WO2015078016A1 - 一种信道估计方法及装置、设备 - Google Patents

一种信道估计方法及装置、设备 Download PDF

Info

Publication number
WO2015078016A1
WO2015078016A1 PCT/CN2013/088250 CN2013088250W WO2015078016A1 WO 2015078016 A1 WO2015078016 A1 WO 2015078016A1 CN 2013088250 W CN2013088250 W CN 2013088250W WO 2015078016 A1 WO2015078016 A1 WO 2015078016A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
same system
user equipments
system resources
iteration
Prior art date
Application number
PCT/CN2013/088250
Other languages
English (en)
French (fr)
Inventor
乔德礼
吴晔
王磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/088250 priority Critical patent/WO2015078016A1/zh
Priority to CN201380077330.4A priority patent/CN105284087B/zh
Publication of WO2015078016A1 publication Critical patent/WO2015078016A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel estimation method, apparatus, and device. Background technique
  • TDD Time Division Duplexing
  • SRS Sounding Reference Signaling
  • the SRS of different user equipments adopts ZC (Zadoff-Chu) sequences with different cyclic offsets.
  • the offset is in the time domain.
  • each sequence supports up to 8 different cyclic offset values.
  • the SRS sequence is transmitted every other subcarrier on the last Orthogonal Frequency Division Multiplexing (OFDM) symbol of the uplink subframe, that is, the SRS of up to 8 user equipments is the same sequence. Sequence after different offsets.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the multiplexing of multi-user equipment implementing SRS is essentially because the frequency domain received signal is converted to the time domain by Inverse Discrete Fourier Transform (IDFT) when performing channel estimation at the receiving end of the SRS. Therefore, the channels corresponding to the user equipments with different phase offsets have different cyclic offsets, thereby separating the channels of the multi-user equipment.
  • IDFT Inverse Discrete Fourier Transform
  • the existing SRS channel estimation methods suitable for Long Term Evolution (LTE) systems are mostly parallel channel estimation, that is, the multi-user device separation scheme of the aforementioned signal transformed to the time domain.
  • the channel power delay profile (PDP) corresponding to each user equipment is distributed at all IDFT points, so the interference between multi-user equipments is large.
  • PDP channel power delay profile
  • MU-MIMO multi-user Multi-Input Multi-Output
  • the error of SRS channel estimation has a great impact on performance.
  • the increase of the base station side antenna is widely recognized as a feasible direction. Therefore, the number of user equipments that the base station can simultaneously serve is generally on the order of several tens of degrees. At this time, the channel estimation error of the SRS will bring about considerable With large performance impacts, it is extremely urgent to improve the accuracy of SRS channel estimation.
  • the interference cancellation scheme for data is generally based on a data base whose channel is known and correctly decoded. Then, encoding is performed to subtract the correctly estimated data from the original data of the received signal, so that the partial data does not interfere with subsequent data decoding.
  • the embodiment of the invention provides a channel estimation method, device and device, which can reduce interference between multiple signals of the same frequency and improve the accuracy of channel estimation.
  • a channel estimation method including:
  • the received signal being a signal after a pilot sequence having different phase offset values transmitted by the user equipment on the same system resource passes through the channel;
  • the channel estimation result of all user equipments that use the same system resource to transmit pilots is output.
  • the user equipment that uses the same system resource to send pilots performs at least one iterative channel estimation on the received signal, specifically:
  • the receiving signal is performed for all user equipments that use the same system resource to transmit pilots according to the setting sequence of the pilot sequences corresponding to all user equipments that use the same system resource to transmit pilots.
  • the pilot corresponding to all user equipments that use the same system resource to send pilots perform serial channel estimation on the received signal, including:
  • the interference signals obtained by the user equipment that has received the pilot using the same system resource according to the received signal are sequentially eliminated, and the current user equipment is obtained.
  • the setting sequence is a sequence of a signal to interference plus noise ratio of a pilot sequence corresponding to all user equipments that use the same system resource to send pilots.
  • Receive signals for parallel channel estimation specifically:
  • a channel estimation apparatus including:
  • An acquiring unit configured to acquire a received signal for channel estimation, where the received signal is a signal after a pilot sequence with different phase offset values sent by the user equipment on the same system resource passes through the channel;
  • a channel estimation unit configured to perform channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots;
  • An output unit for outputting a channel estimation result of all user equipments that use the same system resource to transmit pilots.
  • the channel estimation unit is specifically configured to: in a channel estimation of each iteration, according to a setting sequence of a pilot sequence corresponding to all user equipments that use the same system resource to send pilots, All user equipments that use the same system resource to transmit pilots perform serial channel estimation on the received signal; or
  • the channel estimation unit is specifically configured to perform parallel channel estimation on the received signal for all user equipments that use the same system resource to transmit pilots in channel estimation of each iteration.
  • the channel estimation unit includes:
  • an obtaining unit configured to, in the channel estimation of each iteration, sequentially cancel, according to the setting sequence, an interference signal obtained by estimating, by the user equipment that uses the same system resource to transmit a pilot, that the channel is accumulated according to the received signal, Obtaining a channel estimation result of the current user equipment;
  • An accumulating unit configured to accumulate interference signals corresponding to channel estimation results of the current user equipment The interference signal obtained by accumulating the estimated channel.
  • the setting sequence is The order of the signal of the pilot sequence corresponding to the frequency of the user equipment and the interference plus noise ratio.
  • the channel estimation unit is specifically configured to: in each channel estimation, send pilots using the same system resource in each iteration
  • Each user equipment in the user equipment cancels an interference signal obtained by estimating a channel accumulating by the user equipment that uses the same system resource to transmit a pilot according to the received signal, and obtains a channel estimation result of each user equipment.
  • a channel estimation apparatus including an input device, an output device, a memory, and a processor;
  • the processor is configured to perform the following steps:
  • the received signal being a signal after a pilot sequence having different phase offset values transmitted by the user equipment on the same system resource passes through the channel;
  • the channel estimation result of all user equipments that use the same system resource to transmit pilots is output.
  • the processor performs the step of performing channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots, specifically:
  • the receiving signal is performed for all user equipments that use the same system resource to transmit pilots according to the setting sequence of the pilot sequences corresponding to all user equipments that use the same system resource to transmit pilots.
  • the processor performs the channel estimation in each iteration, according to all users that use the same system resource to send pilots
  • the sequence of setting the pilot sequence corresponding to the device, and the step of performing serial channel estimation on the received signal for all user equipments that use the same system resource to send pilots including:
  • the interference signals obtained by the user equipment that has received the pilot using the same system resource according to the received signal are sequentially eliminated, and the current user equipment is obtained.
  • Channel estimation result In the channel estimation of each iteration, according to the setting sequence, the interference signals obtained by the user equipment that has received the pilot using the same system resource according to the received signal are sequentially eliminated, and the current user equipment is obtained.
  • Channel estimation result In the channel estimation of each iteration, according to the setting sequence, the interference signals obtained by the user equipment that has received the pilot using the same system resource according to the received signal are sequentially eliminated, and the current user equipment is obtained.
  • Channel estimation result In the channel estimation of each iteration, according to the setting sequence, the interference signals obtained by the user equipment that has
  • the setting sequence is that all the using the same system resource is sent.
  • the order of the signal of the pilot sequence corresponding to the frequency of the user equipment and the interference plus noise ratio.
  • the processor performs, in the channel estimation of each iteration, for all users that use the same system resource to send pilots
  • the device the step of performing parallel channel estimation on the received signal, specifically:
  • each channel estimation of the iteration for each user equipment in the user equipment that uses the same system resource to transmit pilots, the user equipment that uses the same system resource to transmit pilots according to the received signal is estimated to have accumulated channel estimation.
  • the obtained interference signal obtains a channel estimation result of each user equipment.
  • the channel estimation method and device of the present invention and the technical solution of the device are established on the basis of the known pilot signal, and the channel is unknown, and the codec of the data signal is not involved, and the signal between the same frequency can be reduced. Interference, improve the accuracy of channel estimation, and channel estimation process.
  • FIG. 1 is a flowchart of a channel estimation method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another embodiment of further refining a channel estimation method according to the embodiment of the present invention shown in FIG. 1;
  • FIG. 3 is a further refinement of a channel estimation method provided by the embodiment of the present invention shown in FIG. A flow chart of still another embodiment
  • FIG. 4 is a schematic structural diagram of a channel estimation apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of a channel estimation apparatus according to an embodiment of the present invention shown in FIG. 4; FIG.
  • FIG. 6 is a schematic structural diagram of still another embodiment of a channel estimation apparatus according to an embodiment of the present invention shown in FIG. 4;
  • FIG. 7 is a schematic structural diagram of a channel estimation apparatus according to an embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a channel estimation method according to an embodiment of the present invention. As shown in Figure 1, the method includes the following steps:
  • Step S101 Acquire a received signal for channel estimation, where the received signal is a signal after a pilot sequence with different phase offset values sent by the user equipment on the same system resource passes through the channel.
  • a pilot sequence of multiple user equipments is sent on the same pilot sequence.
  • SRSs of different user equipments adopt a Zadoff-Chu sequence, and SRSs of up to eight user equipments may be the same sequence.
  • Different offset values The length of the SRS sequence is generally a multiple of 12, and each element of the sequence needs to be transmitted by one resource element (Resource Element, RE).
  • One OFDM symbol is generally composed of 4 ⁇ multiple subcarriers, and the subcarrier of each OFDM symbol is RE.
  • the same pilot sequence is transmitted on the same subcarrier of the same OFDM symbol. Therefore, the received signal received by the base station for channel estimation is a pilot with different phase offset values sent by multiple user equipments on the same system resource.
  • the accumulation of frequency domain signals after the sequence passes through the channel.
  • Step S102 Perform channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots.
  • the pilot sequences with different phase offset values transmitted by the same system resource have interference with each other after the channel, and the purpose of channel estimation is to use the same system resources for all.
  • the user equipment that transmits the pilot eliminates interference caused by the received signal corresponding to the user equipment that uses the same system resource to transmit the pilot in the received signal.
  • One iteration is to perform channel estimation of the signal after the channel sequence of the pilot sequence with different phase offset values transmitted on the same system resource for all user equipments that use the same system resource to transmit pilots, and further accurately through multiple iterations.
  • the interference signals of the received signals corresponding to all user equipments that use the same system resource to transmit pilots are obtained.
  • channel estimation is performed on one or more iterations of the received signal. The more iterations, the higher the channel estimation accuracy. In actual operation, the accuracy of channel estimation requirements can be comprehensively considered.
  • the channel estimation processing duration selects the number of iterations.
  • Step S103 Output channel estimation results of all user equipments that use the same system resource to send pilots.
  • the channel estimation result obtained by obtaining the channel estimation from the received signal from which the interference is cancelled is the channel estimation result.
  • the channel estimation result may be a channel estimation result after all the iterations are completed for the received signal for all user equipments that use the same system resource to transmit pilots.
  • the above process of performing channel estimation, based on the known pilot signal, and the channel is unknown, does not involve coding and decoding of the data signal, and iteratively eliminates interference between multiple signals of the same frequency, thereby improving channel estimation accuracy, channel Estimate the process bill.
  • a channel estimation method is based on a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, and the channel estimation process is simple, and the multiple signals of the same frequency can be reduced. Interference, improving the accuracy of channel estimation.
  • FIG. 2 is a flow chart showing another embodiment of a further channel estimation method provided by the embodiment of the present invention shown in FIG. As shown in Figure 2, the method includes the following steps:
  • Step S201 Acquire a received signal for channel estimation, where the received signal is a signal after a pilot sequence with different phase offset values sent by the user equipment on the same system resource passes through the channel.
  • Step S201 is the same as step S101 of the foregoing embodiment, and details are not described herein again.
  • step S202 in the channel estimation of each iteration, according to the setting sequence, the interference signals obtained by the user equipments that use the same system resource to transmit pilots according to the received signal are estimated to be sequentially obtained, and the current interference signal is obtained. Channel estimation result of the user equipment.
  • Step S203 accumulating the interference signal corresponding to the channel estimation result of the current user equipment to The estimated channel accumulates the obtained interference signal, and repeats the above steps until the channel estimation result of all the user equipments that use the same system resource to transmit the pilot is obtained.
  • Steps S202 to S203 are processes for performing channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to transmit pilots, specifically, in the channel estimation for each iteration, according to all uses the same The setting sequence of the pilot sequence corresponding to the user equipment that the system resource transmits the pilot, and the process of performing serial channel estimation on the received signal for all user equipments that use the same system resource to transmit pilots.
  • serial channel estimation is to perform channel estimation on the received signals corresponding to all user equipments that use the same system resource to transmit pilots in the channel estimation of each iteration.
  • the present invention preferentially considers signals and interference power ports corresponding to receiving signals corresponding to user equipments that use the same system resources to transmit pilots.
  • the sequence of the Signal to Interference plus Noise Ratio (SINR) is to first estimate the channel of the user equipment corresponding to the received signal corresponding to the user equipment that uses the same system resource to transmit the pilot with the highest SINR, and then according to the SINR from high to low. Sequence, sequentially estimates the channels of other user equipment.
  • the setting order can also be randomly selected.
  • the present invention preferentially considers interference calculation for a received signal corresponding to each user equipment that transmits pilots on the same system resource, thereby eliminating interference, and may also have every m (m is a natural number, m>l).
  • the interference calculation of the received signal corresponding to the user equipment that transmits the pilot on the same system resource, and the interference cancelled by the received signal corresponding to the user equipment that transmits the pilot on the same system resource is the previously calculated interference.
  • the received signal Y1 minus the interference signal E obtained by accumulating the estimated channel of the user equipment transmitting the pilot on the same system resource is eliminated.
  • the interference signal obtained by the estimated channel accumulation of the user equipment is: the sum of the interference signals of other user equipments that transmit pilots on the same system resource that have performed channel estimation before the current user equipment performs channel estimation according to the set order; If not the first iteration, the interference signal obtained by the estimated channel of the user equipment transmitting the pilot on the same system resource on the same pilot sequence is: the updated estimated interference signal minus the current user equipment last iteration. The resulting interference signal, the other calculation process is the same. Finally, the interference signal after the channel estimation by the current user equipment is accumulated to the interference signal of the estimated channel, and the estimated interference signal is updated.
  • the channel estimation for each iteration is performed, and the interference signals estimated by the respective pilot signals are accumulated, so that the channel estimation result is more accurate.
  • Step S204 Output channel estimation results of all user equipments that use the same system resource to send pilots.
  • the channel estimation result obtained by obtaining the channel estimation from the received signal from which the interference is cancelled is the channel estimation result.
  • the channel estimation result may be a channel estimation result after all the iterations are completed for the received signal for all user equipments that use the same system resource to transmit pilots.
  • the channel estimation process described above is based on the known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal. By iteratively eliminating interference between multiple signals of the same frequency, the channel estimation process can be improved. The accuracy of the channel estimation.
  • a channel estimation method is based on a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, which can reduce interference between multiple signals in the same frequency, and improve the channel.
  • the accuracy of the estimation, the channel estimation process, and the serial channel estimation make the channel estimation more accurate.
  • FIG. 3 is a flow chart showing still another embodiment of a channel estimation method provided by the embodiment of the present invention shown in FIG. As shown in FIG. 3, the method includes the following steps:
  • Step S301 Acquire a received signal for channel estimation, where the received signal is a signal after a pilot sequence with different phase offset values sent by the user equipment on the same system resource passes through the channel.
  • Step S301 is the same as step S101 or step S201 of the foregoing embodiment, and details are not described herein again.
  • Step S302 in each channel estimation of the iteration, for each user equipment in the user equipment that uses the same system resource to send the pilot, cancel the other user equipment that uses the same system resource to send the pilot according to the received signal.
  • the interference signal obtained by accumulating the channel is estimated, and the channel estimation result of each user equipment is obtained.
  • Step S302 is a process of performing channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots, specifically channel estimation at each iteration.
  • the parallel channel estimation is performed on the received signal for all user equipments that use the same system resource to transmit pilots.
  • the process of parallel channel estimation is to perform parallel channel estimation for each iterative channel estimation, that is, for each user equipment that transmits pilots on the same system resource, and each user equipment that transmits pilots on the same system resource performs channel estimation.
  • the channel estimation result of the received signal Y1 in this iteration is Yl/Si
  • Si is the pilot sequence
  • the interference-removed signal Y2 is the received signal Y1 minus the previous iteration
  • the user equipment that has transmitted the pilot on the same system resource has estimated the channel accumulation.
  • the interference signal E, the channel estimation result for the pilot signal Y1 in this iteration is Y2/Si.
  • Step S303 Output channel estimation results of all user equipments that use the same system resource to send pilots.
  • Step S303 is the same as step S103 or step S204 of the foregoing embodiment, and details are not described herein again.
  • a channel estimation method according to an embodiment of the present invention is based on a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, which can reduce interference between multiple signals in the same frequency, and improve the channel. Estimated accuracy, channel estimation process.
  • FIG. 4 is a schematic structural diagram of a channel estimation apparatus according to an embodiment of the present invention. As shown in Figure 4, the apparatus 1000 includes:
  • the obtaining unit 11 is configured to obtain a received signal for channel estimation, where the received signal is a signal after a pilot sequence with different phase offset values sent by the user equipment on the same system resource passes through the channel.
  • a pilot sequence of multiple user equipments is sent on the same pilot sequence.
  • SRSs of different user equipments adopt a Zadoff-Chu sequence, and SRSs of up to eight user equipments may be the same sequence.
  • Different offset values The length of the SRS sequence is generally a multiple of 12, and each element of the sequence needs to be transmitted by one resource element (Resource Element, RE).
  • One OFDM symbol is generally composed of 4 ⁇ multiple subcarriers, and the subcarrier of each OFDM symbol is RE.
  • the same pilot sequence is sent on the same subcarrier of the same OFDM symbol. Therefore, the received signal obtained by the acquiring unit 11 for channel estimation is sent by multiple user equipments on the same system resource.
  • the accumulation of frequency domain signals after the pilot sequence with different phase offset values passes through the channel.
  • the channel estimation unit 12 is configured to perform channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots.
  • the pilot sequences with different phase offset values transmitted by the same system resource have interference with each other after the channel, and the purpose of channel estimation is to eliminate the received signal for all user equipments that use the same system resource to transmit pilots.
  • the interference caused by the received signal corresponding to the user equipment that uses the same system resource to transmit the pilot to the received signal.
  • the channel estimation unit 12 - the iterative means, for all user equipments that use the same system resource to transmit pilots, complete channel estimation of the signal after the channel sequence of the pilot sequence with different phase offset values transmitted on the same system resource, through the channel
  • the iteration further accurately derives the interference signals of the received signals corresponding to all user equipments that use the same system resource to transmit pilots.
  • the channel estimation processing duration selects the number of iterations.
  • the output unit 13 is configured to output and output channel estimation results of all user equipments that use the same system resource to send pilots.
  • the channel estimation result obtained by obtaining the channel estimation from the received signal from which the interference is cancelled is the channel estimation result.
  • the channel estimation result may be a channel estimation result after all the iterations are completed for the received signal for all user equipments that use the same system resource to transmit pilots.
  • the channel estimation performed by each of the above functional units is based on the known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal. By iteratively eliminating interference between multiple signals of the same frequency, the channel estimation accuracy can be improved. , the channel estimation process is single.
  • a channel estimation apparatus is established on the basis of a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, and the channel estimation process is simple, and the multiple signals of the same frequency can be reduced. Interference, improving the accuracy of channel estimation.
  • FIG. 5 is a schematic structural diagram of another embodiment of a channel estimation apparatus according to an embodiment of the present invention shown in FIG. As shown in Figure 5, the apparatus 2000 includes:
  • the obtaining unit 21 is configured to acquire a received signal for channel estimation, where the received signal is a signal after a pilot sequence with different phase offset values sent by the user equipment on the same system resource passes through the channel.
  • the function of the obtaining unit 21 is the same as that of the acquiring unit 11 of the foregoing embodiment, and details are not described herein again.
  • the channel estimation unit 22 is configured to perform channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots.
  • the channel estimation unit 22 is specifically configured to use the same system resource for all the channel sequences in each iteration according to the setting sequence of the pilot sequence corresponding to all user equipments that use the same system resource to send pilots.
  • the user equipment transmitting the pilot performs serial channel estimation on the received signal.
  • the channel estimation unit 22 includes: an obtaining unit 221 and an accumulating unit 222.
  • the obtaining unit 221 is configured to sequentially cancel, in the channel estimation of each iteration, the interference signal obtained by the user equipment that has received the pilot using the same system resource according to the received signal, according to the setting sequence. , obtain the channel estimation result of the current user equipment.
  • serial channel estimation is to perform channel estimation on the received signals corresponding to all user equipments that use the same system resource to transmit pilots in the channel estimation of each iteration.
  • the present invention preferentially considers signals and interference power ports corresponding to receiving signals corresponding to user equipments that use the same system resources to transmit pilots.
  • the sequence of the Signal to Interference plus Noise Ratio (SINR) is to first estimate the channel of the user equipment corresponding to the received signal corresponding to the user equipment that uses the same system resource to transmit the pilot with the highest SINR, and then according to the SINR from high to low. Sequence, sequentially estimates the channels of other user equipment.
  • the setting order can also be randomly selected.
  • the present invention preferentially considers interference calculation for a received signal corresponding to each user equipment that transmits pilots on the same system resource, thereby eliminating interference, and may also have every m (m is a natural number, m>l).
  • the interference calculation of the received signal corresponding to the user equipment that transmits the pilot on the same system resource, and the interference cancelled by the received signal corresponding to the user equipment that transmits the pilot on the same system resource is the previously calculated interference.
  • the received signal Y1 minus the interference signal E obtained by accumulating the estimated channel of the user equipment transmitting the pilot on the same system resource is eliminated.
  • the signal is: the sum of the interference signals of other user equipments that transmit pilots on the same system resource that have performed channel estimation before the current user equipment performs channel estimation according to the set order; if not the first iteration, the same pilot sequence
  • the interference signals obtained by the estimated channel accumulation of other user equipments that transmit pilots on the same system resource are: the updated estimated interference signal minus the interference signal obtained by the current user equipment last iteration, and the other calculation processes are the same.
  • the accumulating unit 222 is configured to accumulate an interference signal corresponding to the channel estimation result of the current user equipment to an interference signal obtained by accumulating the estimated channel.
  • the accumulating unit 222 accumulates the interference signal after channel estimation by the current user equipment to the interference signal of the estimated channel, and updates the estimated interference signal.
  • Channel estimation by all of the user equipments transmitting pilots on the same system resource is accomplished by the channel estimation unit 22.
  • the output unit 23 is configured to output and output channel estimation results of all user equipments that use the same system resource to send pilots.
  • the channel estimation result obtained by obtaining the channel estimation from the received signal from which the interference is cancelled is the channel estimation result.
  • the channel estimation result may be a channel estimation result after the entire iteration of the received signal is completed for all user equipments that use the same system resource to transmit pilots.
  • the channel estimation process described above is based on the known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal. By iteratively eliminating interference between multiple signals of the same frequency, the channel estimation process can be improved. The accuracy of the channel estimation.
  • a channel estimation apparatus is based on a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, which can reduce interference between multiple signals of the same frequency, and improve the channel.
  • the accuracy of the estimation, the channel estimation process, and the serial channel estimation make the channel estimation more accurate.
  • FIG. 6 is a schematic structural diagram of still another embodiment of a channel estimation apparatus according to an embodiment of the present invention shown in FIG. As shown in Figure 6, the apparatus 3000 includes:
  • the acquiring unit 31 is configured to acquire a received signal used for channel estimation, where the received signal is at least A pilot sequence with different phase offset values transmitted by a user equipment on the same system resource passes the signal after the channel.
  • the function of the obtaining unit 31 is the same as that of the obtaining unit 11 or the obtaining unit 21 of the above embodiment, and details are not described herein again.
  • the channel estimation unit 32 is configured to perform channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots.
  • the channel estimation unit 32 is specifically configured to perform parallel channel estimation on the received signal for all user equipments that use the same system resource to transmit pilots in channel estimation for each iteration.
  • the channel estimation unit 32 is configured to: in each channel estimation of each iteration, cancel, for each user equipment in the user equipment that uses the same system resource to send pilots, to use the same system resource to be sent according to the received signal.
  • the user equipment of the pilot has estimated the interference signal obtained by the channel accumulation, and obtains the channel estimation result of each user equipment.
  • the process of parallel channel estimation is to perform parallel channel estimation for each iterative channel estimation, that is, for each user equipment that transmits pilots on the same system resource, and each user equipment that transmits pilots on the same system resource performs channel estimation.
  • the channel estimation result of the received signal Y1 in this iteration is Yl/Si
  • Si is the pilot sequence
  • the interference-removed signal Y2 is the received signal Y1 minus the previous iteration
  • the user equipment that has transmitted the pilot on the same system resource has estimated the channel accumulation.
  • the interference signal E, the channel estimation result for the pilot signal Y1 in this iteration is Y2/Si.
  • the output unit 33 is configured to output and output channel estimation results of all user equipments that use the same system resource to send pilots.
  • the function of the output unit 33 is the same as that of the output unit 13 or the output unit 23 of the above embodiment, and will not be described herein.
  • a channel estimation apparatus is based on a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, which can reduce interference between multiple signals of the same frequency, and improve the channel. Estimated accuracy, channel estimation process.
  • FIG. 7 is a schematic structural diagram of a channel estimation apparatus according to an embodiment of the present invention. As shown in FIG. 7, the device 4000 can include:
  • the input device 41, the output device 42, the memory 43, and the processor 44 (the number of the processors 44 in the network device may be one or more, and one processor in Fig. 7 is taken as an example).
  • the input device 41, the output device 42, the memory 43, and the processor 44 may be connected by a bus or other means, wherein the connection through the bus is exemplified in FIG.
  • the processor 44 is configured to perform the following steps:
  • the received signal being a signal after a pilot sequence having different phase offset values transmitted by the user equipment on the same system resource passes through the channel;
  • the channel estimation result of all user equipments that use the same system resource to transmit pilots is output.
  • the processor 44 performs the step of performing channel estimation on the received signal for at least one iteration for all user equipments that use the same system resource to send pilots, specifically:
  • the receiving signal is performed for all user equipments that use the same system resource to transmit pilots according to the setting sequence of the pilot sequences corresponding to all user equipments that use the same system resource to transmit pilots.
  • the processor 44 performs the channel estimation in each iteration, using the same system for all the pilot sequences corresponding to the user equipments that use the same system resource to transmit pilots.
  • the user equipment that sends the pilot to the resource, and the step of performing serial channel estimation on the received signal includes:
  • the interference signals obtained by the user equipment that has received the pilot using the same system resource according to the received signal are sequentially eliminated, and the current user equipment is obtained.
  • the setting sequence is a sequence of a signal to interference plus noise ratio of a pilot sequence corresponding to all user equipments that use the same system resource to transmit pilots.
  • the processor 44 performs the step of performing parallel channel estimation on the received signal for all user equipments that use the same system resource to transmit pilots in the channel estimation of each iteration, specifically :
  • each channel estimation of the iteration for each user equipment in the user equipment that uses the same system resource to transmit pilots, the user equipment that uses the same system resource to transmit pilots according to the received signal is estimated to have accumulated channel estimation.
  • the obtained interference signal obtains a channel estimation result of each user equipment.
  • a channel estimation apparatus is based on a known pilot signal, and the channel is unknown, and does not involve coding and decoding of the data signal, which can reduce interference between multiple signals of the same frequency, and improve the channel. Estimated accuracy, channel estimation process.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include a random access memory (RAM), read only Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, A disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer. Also. Any connection may suitably be a computer readable medium.
  • RAM random access memory
  • ROM read only Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • a disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer.
  • Any connection may suitably be a computer readable medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 一种信道估计方法及装置、设备。其中的方法包括:获取用于信道估计的接收信号,所述接收信号为至少一个用户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过信道后的信号;针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至少一次迭代的信道估计;输出所有使用相同系统资源发送导频的用户设备的信道估计结果。还公开了相应的装置和设备。采用本发明的一种信道估计方法及装置、设备的技术方案,建立在已知导频信号基础上,而信道未知,不涉及数据信号的编解码,可以降低同频的多个信号之间的干扰,提高信道估计的精度,信道估计过程简单。

Description

一种信道估计方法 ^置、 设备
技术领域
本发明涉及通信技术领域, 尤其涉及一种信道估计方法及装置、 设备。 背景技术
时分双工 (Time Division Duplexing, TDD)系统中利用信道探测参考信号 ( Sounding Reference Signaling, SRS )进行信道估计, 不同用户设备的 SRS 采用不同循环偏移的 ZC(Zadoff-Chu)序列, 序列的循环偏移在时域上。 在 LTE 系统中,每个序列最多支持 8个不同的循环偏移值。 SRS序列在上行子帧的最 后一个正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)符 号 (symbol)上每隔一个子载波发送, 也就是说, 最多 8个用户设备的 SRS为同 一序列加上不同偏移后的序列。这些 SRS发送在同一 symbol的相同子载波上, 时域的循环偏移对应频域上序列的不同的相位偏移。 实现 SRS 的多用户设备 的复用在本质上是因为在 SRS的接收端进行信道估计时, 把频域的接收信号 通过离散傅里叶逆变换 (Inverse Discrete Fourier Transform, IDFT)转换到时域, 从而使得加上不同相位偏移的用户设备对应的信道有着不同的循环偏移,进而 分离多用户设备的信道。
目前已有的适用于长期演进 (Long Term Evolution, LTE)系统的 SRS信道 估计方法多为并行信道估计,也就是前面提到的变换到时域的信号的多用户设 备分离方案。 但是, 考虑到 SRS为间隔一个子载波发送, 此时每个用户设备 对应的信道功率时延谱 (Power Delay Profile , PDP)分布在所有的 IDFT点上, 因此多用户设备间干扰 ^艮大。 而在多用户多输入多输出(Multi-User Multi-Input Multi-Output , MU-MIMO)中, 复用用户设备数增多时, SRS信道估计的误差 对于性能有着很大影响。特别是考虑到未来通信系统中,基站侧天线增多被广 泛认可为一个可行的方向,因而基站可以同时服务的用户设备数一般会在几十 的数量级, 此时 SRS的信道估计误差会带来相当大的性能影响, 提高 SRS信 道估计的精度就变得极为迫切。
由前面的叙述可以看出,由于用户信道的 PDP分布在所有的 IDFT点上会 带来很大的多用户间干扰, 降低多用户间干扰则会相应的提高信道估计的精 度。 对于数据的干扰消除方案一般是建立在信道已知且正确解码的数据基础 上, 再进行编码, 从而在接收信号的原始数据中减去已正确估计出的数据, 从 而该部分数据不会对后续的数据解码造成干扰。 发明内容
本发明实施例提供了一种信道估计方法及装置、设备, 可以降低同频的多 个信号之间的干扰, 提高信道估计的精度。
第一方面, 提供了一种信道估计方法, 包括:
获取用于信道估计的接收信号,所述接收信号为至少一个用户设备在相同 系统资源上发送的具有不同相位偏移值的导频序列经过信道后的信号;
针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至 少一次迭代的信道估计;
输出所有使用相同系统资源发送导频的用户设备的信道估计结果。
在第一种可能的实现方式中,所述针对所有使用相同系统资源发送导频的 用户设备, 对所述接收信号进行至少一次迭代的信道估计, 具体为:
在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设 备对应的导频序列的设定顺序,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行串行的信道估计; 或者,
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行并行信道估计。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设备 对应的导频序列的设定顺序, 针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行串行的信道估计, 包括:
在每次迭代的信道估计中,按照所述设定顺序,依次消除根据所述接收信 号的其它使用相同系统资源发送导频的用户设备已估计信道累计得到的的干 扰信号, 获得当前用户设备的信道估计结果;
将所述当前用户设备的信道估计结果对应的干扰信号累加至所述已估计 信道累计得到的干扰信号,并重复上述步骤直至获得所述所有使用相同系统资 源发送导频的用户设备的信道估计结果。
结合第一方面的第一种可能的实现方式或第一方面的第二种可能的实现 方式,在第三种可能的实现方式中,所述设定顺序为所述所有使用相同系统资 源发送导频的用户设备对应的导频序列的信号与干扰加噪声比的高低顺序。
结合第一方面的第一种可能的实现方式,在第四种可能的实现方式中, 所 述在每次迭代的信道估计中, 针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行并行信道估计, 具体为:
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备中的每个用户设备,消除根据所述接收信号的其它使用相同系统资源发送导 频的用户设备已估计信道累计得到的的干扰信号,获得所述每个用户设备的信 道估计结果。 第二方面, 提供了一种信道估计装置, 包括:
获取单元, 用于获取用于信道估计的接收信号, 所述接收信号为至少一个 用户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过信道 后的信号;
信道估计单元, 用于针对所有使用相同系统资源发送导频的用户设备,对 所述接收信号进行至少一次迭代的信道估计;
输出单元,用于输出输出所有使用相同系统资源发送导频的用户设备的信 道估计结果。
在第一种可能的实现方式中,所述信道估计单元具体用于在每次迭代的信 道估计中,按照所有使用相同系统资源发送导频的用户设备对应的导频序列的 设定顺序,针对所有使用相同系统资源发送导频的用户设备,对所述接收信号 进行串行的信道估计; 或者,
所述信道估计单元具体用于在每次迭代的信道估计中 ,针对所有使用相同 系统资源发送导频的用户设备, 对所述接收信号进行并行信道估计。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述信道估计单元包括:
获得单元, 用于在每次迭代的信道估计中, 按照所述设定顺序, 依次消除 根据所述接收信号的其它使用相同系统资源发送导频的用户设备已估计信道 累计得到的的干扰信号, 获得当前用户设备的信道估计结果;
累加单元,用于将所述当前用户设备的信道估计结果对应的干扰信号累加 至所述已估计信道累计得到的干扰信号。
结合第二方面的第一种可能的实现方式或第二方面的第二种可能的实现 方式,在第三种可能的实现方式中,所述设定顺序为所述所有使用相同系统资 源发送导频的用户设备对应的导频序列的信号与干扰加噪声比的高低顺序。
结合第二方面的第一种可能的实现方式,在第四种可能的实现方式中, 所 述信道估计单元具体用于在每次迭代的信道估计中,针对所有使用相同系统资 源发送导频的用户设备中的每个用户设备,消除根据所述接收信号的其它使用 相同系统资源发送导频的用户设备已估计信道累计得到的的干扰信号,获得所 述每个用户设备的信道估计结果。 第三方面, 提供了一种信道估计设备, 包括输入装置、 输出装置、 存储器 和处理器;
其中, 所述处理器用于执行如下步骤:
获取用于信道估计的接收信号,所述接收信号为至少一个用户设备在相同 系统资源上发送的具有不同相位偏移值的导频序列经过信道后的信号;
针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至 少一次迭代的信道估计;
输出所有使用相同系统资源发送导频的用户设备的信道估计结果。
在第一种可能的实现方式中,所述处理器执行所述针对所有使用相同系统 资源发送导频的用户设备,对所述接收信号进行至少一次迭代的信道估计的步 骤, 具体为:
在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设 备对应的导频序列的设定顺序,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行串行的信道估计; 或者,
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行并行信道估计。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述处理器执行所述在每次迭代的信道估计中,按照所有使用相同系统资源发送 导频的用户设备对应的导频序列的设定顺序,针对所有使用相同系统资源发送 导频的用户设备, 对所述接收信号进行串行的信道估计的步骤, 包括: 在每次迭代的信道估计中,按照所述设定顺序,依次消除根据所述接收信 号的其它使用相同系统资源发送导频的用户设备已估计信道累计得到的的干 扰信号, 获得当前用户设备的信道估计结果;
将所述当前用户设备的信道估计结果对应的干扰信号累加至所述已估计 信道累计得到的干扰信号,并重复上述步骤直至获得所述所有使用相同系统资 源发送导频的用户设备的信道估计结果。
结合第三方面的第一种可能的实现方式或第三方面的第二种可能的实现 方式,在第三种可能的实现方式中,所述设定顺序为所述所有使用相同系统资 源发送导频的用户设备对应的导频序列的信号与干扰加噪声比的高低顺序。
结合第三方面的第一种可能的实现方式,在第四种可能的实现方式中, 所 述处理器执行所述在每次迭代的信道估计中,针对所有使用相同系统资源发送 导频的用户设备, 对所述接收信号进行并行信道估计的步骤, 具体为:
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备中的每个用户设备,消除根据所述接收信号的其它使用相同系统资源发送导 频的用户设备已估计信道累计得到的的干扰信号,获得所述每个用户设备的信 道估计结果。 采用本发明的一种信道估计方法及装置、设备的技术方案, 建立在已知导 频信号基础上, 而信道未知, 不涉及数据信号的编解码, 可以降低同频的多个 信号之间的干扰, 提高信道估计的精度, 信道估计过程筒单。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种信道估计方法的流程图;
图 2为对图 1所示的本发明实施例提供的一种信道估计方法进一步细化的 另一个实施例的流程图;
图 3为对图 1所示的本发明实施例提供的一种信道估计方法进一步细化的 又一个实施例的流程图;
图 4为本发明实施例提供的一种信道估计装置的结构示意图;
图 5为对图 4所示的本发明实施例提供的一种信道估计装置进一步细化的 另一个实施例的结构示意图;
图 6为对图 4所示的本发明实施例提供的一种信道估计装置进一步细化的 又一个实施例的结构示意图;
图 7为本发明实施例提供的一种信道估计设备的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明实施例提供的一种信道估计方法的流程图。如图 1所示, 该 方法包括以下步骤:
步骤 S101 , 获取用于信道估计的接收信号, 所述接收信号为至少一个用 户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过信道后 的信号。
在本发明中实施例, 多个用户设备的导频序列例如 SRS在同一导频序列 上发送, 例如, 不同用户设备的 SRS采用 Zadoff-Chu序列, 最多可以 8个用 户设备的 SRS为同一序列加上不同的偏移值。 SRS序列的长度一般是 12的倍 数, 序列的每个元素需要一个资源单元 (Resource Element, RE)来发送, 一个 OFDM symbol一般由 4艮多子载波构成,每个 OFDM symbol的子载波即是 RE, 同一导频序列发送在同一 OFDM symbol的相同子载波上, 因此, 基站接收到 的用于信道估计的接收信号为多个用户设备在相同系统资源上发送的具有不 同相位偏移值的导频序列经过信道后的频域信号的累加。
步骤 S102, 针对所有使用相同系统资源发送导频的用户设备, 对所述接 收信号进行至少一次迭代的信道估计。
采用相同系统资源发送的具有不同相位偏移值的导频序列经过信道后的 信号存在相互之间的干扰,进行信道估计的目的是针对所有使用相同系统资源 发送导频的用户设备,消除接收信号中其它使用相同系统资源发送导频的用户 设备对应的接收信号对该接收信号造成的干扰。一次迭代即针对所有使用相同 系统资源发送导频的用户设备,完成在相同系统资源上发送的具有不同相位偏 移值的导频序列经过信道后的信号的信道估计,通过多次迭代进一步精确的得 出所有使用相同系统资源发送导频的用户设备对应的接收信号的干扰信号。针 对所有使用相同系统资源发送导频的用户设备,对接收信号进行一次或多次迭 代的信道估计, 迭代次数越多, 信道估计精度越高, 实际操作中, 可综合考虑 信道估计要求的精度和信道估计处理时长选择迭代的次数。
步骤 S103 , 输出所有使用相同系统资源发送导频的用户设备的信道估计 结果。
从消除了干扰的接收信号中获得经过信道估计的各信道,即为该信道估计 结果。 该信道估计结果可以是针对所有使用相同系统资源发送导频的用户设 备, 对接收信号完成整个迭代后的信道估计结果。
上述进行信道估计的过程, 在已知导频信号基础上, 而信道未知, 不涉及 数据信号的编解码, 通过迭代消除同频的多个信号之间的干扰, 可以提高信道 估计的精度, 信道估计过程筒单。
根据本发明实施例提供的一种信道估计方法, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 信道估计过程筒单, 可以降低同 频的多个信号之间的干扰, 提高信道估计的精度。
图 2为对图 1所示的本发明实施例提供的一种信道估计方法进一步细化的 另一个实施例的流程图。 如图 2所示, 该方法包括以下步骤:
步骤 S201 , 获取用于信道估计的接收信号, 所述接收信号为至少一个用 户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过信道后 的信号。 步骤 S201与前述实施例的步骤 S101相同, 在此不再赘述。
步骤 S202, 在每次迭代的信道估计中, 按照所述设定顺序, 依次消除根 据所述接收信号的其它使用相同系统资源发送导频的用户设备已估计信道累 计得到的的干扰信号, 获得当前用户设备的信道估计结果。
步骤 S203 , 将所述当前用户设备的信道估计结果对应的干扰信号累加至 所述已估计信道累计得到的干扰信号,并重复上述步骤直至获得所述所有使用 相同系统资源发送导频的用户设备的信道估计结果。
步骤 S202至步骤 S203为针对所有使用相同系统资源发送导频的用户设 备,对所述接收信号进行至少一次迭代的信道估计的过程, 具体的为在每次迭 代的信道估计中,按照所有使用相同系统资源发送导频的用户设备对应的导频 序列的设定顺序,针对所有使用相同系统资源发送导频的用户设备,对所述接 收信号进行串行的信道估计的过程。
串行信道估计的过程即在每次迭代的信道估计中,依次对针对所有使用相 同系统资源发送导频的用户设备对应的接收信号进行信道估计。
首先,确定所有使用相同系统资源发送导频的用户设备进行串行的信道估 计的设定顺序,本发明优先考虑依照使用相同系统资源发送导频的用户设备对 应的接收信号的信号与干扰力口噪声比(Signal to Interference plus Noise Ratio, SINR)的顺序, 即首先估计 SINR最高的使用相同系统资源发送导频的用户设 备对应的接收信号对应的用户设备的信道, 然后依照 SINR由高到低的顺序, 顺序估计其它用户设备的信道。 当然, 该设定顺序还可以为随机选取的。值得 说明的是,本发明优先考虑针对每个在相同系统资源上发送导频的用户设备对 应的接收信号的干扰计算, 从而消除干扰, 还可以有每隔 m ( m 为自然数, m>l )个在相同系统资源上发送导频的用户设备对应的接收信号的干扰计算, 每 m个在相同系统资源上发送导频的用户设备对应的接收信号消除的干扰为 之前计算得到的干扰。
然后, 针对按照设定顺序确定的当前的用户设备, 若为首次迭代, 接收信 号 Y1减去其它在相同系统资源上发送导频的用户设备的已估计信道累计得到 的的干扰信号 E, 得到消除干扰后的信号 Y2, 首次迭代时初始化 E=0, 则当 前用户设备本次迭代获得的信道估计结果 hi=Y2/Si, Si为导频序列, 在这里, 其它在相同系统资源上发送导频的用户设备的已估计信道累计得到的的干扰 信号即:按照设定顺序在当前用户设备进行信道估计前已进行信道估计的其它 在相同系统资源上发送导频的用户设备的干扰信号之和; 若不是首次迭代, 则 同一导频序列上的其它在相同系统资源上发送导频的用户设备的已估计信道 累计得到的的干扰信号即:更新的已估计干扰信号减去当前用户设备上次迭代 得到的干扰信号, 其它计算过程相同。 最后,当前用户设备进行信道估计后的干扰信号累加至已估计信道的干扰 信号, 对已估计干扰信号进行更新。
重复上述步骤对所有在相同系统资源上发送导频的用户设备进行信道估 计。
通过进行串行信道估计,每次迭代的信道估计,各个导频信号估计出的干 扰信号都进行累加, 使得信道估计结果更为精确。
步骤 S204, 输出所有使用相同系统资源发送导频的用户设备的信道估计 结果。
从消除了干扰的接收信号中获得经过信道估计的各信道,即为该信道估计 结果。 该信道估计结果可以是针对所有使用相同系统资源发送导频的用户设 备, 对接收信号完成整个迭代后的信道估计结果。
上述进行信道估计的过程, 在已知导频信号基础上, 而信道未知, 不涉及 数据信号的编解码, 通过迭代消除同频的多个信号之间的干扰,信道估计过程 筒单, 可以提高信道估计的精度。
根据本发明实施例提供的一种信道估计方法, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 可以降低同频的多个信号之间的 干扰, 提高信道估计的精度, 信道估计过程筒单; 且进行串行信道估计使得信 道估计的精度更高。
图 3为对图 1所示的本发明实施例提供的一种信道估计方法进一步细化的 又一个实施例的流程图。 如图 3所示, 该方法包括以下步骤:
步骤 S301 , 获取用于信道估计的接收信号, 所述接收信号为至少一个用 户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过信道后 的信号。
步骤 S301与上述实施例的步骤 S101或步骤 S201相同, 在此不再赘述。 步骤 S302, 在每次迭代的信道估计中, 针对所有使用相同系统资源发送 导频的用户设备中的每个用户设备,消除根据所述接收信号的其它使用相同系 统资源发送导频的用户设备已估计信道累计得到的的干扰信号,获得所述每个 用户设备的信道估计结果。
步骤 S302为针对所有使用相同系统资源发送导频的用户设备, 对所述接 收信号进行至少一次迭代的信道估计的过程,具体的为在每次迭代的信道估计 中,针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行并 行信道估计。
并行信道估计的过程即在每次迭代的信道估计中,即对各个在相同系统资 源上发送导频的用户设备进行并行信道估计,各个在相同系统资源上发送导频 的用户设备进行信道估计得到的干扰信号只计算到下一次迭代的其它在相同 系统资源上发送导频的用户设备的信道估计中,而不对本次迭代的其它在相同 系统资源上发送导频的用户设备的信道估计产生影响。 即: 对于所有在相同系 统资源上发送导频的用户设备, 若为首次迭代, 初始化干扰信号 E=0, 此时对 接收信号 Y1不进行操作,本次迭代对于接收信号 Y1的信道估计结果为 Yl/Si, Si为导频序列; 若不是首次迭代, 则消除干扰后的信号 Y2为接收信号 Y1减 去上一次迭代其它在相同系统资源上发送导频的用户设备已估计信道累计得 到的的干扰信号 E, 本次迭代对于导频信号 Y1的信道估计结果为 Y2/Si。
步骤 S303, 输出所有使用相同系统资源发送导频的用户设备的信道估计 结果。
步骤 S303与上述实施例的步骤 S103或步骤 S204相同, 在此不再赘述。 根据本发明实施例提供的一种信道估计方法, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 可以降低同频的多个信号之间的 干扰, 提高信道估计的精度, 信道估计过程筒单。
图 4为本发明实施例提供的一种信道估计装置的结构示意图。如图 4所示, 该装置 1000包括:
获取单元 11 , 用于获取用于信道估计的接收信号, 所述接收信号为至少 一个用户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过 信道后的信号。
在本发明中实施例, 多个用户设备的导频序列例如 SRS在同一导频序列 上发送, 例如, 不同用户设备的 SRS采用 Zadoff-Chu序列, 最多可以 8个用 户设备的 SRS为同一序列加上不同的偏移值。 SRS序列的长度一般是 12的倍 数, 序列的每个元素需要一个资源单元 (Resource Element, RE)来发送, 一个 OFDM symbol一般由 4艮多子载波构成,每个 OFDM symbol的子载波即是 RE, 同一导频序列发送在同一 OFDM symbol的相同子载波上, 因此, 获取单元 11 获取的用于信道估计的接收信号为多个用户设备在相同系统资源上发送的具 有不同相位偏移值的导频序列经过信道后的频域信号的累加。
信道估计单元 12, 用于针对所有使用相同系统资源发送导频的用户设备, 对所述接收信号进行至少一次迭代的信道估计。
采用相同系统资源发送的具有不同相位偏移值的导频序列经过信道后的 信号存在相互之间的干扰,进行信道估计的目的是针对所有使用相同系统资源 发送导频的用户设备,消除接收信号中其它使用相同系统资源发送导频的用户 设备对应的接收信号对该接收信号造成的干扰。 信道估计单元 12—次迭代即 针对所有使用相同系统资源发送导频的用户设备,完成在相同系统资源上发送 的具有不同相位偏移值的导频序列经过信道后的信号的信道估计,通过多次迭 代进一步精确的得出所有使用相同系统资源发送导频的用户设备对应的接收 信号的干扰信号。针对所有使用相同系统资源发送导频的用户设备,对接收信 号进行一次或多次迭代的信道估计, 迭代次数越多, 信道估计精度越高, 实际 操作中, 可综合考虑信道估计要求的精度和信道估计处理时长选择迭代的次 数。 输出单元 13 , 用于输出输出所有使用相同系统资源发送导频的用户设备 的信道估计结果。
从消除了干扰的接收信号中获得经过信道估计的各信道,即为该信道估计 结果。 该信道估计结果可以是针对所有使用相同系统资源发送导频的用户设 备, 对接收信号完成整个迭代后的信道估计结果。
上述各个功能单元完成的信道估计,在已知导频信号基础上,而信道未知, 不涉及数据信号的编解码,通过迭代消除同频的多个信号之间的干扰, 可以提 高信道估计的精度, 信道估计过程筒单。
根据本发明实施例提供的一种信道估计装置, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 信道估计过程筒单, 可以降低同 频的多个信号之间的干扰, 提高信道估计的精度。
图 5为对图 4所示的本发明实施例提供的一种信道估计装置进一步细化的 另一个实施例的结构示意图。 如图 5所示, 该装置 2000包括:
获取单元 21 , 用于获取用于信道估计的接收信号, 所述接收信号为至少 一个用户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过 信道后的信号。 获取单元 21的功能与前述实施例的获取单元 11的功能相同,在此不再赘 述。
信道估计单元 22, 用于针对所有使用相同系统资源发送导频的用户设备, 对所述接收信号进行至少一次迭代的信道估计。
在本实施例中, 信道估计单元 22具体用于在每次迭代的信道估计中, 按 照所有使用相同系统资源发送导频的用户设备对应的导频序列的设定顺序,针 对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行串行的信 道估计。
具体地, 该信道估计单元 22包括: 获得单元 221和累加单元 222。
获得单元 221 , 用于在每次迭代的信道估计中, 按照所述设定顺序, 依次 消除根据所述接收信号的其它使用相同系统资源发送导频的用户设备已估计 信道累计得到的的干扰信号, 获得当前用户设备的信道估计结果。
串行信道估计的过程即在每次迭代的信道估计中,依次对针对所有使用相 同系统资源发送导频的用户设备对应的接收信号进行信道估计。
首先,确定所有使用相同系统资源发送导频的用户设备进行串行的信道估 计的设定顺序,本发明优先考虑依照使用相同系统资源发送导频的用户设备对 应的接收信号的信号与干扰力口噪声比(Signal to Interference plus Noise Ratio, SINR)的顺序, 即首先估计 SINR最高的使用相同系统资源发送导频的用户设 备对应的接收信号对应的用户设备的信道, 然后依照 SINR由高到低的顺序, 顺序估计其它用户设备的信道。 当然, 该设定顺序还可以为随机选取的。 值得 说明的是,本发明优先考虑针对每个在相同系统资源上发送导频的用户设备对 应的接收信号的干扰计算, 从而消除干扰, 还可以有每隔 m ( m 为自然数, m>l )个在相同系统资源上发送导频的用户设备对应的接收信号的干扰计算, 每 m个在相同系统资源上发送导频的用户设备对应的接收信号消除的干扰为 之前计算得到的干扰。
然后, 针对按照设定顺序确定的当前的用户设备, 若为首次迭代, 接收信 号 Y1减去其它在相同系统资源上发送导频的用户设备的已估计信道累计得到 的的干扰信号 E, 得到消除干扰后的信号 Y2, 首次迭代时初始化 E=0, 则当 前用户设备本次迭代获得的信道估计结果 hi=Y2/Si, Si为导频序列, 在这里, 其它在相同系统资源上发送导频的用户设备的已估计信道累计得到的的干扰 信号即:按照设定顺序在当前用户设备进行信道估计前已进行信道估计的其它 在相同系统资源上发送导频的用户设备的干扰信号之和; 若不是首次迭代, 则 同一导频序列上的其它在相同系统资源上发送导频的用户设备的已估计信道 累计得到的的干扰信号即:更新的已估计干扰信号减去当前用户设备上次迭代 得到的干扰信号, 其它计算过程相同。
累加单元 222, 用于将所述当前用户设备的信道估计结果对应的干扰信号累加 至所述已估计信道累计得到的干扰信号。 累加单元 222将当前用户设备进行信道估计后的干扰信号累加至已估计 信道的干扰信号, 对已估计干扰信号进行更新。
通过该信道估计单元 22完成对所有在相同系统资源上发送导频的用户设 备的信道估计。
通过进行串行信道估计,每次迭代的信道估计, 所有在相同系统资源上发 送导频的用户设备估计出的干扰信号都进行累加, 使得信道估计结果更为精 确。
输出单元 23 , 用于输出输出所有使用相同系统资源发送导频的用户设备 的信道估计结果。
从消除了干扰的接收信号中获得经过信道估计的各信道,即为该信道估计 结果。 该信道估计结果可以是对所有使用相同系统资源发送导频的用户设备, 对接收信号完成整个迭代后的信道估计结果。
上述进行信道估计的过程, 在已知导频信号基础上, 而信道未知, 不涉及 数据信号的编解码, 通过迭代消除同频的多个信号之间的干扰,信道估计过程 筒单, 可以提高信道估计的精度。
根据本发明实施例提供的一种信道估计装置, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 可以降低同频的多个信号之间的 干扰, 提高信道估计的精度, 信道估计过程筒单; 且进行串行信道估计使得信 道估计的精度更高。
图 6为对图 4所示的本发明实施例提供的一种信道估计装置进一步细化的 又一个实施例的结构示意图。 如图 6所示, 该装置 3000包括:
获取单元 31 , 用于获取用于信道估计的接收信号, 所述接收信号为至少 一个用户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过 信道后的信号。
获取单元 31的功能与上述实施例的获取单元 11或获取单元 21的功能相 同, 在此不再赘述。
信道估计单元 32, 用于针对所有使用相同系统资源发送导频的用户设备, 对所述接收信号进行至少一次迭代的信道估计。
在本实施例中, 信道估计单元 32具体用于在每次迭代的信道估计中, 针 对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行并行信道 估计。
具体地, 信道估计单元 32用于在每次迭代的信道估计中, 针对所有使用 相同系统资源发送导频的用户设备中的每个用户设备,消除根据所述接收信号 的其它使用相同系统资源发送导频的用户设备已估计信道累计得到的的干扰 信号, 获得所述每个用户设备的信道估计结果。
并行信道估计的过程即在每次迭代的信道估计中,即对各个在相同系统资 源上发送导频的用户设备进行并行信道估计,各个在相同系统资源上发送导频 的用户设备进行信道估计得到的干扰信号只计算到下一次迭代的其它在相同 系统资源上发送导频的用户设备的信道估计中,而不对本次迭代的其它在相同 系统资源上发送导频的用户设备的信道估计产生影响。 即: 对于所有在相同系 统资源上发送导频的用户设备, 若为首次迭代, 初始化干扰信号 E=0, 此时对 接收信号 Y1不进行操作,本次迭代对于接收信号 Y1的信道估计结果为 Yl/Si, Si为导频序列; 若不是首次迭代, 则消除干扰后的信号 Y2为接收信号 Y1减 去上一次迭代其它在相同系统资源上发送导频的用户设备已估计信道累计得 到的的干扰信号 E, 本次迭代对于导频信号 Y1的信道估计结果为 Y2/Si。
输出单元 33, 用于输出输出所有使用相同系统资源发送导频的用户设备 的信道估计结果。
输出单元 33的功能与上述实施例的输出单元 13或输出单元 23的功能相 同, 在此不再赘述。
根据本发明实施例提供的一种信道估计装置, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 可以降低同频的多个信号之间的 干扰, 提高信道估计的精度, 信道估计过程筒单。 图 7为本发明实施例提供的一种信道估计设备的结构示意图。如图 7所示, 该设备 4000可包括:
输入装置 41、 输出装置 42、 存储器 43和处理器 44(网络设备中的处理器 44的数量可以一个或多个, 图 7中以一个处理器为例)。 在本发明的一些实施 例中, 输入装置 41、 输出装置 42、 存储器 43和处理器 44可通过总线或其它 方式连接, 其中, 图 7中以通过总线连接为例。
其中, 处理器 44用于执行以下步骤:
获取用于信道估计的接收信号,所述接收信号为至少一个用户设备在相同 系统资源上发送的具有不同相位偏移值的导频序列经过信道后的信号;
针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至 少一次迭代的信道估计;
输出所有使用相同系统资源发送导频的用户设备的信道估计结果。
在一些可行的实施例中, 处理器 44执行所述针对所有使用相同系统资源 发送导频的用户设备, 对所述接收信号进行至少一次迭代的信道估计的步骤, 具体为:
在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设 备对应的导频序列的设定顺序,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行串行的信道估计; 或者,
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行并行信道估计。
在一些可行的实施例中, 处理器 44执行所述在每次迭代的信道估计中, 按照所有使用相同系统资源发送导频的用户设备对应的导频序列的设定顺序, 针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行串行的 信道估计的步骤, 包括:
在每次迭代的信道估计中,按照所述设定顺序,依次消除根据所述接收信 号的其它使用相同系统资源发送导频的用户设备已估计信道累计得到的的干 扰信号, 获得当前用户设备的信道估计结果;
将所述当前用户设备的信道估计结果对应的干扰信号累加至所述已估计 信道累计得到的干扰信号,并重复上述步骤直至获得所述所有使用相同系统资 源发送导频的用户设备的信道估计结果。 在一些可行的实施例中,所述设定顺序为所述所有使用相同系统资源发送 导频的用户设备对应的导频序列的信号与干扰加噪声比的高低顺序。
在一些可行的实施例中, 处理器 44执行所述在每次迭代的信道估计中, 针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行并行信 道估计的步骤, 具体为:
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备中的每个用户设备,消除根据所述接收信号的其它使用相同系统资源发送导 频的用户设备已估计信道累计得到的的干扰信号,获得所述每个用户设备的信 道估计结果。
可以理解的是, 本实施例的设备 4000的各功能模块的功能可根据上述方 描述, 此处不再赘述。
根据本发明实施例提供的一种信道估计设备, 建立在已知导频信号基础 上, 而信道未知, 不涉及数据信号的编解码, 可以降低同频的多个信号之间的 干扰, 提高信道估计的精度, 信道估计过程筒单。
需要说明的是, 对于前述的各方法实施例, 为了筒单描述, 故将其都表述 为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的 动作顺序的限制,因为根据本发明,某些步骤可以采用其他顺序或者同时进行。 其次, 本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重, 某个实施例中没有详 述的部分, 可以参见其他实施例的相关描述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现 时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个 或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和通信介 质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介 质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计 算机可读介质可以包括随机存取存储器 (Random Access Memory, RAM),只读 存储器 (Read-Only Memory , ROM) , 电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory, EEPROM)、只读光盘 (Compact Disc Read-Only Memory, CD-ROM)或其他光盘存储、 磁盘存储介质或者其他磁存 储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码 并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机 可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线 ( Digital Subscriber Line , DSL )或者诸如红外线、 无线电和微波之类的无线 技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞 线、 DSL或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定 影中。 如本发明所使用的, 盘(Disk )和碟(disc ) 包括压缩光碟 ( CD ), 激 光碟、 光碟、 数字通用光碟(DVD )、 软盘和蓝光光碟, 其中盘通常磁性的复 制数据, 而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可 读介质的保护范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定本 发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种信道估计方法, 其特征在于, 包括:
获取用于信道估计的接收信号,所述接收信号为至少一个用户设备在相同 系统资源上发送的具有不同相位偏移值的导频序列经过信道后的信号;
针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至 少一次迭代的信道估计;
输出所有使用相同系统资源发送导频的用户设备的信道估计结果。
2、 如权利要求 1所述的方法, 其特征在于, 所述针对所有使用相同系统 资源发送导频的用户设备,对所述接收信号进行至少一次迭代的信道估计, 具 体为:
在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设 备对应的导频序列的设定顺序,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行串行的信道估计; 或者,
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行并行信道估计。
3、 如权利要求 2所述的方法, 其特征在于, 所述在每次迭代的信道估计 中,按照所有使用相同系统资源发送导频的用户设备对应的导频序列的设定顺 序,针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行串 行的信道估计, 包括:
在每次迭代的信道估计中,按照所述设定顺序,依次消除根据所述接收信 号的其它使用相同系统资源发送导频的用户设备已估计信道累计得到的的干 扰信号, 获得当前用户设备的信道估计结果;
将所述当前用户设备的信道估计结果对应的干扰信号累加至所述已估计 信道累计得到的干扰信号,并重复上述步骤直至获得所述所有使用相同系统资 源发送导频的用户设备的信道估计结果。
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述设定顺序为所述所 有使用相同系统资源发送导频的用户设备对应的导频序列的信号与干扰加噪 声比的高低顺序。
5、 如权利要求 2所述的方法, 其特征在于, 所述在每次迭代的信道估计 中,针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行并 行信道估计, 具体为:
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备中的每个用户设备,消除根据所述接收信号的其它使用相同系统资源发送导 频的用户设备已估计信道累计得到的的干扰信号,获得所述每个用户设备的信 道估计结果。
6、 一种信道估计装置, 其特征在于, 包括:
获取单元, 用于获取用于信道估计的接收信号, 所述接收信号为至少一个 用户设备在相同系统资源上发送的具有不同相位偏移值的导频序列经过信道 后的信号;
信道估计单元, 用于针对所有使用相同系统资源发送导频的用户设备,对 所述接收信号进行至少一次迭代的信道估计;
输出单元,用于输出输出所有使用相同系统资源发送导频的用户设备的信 道估计结果。
7、 如权利要求 6所述的装置, 其特征在于, 所述信道估计单元具体用于 在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设备对 应的导频序列的设定顺序, 针对所有使用相同系统资源发送导频的用户设备, 对所述接收信号进行串行的信道估计; 或者,
所述信道估计单元具体用于在每次迭代的信道估计中 ,针对所有使用相同 系统资源发送导频的用户设备, 对所述接收信号进行并行信道估计。
8、 如权利要求 7所述的装置, 其特征在于, 所述信道估计单元包括: 获得单元, 用于在每次迭代的信道估计中, 按照所述设定顺序, 依次消除 根据所述接收信号的其它使用相同系统资源发送导频的用户设备已估计信道 累计得到的的干扰信号, 获得当前用户设备的信道估计结果;
累加单元,用于将所述当前用户设备的信道估计结果对应的干扰信号累加 至所述已估计信道累计得到的干扰信号。
9、 如权利要求 7或 8所述的装置, 其特征在于, 所述设定顺序为所述所 有使用相同系统资源发送导频的用户设备对应的导频序列的信号与干扰加噪 声比的高低顺序。
10、 如权利要求 7所述的装置, 其特征在于, 所述信道估计单元具体用于 在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设备中 的每个用户设备,消除根据所述接收信号的其它使用相同系统资源发送导频的 用户设备已估计信道累计得到的的干扰信号,获得所述每个用户设备的信道估 计结果。
11、 一种信道估计设备, 其特征在于, 包括输入装置、 输出装置、 存储 器和处理器;
其中, 所述处理器用于执行如下步骤:
获取用于信道估计的接收信号,所述接收信号为至少一个用户设备在相同 系统资源上发送的具有不同相位偏移值的导频序列经过信道后的信号;
针对所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至 少一次迭代的信道估计;
输出所有使用相同系统资源发送导频的用户设备的信道估计结果。
12、 如权利要求 11所述的设备, 其特征在于, 所述处理器执行所述针对 所有使用相同系统资源发送导频的用户设备,对所述接收信号进行至少一次迭 代的信道估计的步骤, 具体为:
在每次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设 备对应的导频序列的设定顺序,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行串行的信道估计; 或者, 在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备, 对所述接收信号进行并行信道估计。
13、 如权利要求 12所述的设备, 其特征在于, 所述处理器执行所述在每 次迭代的信道估计中,按照所有使用相同系统资源发送导频的用户设备对应的 导频序列的设定顺序,针对所有使用相同系统资源发送导频的用户设备,对所 述接收信号进行串行的信道估计的步骤, 包括:
在每次迭代的信道估计中,按照所述设定顺序,依次消除根据所述接收信 号的其它使用相同系统资源发送导频的用户设备已估计信道累计得到的的干 扰信号, 获得当前用户设备的信道估计结果;
将所述当前用户设备的信道估计结果对应的干扰信号累加至所述已估计 信道累计得到的干扰信号,并重复上述步骤直至获得所述所有使用相同系统资 源发送导频的用户设备的信道估计结果。
14、 如权利要求 12或 13所述的设备, 其特征在于, 所述设定顺序为所述 所有使用相同系统资源发送导频的用户设备对应的导频序列的信号与干扰加 噪声比的高低顺序。
15、 如权利要求 12所述的设备, 其特征在于, 所述处理器执行所述在每 次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设备,对所 述接收信号进行并行信道估计的步骤, 具体为:
在每次迭代的信道估计中,针对所有使用相同系统资源发送导频的用户设 备中的每个用户设备,消除根据所述接收信号的其它使用相同系统资源发送导 频的用户设备已估计信道累计得到的的干扰信号,获得所述每个用户设备的信 道估计结果。
PCT/CN2013/088250 2013-11-30 2013-11-30 一种信道估计方法及装置、设备 WO2015078016A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/088250 WO2015078016A1 (zh) 2013-11-30 2013-11-30 一种信道估计方法及装置、设备
CN201380077330.4A CN105284087B (zh) 2013-11-30 2013-11-30 一种信道估计方法及装置、设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088250 WO2015078016A1 (zh) 2013-11-30 2013-11-30 一种信道估计方法及装置、设备

Publications (1)

Publication Number Publication Date
WO2015078016A1 true WO2015078016A1 (zh) 2015-06-04

Family

ID=53198255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088250 WO2015078016A1 (zh) 2013-11-30 2013-11-30 一种信道估计方法及装置、设备

Country Status (2)

Country Link
CN (1) CN105284087B (zh)
WO (1) WO2015078016A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024153056A1 (zh) * 2023-01-17 2024-07-25 华为技术有限公司 信道状态信息获取方法及相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174022B (zh) * 2022-06-23 2023-11-24 北京奕斯伟计算技术股份有限公司 导频分配方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075829A (zh) * 2006-05-15 2007-11-21 中兴通讯股份有限公司 一种适用于正交频分复用系统的信道估计方法
CN102045285A (zh) * 2009-10-14 2011-05-04 华为技术有限公司 信道估计方法、装置以及通信系统
CN102104574A (zh) * 2009-12-18 2011-06-22 华为技术有限公司 一种ofdm-tcds信号收发方法、装置及系统
CN102891815A (zh) * 2012-09-19 2013-01-23 北京航空航天大学 一种时分双工多基站协作系统中的低复杂度信道估计方法
CN103326966A (zh) * 2013-05-16 2013-09-25 东莞中山大学研究院 适用于无线局域网ofdm系统的信道估计方法
CN103384227A (zh) * 2013-07-19 2013-11-06 电子科技大学 一种联合信道估计的部分传输序列相位盲检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023923A1 (ja) * 2005-08-24 2007-03-01 Matsushita Electric Industrial Co., Ltd. Mimo-ofdm送信装置及びmimo-ofdm送信方法
US8000419B2 (en) * 2007-04-10 2011-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for cancellation of partially known interference using transmit diversity based interference cancellation
CN101127753B (zh) * 2007-09-29 2011-12-14 北京邮电大学 一种适用于多载波系统的信道估计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075829A (zh) * 2006-05-15 2007-11-21 中兴通讯股份有限公司 一种适用于正交频分复用系统的信道估计方法
CN102045285A (zh) * 2009-10-14 2011-05-04 华为技术有限公司 信道估计方法、装置以及通信系统
CN102104574A (zh) * 2009-12-18 2011-06-22 华为技术有限公司 一种ofdm-tcds信号收发方法、装置及系统
CN102891815A (zh) * 2012-09-19 2013-01-23 北京航空航天大学 一种时分双工多基站协作系统中的低复杂度信道估计方法
CN103326966A (zh) * 2013-05-16 2013-09-25 东莞中山大学研究院 适用于无线局域网ofdm系统的信道估计方法
CN103384227A (zh) * 2013-07-19 2013-11-06 电子科技大学 一种联合信道估计的部分传输序列相位盲检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024153056A1 (zh) * 2023-01-17 2024-07-25 华为技术有限公司 信道状态信息获取方法及相关装置

Also Published As

Publication number Publication date
CN105284087A (zh) 2016-01-27
CN105284087B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
EP4362590A2 (en) Method for multi-user multiplexing of orthogonal time frequency space signals
US9252862B2 (en) MIMO preamble for initial access with an unknown number of transmit antennas
JP5425920B2 (ja) 中継通信ネットワークにおいて通信するための方法および装置
WO2013068928A1 (en) Multi-stage timing and frequency synchronization
WO2017097269A1 (zh) 一种干扰估计方法和设备
WO2015192359A1 (zh) 数据发送、接收方法、装置及设备
WO2015081726A1 (zh) 导频信号发送、接收方法及装置
KR102561585B1 (ko) 무선 통신 시스템에서 다중 사용자 수신에 관한 방법 및 장치
CN114884777B (zh) 一种基于变换域的信道估计方法
JP6398604B2 (ja) マルチキャリア変調信号の定時同期化装置及び方法
CN107078836B (zh) 一种导频信号的生成方法及装置
WO2015078016A1 (zh) 一种信道估计方法及装置、设备
KR102263225B1 (ko) 비직교 파일럿 신호 기반 채널 추정 장치 및 방법
CN110475379B (zh) 频域随机接入机会的选择方法及装置、存储介质、终端
WO2015180009A1 (zh) 一种配置导频的方法及装置
WO2019072242A1 (zh) 数据处理方法及装置
CN103580738B (zh) 预编码矩阵确定方法及相关设备和通信系统
KR102454911B1 (ko) 통신 링크 메커니즘을 갖는 컴퓨팅 시스템
KR101853184B1 (ko) 하나 이상의 수신된 무선 신호를 처리하는 장치 및 방법
CN111147408B (zh) 一种非正交多址接入的信号处理方法及装置
CN106209164B (zh) 功率控制方法及装置
WO2016102007A1 (en) Inter-block interference suppression using a null guard interval
CN112398514A (zh) 一种信道估计方法和装置
CN1996982A (zh) 一种确定直接序列扩频ofdm中fft窗口位置的方法
CN114079556B (zh) 一种基于空间位置的多址接入方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077330.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898479

Country of ref document: EP

Kind code of ref document: A1