞纳米柱是 (002)面优势取向的六角柱。
13. 根据权利要求 12所述的基于氧化辞纳米结构的传感器,其特征在于, 所述六角柱横截面最大长度为 200-300nm, 六角柱高度为 2-3 μ πι。
14. 根据权利要求 12所述的基于氧化辞纳米结构的传感器,其特征在于, 所述带有氧化辞纳米柱的氧化辞纳米膜的厚度为 5-8 μ πι。
15. 根据权利要求 13或 14所述的基于氧化辞纳米结构的传感器, 其特 征在于, 每立方微米氧化辞纳米膜平均由 2-3根氧化辞纳米线构成, 氧化辞 纳米柱彼此交缠。
16. 根据权利要求 1-15任一项所述的基于氧化辞纳米结构的传感器, 其 特征在于, 所述叉指电极由在基板上沉积或涂布金、 铟锡金属氧化物、 银、 铜或铝形成。
17. 根据权利要求 16所述的基于氧化辞纳米结构的传感器,其特征在于, 所述基板是硅、 玻璃或有机玻璃。
18. 一种基于氧化辞纳米结构的传感器的制备方法, 该方法包括:
( 1 ) 配制氧化辞纳米膜用静电纺丝液
将聚乙烯类聚合物加入到溶剂中, 待聚乙烯类聚合物溶解后, 向液体中 加入辞盐, 然后混合均匀得到静电纺丝液; 其中, 聚乙烯类聚合物与辞盐的 重量比为 1-5: 0.5-3;
( 2 )静电纺丝
将步骤( 1 )所得静电纺丝液加入到静电纺丝装置中, 然后将静电纺丝液 注射到形成叉指电极的两组电极的至少一侧表面上进行静电纺丝, 在叉指电 极的至少一侧表面上获得聚乙烯类聚合物-辞盐纤维膜; 以及
( 3 )煅烧
将步骤(2 ) 所得聚乙烯类聚合物-辞盐纤维膜连同叉指电极一起进行煅 烧, 煅烧条件为: 按照 2-10°C/min的升温速率升温至 500-600 °C, 恒温煅烧 1-6小时; 然后冷却到室温, 得到氧化辞纳米膜, 所述氧化辞纳米膜由六边纤 辞矿晶相的氧化辞纳米线构成。
19. 根据权利要求 18所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于, 步骤(3 )中, 该方法还包括得到纺丝纤维有序排列的聚乙烯类 聚合物-辞盐纤维膜。
20. 根据权利要求 19所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于, 静电纺丝之前, 将叉指电极放置在载体的容置腔中; 其中, 该 载体包括第一载体底材, 设置在第一载体底材一侧表面的第二载体底材和第 三载体底材, 第二载体底材和第三载体底材平行并间隔设置, 在第二载体底 材上设有第一金属条, 在第三载体底材上设有第二金属条, 第一金属条与第 二金属条平行设置; 第二载体底材和第一金属条, 与第三载体底材和第二金 属条之间形成容置腔。
21. 根据权利要求 20所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于, 所述第一金属条和第二金属条所用材质是铝箔、 铜箔、 铝片或 铜片; 所述第一载体底材、 第二载体底材和第三载体底材所用材质是绝缘材 料。
22. 根据权利要求 18所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于,所述氧化辞纳米膜由六边纤辞矿晶相的氧化辞纳米线平行构成。
23. 根据权利要求 18-22 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 步骤(1 ) 中, 所述辞盐包括醋酸辞、 硝酸辞、 草酸 辞及它们的水合物; 所述溶剂包括曱基曱酰胺, 乙醇或四氢呋喃; 所述聚乙 烯类聚合物包括聚乙烯醇或聚乙烯吡咯烷酮。
24. 根据权利要求 18-23 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 在静电纺丝液中添加银盐, 然后在步骤(2 ) , 在叉 指电极的至少一侧表面上获得聚乙烯类聚合物-辞盐-银盐纤维膜;其中所述银 盐包括醋酸银、 硝酸银或草酸银。
25. 根据权利要求 18-23 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 在静电纺丝液中添加锡盐, 然后在步骤(2 ) , 在叉 指电极的至少一侧表面上获得聚乙烯类聚合物-辞盐-锡盐纤维膜;其中所述锡 盐包括氯化锡、 醋酸锡、 硝酸锡或草酸锡。
26. 根据权利要求 18-25 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 步骤(2 ) 中, 在电压为 10kV-20kV, 接收距离为 8cm-20cm, 推动速度 0.1ml/hr-lml/hr条件下, 将静电纺丝液注射到叉指电极 上进行静电纺丝。
27. 根据权利要求 26所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于, 纺丝时间为 30秒到 10分钟。
28. 根据权利要求 18-27 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 步骤 ( 3 ) 中, 所述氧化辞纳米线的直径为 200nm-300nm。
29. 根据权利要求 18-28 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 所述氧化辞纳米膜的厚度为 500nm-l μ πι。
30. 根据权利要求 18-29 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 该方法还包括: 步骤(4 )生长氧化辞纳米柱阵列 以步骤(3 )所得氧化辞纳米膜为种子层, 以每根氧化辞纳米线为轴, 生 长氧化辞纳米柱以形成氧化辞纳米柱阵列, 得到带有氧化辞纳米柱阵列的氧 化辞纳米膜。
31. 根据权利要求 30所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于, 步骤(4 ) 中, 釆用水热合成法或微波加热法, 在含氢氧源的辞 盐溶液中, 以每根氧化辞纳米线为轴生长氧化辞纳米柱以形成氧化辞纳米柱 阵列。
32. 根据权利要求 31所述的基于氧化辞纳米结构的传感器的制备方法, 其特征在于, 所述含氢氧源的辞盐溶液包括醋酸辞、 硝酸辞或草酸辞的水溶 液; 所用氢氧源包括氢氧化钠、 氨水、 碳酸铵、 或六亚曱基四胺。
33. 根据权利要求 31或 32所述的基于氧化辞纳米结构的传感器的制备 方法, 其特征在于, 在所述辞盐溶液中掺杂银盐, 得到掺杂有银的氧化辞纳 米柱; 所述银盐包括醋酸银、 硝酸银或草酸银。
34. 根据权利要求 31或 32所述的基于氧化辞纳米结构的传感器的制备 方法, 其特征在于, 在所述辞盐溶液中掺杂锡盐, 得到掺杂有锡的氧化辞纳 米柱; 所述锡盐包括氯化锡、 醋酸锡、 硝酸锡或草酸锡。
35. 根据权利要求 31-34 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 步骤(4 ) 中, 所述水热合成法为: 在 80-100°C下, 在含氢氧源的辞盐溶液中, 以每根氧化辞纳米线为轴生长氧化辞纳米柱 2-12 小时。
36. 根据权利要求 30-35 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 步骤(4 )中, 所述氧化辞纳米柱是 (002)面优势取向 的六角柱, 所述六角柱横截面最大长度为 200nm-300nm, 六角柱高度为 2-3 μ m。
37. 根据权利要求 30-36 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 在步骤(4 ) 中, 所述带有氧化辞纳米柱阵列的氧化 辞纳米膜厚度为 5-8 μ πι。
38. 根据权利要求 36或 37所述的基于氧化辞纳米结构的传感器的制备 方法, 其特征在于, 每立方微米氧化辞纳米膜平均由 2-3根氧化辞纳米线构 成, 氧化辞纳米柱彼此交缠。
39. 根据权利要求 18-38 任一项所述的基于氧化辞纳米结构的传感器的 制备方法, 其特征在于, 在基板上沉积或涂布电极材料形成叉指电极形状的 两组电极。
PCT/CN2014/078023 2013-12-06 2014-05-21 基于氧化锌纳米结构的传感器及其制备方法 WO2015081665A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310655536.2 2013-12-06
CN201310655418.1A CN104698041B (zh) 2013-12-06 2013-12-06 基于氧化锌纳米结构的乙醇传感器及其制备方法
CN201310655418.1 2013-12-06
CN201310655536.2A CN104701404B (zh) 2013-12-06 2013-12-06 基于氧化锌纳米结构的紫外光敏传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2015081665A1 true WO2015081665A1 (zh) 2015-06-11

Family

ID=53272813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078023 WO2015081665A1 (zh) 2013-12-06 2014-05-21 基于氧化锌纳米结构的传感器及其制备方法

Country Status (1)

Country Link
WO (1) WO2015081665A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823799A (zh) * 2016-03-22 2016-08-03 苏州捷德瑞精密机械有限公司 一种半导体气敏基体材料及其制备方法
CN109576905A (zh) * 2018-12-05 2019-04-05 河北工业大学 一种基于MXene的柔性聚氨酯纤维膜应变传感器
TWI698558B (zh) * 2019-06-25 2020-07-11 崑山科技大學 具有摻銅氧化鋅感測膜的氫氣感測器的製作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092743A (zh) * 2007-06-29 2007-12-26 陕西师范大学 单晶ZnO纳米线的锌—草酸盐水热制备方法
CN101266225A (zh) * 2008-04-28 2008-09-17 吉林大学 电纺丝法制备高性能陶瓷基纳米纤维气敏传感器
CN101447522A (zh) * 2008-07-22 2009-06-03 湘潭大学 一种基于ii-vi族半导体纳米带薄膜的光敏电阻及其制备方法
CN102110735A (zh) * 2010-10-13 2011-06-29 兰州大学 半导体紫外探测传感器及其制备方法
US20110227061A1 (en) * 2010-03-17 2011-09-22 Electronics And Telecommunications Research Institute Semiconductor oxide nanofiber-nanorod hybrid structure and environmental gas sensor using the same
CN102621198A (zh) * 2012-03-07 2012-08-01 福州大学 一种多元金属氧化物气敏传感器气敏元件及其制备方法
CN102692430A (zh) * 2012-06-07 2012-09-26 青岛大学 一种室温环境工作的一氧化碳气敏传感器的制备方法
CN103219418A (zh) * 2013-03-26 2013-07-24 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN203774350U (zh) * 2013-12-06 2014-08-13 纳米新能源(唐山)有限责任公司 基于氧化锌纳米结构的紫外光敏传感器
CN203772790U (zh) * 2013-12-06 2014-08-13 纳米新能源生命科技(唐山)有限责任公司 基于氧化锌纳米结构的乙醇传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092743A (zh) * 2007-06-29 2007-12-26 陕西师范大学 单晶ZnO纳米线的锌—草酸盐水热制备方法
CN101266225A (zh) * 2008-04-28 2008-09-17 吉林大学 电纺丝法制备高性能陶瓷基纳米纤维气敏传感器
CN101447522A (zh) * 2008-07-22 2009-06-03 湘潭大学 一种基于ii-vi族半导体纳米带薄膜的光敏电阻及其制备方法
US20110227061A1 (en) * 2010-03-17 2011-09-22 Electronics And Telecommunications Research Institute Semiconductor oxide nanofiber-nanorod hybrid structure and environmental gas sensor using the same
CN102110735A (zh) * 2010-10-13 2011-06-29 兰州大学 半导体紫外探测传感器及其制备方法
CN102621198A (zh) * 2012-03-07 2012-08-01 福州大学 一种多元金属氧化物气敏传感器气敏元件及其制备方法
CN102692430A (zh) * 2012-06-07 2012-09-26 青岛大学 一种室温环境工作的一氧化碳气敏传感器的制备方法
CN103219418A (zh) * 2013-03-26 2013-07-24 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN203774350U (zh) * 2013-12-06 2014-08-13 纳米新能源(唐山)有限责任公司 基于氧化锌纳米结构的紫外光敏传感器
CN203772790U (zh) * 2013-12-06 2014-08-13 纳米新能源生命科技(唐山)有限责任公司 基于氧化锌纳米结构的乙醇传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823799A (zh) * 2016-03-22 2016-08-03 苏州捷德瑞精密机械有限公司 一种半导体气敏基体材料及其制备方法
CN109576905A (zh) * 2018-12-05 2019-04-05 河北工业大学 一种基于MXene的柔性聚氨酯纤维膜应变传感器
CN109576905B (zh) * 2018-12-05 2023-07-07 河北工业大学 一种基于MXene的柔性聚氨酯纤维膜应变传感器
TWI698558B (zh) * 2019-06-25 2020-07-11 崑山科技大學 具有摻銅氧化鋅感測膜的氫氣感測器的製作方法

Similar Documents

Publication Publication Date Title
Choi et al. Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
Nikfarjam et al. Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor
Wang et al. Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties
Yan et al. Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance
Huang et al. Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property
Song et al. Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor
JP4523582B2 (ja) 金属酸化物ガスセンサの製造方法
CN104698041A (zh) 基于氧化锌纳米结构的乙醇传感器及其制备方法
Tang et al. Methanol sensing micro-gas sensors of SnO 2–ZnO nanofibers on Si/SiO 2/Ti/Pt substrate via stepwise-heating electrospinning
CN107164839B (zh) 具有超高灵敏度和选择性的甲醛敏感材料CdGa2O4及其制备方法
Deng et al. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method
KR101304340B1 (ko) 수소농도 측정장치 및 그 제조방법
CN203772790U (zh) 基于氧化锌纳米结构的乙醇传感器
WO2015081665A1 (zh) 基于氧化锌纳米结构的传感器及其制备方法
Comini et al. One-and two-dimensional metal oxide nanostructures for chemical sensing
CN110865099B (zh) 一种ZnO-SnO2-Zn2SnO4多孔纳米纤维气敏材料的制备方法及其应用
Hu et al. Improved acetone sensing properties of flat sensors based on Co-SnO 2 composite nanofibers
Xu et al. Low temperature high sensor response nano gas sensor using ITO nanofibers
CN102435636A (zh) 一种快速响应与恢复式钛酸钡纳米纤维湿敏传感器
WO2015078163A1 (zh) 制备高比表面积氧化锌复合材料的方法及该氧化锌复合材料
CN104701404A (zh) 基于氧化锌纳米结构的紫外光敏传感器及其制备方法
Li et al. Fabrication and characterization of a low power consumption ethanol gas sensor based on a suspended micro-hotplate
Wang et al. Flexible sensors based on Ag/polyimide substrates and Pd–ZnO sensing films
Jahromi et al. Construction of 0, 1, 2 and 3 dimensional SnO2 nanostructures decorated by NiO nanopetals: Structures, growth and gas-sensing properties
KR102126282B1 (ko) 중공형 나노구조체를 이용한 상온구동형 가스센서 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867859

Country of ref document: EP

Kind code of ref document: A1