WO2015076056A1 - 撮像モジュールおよびその製造方法 - Google Patents

撮像モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2015076056A1
WO2015076056A1 PCT/JP2014/078215 JP2014078215W WO2015076056A1 WO 2015076056 A1 WO2015076056 A1 WO 2015076056A1 JP 2014078215 W JP2014078215 W JP 2014078215W WO 2015076056 A1 WO2015076056 A1 WO 2015076056A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
fixed
imaging
optical axis
camera module
Prior art date
Application number
PCT/JP2014/078215
Other languages
English (en)
French (fr)
Inventor
英嗣 小山
克久 須藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/037,505 priority Critical patent/US9733447B2/en
Priority to JP2015549043A priority patent/JP6215348B2/ja
Publication of WO2015076056A1 publication Critical patent/WO2015076056A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging module capable of positioning a lens and an imaging element with high accuracy and a manufacturing method for manufacturing the imaging module.
  • imaging modules are mainly used in portable devices such as mobile phones with cameras and personal digital assistants (PDAs).
  • PDAs personal digital assistants
  • an imaging element having a plurality of light-receiving units that photoelectrically convert image light from a subject to image and a lens for imaging incident light on the imaging element are modularized (integrated).
  • the small imaging module mainly includes a sensor chip (solid-state imaging chip) disposed on a substrate such as ceramics or epoxy resin with glass.
  • An image sensor having a plurality of light receiving portions in a two-dimensional shape is disposed at the center of the sensor chip.
  • the small imaging module includes an actuator.
  • the actuator moves a holder in which a lens for imaging incident light on the image sensor is fixed inside the small imaging module up and down.
  • a camera module 100a is shown in FIG. 8 as an example of the above-described small imaging module.
  • the sensor chip 110 is attached on the substrate 109 with an adhesive (not shown).
  • a plurality of pads (not shown) are provided on the outer periphery of the sensor chip 110, and the pads and terminals (not shown) of the substrate 109 are wire-bonded and electrically connected by wires 111. Yes.
  • the camera module 100a includes an actuator 101.
  • the actuator 101 includes a holder 104, a coil 105 wound around the outer periphery of the holder 104, a yoke 107, a magnet 106, and a base 108 fixed to the substrate 109.
  • the yoke 107 is a metal member and is provided on the outer periphery of the coil 105 to electrically shield the camera module 100a from the outside.
  • the magnet 106 is disposed inside the yoke 107 with a predetermined gap from the coil 5.
  • the barrel 103 is fixed inside the holder 104 by an adhesive (not shown).
  • the barrel 103 surrounds the periphery of the lens 102, and the lens 102 is held inside the barrel 103.
  • an electromagnetic force is generated between the coil 105 and the magnet 106 by passing a current through the coil 105.
  • the holder 104 is displaced in the optical axis direction of the lens 102 together with the lens 102 and the barrel 103 by the electromagnetic force.
  • the amount of displacement is controlled by the amount of current flowing through the coil 105.
  • the structure of the actuator 101 described above is a general VCM (Voice Coil Motor) structure.
  • the actuator 101 is fixed to the substrate 109 by fixing the base 108 to the substrate 109 with the adhesive 114.
  • the IR cut filter 112 is inserted and fixed between the sensor chip 110 and the lens 102.
  • the IR cut filter 112 eliminates infrared light incident on the sensor chip 110.
  • the base 108 may move while the adhesive 114 is cured (for example, stored at a high temperature). Etc.
  • Patent Document 1 and Patent Document 2 describe a camera module that further includes a lens on an image sensor and performs positioning of the image sensor and the lens with high accuracy by a positioning structure provided around the lens. And a solid-state imaging device.
  • a barrel that holds a first lens, a drive mechanism that adjusts the position of the first lens in the optical axis direction of the first lens, and solid-state imaging of the first lens.
  • a structure for abutting the barrel so as to face the element the first lens is sandwiched between the barrels, and the second lens is provided on the inner periphery of the structure.
  • the device is described.
  • the barrel is fixed by abutting with an inclined portion provided in the structure, so that the relationship between the first lens and the second lens, and further, the first lens and the solid-state imaging device The center and height relationship with can be set.
  • the fixed lens 117 is provided on the substrate 109, and is disposed between the lens 102 and the sensor chip 110 (imaging device).
  • a positioning member 116 that contacts the actuator 101 is formed on the outer periphery of the fixed lens 117.
  • a cover 115 formed to substantially cover the lower surface of the holder 104, the coil 105, and the magnet 106 is provided.
  • the lenses described in Patent Document 1 and Patent Document 2 also serve to correct distortion and incident light.
  • JP 2009-116176 A Japanese Patent Publication “JP 2009-98462 (May 7, 2009)”
  • the relative displacement between the fixed lens 117 and the lens 102 and the inclination of the optical axis are corrected by the positioning of the actuator 101 using the positioning member 116.
  • the relative displacement between the fixed lens 117 fixed on the substrate and the sensor chip 110 (imaging device) and the inclination of the optical axis still include manufacturing variations.
  • the relative positional deviation between the first lens and the second lens and the inclination of the optical axis are corrected by the contact of the barrel with the structure.
  • the relative displacement between the second lens (fixed lens) and the solid-state imaging device and the inclination of the optical axis still include manufacturing variations.
  • the active alignment is a method for determining the optimum position of the actuator on the substrate while performing fine adjustment of the position using an optical or electrical image to be formed as a feedback amount.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an imaging module capable of positioning a lens and an imaging device with high accuracy.
  • an imaging module includes a substrate on which an imaging element is mounted, a plurality of lenses that form an image of light from a subject on the imaging element, and the plurality of lenses.
  • An imaging module including a focus adjustment mechanism fixed to the substrate, wherein the focus adjustment mechanism includes a movable portion that is displaced in a direction of an optical axis of the plurality of lenses, and a direction of the optical axis.
  • a second lens group comprising one or more lenses selected from the above is fixed to the non-movable part.
  • an imaging module (camera module) capable of positioning a lens and an imaging element with high accuracy.
  • Embodiment 1 a camera module 50 (imaging module) according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a longitudinal sectional view showing an example of the configuration of the main part of the camera module 50.
  • the camera module 50 moves the position of the optical lens in the optical axis direction when the subject is at infinity or at a very close macro position, and focuses the image formed on the imaging surface (focusing).
  • This is a small imaging module with an auto focus (AF) function.
  • the camera module 50 includes a first lens group 1, a second lens group 2, a barrel 3, an actuator 20A (focus adjustment mechanism), and an imaging unit 21, as shown in FIG.
  • the actuator 20 ⁇ / b> A and the imaging unit 21 are overlapped in the optical axis direction of the first lens group 1 and the second lens group 2.
  • the first lens group side (subject side) will be described as the upper side, and the imaging unit 21 side will be described as the lower side. However, this does not define the vertical direction when in use. There may be.
  • the first lens group 1 includes a plurality of optical lenses 1a (lenses) and optical lenses 1b (lenses) whose optical axes coincide with each other, and guides light from the outside to the second lens group 2.
  • the first lens group 1 is fixed to an upper barrel 3a described later.
  • the second lens group 2 includes at least one optical lens 2 a (lens) whose optical axis coincides with that of the first lens group 1, and the sensor chip 10 (imaging device) of the imaging unit 21 receives light from the first lens group 1. Lead to.
  • the second lens group 2 is disposed between the first lens group 1 and the imaging unit 21.
  • the second lens group 2 is fixed to a lower barrel 3b described later.
  • a lens group in which the first lens group 1 and the second lens group 2 are combined is referred to as a joint lens group 22.
  • the barrel 3 includes an upper barrel 3a and a lower barrel 3b in order to hold the first lens group 1 and the second lens group 2.
  • the axes of the upper barrel 3a and the lower barrel 3b coincide with the optical axes of the first lens group 1 and the second lens group 2.
  • the upper barrel 3a holds the first lens group 1 in the hollow portion.
  • the upper barrel 3a is fixed to the inner peripheral wall of the holder 4 which is a part of an actuator 20A described later.
  • the lower barrel 3b is disposed between the upper barrel 3a and the imaging unit 21, and holds the second lens group 2 on its inner peripheral wall.
  • the lower barrel 3b is fixed to a base 8 which is a part of an actuator 20A described later.
  • the actuator 20A is a device for displacing the first lens group 1 in the optical axis direction during focusing.
  • the actuator 20A includes a holder 4, a coil 5, a magnet 6, a yoke 7, and a base 8.
  • the holder 4 is an annular member, and holds the upper barrel 3a with an inner peripheral wall.
  • the holder 4 is supported so as to be displaceable in the optical axis direction with respect to a yoke 7 and a base 8 to be described later.
  • the method for supporting the holder 4 is not particularly limited.
  • a spring spring configured such that the spring constant in the direction perpendicular to the optical axis is significantly larger than the spring constant in the optical axis direction is used, and the upper end portion (the end portion on the subject side) of the holder 4 is used.
  • the yoke 7 is made of, for example, a metal member and has a shape surrounding the holder 4.
  • the camera module 50 is electrically disconnected from the outside by the yoke 7.
  • a magnet 6 is fixed to the inner peripheral wall of the yoke.
  • the coil 5 is wound around the outer peripheral wall of the holder 4 and fixed.
  • the magnet 6 is fixed to the inner peripheral wall of the yoke 7 with a predetermined gap between it and the coil 5.
  • the holder 4 when an electric current is passed through the coil 5, an electromagnetic force is generated between the coil 5 and the magnet 6.
  • this electromagnetic force acts on the holder 4, the holder 4 is displaced together with the upper barrel 3 a and the first lens group 1 in the optical axis direction. That is, the first lens group 1 can be displaced in the optical axis direction by passing a current through the coil 5.
  • the base 8 is a member located below the yoke 7 and is connected to the yoke 7.
  • the base 8 is placed so as to cover the outer peripheral portion of the substrate 9.
  • the base 8 has a convex portion 8b that protrudes downward at the inner peripheral portion on the lower side surface and a convex portion 8c that protrudes upward at the inner peripheral portion on the upper side surface.
  • the convex portion 8 b has an opening portion 8 a penetrating in the vertical direction on the imaging surface side of the sensor chip 10.
  • the convex portion 8c is formed in an annular shape, and the lower barrel 3b is fixed to the inner peripheral wall. Thereby, the second lens group 2 is fixed to the base 8.
  • the base 8 has a cover portion 8d that protrudes downward at the outer peripheral portion on the lower surface.
  • the lower end surface of the cover portion 8d is fixed to the substrate 9 via the adhesive 14. Accordingly, the base 8 is fixed to the substrate 9 and the actuator 20A is fixed to the substrate 9.
  • the actuator 20A is a device that displaces the first lens group 1 in the optical axis direction during focusing.
  • the holder 4 and the coil 5 are displaced during focusing, and the magnet 6, the yoke 7, and the base 8 are not displaced during focusing. That is, the holder 4 and the coil 5 function as a focus movable part (movable part) that is displaced during focusing, and the magnet 6, the yoke 7, and the base 8 function as a focus fixing part (non-movable part) that is not displaced during focusing. Therefore, at the time of focusing, the first lens group 1 fixed to the focus movable part is displaced in the optical axis direction, and the second lens group 2 fixed to the focus fixing part is not displaced at the time of focusing.
  • the camera module 50 does not include a fixed lens fixed on the substrate as shown in FIG.
  • the imaging unit 21 includes a substrate 9, a sensor chip 10 (imaging device), an IR cut filter 12, and peripheral components 13.
  • the IR cut filter 12 is provided in the base 8 so as to block the opening 8a, and excludes the incidence of infrared light on the sensor chip 10.
  • the sensor chip 10 is mounted on the substrate 9 with an adhesive (not shown), receives light that has arrived via the first lens group 1 and the second lens group 2, performs photoelectric conversion, and then performs sensor conversion on the sensor chip 10. To obtain a subject image formed on.
  • the axis of the sensor chip 10 coincides with the optical axes of the first lens group 1 and the second lens group 2.
  • a plurality of pads are provided on the outer periphery of the sensor chip 10, and the pads and terminals (not shown) of the substrate 9 are wire-bonded by wires 11 and are electrically connected.
  • peripheral components 13 are appropriately attached to the substrate 9.
  • the upper surface of the substrate 9 and the lower end surface of the cover portion 8 d of the base 8 are fixed by an adhesive 14.
  • the camera module 50 includes the first lens group 1 and the second lens group 2 as described above.
  • the first lens group 1 is fixed to the focus movable part, and the second lens group 2 is fixed to the focus fixing part. For this reason, the camera module 50 can reduce the feeding amount (stroke) during focusing. Details will be described below with reference to FIGS.
  • FIG. 2 is a diagram for explaining focusing in the conventional camera module 100a.
  • 2A shows a state in which an image obtained when the subject is at infinity is formed on the imaging surface
  • FIG. 2B shows an image obtained when the subject is at the macro position.
  • FIG. 2C shows a state in which an image is formed behind the imaging surface.
  • FIG. 2C shows an image formed on the imaging surface again as shown in FIG. 2B.
  • a plurality of lenses 102 are all fixed to a holder 104 (see FIG. 8), and the plurality of lenses 102 are displaced together during focusing.
  • an image obtained when the subject is at infinity is formed on the imaging surface.
  • the image is blurred because the imaging position moves behind the imaging surface.
  • a current is passed through the coil 105 fixed to the outer periphery of the holder 104 in the actuator 101, and an electromagnetic force is generated between the coil 105 and the magnet 106.
  • the actuator 101 displaces the barrel 103 and the holder 104 that fix the plurality of lenses 102 by the generated electromagnetic force, and feeds the plurality of lenses 102 away from the imaging surface in the optical axis direction. This feed amount is called a stroke (between infinity and macro).
  • FIG. 3 is a diagram for explaining focusing in the camera module 50 according to the present embodiment.
  • 3A shows a state where an image obtained when the subject is at infinity is formed on the imaging surface
  • FIG. 3B shows an image obtained when the subject is at the macro position.
  • FIG. 3C shows a state in which an image is formed behind the imaging surface
  • FIG. 3C shows an image formed on the imaging surface again after the imaging surface as shown in FIG. 3B. Indicates the state of the
  • an image obtained when the subject is at infinity is formed on the imaging surface.
  • the image is blurred because the imaging position moves behind the imaging surface.
  • an electric current is passed through the coil 5 fixed to the outer periphery of the holder 4 in the actuator 20 ⁇ / b> A to generate an electromagnetic force between the coil 5 and the magnet 6.
  • the actuator 20A displaces the upper barrel 3a that fixes the first lens group 1 and the holder 4 by the generated electromagnetic force, and feeds the first lens group 1 away from the imaging surface in the optical axis direction.
  • the lens group extended to the side away from the imaging surface in the optical axis direction is only the first lens group 1, and the second lens group 2 is fixed to the focus fixing portion and thus is not displaced.
  • the optical lenses 1a, 1b, and 2a with respect to the optical axis is steeper than the angle with respect to the optical axis of light traveling from the second lens group 2 toward the imaging surface (light emitted from the second lens group to the sensor chip 10) (
  • the optical lenses constituting the first lens group 1 and the second lens group 2 are designed so as to be larger.
  • the camera module 50 according to the first embodiment has a larger stroke amount than the conventional camera module 100a.
  • the stroke amount is smaller.
  • the required stroke amount in the 1 / 1.33 optical inch system is 400 ⁇ m in the conventional camera module, whereas the camera module 50 may be 250 ⁇ m.
  • the camera module 50 can perform more efficient focusing than the conventional camera module 100a, and can form an image obtained from the subject with a small stroke amount on the imaging surface.
  • the camera module 50 has a small stroke amount required for focusing, and only the first lens group 1 is displaced during focusing due to the above configuration. For this reason, the amount of displacement of the focus movable part during focusing is small and the weight is light. As a result, the moving tilt generated by the actuator 20A is suppressed, and image quality deterioration such as blurring is improved.
  • the camera module 50 has a small stroke amount required for focusing, the image quality obtained in the macro mode can be kept relatively good.
  • the first lens group 1 and the second lens group 2 are designed so that an image can be obtained with optimum image quality when the subject is at infinity. For this reason, when the first lens group 1 is moved by the stroke, the image quality of the obtained image is not optimal.
  • the camera module 50 according to the first embodiment requires a small stroke amount at the time of focusing, the difference between the image quality of the image obtained at the macro time and the optimum image quality is reduced. Therefore, the image quality of the image obtained optimally in the macro mode is kept relatively good.
  • the height of the camera module 50 can be lowered by a reduced stroke amount.
  • the weight of the focus movable part is reduced. Therefore, the design of the actuator 20A can be afforded, the actuator 20A can be downsized, and the camera module 50 can be downsized.
  • the camera module 50 requires a small stroke amount for focusing and the weight of the focus movable part is light. Therefore, power consumption during focusing can be reduced.
  • the second lens group 2 is disposed between the first lens group 1 and the IR cut filter 12, and is fixed to the base 8 via the lower barrel 3b. For this reason, it is possible to suppress the occurrence of a stain defect due to a foreign matter generated by a strong impact or the like.
  • the holder 104 for fixing the lens 102 is fixed to the yoke 107 and the base 108 by a spring or the like, for example. Therefore, when the holder 104 receives a strong impact or the like, the holder 104 easily collides with the peripheral member, and foreign matter is generated by rubbing between the holder 104 and the peripheral member. At that time, since there is nothing to block, the foreign matter may fall on the surface of the IR cut filter 112 located above the sensor chip 110. Since the sensor chip 110 and the IR cut filter 112 are at a short distance, the foreign matter forms an image on the sensor chip 110, resulting in an electrically blurred image.
  • the second lens group 2 is disposed between the first lens group 1 and the IR cut filter 12. Therefore, the foreign matter falls on the second lens group 2. Since the second lens group 2 is located away from the sensor chip 10, the foreign matter does not form an image on the sensor chip 10. Therefore, it is possible to suppress the occurrence of a stain defect due to a foreign matter generated by a strong impact or the like.
  • the first lens group 1 is fixed to the focus movable part, and the second lens group 2 is fixed to the focus fixing part.
  • the first lens group 1 can be fixed to the focus movable part after the second lens group 2 is fixed to the focus fixing part. Therefore, as will be described later, when the first lens group 1 is fixed to the focus movable part, it can be fixed after performing optical active alignment. As a result, it is possible to prevent the occurrence of positional deviation and optical axis deviation between the first lens group 1 and the second lens group 2.
  • the same effect can be expected when the second lens group 2 is fixed to the focus fixing part after the first lens group 1 is fixed to the focus movable part.
  • the actuator 20A in which the positions of the first lens group 1 and the second lens group 2 are adjusted is fixed to the substrate 9. For this reason, as will be described later, when the actuator 20A is fixed to the substrate 9, it can be fixed after executing electrical active alignment. As a result, it is possible to prevent occurrence of positional deviation and optical axis deviation between the sensor chip 10 (imaging device) mounted on the substrate 9 and the first lens group 1 and the second lens group 2 (joint lens group 22). can do. Details will be described below.
  • FIG. 4 is a diagram illustrating production steps of the camera module 50 according to the first embodiment of the present invention. In addition, description is abbreviate
  • FIG. 4 is a diagram illustrating production steps of the camera module 50 according to the first embodiment of the present invention. In addition, description is abbreviate
  • step 1 the second lens group 2 including the optical lens 2a is fixed to the lower barrel 3b.
  • the second lens group 2 and the lower barrel 3b are fixed by, for example, an adhesive.
  • the lower barrel 3b is fixed to the base 8 with an adhesive (not shown).
  • the lower barrel 3 b is fixed at a predetermined position inside the convex portion 8 c in the base 8. The predetermined position is determined in advance by adjusting the height with a jig or the like. Accordingly, the second lens group 2 is fixed to the base 8 of the actuator 20A together with the lower barrel 3b.
  • step 2 the first lens group 1 including the optical lens 1a and the optical lens 1b is fixed to the upper barrel 3a.
  • the first lens group 1 and the upper barrel 3a are fixed by, for example, an adhesive.
  • the upper barrel 3a is fixed to the holder 4 with an adhesive (not shown) (first lens group fixing step).
  • first lens group fixing step the upper barrel 3 a is fixed to the holder 4 after adjusting the fixing position. The adjustment of the fixed position will be described below.
  • step 2 in order to adjust the fixed position, a resolution pattern or the like is optically imaged by the first lens group 1 and the second lens group 2, and data of the imaged image is fed back to Optical active alignment is executed to finely adjust the fixed position of the barrel 3a in the holder 4 to the optimum position.
  • the optical active alignment is a fine adjustment of the position of the upper barrel 3a in the holder 4 and includes not only the vertical direction but also a fine adjustment of the tilt (first lens group adjustment step).
  • the resolution pattern is generated by the second lens group 2 fixed to the base 8 of the actuator 20A and the first lens group 1 fixed to the upper barrel 3a temporarily disposed above the second lens group 2. Make an image.
  • the position and angle of the first lens group 1 are adjusted so that the imaging position does not change even if the first lens group 1 is displaced. The adjustment is repeated until the imaging position does not change.
  • step 2 when the upper barrel 3a to which the first lens group 1 is fixed is fixed to the holder 4, the images formed by the first lens group 1 and the second lens group 2 are fed back, Adjustment of the optical axis of one lens group 1 and adjustment of the distance from the first lens group 1 to the second lens group 2 are performed.
  • step 3 the substrate 20, sensor chip 10, wire 11, IR cut filter 12, and peripheral component 13 are already fixed to the actuator 20 ⁇ / b> A in which the first lens group 1 and the second lens group 2 are fixed at optimal positions. It fixes to the imaging part 21 with an adhesive agent (focus adjustment mechanism fixing step). At this time, the actuator 20A is fixed to the imaging unit 21 after adjusting the fixing position. In other words, the joint lens group 22 composed of the first lens group 1 and the second lens group 2 is fixed after adjusting the fixing position with respect to the sensor chip 10. The adjustment of the fixed position will be described below.
  • step 3 the first lens group 1 and the second lens group 2, that is, the joint lens group 22 and the sensor chip 10 are used to fix the image in the imaging unit 21 of the actuator 20A based on the image data of the electrical image formed by the sensor chip 10. Electrical active alignment is executed to finely adjust the position to the optimum position (focus adjustment mechanism adjustment step).
  • a resolution pattern is imaged by the joint lens group 22 and the sensor chip 10, and a reference image is compared with the imaging result. Based on the comparison, the position and angle of the actuator 20A with respect to the imaging unit 21 are adjusted so that the difference between the reference image and the imaging is eliminated. The adjustment is repeated until there is no difference between the reference image and the image formation.
  • the actuator 20A is fixed to the imaging unit 21. More specifically, the cover portion 8d of the base 8 is fixed to the substrate 9 with an adhesive.
  • step 3 when the actuator 20 ⁇ / b> A is fixed to the substrate 9, an image formed by the joint lens group 22 and the sensor chip 10 is fed back to adjust the optical axis of the joint lens group 22, and the joint lens group. The distance from 22 to the sensor chip 10 is adjusted. It should be noted that the specified analysis level is set as appropriate.
  • Step 4 after fixing the actuator 20A and the imaging unit 21 in Step 3, a predetermined test such as an imaging test is performed, and the camera module 50 is completed.
  • the upper barrel 3a to which the first lens group 1 is fixed is fixed to the holder 4, the position and angle of the first lens group 1 with respect to the second lens group 2 are adjusted and then the upper barrel 3a is adjusted.
  • the holder 4 can be fixed. For this reason, it is possible to prevent the occurrence of positional deviation and optical axis deviation that occur between the first lens group 1 and the second lens group 2.
  • the actuator 20A when the actuator 20A is fixed to the imaging unit 21, it can be fixed after adjusting the position and angle of the joint lens group 22 with respect to the sensor chip 10. For this reason, it is possible to prevent the occurrence of positional deviation and optical axis deviation that occur between the joint lens group 22 and the sensor chip 10.
  • the first lens group 1 and the second lens group 2 can be positioned with high accuracy, and further, the first lens group 1 and the second lens group 2 (joint lens group 22) and the sensor chip 10 (imaging). Element) can be positioned with high accuracy. For this reason, it is possible to prevent the camera module 50 from shading or blurring.
  • step 1 the upper barrel 3a to which the first lens group 1 is fixed is fixed to the holder 4 (first lens group fixing step).
  • step 2 the lower barrel 3b to which the second lens group 2 is fixed is fixed to the base 8 (second lens group fixing step).
  • second lens group fixing step the images formed by the first lens group 1 and the second lens group 2 are fed back, so that the second lens group 2 Optical active alignment for adjusting the position and angle is executed.
  • step 3 and step 4 are the same as step 3 and step 4 described above.
  • FIG. 5 is a longitudinal sectional view showing an example of the configuration of the main part of the camera module 51.
  • the camera module 51 according to the second embodiment is different from the camera module 50 according to the first embodiment in the following points.
  • the camera module 50 fixes the actuator 20 ⁇ / b> A and the imaging unit 21 by fixing the cover portion 8 d of the base 8 and the substrate 9. At that time, the actuator 20A is fixed after adjusting the fixing position in the imaging unit 21 by electrical active alignment.
  • the base 8 further includes a chip abutting portion 15 (abutting portion), and by bringing the chip abutting portion 15 into abutment with the sensor chip 10, the actuator 20A and the imaging unit are arranged. 21 is fixed.
  • the actuator 20A and the imaging unit 21 can be fixed with high accuracy without performing the electrical active alignment in step 3. Therefore, electrical active alignment can be omitted in the manufacturing process of the camera module 51. This will be explained in detail below.
  • the base 8 includes a tip abutting portion 15 protruding downward at a part of the lower end surface of the convex portion 8 b.
  • the chip abutting portion 15 is formed so as to be arranged in a quadrilateral shape around the light receiving pixel area of the sensor chip 10 where light enters.
  • the shape and number of the tip abutting portions 15 are not particularly limited.
  • the chip abutting portions 15 may be formed in a column shape, and the number is preferably 3 or 4, but may be many.
  • the actuator 20A When the actuator 20A is attached to the substrate 9 by bringing the lower end surface of the chip abutting portion 15 serving as the reference surface on the bottom surface side of the base 8 into contact with the upper surface of the sensor chip 10 without using an adhesive, the accuracy of the attachment device Therefore, it is possible to eliminate the tilt generated in the manufacturing. That is, by bringing the lower end surface of the chip abutting portion 15 into contact with the upper surface of the sensor chip 10, the joint lens group 22 can be positioned with respect to the sensor chip 10 in the optical axis direction with high accuracy regardless of the mounting device. .
  • the chip abutting portion 15 in order to bring the chip abutting portion 15 into contact with the sensor chip 10, there is a gap caused by tolerance between the substrate 9 and the cover portion 8 d of the base 8. After filling the gap with an adhesive (not shown), the chip abutting portion 15 is brought into contact with the sensor chip 10. Then, heat is applied to cure the adhesive, and the base 8 and the substrate 9 are fixed. In the meantime, the chip contact portion 15 is kept in contact with the sensor chip 10.
  • the tilt generated in manufacturing the actuator 20A and the sensor chip 10 can be improved. Therefore, it is possible to reduce the positional deviation and the optical axis deviation between the joint lens group 22 and the sensor chip 10 without performing electrical active alignment. As a result, it is possible to significantly improve blurring and the like. it can.
  • FIG. 6 is a longitudinal sectional view showing an example of the configuration of the main part of the camera module 52.
  • the camera module 52 according to the third embodiment is different from the camera module 50 according to the first embodiment in the following points.
  • the camera module 50 has an AF function. Further, the lower barrel 3 b is fixed to the convex portion 8 c of the base 8.
  • the camera module 52 further has an optical image stabilization (OIS: Optical Image Stabilizer) function.
  • OIS optical Image Stabilizer
  • the camera module 52 includes an actuator 20B, and the actuator 20B includes an OIS mechanism 23a. Further, the lower barrel 3b is fixed to the OIS mechanism 23a of the actuator 20B.
  • the camera module 52 includes a first lens group 1, a second lens group 2, a barrel 3, an actuator 20 ⁇ / b> B, and an imaging unit 21.
  • the first lens group 1, the second lens group 2, and the imaging unit 21 have the same configuration as the camera module 50.
  • the barrel 3 and the actuator 20B are different from the camera module 50. This is explained below.
  • the barrel 3 includes an upper barrel 3a and a lower barrel 3b.
  • the upper barrel 3 a is the same as the upper barrel 3 a of the camera module 50.
  • the lower barrel 3b holds the second lens group 2 therein.
  • the lower barrel 3b is fixed to an OIS mechanism 23a of an actuator 20B described later.
  • the actuator 20B displaces the first lens group 1 in the optical axis direction during focusing, and displaces the first lens group 1 and the second lens group 2 (joint lens group 22) in a direction perpendicular to the optical axis during camera shake correction. It is a device.
  • the actuator 20B includes a holder 4, a coil 5, a magnet 6, a cover 16, a base 8, and an OIS mechanism 23a.
  • the holder 4 is an annular member, and holds the upper barrel 3a with an inner peripheral wall.
  • the holder 4 is supported so as to be displaceable in the optical axis direction with respect to an OIS mechanism 23a described later.
  • the method for supporting the holder 4 is not particularly limited.
  • a spring (spring) configured so that the spring constant in the direction perpendicular to the optical axis is significantly larger than the spring constant in the optical axis direction is used, and the upper and lower ends of the holder 4 are connected to the OIS mechanism 23a. It may be fixed.
  • the cover 16 is formed in a shape surrounding the holder 4 and the OIS mechanism 23a.
  • An OIS coil (not shown) is fixed to the inner peripheral wall of the cover 16.
  • the axis of the OIS coil is perpendicular to the optical axes of the first lens group 1 and the second lens group 2.
  • the coil 5 is wound around the outer peripheral wall of the holder 4 and fixed.
  • the magnet 6 is fixed to the inner peripheral wall of the OIS mechanism 23a with a predetermined gap between the magnet 6 and the coil 5.
  • the holder 4 when an electric current is passed through the coil 5, an electromagnetic force is generated between the coil 5 and the magnet 6. Therefore, when the electromagnetic force acts on the holder 4, the holder 4 is displaced in the optical axis direction together with the upper barrel 3 a and the first lens group 1. That is, the first lens group 1 can be displaced in the optical axis direction by passing a current through the coil 5.
  • the base 8 does not have the convex portion 8c, and the lower barrel 3b is not fixed to the base 8.
  • the lower barrel 3b is fixed to an OIS mechanism 23a described later.
  • the OIS mechanism 23a is, for example, a member that is open at the top and bottom and is formed only by the bottom surface and the side surface, and is disposed between the holder 4, the cover 16, and the base 8.
  • a magnet 6 is fixed to the inner peripheral wall of the OIS mechanism 23a.
  • an OIS magnet (not shown) is fixed to the outer peripheral wall of the OIS mechanism 23a with a predetermined gap so as to face the OIS coil.
  • the OIS mechanism 23a is supported so as to be displaceable in a direction perpendicular to the optical axis with respect to the base 8.
  • the method for supporting the OIS mechanism 23a is not particularly limited.
  • the OIS mechanism 23a may be supported using a suspension wire.
  • the OIS mechanism 23a when an electric current is passed through the OIS coil, an electromagnetic force is generated between the OIS coil and the OIS magnet.
  • this electromagnetic force acts on the OIS mechanism 23a, the OIS mechanism 23a is integrated with the lower barrel 3b and the second lens group 2, the holder 4, and the upper barrel 3a and the first lens group 1 to be integrated with the optical axis. Displace in the vertical direction. That is, the joint lens group 22 can be displaced in a direction perpendicular to the optical axis by passing a current through the OIS coil.
  • the actuator 20B only the holder 4 and the coil 5 are displaced in the optical axis direction during focusing, and the magnet 6, the cover 16, the base 8, and the OIS mechanism 23a are not displaced during focusing. That is, the holder 4 and the coil 5 function as a focus movable part (movable part) that is displaced during focusing, and the magnet 6, the cover 16, the base 8, and the OIS mechanism 23a are used as a focus fixed part (non-movable part) that is not displaced during focusing. Function.
  • the first lens group 1 fixed to the focus movable part is displaced in the optical axis direction during focusing.
  • the second lens group 2 fixed to the focus fixing part is not displaced during focusing.
  • the holder 4, the coil 5, the magnet 6 and the OIS mechanism 23a are displaced when the camera shake is corrected, and the cover 16 and the base 8 are not displaced when the camera shake is corrected. That is, the holder 4, the coil 5, the magnet 6, and the OIS mechanism 23 a function as an OIS movable part that is displaced during camera shake correction, and the cover 16 and the base 8 function as an OIS fixing part that is not displaced during camera shake correction.
  • the OIS mechanism 23a (camera shake correction mechanism) displaces the focus movable part (movable part) and the second lens group 2 in a direction perpendicular to the optical axis with respect to the base 8 and the cover 16.
  • the first lens group 1 and the second lens group 2 fixed to the OIS movable portion, that is, the joint lens group 22 are displaced in a direction perpendicular to the optical axis during camera shake correction.
  • the OIS mechanism 23a is displaced integrally with the congruent lens group 22 in the direction perpendicular to the optical axis and performs camera shake correction. Therefore, the position of the second lens group 2 with respect to the first lens group 1 does not shift during camera shake correction.
  • FIG. 7 is a vertical cross-sectional view illustrating an exemplary configuration of a main part of the camera module 53.
  • the camera module 53 according to the fourth embodiment differs from the camera module 50 according to the first embodiment in the following points.
  • the camera module 50 has an AF function.
  • the camera module 53 further has an OIS function.
  • the camera module 53 includes an actuator 20C, and the actuator 20C includes an OIS mechanism 23b. Further, the lower barrel 3b is fixed to the base 8 of the actuator 20C.
  • the camera module 53 includes a first lens group 1, a second lens group 2, a barrel 3, an actuator 20 ⁇ / b> C, and an imaging unit 21.
  • the first lens group 1, the second lens group 2, the barrel 3, and the imaging unit 21 have the same configuration as the camera module 50.
  • the actuator 20C is different from the first embodiment. This is explained below.
  • the actuator 20C is a device for displacing the first lens group 1 in the optical axis direction during focusing and displacing the first lens group 1 in a direction perpendicular to the optical axis during camera shake correction.
  • the actuator 20C includes a holder 4, a coil 5, a magnet 6, a cover 16, a base 8, and an OIS mechanism 23b.
  • the holder 4 is an annular member, and holds the upper barrel 3a with an inner peripheral wall.
  • the holder 4 is supported so as to be displaceable in the optical axis direction with respect to an OIS mechanism 23b described later.
  • the method for supporting the holder 4 is not particularly limited.
  • a spring spring configured so that the spring constant in the direction perpendicular to the optical axis is significantly larger than the spring constant in the optical axis direction is used, and the upper and lower ends of the holder 4 are connected to the OIS mechanism 23b. It may be fixed.
  • the cover 16 is formed in a shape surrounding the holder 4.
  • An OIS coil (not shown) is fixed to the inner peripheral wall of the cover 16.
  • the axis of the OIS coil is perpendicular to the optical axes of the first lens group 1 and the second lens group 2.
  • the coil 5 is fixed by being wound around the outer periphery of the holder 4.
  • the magnet 6 is fixed to the inner peripheral wall of the OIS mechanism 23b with a predetermined gap between it and the coil 5.
  • the holder 4 when an electric current is passed through the coil 5, an electromagnetic force is generated between the coil 5 and the magnet 6. Therefore, when the electromagnetic force acts on the holder 4, the holder 4 is displaced in the optical axis direction together with the upper barrel 3 a and the first lens group 1. That is, the first lens group 1 can be displaced in the optical axis direction by passing a current through the coil 5.
  • the base 8 has the same configuration as the camera module 50.
  • the OIS mechanism 23b is, for example, a hollow member that is open at the top and bottom, and is disposed between the holder 4, the cover 16, and the base 8.
  • a magnet 6 is fixed to the inner peripheral wall of the OIS mechanism 23b.
  • an OIS magnet (not shown) is fixed to the outer peripheral wall of the OIS mechanism 23b with a predetermined gap so as to face the OIS coil.
  • the OIS mechanism 23 b is supported so as to be displaceable in a direction perpendicular to the optical axis with respect to the base 8.
  • the support method of OIS mechanism 23b is not specifically limited.
  • the OIS mechanism 23b may be supported using a suspension wire.
  • the OIS mechanism 23b when an electric current is passed through the OIS coil, an electromagnetic force is generated between the OIS coil and the OIS magnet.
  • this electromagnetic force acts on the OIS mechanism 23b, the OIS mechanism 23b is integrated with the holder 4, the upper barrel 3a, and the first lens group 1 and is displaced in a direction perpendicular to the optical axis. That is, the first lens group 1 can be displaced in a direction perpendicular to the optical axis by passing a current through the OIS coil.
  • the holder 4 and the coil 5 are displaced in the optical axis direction during focusing, and the magnet 6, the cover 16, the base 8, and the OIS mechanism 23b are not displaced during focusing. That is, the holder 4 and the coil 5 function as a focus movable part (movable part) that is displaced in the optical axis direction during focusing, and the magnet 6, the cover 16, the base 8, and the OIS mechanism 23b are focus fixing parts (non-displaceable during focusing). It functions as a movable part).
  • the first lens group 1 fixed to the focus movable part is displaced in the optical axis direction during focusing.
  • the second lens group 2 fixed to the focus fixing part is not displaced during focusing.
  • the holder 4, the coil 5, the magnet 6 and the OIS mechanism 23b are displaced in the direction perpendicular to the optical axis when the camera shake is corrected, and the cover 16 and the base 8 are not displaced during the camera shake correction. That is, the holder 4, the coil 5, the magnet 6, and the OIS mechanism 23 b function as an OIS movable portion that is displaced during camera shake correction, and the cover 16 and the base 8 function as an OIS fixing portion that is not displaced during camera shake correction.
  • the OIS mechanism 23b (camera shake correction mechanism) displaces the focus movable portion (movable portion) in a direction perpendicular to the optical axis with respect to the base 8 and the cover 16.
  • the second lens group 2 is not displaced integrally with the first lens group 1 during camera shake correction. For this reason, the optical axis of the second lens group 2 that is not displaced in the direction perpendicular to the optical axis is shifted from the optical axis of the first lens group 1 that is displaced in the direction perpendicular to the optical axis due to camera shake correction. As a result, there is a possibility that a defect occurs in light collection, and it is conceivable that the image quality deteriorates.
  • a lens having a large curvature is employed in the second lens group 2 to prevent image quality deterioration.
  • the correction amount by the camera shake correction is an absolute value such as +/ ⁇ 0.1 mm, and by adopting a lens having a large curvature with respect to the first lens group 1 in the second lens group 2, the deviation of the optical axis is achieved.
  • the sensitivity of the second lens group 2 with respect to the amount decreases. Thereby, the influence of the optical axis shift between the first lens group 1 and the second lens group 2 can be reduced.
  • the setting of the curvature of the second lens group 2 is not particularly limited.
  • the entire first lens group 1 is designed as a lens having negative power (concave type lens), and its power is increased as much as possible.
  • the curvature of the second lens group 2 may be set larger than the curvature of the first lens group 1 by making the curvature as small as possible.
  • the imaging module (camera modules 50, 51, 52, and 53) according to the first aspect of the present invention forms an image of light from a subject on the substrate (9) on which the imaging element (sensor chip 10) is mounted and the imaging element.
  • An imaging module including a plurality of lenses (optical lenses 1a, 1b, and 2a) to be adjusted and a focus adjustment mechanism (actuators 20A, 20B, and 20C) that adjusts the focus of the plurality of lenses and is fixed to the substrate.
  • the focus adjustment mechanism includes a movable part (holder 4 and coil 5) that is displaced in the direction of the optical axis of the plurality of lenses, and a non-movable part (magnet 6, yoke 7, base 8, and so on) that is not displaced in the direction of the optical axis.
  • the first lens group (1) comprising two or more lenses selected from the plurality of lenses is movable, including an OIS mechanism 23a and an OIS mechanism 24b).
  • a fixed, not included in the first lens group and the second lens group consisting of one or more lenses selected from the plurality of lenses (2) is fixed to the immovable part.
  • the first lens group is fixed to the movable part, and the second lens group is fixed to the non-movable part that is not displaced in the direction of the optical axis of the focus adjustment mechanism. For this reason, the first lens group can be fixed to the movable portion after the second lens group is fixed to the non-movable portion. For this reason, the first lens group can be fixed to the movable portion after performing optical active alignment. Therefore, it is possible to prevent the occurrence of positional deviation and optical axis deviation that occur between the first lens group and the second lens group.
  • a focus adjustment mechanism in which the positions of the first lens group and the second lens group are adjusted is fixed to the substrate. For this reason, the focus adjustment mechanism can be fixed to the substrate after the electrical active alignment is performed. Therefore, it is possible to prevent the occurrence of positional deviation and optical axis deviation between the image sensor mounted on the substrate and the first lens group and the second lens group.
  • the first lens group and the second lens group can be positioned with high accuracy, and further, the first lens group, the second lens group, and the imaging device can be positioned with high accuracy.
  • the lens and the image sensor can be positioned with high accuracy, it is possible to prevent the camera module from shading or blurring.
  • the first lens group is fixed to the movable part that is displaced in the optical axis direction
  • the second lens group is fixed to the non-movable part that is not displaced in the optical axis direction.
  • the imaging module (camera module 50, 51, 52, 53) according to aspect 2 of the present invention is the above-described aspect 1, wherein the second lens group (2) includes the first lens group (1) and the imaging element ( An angle formed by light incident on the second lens group from the first lens group and light emitted from the second lens group to the image sensor; It may be larger than the angle formed by the optical axis.
  • the second lens group is disposed between the first lens group and the image sensor. For this reason, generation
  • the angle formed between the light incident from the first lens group to the second lens group and the optical axis is such that the light emitted from the second lens group to the image sensor and the optical axis It becomes larger than the angle formed by.
  • the imaging module can reduce the stroke during focusing.
  • Moving tilt generated by the focus adjustment mechanism is suppressed, and image quality degradation such as blurring is improved.
  • the image quality of the image obtained at the time of macro is kept relatively good.
  • the height of the imaging module can be reduced by the stroke amount that is reduced. (5) Power consumption during focusing can be reduced.
  • the focus adjustment mechanism includes a contact portion that contacts the surface of the imaging element (sensor chip 10). Furthermore, you may provide.
  • the contact portion of the focus adjustment mechanism and the image sensor are in contact. For this reason, the focus adjustment mechanism and the image sensor can be fixed with high accuracy without performing electrical active alignment.
  • the imaging module (camera module 52) according to Aspect 4 of the present invention is the imaging module (Camera Module 52) according to any one of Aspects 1 to 3, wherein the movable part (holder 4 and coil 5) and the second lens group (2) are used as the optical axis.
  • a camera shake correction mechanism (OIS mechanism 23a) that displaces in the vertical direction may be provided.
  • the movable part to which the first lens group is fixed is displaced in the direction perpendicular to the optical axis together with the second lens group. For this reason, at the time of camera shake correction, the first lens group and the second lens group are displaced together, so that the optical axes of the first lens group and the second lens group do not shift.
  • the imaging module (camera module 53) is the camera shake correction mechanism according to any one of the first to third aspects, wherein the movable part (the holder 4 and the coil 5) is displaced in a direction perpendicular to the optical axis.
  • OIS mechanism 23b may be provided, and the lens of the second lens group (2) may have a larger curvature than the lens of the first lens group (1).
  • the movable portion to which the first lens group is fixed is displaced in a direction perpendicular to the optical axis. For this reason, since only the first lens unit is displaced during focusing and camera shake correction, the movable weight during focusing and camera shake correction can be reduced. As a result, power consumption during focusing and camera shake correction can be suppressed.
  • the manufacturing method of the imaging module (camera module 50 * 51 * 52 * 53) which concerns on aspect 6 of this invention is a manufacturing method of the imaging module which manufactures the imaging module of any one of the said aspects 1-5.
  • a second lens group fixing step (step 1) for fixing the second lens group (2) to the non-movable part (magnet 6, yoke 7, base 8, OIS mechanism 23a, OIS mechanism 24b); By feeding back data of an image formed on the image sensor (sensor chip 10) by the one lens group (1) and the second lens group, the first lens group is moved to the movable portion (holder 4, coil 5).
  • a first lens group adjustment step for performing active alignment (optical active alignment) for adjusting the position and angle fixed to A first lens group fixed step of the first lens group is fixed at the angle to the position of the movable portion (Step 2), may contain.
  • the first lens group when the first lens group is fixed to the movable part after the second lens group is fixed to the non-movable part, it can be fixed after performing optical active alignment. Therefore, it is possible to prevent the occurrence of positional deviation and optical axis deviation that occur between the first lens group and the second lens group.
  • the first lens group and the second lens group can be positioned with high accuracy.
  • An imaging module manufacturing method is an imaging module manufacturing method for manufacturing the imaging module according to any one of aspects 1 to 5.
  • the focus adjustment mechanism (actuators 20A, 20B, 20C) is fed back to the substrate (9) by feeding back the data of the images formed by the first lens group (1) and the second lens group (2).
  • a focus adjustment mechanism adjustment step for performing an active alignment (electrical active alignment) for adjusting the position and angle fixed to the substrate), and a focus adjustment mechanism fixing for fixing the focus adjustment mechanism to the position on the substrate at the angle. Step (Step 3) may be included.
  • the focus adjustment mechanism when the focus adjustment mechanism is fixed to the substrate, it can be fixed after performing electrical active alignment. For this reason, it is possible to prevent the occurrence of positional deviation and optical axis deviation between the imaging element mounted on the substrate and the first lens group and the second lens group.
  • the first lens group, the second lens group, and the image sensor can be positioned with high accuracy.
  • the manufacturing method of the imaging module (camera modules 50, 51, 52, and 53) according to Aspect 8 of the present invention is a manufacturing method of an imaging module that manufactures the imaging module according to any one of Aspects 1 to 5.
  • the second lens group is fed back to the non-movable part (magnet 6, yoke 7, base 8, OIS mechanism 23a, OIS mechanism 24b) by feeding back the data of the image formed on the image sensor (sensor chip 10).
  • a second lens group adjustment step for performing active alignment (optical active alignment) for adjusting the position and angle fixed to A second lens group fixed step of the second lens group is fixed at the angle to the position in the non-moving part (Step 2), may contain.
  • the second lens group when the second lens group is fixed to the non-movable part after the first lens group is fixed to the movable part, it can be fixed after executing optical active alignment. Therefore, it is possible to prevent the occurrence of positional deviation and optical axis deviation that occur between the first lens group and the second lens group.
  • the present invention can be widely applied in the field of using a solid-state imaging device and an imaging device including the same.
  • the present invention relates to a compact imaging module that requires focus adjustment and is used in a portable device such as a mobile phone device with a camera or a portable terminal device (PDA), and is small in size, high in image quality, and low in power consumption. It can be used for conversion.
  • a portable device such as a mobile phone device with a camera or a portable terminal device (PDA)
  • PDA portable terminal device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

 撮像モジュール(カメラモジュール50)は、第1レンズ群(1)を固定しその光軸方向に変位する可動部(ホルダ4およびコイル5)と、第2レンズ群(2)を固定し上記光軸方向に変位しない非可動部(マグネット6、ヨーク7およびベース8)とを備え、かつ基板に固定されるフォーカス調整機構(アクチュエータ20A)を備える。

Description

撮像モジュールおよびその製造方法
 本発明は、レンズと撮像素子とを高精度で位置決めすることができる撮像モジュールおよびこれを製造する製造方法に関する。
 近年、小型撮像モジュールは、主に、カメラ付きの携帯電話や携帯端末(PDA)等の携帯機器に用いられている。このような撮像モジュールは、被写体からの画像光を光電変換して撮像する複数の受光部を有する撮像素子と、入射光を撮像素子上に結像するためのレンズとがモジュール化(一体化)されている。
 上記小型撮像モジュールは、主に、セラミックスやガラス入りエポキシ樹脂等の基板上に配置されたセンサチップ(固体撮像チップ)を備えている。このセンサチップの中央部には、複数の受光部を2次元状に有する撮像素子が配置されている。
 また、上記小型撮像モジュールは、アクチュエータを備える。アクチュエータは、入射光を撮像素子上に結像させるためのレンズを内部に固定したホルダを、小型撮像モジュール内部で上下に移動させる。ここで、上述した小型撮像モジュールの例としてカメラモジュール100aを図8に示す。
 カメラモジュール100aは、センサチップ110が、接着剤(図示なし)により基板109上に取り付けられている。また、センサチップ110の外周部には、複数のパッド(図示なし)が設けられており、上記パッドと基板109の端子(図示なし)とはワイヤ111によりワイヤボンドされ、電気的に接続されている。
 また、カメラモジュール100aは、アクチュエータ101を備える。アクチュエータ101は、ホルダ104、ホルダ104の外周に巻かれているコイル105、ヨーク107、マグネット106、および基板109に固定されるベース108が備えられている。ヨーク107は、金属部材でありコイル105の外周に設けられカメラモジュール100aと外部とを電気的に遮蔽する。マグネット106は、ヨーク107の内側にコイル5と所定の隙間をおいて配置される。
 さらに、ホルダ104の内部には、接着剤(図示なし)によりバレル103が固定されている。バレル103はレンズ102の周囲を囲んでおり、レンズ102はバレル103の内部に保持されている。
 上記のように構成されるアクチュエータ101において、コイル105に電流を流すことにより、コイル105とマグネット106との間には電磁力が発生する。上記電磁力により、ホルダ104はレンズ102およびバレル103と共に、レンズ102の光軸方向に変位する。上記変位量はコイル105に流す電流量で制御される。
 上述したアクチュエータ101の構造が、一般的なVCM(Voice Coil Motor)構造である。
 ここで、カメラモジュール100aの製造において、ベース108が接着剤114で基板109に固定されることにより、アクチュエータ101は基板109に固定される。このとき、センサチップ110とレンズ102との間にIRカットフィルタ112が挿入かつ固定される。このIRカットフィルタ112により、センサチップ110への赤外光の入射を排除する。
 上記の工程においては、センサチップ110の撮像面に正確に結像するように、アクチュエータ101を基板109に固定する必要がある。しかし、レンズ102とセンサチップ110の撮像面との間に相対的位置ずれや光軸の傾きがあると、レンズ102からの光束の位置が撮像面から外れてしまうことを原因とするシェージングや、片ぼけを生じるという問題がある。
 特に、アクチュエータ101の基板109への固定に接着剤114を用いることにより、接着剤114が硬化(例えば高温保存)している途中でベース108が移動する場合があり、相対的な位置ずれやチルト等を生じやすい。
 さらに、VCMの場合、ホルダ104がスプリング(図示なし)等により比較的弱い力でヨーク107とベース108とに固定されているため、ムービングチルト等が生じ、片ぼけを発生しやすいという問題もある。
 上記問題解決のため、特許文献1および特許文献2には、撮像素子上にさらにレンズを有し、このレンズ周辺に設けられた位置決め構造により撮像素子とレンズとの位置決めを高精度で行うカメラモジュールおよび固体撮像装置について記載されている。
 詳しくは、特許文献2には、第1のレンズを保持するバレルと、上記第1のレンズにおける光軸方向に上記第1のレンズの位置を調整する駆動機構と、第1のレンズを固体撮像素子に対し対向させるようバレルを当接させるための構造体とを備え、上記第1のレンズはバレルに挟持されており、上記構造体の内周部に第2のレンズが設けられた固体撮像装置について記載されている。この固体撮像装置において、バレルが構造体に設けられた傾斜部分と当接することにより固定されるので、第1のレンズと第2のレンズとの関係、さらには、第1のレンズと固体撮像素子との中心および高さの関係を設定することができる。
 また、特許文献1に記載されているカメラモジュールについて図9を用いて説明する。なお、説明の便宜上、図8にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9に示すようにカメラモジュール100bでは、固定レンズ117が、基板109上に設けられると共に、レンズ102とセンサチップ110(撮像素子)との間に配置されている。また、上記固定レンズ117の外周部には、アクチュエータ101と当接する位置決め部材116が形成されている。また、ホルダ104、コイル105およびマグネット106の下面をほぼ覆う形状に形成されるカバー115を備える。
 また、特許文献1および特許文献2に記載されているレンズは、歪曲収差や入射光の補正の役目も担う。
日本国公開特許公報「特開2009-116176号(2009年5月28日公開)」 日本国公開特許公報「特開2009-98462号(2009年5月7日公開)」
 図9に示すカメラモジュール100bでは、位置決め部材116を用いたアクチュエータ101の位置決めにより、固定レンズ117とレンズ102との相対的位置ずれや光軸の傾きは是正される。しかし、基板上に固定された固定レンズ117とセンサチップ110(撮像素子)との相対的位置ずれや光軸の傾きは、製造上のばらつきを含んだままである。
 また、特許文献2に記載されている固体撮像装置では、バレルの構造体への当接により、第1のレンズと第2のレンズとの相対的位置ずれや光軸の傾きは是正される。しかし、第2のレンズ(固定レンズ)と固体撮像素子との相対的位置ずれや光軸の傾きは、製造上のばらつきを含んだままである。
 昨今、レンズと撮像素子との相対的位置ずれや光軸の傾きの製造上のばらつきを是正する製造方法としてアクテイブアライメントが採用されている。アクテイブアライメントは、結像する光学的あるいは電気的画像をフィードバック量として用いて位置の微調整を行いながら基板上でのアクチュエータの最適位置を決定する方法である。
 しかし、特許文献1および特許文献2に記載されているカメラモジュールおよび固体撮像装置の構造では、固定レンズを基板上に固定する際、固定レンズと撮像素子のみでは適切な電気的画像を生成することはできない。そのため、フィードバックするべき画像が得られず、アクテイブアライメントが行えない。したがって、固定レンズと撮像素子との相対的位置ずれや光軸の傾きの製造上のばらつきを改善することができないという問題がある。
 本発明は上記の問題点を解決するためになされたもので、その目的は、レンズと撮像素子とを高精度で位置決めすることができる撮像モジュールを提供することにある。
 上記の課題を解決するために、本発明の一態様に係る撮像モジュールは、撮像素子が実装された基板と、上記撮像素子に被写体からの光を結像させる複数のレンズと、上記複数のレンズのフォーカスを調整し、かつ上記基板に固定されるフォーカス調整機構とを備える撮像モジュールにおいて、上記フォーカス調整機構は、上記複数のレンズの光軸の方向に変位する可動部と、上記光軸の方向に変位しない非可動部とを備え、上記複数のレンズから選ばれる2つ以上のレンズからなる第1レンズ群が上記可動部に固定され、上記第1レンズ群に含まれず、かつ上記複数のレンズから選ばれる1つ以上のレンズからなる第2レンズ群が上記非可動部に固定されていることを特徴とする。
 本発明の一態様によれば、レンズと撮像素子とを高精度で位置決めすることができる撮像モジュール(カメラモジュール)を提供できる効果を奏する。
本発明の実施形態1に係るカメラモジュールの要部構成例を示す縦断面図である。 従来のカメラモジュールにおけるフォーカシングを説明する図であり、(a)は被写体が無限遠方にあるときに得られる像が撮像面に結像している状態を示し、(b)は被写体がマクロ位置にくるときに得られる像が撮像面より後ろで結像している状態を示し、(c)は撮像面より後ろで結像している像を再び撮像面に結像させた状態を示す。 本発明の実施形態1に係るカメラモジュールにおけるフォーカシングを説明する図であり、(a)は被写体が無限遠方にあるときに得られる像が撮像面に結像している状態を示し、(b)は被写体がマクロ位置にくるときに得られる像が撮像面より後ろで結像している状態を示し、(c)は撮像面より後ろで結像している像を再び撮像面に結像させた状態を示す。 本発明の実施形態1におけるカメラモジュールの生産ステップを説明する図である。 本発明の実施形態2に係るカメラモジュールの要部構成例を示す縦断面図である。 本発明の実施形態3に係るカメラモジュールの要部構成例を示す縦断面図である。 本発明の実施形態4に係るカメラモジュールの要部構成例を示す縦断面図である。 従来のカメラモジュールの要部構成例を示す縦断面図である。 従来の他のカメラモジュールの要部構成例を示す縦断面図である。
 〔実施形態1〕
 以下、本発明の実施形態1に係るカメラモジュール50(撮像モジュール)について、図1~図4に基づいて説明する。
 (カメラモジュール50の構成)
 図1は、カメラモジュール50の要部構成例を示す縦断面図である。カメラモジュール50は、被写体が無限遠方にある時や非常に近いマクロ位置にある時に、光学レンズの位置を光軸方向に変位させ、撮像面に結像された像のフォーカスを合わす動作(フォーカシング)を行う、オートフォーカス(AF:Auto Focus)機能付きの小型撮像モジュールである。
 カメラモジュール50は、図1に示すように、第1レンズ群1、第2レンズ群2、バレル3、アクチュエータ20A(フォーカス調整機構)、および撮像部21を備えている。アクチュエータ20Aと撮像部21とは第1レンズ群1および第2レンズ群2の光軸方向に重ねられている。各構成部材について下記に詳述する。
 なお、以下では、便宜上、第1レンズ群側(被写体側)を上方、撮像部21側を下方として説明するが、これは使用時における上下方向を規定するものではなく、例えば、上下が逆であってもよい。
 第1レンズ群1は、光軸が一致する複数の光学レンズ1a(レンズ)および光学レンズ1b(レンズ)を備え、外部からの光を第2レンズ群2へ導く。また、第1レンズ群1は、後述する上部バレル3aに固定されている。
 第2レンズ群2は、第1レンズ群1と光軸が一致する少なくとも1つの光学レンズ2a(レンズ)を備え、第1レンズ群1からの光を撮像部21のセンサチップ10(撮像素子)へ導く。また、第2レンズ群2は、第1レンズ群1と撮像部21との間に配置されている。また、第2レンズ群2は、後述する下部バレル3bに固定されている。ここで、第1レンズ群1および第2レンズ群2を合わせたレンズ群を合同レンズ群22と称する。
 バレル3は、第1レンズ群1および第2レンズ群2を保持するために、上部バレル3aおよび下部バレル3bを備える。上部バレル3aおよび下部バレル3bの軸心は、第1レンズ群1および第2レンズ群2の光軸と一致している。
 上部バレル3aは、その空洞部分に、第1レンズ群1を保持する。また、上部バレル3aは、後述するアクチュエータ20Aの一部であるホルダ4の内周壁に固定されている。
 下部バレル3bは、上部バレル3aと撮像部21との間に配置され、その内周壁で、第2レンズ群2を保持する。また、下部バレル3bは、後述するアクチュエータ20Aの一部であるベース8に固定されている。
 (アクチュエータ20A)
 アクチュエータ20Aは、フォーカシング時に第1レンズ群1を光軸方向に変位させるための装置である。
 詳しくは、アクチュエータ20Aは、ホルダ4、コイル5、マグネット6、ヨーク7、およびベース8を備える。
 ホルダ4は、環状の部材であり、上部バレル3aを内周壁で保持している。ホルダ4は、後述するヨーク7およびベース8に対して光軸方向に変位可能に支持されている。ホルダ4の支持方法は、特に限定されない。例えば、光軸方向のバネ定数に比べて、光軸に垂直な方向のバネ定数が格段に大きくなるよう構成されているバネ(スプリング)を利用し、ホルダ4の上端部(被写体側の端部)が上記バネによりヨーク7に固定され、ホルダ4の下端部(撮像部21側の端部)が他の上記バネによりベース8に固定されていてもよい。
 ヨーク7は、例えば金属部材からなり、ホルダ4を囲む形状に形成されている。ヨーク7により、カメラモジュール50は電気的に外部と遮断される。また、ヨークの内周壁には、マグネット6が固定されている。
 コイル5は、ホルダ4の外周壁に巻かれて固定されている。
 マグネット6は、コイル5との間に所定の隙間をおいてヨーク7の内周壁に固定されている。
 ここで、コイル5に電流を流すことにより、コイル5とマグネット6との間で電磁力が生じる。この電磁力がホルダ4に作用すると、ホルダ4が上部バレル3aおよび第1レンズ群1と共に光軸方向に変位する。つまり、コイル5に電流を流すことにより、第1レンズ群1を光軸方向に変位させることができる。
 ベース8は、ヨーク7の下方に位置する部材であり、ヨーク7に連結されている。ベース8は、基板9の外周部分をカバーするように載置されている。また、ベース8は、下側面における内周部で下方に突出する凸部8bと、上側面における内周部で上方に突出する凸部8cとを有している。凸部8bは、センサチップ10の撮像面側に上下方向に貫通した開口部8aを有している。
 凸部8cは、環状に形成されており、内周壁に下部バレル3bが固定されている。これにより、第2レンズ群2はベース8に固定されている。
 また、ベース8は、下側面における外周部で下方に突出するカバー部8dを有している。カバー部8dの下端面は接着剤14を介して基板9に固定される。これにより、ベース8が基板9に固定され、アクチュエータ20Aが基板9に固定される。
 ここで、上述したように、アクチュエータ20Aは、フォーカシング時に第1レンズ群1を光軸方向に変位させる装置である。ただし、フォーカシング時に変位するのはホルダ4およびコイル5のみであり、マグネット6、ヨーク7、およびベース8はフォーカシング時に変位しない。つまり、ホルダ4およびコイル5はフォーカシング時に変位するフォーカス可動部(可動部)として機能し、マグネット6、ヨーク7、およびベース8はフォーカシング時に変位しないフォーカス固定部(非可動部)として機能する。したがって、フォーカシング時において、フォーカス可動部に固定されている第1レンズ群1は光軸方向に変位し、フォーカス固定部に固定されている第2レンズ群2はフォーカシング時に変位しない。
 なお、カメラモジュール50は、図9に示すような、基板上に固定された固定レンズは備えていない。
 (撮像部21)
 撮像部21は、基板9、センサチップ10(撮像素子)、IRカットフィルタ12、および周辺部品13を備える。
 IRカットフィルタ12は、ベース8に開口部8aを塞ぐように設けられ、センサチップ10への赤外光の入射を排除する。
 センサチップ10は、接着剤(図示なし)により基板9上に実装され、第1レンズ群1および第2レンズ群2を経由して到達した光を受光して光電変換を行い、センサチップ10上に結像された被写体像を得る。また、センサチップ10の軸心は、第1レンズ群1および第2レンズ群2の光軸と一致している。
 センサチップ10の外周部には、複数のパッド(図示なし)が設けられており、上記パッドと基板9の端子(図示なし)とはワイヤ11によりワイヤボンドされ、電気的に接続されている。また、基板9には、周辺部品13が適宜取り付けられる。
 基板9の上面とベース8のカバー部8dの下端面とは接着剤14により固定される。
 (カメラモジュール50のフォーカシング)
 カメラモジュール50は、上述したように、第1レンズ群1および第2レンズ群2を備える。また、第1レンズ群1は、フォーカス可動部に固定され、第2レンズ群2は、フォーカス固定部に固定されている。このため、カメラモジュール50はフォーカシング時の繰り出し量(ストローク)を小さくできる。詳しくは、図2および図3に基づき、下記に説明する。
 図2は、従来のカメラモジュール100aにおけるフォーカシングを説明する図である。図2の(a)は被写体が無限遠方にあるときに得られる像が撮像面に結像している状態を示し、図2の(b)は被写体がマクロ位置にくるときに得られる像が撮像面より後ろで結像している状態を示し、図2の(c)は、図2の(b)に示すように撮像面より後ろで結像している像を再び撮像面に結像させた状態を示す。従来のカメラモジュール100aは、複数のレンズ102が全てホルダ104に固定されており(図8参照)、フォーカシング時には、複数のレンズ102が一体となって変位する。
 まず、図2の(a)に示すように、被写体が無限遠方にあるときに得られる像が撮像面に結像している。この状態の後、次に被写体がマクロ位置にくると、図2の(b)に示すように、結像位置が撮像面より後ろに移動するため像がぼける。これを再び撮像面上に結像させるため、アクチュエータ101内のホルダ104の外周に固定されたコイル105に電流を流し、コイル105とマグネット106との間に電磁力を発生させる。アクチュエータ101は、発生させた電磁力により、複数のレンズ102を固定しているバレル103とホルダ104とを変位させ、光軸方向において複数のレンズ102を撮像面から離れる側に繰り出す。この繰り出し量を(無限遠方とマクロ間の)ストロークと呼ぶ。
 図3は、本実施形態に係るカメラモジュール50におけるフォーカシングを説明する図である。図3の(a)は被写体が無限遠方にあるときに得られる像が撮像面に結像している状態を示し、図3の(b)は被写体がマクロ位置にくるときに得られる像が撮像面より後ろで結像している状態を示し、図3の(c)は、図3の(b)に示すように撮像面より後ろで結像している像を再び撮像面に結像させた状態を示す。
 まず、図3の(a)に示すように、被写体が無限遠方にあるときに得られる像が撮像面に結像している。この状態の後、次に被写体がマクロ位置にくると、図3の(b)に示すように、結像位置が撮像面より後ろに移動するため像がぼける。これを再び撮像面上に結像させるため、アクチュエータ20A内のホルダ4の外周に固定されたコイル5に電流を流し、コイル5とマグネット6との間に電磁力を発生させる。アクチュエータ20Aは、発生させた電磁力により第1レンズ群1を固定している上部バレル3aとホルダ4とを変位させ、光軸方向において第1レンズ群1を撮像面から離れる側に繰り出す。このとき、光軸方向において撮像面から離れる側に繰り出されるレンズ群は、第1レンズ群1のみであり、第2レンズ群2はフォーカス固定部に固定されているため変位しない。
 ここで、本実施形態では、図3の(a)に示すように、第1レンズ群1から第2レンズ群2へ向かう光(第1レンズ群1から第2レンズ群2に入射する光)の光学レンズ1a・1b・2aの光軸に対する角度が、第2レンズ群2から撮像面へ向かう光(第2レンズ群からセンサチップ10へ出射する光)の上記光軸に対する角度よりも急(大きく)になるように、第1レンズ群1および第2レンズ群2を構成する光学レンズが設計されている。
 このため、図2の(c)と図3の(c)とを比較しても分かるように、従来のカメラモジュール100aにおけるフォーカシング時のストローク量よりも、本実施形態1に係るカメラモジュール50のストローク量の方が小さい。具体的には、例えば、1/1.33光学インチ系における必要なストローク量は、従来のカメラモジュールでは400μmであるのに対し、カメラモジュール50は250μmでよい。
 すなわち、カメラモジュール50は、従来のカメラモジュール100aと比較し、効率的なフォーカシングができ、小さいストローク量で被写体から得られる像を撮像面で結像させることができる。
 また、カメラモジュール50は、上記構成により、フォーカシング時に必要なストローク量が小さく、かつ、フォーカシング時には第1レンズ群1のみが変位する。このため、フォーカシング時のフォーカス可動部の変位量が小さく、かつ、重量が軽量になる。その結果、アクチュエータ20Aで発生するムービングチルトが抑えられ、片ぼけ等の画質劣化が改善される。
 さらに、カメラモジュール50は、フォーカシング時に必要なストローク量が小さいため、マクロ時に得られる像の画質が比較的良好に保たれる。
 詳しくは、カメラモジュール50は、被写体が無限遠方にある場合に最適画質で像が得られるように第1レンズ群1および第2レンズ群2が設計されている。このため、第1レンズ群1をストローク分だけ移動したマクロ時は、どうしても得られる像の画質が最適画質ではなくなってしまう。しかし、本実施形態1に係るカメラモジュール50はフォーカシング時に必要なストローク量が小さいため、マクロ時においても得られる像の画質と最適画質とのずれが少なくなる。そのため、マクロ時において最適に得られた像の画質が比較的良好に保たれる。
 また、カメラモジュール50は、フォーカシング時に必要なストローク量が小さいため、小さくなったストローク量だけカメラモジュール50の高さを低くすることができる。
 さらに、カメラモジュール50は、フォーカス可動部の重量が軽量になる。そのため、アクチュエータ20Aの設計に余裕ができ、アクチュエータ20Aの小型化、さらにカメラモジュール50の小型化を図ることができる。
 また、カメラモジュール50は、フォーカシング時に必要なストローク量が小さく、かつ、フォーカス可動部の重量が軽量になる。そのため、フォーカシング時の消費電力を低くすることができる。
 さらに、第2レンズ群2は、第1レンズ群1とIRカットフィルタ12との間に配置され、下部バレル3bを介してベース8に固定されている。このため、強度の衝撃等により発生した異物によるしみ不良の発生を抑えることができる。
 詳しくは、例えば、図8に示す従来のカメラモジュール100aおいては、レンズ102を固定するホルダ104は、例えば、バネ等によりヨーク107およびベース108に固定されている。そのため、ホルダ104は強度の衝撃等を受けると簡単に周辺部材とぶつかり、ホルダ104と周辺部材とのこすれにより異物が生じる。そのとき、遮るものがないため、上記異物は、センサチップ110の上部に位置するIRカットフィルタ112の表面に落下してしまう場合がある。センサチップ110とIRカットフィルタ112とは、近い距離にあるため、センサチップ110上に上記異物が結像し、結果として電気的にしみ画像となる。
 それに対し、カメラモジュール50は、第1レンズ群1とIRカットフィルタ12との間に第2レンズ群2が配置されている。そのため、上記異物は第2レンズ群2上に落下する。第2レンズ群2は、センサチップ10から離れた位置にあるため、センサチップ10上に上記異物が結像しない。したがって、強度の衝撃等により発生した異物によるしみ不良の発生を抑えることができる。
 また、上記カメラモジュール50の構成によれば、第1レンズ群1がフォーカス可動部、第2レンズ群2がフォーカス固定部に固定されている。このため、第2レンズ群2がフォーカス固定部に固定された後に第1レンズ群1をフォーカス可動部に固定することができる。したがって、後述するように、第1レンズ群1をフォーカス可動部に固定する際、光学的なアクテイブアライメントを実行してから固定することができる。その結果、第1レンズ群1と第2レンズ群2との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 さらに、第1レンズ群1をフォーカス可動部に固定した後、第2レンズ群2をフォーカス固定部に固定する場合も、同様の効果が期待できる。
 また、第1レンズ群1と第2レンズ群2との位置が調整されたアクチュエータ20Aが基板9に固定されている。このため、後述するように、アクチュエータ20Aを基板9に固定する際、電気的なアクテイブアライメントを実行してから固定することができる。その結果、基板9に搭載されるセンサチップ10(撮像素子)と第1レンズ群1および第2レンズ群2(合同レンズ群22)との間に生じる位置ずれや光軸のずれの発生を防止することができる。詳しくは、下記に説明する。
 (カメラモジュール50の製造方法)
 次に、カメラモジュール50の製造方法として、カメラモジュール50を構成する、第1レンズ群1、第2レンズ群2、バレル3、アクチュエータ20A、および撮像部21の組立方法について図4に説明する。図4は、本発明の実施形態1におけるカメラモジュール50の生産ステップを説明する図である。なお、カメラモジュール50の上記各構成の製造方法については説明を省略する。
 ステップ1(第2レンズ群固定ステップ)では、光学レンズ2aからなる第2レンズ群2を下部バレル3bに固定する。第2レンズ群2と下部バレル3bとは、例えば接着剤により固定される。また、接着剤(図示なし)により、下部バレル3bをベース8に固定する。このとき、下部バレル3bは、ベース8において凸部8cの内側の所定位置に固定される。上記所定位置は、あらかじめ治具等により高さを調整して決められている。これにより、下部バレル3bと共に第2レンズ群2が、アクチュエータ20Aのベース8に固定される。
 ステップ2では、光学レンズ1aおよび光学レンズ1bからなる第1レンズ群1を上部バレル3aに固定する。第1レンズ群1と上部バレル3aとは、例えば接着剤により固定される。また、接着剤(図示なし)により上部バレル3aをホルダ4に固定する(第1レンズ群固定ステップ)。このとき、上部バレル3aは、ホルダ4に対し、固定位置を調整してから固定される。上記固定位置の調整について下記に説明する。
 ステップ2では、上記固定位置を調整するために、第1レンズ群1および第2レンズ群2により光学的に解像度パターン等を結像させ、その結像された像のデータをフィードバックして、上部バレル3aのホルダ4における固定位置を最適位置に微調整する、光学的なアクテイブアライメントを実行する。光学的なアクテイブアライメントは、上述したように、ホルダ4内における上部バレル3aの位置の微調整であり、上下方向のみならず、チルトの微調整も含まれる(第1レンズ群調整ステップ)。
 詳しくは、例えば、アクチュエータ20Aのベース8に固定された第2レンズ群2、および、第2レンズ群2の上方に仮に配置した上部バレル3aに固定された第1レンズ群1により、解像度パターンを結像させる。
 上記結像結果に基づき、第1レンズ群1が変位しても上記結像位置が変化しなくなるように、第1レンズ群1の位置および角度を調整する。上記調整は、上記結像位置が変化しなくなるまで繰り返される。
 言い換えると、ステップ2では、第1レンズ群1が固定された上部バレル3aをホルダ4に固定する際に、第1レンズ群1および第2レンズ群2により結像された像をフィードバックし、第1レンズ群1の光軸の調整、および第1レンズ群1から第2レンズ群2までの距離の調整を行う。
 ステップ3では、第1レンズ群1および第2レンズ群2が最適な位置に固定されたアクチュエータ20Aを、すでに基板9、センサチップ10、ワイヤ11、IRカットフィルタ12および周辺部品13が固定された撮像部21に、接着剤により固定する(フォーカス調整機構固定ステップ)。このとき、アクチュエータ20Aは、撮像部21に対し、固定位置を調整してから固定される。言い換えると、第1レンズ群1および第2レンズ群2からなる合同レンズ群22は、センサチップ10に対し固定位置を調整してから固定される。上記固定位置の調整について下記に説明する。
 ステップ3では、第1レンズ群1および第2レンズ群2、すなわち合同レンズ群22とセンサチップ10により結像する電気的画像の結像された像のデータにより、アクチュエータ20Aの撮像部21における固定位置を最適位置に微調整する、電気的なアクテイブアライメントを実行する(フォーカス調整機構調整ステップ)。
 詳しくは、例えば、合同レンズ群22とセンサチップ10とにより解像度パターンを結像させ、基準となる画像と上記結像結果とを比較する。上記比較に基づき、上記基準画像と上記結像との差がなくなるように撮像部21に対するアクチュエータ20Aの位置および角度を調整する。上記調整は、上記基準画像と上記結像との差がなくなるまで繰り返される。上記調整の後、アクチュエータ20Aは撮像部21に固定される。より詳しくは、ベース8のカバー部8dが基板9に接着剤により固定される。
 言い換えると、ステップ3では、アクチュエータ20Aを基板9に固定する際に、合同レンズ群22およびセンサチップ10により結像された像をフィードバックし、合同レンズ群22の光軸の調整、および合同レンズ群22からセンサチップ10までの距離の調整を行う。なお、上記規定の解析度は適宜設定されるものとする。
 ステップ4では、ステップ3においてアクチュエータ20Aと撮像部21とを固定した後、撮像テスト等の所定のテストを行い、カメラモジュール50が完成する。
 上記製造方法によれば、第1レンズ群1を固定した上部バレル3aをホルダ4に固定する際、第2レンズ群2に対する第1レンズ群1の位置および角度を調整してから上部バレル3aをホルダ4固定することができる。このため、第1レンズ群1および第2レンズ群2との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 また、アクチュエータ20Aを撮像部21に固定する際、センサチップ10に対する合同レンズ群22の位置および角度を調整してから固定することができる。このため、合同レンズ群22とセンサチップ10との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 その結果、第1レンズ群1と第2レンズ群2とを高精度で位置決めすることができ、さらに、第1レンズ群1および第2レンズ群2(合同レンズ群22)とセンサチップ10(撮像素子)とを高精度で位置決めすることができる。また、そのため、カメラモジュール50のシェージングや片ぼけを防止することができる。
 さらに、合同レンズ群22とセンサチップ10との間に位置ずれや光軸のずれがないため、第2レンズ群2とセンサチップ10との間にも位置ずれや光軸のずれがない。このため、第2レンズ群2に歪曲収差や入射光の補正の機能を持たせる場合であっても、上記機能を良好に発揮できる。
 また、第1レンズ群1をフォーカス可動部に固定した後、第2レンズ群2をフォーカス固定部に固定する場合も同様のステップとなる。この場合は、ステップ1において、第1レンズ群1が固定された上部バレル3aをホルダ4に固定する(第1レンズ群固定ステップ)。ステップ2において、第2レンズ群2が固定された下部バレル3bをベース8に固定する(第2レンズ群固定ステップ)。第2レンズ群2が固定された下部バレル3bをベース8に固定する際に、第1レンズ群1および第2レンズ群2により結像された像をフィードバックすることにより、第2レンズ群2の位置および角度を調整する光学的なアクテイブアライメントを実行する(第2レンズ群調整ステップ)。なお、ステップ3およびステップ4は、前述したステップ3およびステップ4と同じである。
 〔実施形態2〕
 本発明の実施形態2に係るカメラモジュール51について、図5に基づいて説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図5は、カメラモジュール51の要部構成例を示す縦断面図である。
 実施形態2に係るカメラモジュール51は、実施形態1に係るカメラモジュール50と下記の点で異なる。
 カメラモジュール50は、ベース8のカバー部8dと基板9とを固定することにより、アクチュエータ20Aと撮像部21とを固定している。その際、電気的なアクテイブアライメントにより、アクチュエータ20Aは撮像部21における固定位置を調整してから固定される。
 これに対し、カメラモジュール51のアクチュエータ20Aにおいては、ベース8が、さらにチップ当て部15(当接部)を備え、センサチップ10にチップ当て部15を当接させることにより、アクチュエータ20Aと撮像部21とを固定する。
 上記構成により、ステップ3における電気的なアクテイブアライメントを行わずともアクチュエータ20Aと撮像部21とを高精度に固定することができる。したがって、カメラモジュール51の製造工程において電気的なアクテイブアライメントを省略することができる。下記に詳しく説明する。
 (カメラモジュール51の構成)
 図5に示すように、カメラモジュール51において、ベース8は、凸部8bの下端面の一部に、下方に突出するチップ当て部15を備える。チップ当て部15は光が入射するセンサチップ10の受光画素エリアを避け、周囲に四辺形に配置されるように形成されている。チップ当て部15の形状および数は特に限定されない。例えば、チップ当て部15は柱状に形成されてもよく、その数は3もしくは4が好ましいが、多数であってもよい。
 ベース8の底面側の基準面となるチップ当て部15の下端面をセンサチップ10の上面に接着剤を用いずに当接させることにより、アクチュエータ20Aを基板9に取り付ける際に、取り付け装置の精度により製造上発生する傾きをなくすことができる。つまり、チップ当て部15の下端面をセンサチップ10の上面に当接させることにより、光軸方向におけるセンサチップ10に対する合同レンズ群22の位置決めを、取り付け装置によらず高精度で行うことができる。
 具体的には、チップ当て部15をセンサチップ10に当接させるために、基板9とベース8のカバー部8dとの間には公差により生じる隙間がある。接着剤(図示なし)をこの隙間に充填させた後、チップ当て部15をセンサチップ10に当接させる。そして熱などを加えて接着剤を硬化させ、ベース8と基板9とを固定する。その間は、チップ当て部15をセンサチップ10に当接させたままにしておく。
 上記構成により、アクチュエータ20Aとセンサチップ10との製造上発生する傾きが改善できる。したがって、電気的なアクテイブアライメントを行わなくても、合同レンズ群22とセンサチップ10との位置ずれや光軸のずれを軽減することができ、その結果、片ぼけ等を格段に改善することができる。
 〔実施形態3〕
 本発明の実施形態3に係るカメラモジュール52について、図6に基づいて説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図6は、カメラモジュール52の要部構成例を示す縦断面図である。
 実施形態3に係るカメラモジュール52は、実施形態1に係るカメラモジュール50と下記の点で異なる。
 カメラモジュール50は、AF機能付きである。また、下部バレル3bはベース8の凸部8cに固定される。
 それに対し、カメラモジュール52は、さらに光学的手振れ補正(OIS:Optical Image Stabilizer)機能を有する。詳しくは、カメラモジュール52は、アクチュエータ20Bを有し、アクチュエータ20Bは、OIS機構23aを備える。さらに、下部バレル3bはアクチュエータ20BのOIS機構23aに固定される。
 上記構成により、シェージングや片ぼけを抑えたAFおよびOIS機能付のカメラモジュール52を提供することができる。下記に詳しく説明する。
 (カメラモジュール52の構成)
 カメラモジュール52は、図6に示すように、第1レンズ群1、第2レンズ群2、バレル3、アクチュエータ20B、および撮像部21を備えている。第1レンズ群1、第2レンズ群2、および撮像部21に関しては、カメラモジュール50と同じ構成である。バレル3およびアクチュエータ20Bがカメラモジュール50と異なる。下記に説明する。
 バレル3は、上部バレル3aおよび下部バレル3bを備える。上部バレル3aはカメラモジュール50の上部バレル3aと同じである。下部バレル3bは、その内部に、第2レンズ群2を保持する。また、下部バレル3bは、後述するアクチュエータ20BのOIS機構23aに固定されている。
 アクチュエータ20Bは、フォーカシング時に第1レンズ群1を光軸方向に変位させ、手振れ補正時に第1レンズ群1および第2レンズ群2(合同レンズ群22)を光軸に垂直な方向に変位させるための装置である。
 詳しくは、アクチュエータ20Bは、ホルダ4、コイル5、マグネット6、カバー16、ベース8、およびOIS機構23aを備える。
 ホルダ4は、環状の部材であり、上部バレル3aを内周壁で保持している。ホルダ4は、後述するOIS機構23aに対して光軸方向に変位可能に支持されている。ホルダ4の支持方法は、特に限定されない。例えば、光軸方向のバネ定数に比べて、光軸に垂直な方向のバネ定数が格段に大きくなるよう構成されているバネ(スプリング)を利用し、ホルダ4の上端および下端がOIS機構23aに固定されていてもよい。
 カバー16は、ホルダ4およびOIS機構23aを囲む形状に形成されている。カバー16の内周壁には、OIS用コイル(図示なし)が固定されている。OIS用コイルの軸心は、第1レンズ群1および第2レンズ群2の光軸に対して垂直である。
 コイル5は、ホルダ4の外周壁に巻かれて固定されている。
 マグネット6は、コイル5との間に所定の隙間をおいてOIS機構23aの内周壁に固定されている。
 ここで、コイル5に電流を流すことにより、コイル5とマグネット6との間で電磁力が生じる。このため、上記電磁力がホルダ4に作用すると、ホルダ4が上部バレル3aおよび第1レンズ群1と共に光軸方向に変位する。つまり、コイル5に電流を流すことにより、第1レンズ群1を光軸方向に変位させることができる。
 ベース8は、カメラモジュール50とは異なり、凸部8cを有さず、下部バレル3bはベース8には固定されない。下部バレル3bは、後述するOIS機構23aに固定される。
 OIS機構23aは、例えば、上下が開口しかつ底面と側面のみで形成される部材であり、ホルダ4とカバー16とベース8との間に配置されている。OIS機構23aの内周壁には、マグネット6が固定されている。さらに、OIS機構23aの外周壁には、OIS用コイルと対向するように所定の隙間をおいてOIS用マグネット(図示なし)が固定されている。また、OIS機構23aは、ベース8に対して光軸に垂直な方向に変位可能に支持されている。なお、OIS機構23aの支持方法は、特に限定されない。例えば、サスペンションワイヤを用いてOIS機構23aを支持してもよい。
 ここで、OIS用コイルに電流を流すことにより、OIS用コイルとOIS用マグネットとの間で電磁力が生じる。この電磁力がOIS機構23aに作用すると、OIS機構23aは、下部バレル3bおよび第2レンズ群2と、ホルダ4と、上部バレル3aおよび第1レンズ群1と、一体となって、光軸に垂直な方向に変位する。つまり、OIS用コイルに電流を流すことにより、合同レンズ群22を光軸に垂直な方向に変位させることができる。
 アクチュエータ20Bにおいて、フォーカシング時に光軸方向に変位するのはホルダ4およびコイル5のみであり、マグネット6、カバー16、ベース8、OIS機構23aはフォーカシング時に変位しない。つまり、ホルダ4およびコイル5はフォーカシング時に変位するフォーカス可動部(可動部)として機能し、マグネット6、カバー16、ベース8、およびOIS機構23aはフォーカス時に変位しないフォーカス固定部(非可動部)として機能する。
 したがって、フォーカス可動部に固定されている第1レンズ群1は、フォーカシング時に光軸方向時に変位する。それに対して、フォーカス固定部に固定されている第2レンズ群2はフォーカシング時に変位しない。その結果、カメラモジュール52は、フォーカシング時に、第1レンズ群1のみが変位する構成を持つので、実施形態1に係るカメラモジュール50と同じ効果を奏する。
 また、アクチュエータ20Bにおいて、手振れ補正時に変位するのはホルダ4、コイル5、マグネット6、およびOIS機構23aであり、カバー16およびベース8は手振れ補正時に変位しない。つまり、ホルダ4、コイル5、マグネット6、およびOIS機構23aは手振れ補正時に変位するOIS可動部として機能し、カバー16およびベース8は、手振れ補正時に変位しないOIS固定部として機能する。
 言い換えると、OIS機構23a(手振れ補正機構)は、フォーカス可動部(可動部)および第2レンズ群2を、ベース8およびカバー16に対して光軸に垂直な方向に変位させる。
 したがって、OIS可動部に固定されている第1レンズ群1および第2レンズ群2、すなわち合同レンズ群22は、手振れ補正時に光軸に垂直な方向に変位する。そのため、OIS機構23aは、手ぶれ補正時には、合同レンズ群22と一体となって光軸に垂直な方向に変位し、手振れ補正を行う。したがって、手ぶれ補正時において、第1レンズ群1に対する第2レンズ群2の位置がずれない。その結果、第1レンズ群1と第2レンズ群2との間、および、合同レンズ群22とセンサチップ10との間の最適な位置を維持したまま、良好な手振れ補正が行うことができるので、シェージングや片ぼけを抑えたAFおよびOIS機構付のカメラモジュール52を提供することができる。
 〔実施形態4〕
 本発明の実施形態4に係るカメラモジュール53について、図7に基づいて説明する。
 なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図7は、カメラモジュール53の要部構成例を示す縦断面図である。
 実施形態4に係るカメラモジュール53は、実施形態1に係るカメラモジュール50と下記の点で異なる。
 カメラモジュール50は、AF機能付きである。
 それに対し、カメラモジュール53は、さらにOIS機能を有する。また、カメラモジュール53は、アクチュエータ20Cを有し、アクチュエータ20Cは、OIS機構23bを備える。さらに、下部バレル3bはアクチュエータ20Cのベース8に固定される。
 上記構成により、シェージングや片ぼけ抑え、フォーカシング時および手振れ補正時の消費電力を抑えた、AFおよびOIS機能付のカメラモジュール53を提供することができる。下記に詳しく説明する。
 (カメラモジュール53の構成)
 カメラモジュール53は、図7に示すように、第1レンズ群1、第2レンズ群2、バレル3、アクチュエータ20C、および撮像部21を備えている。第1レンズ群1、第2レンズ群2、バレル3および撮像部21に関しては、カメラモジュール50と同じ構成である。アクチュエータ20Cは実施形態1と異なる。下記に説明する。
 アクチュエータ20Cは、フォーカシング時に第1レンズ群1を光軸方向に変位させ、手振れ補正時に第1レンズ群1を光軸に垂直な方向に変位させるための装置である。
 詳しくは、アクチュエータ20Cは、ホルダ4、コイル5、マグネット6、カバー16、ベース8、およびOIS機構23bを備える。
 ホルダ4は、環状の部材であり、上部バレル3aを内周壁で保持している。ホルダ4は、後述するOIS機構23bに対して光軸方向に変位可能に支持されている。ホルダ4の支持方法は、特に限定されない。例えば、光軸方向のバネ定数に比べて、光軸に垂直な方向のバネ定数が格段に大きくなるよう構成されているバネ(スプリング)を利用し、ホルダ4の上端および下端がOIS機構23bに固定されていてもよい。
 カバー16は、ホルダ4を囲む形状に形成されている。カバー16の内周壁には、OIS用コイル(図示なし)が固定されている。OIS用コイルの軸心は、第1レンズ群1および第2レンズ群2の光軸に対して垂直である。
 コイル5は、ホルダ4の外周に巻かれて固定されている。
 マグネット6は、コイル5との間に所定の隙間をおいてOIS機構23bの内周壁に固定されている。
 ここで、コイル5に電流を流すことにより、コイル5とマグネット6との間で電磁力が生じる。このため、上記電磁力がホルダ4に作用すると、ホルダ4が上部バレル3aおよび第1レンズ群1と共に光軸方向に変位する。つまり、コイル5に電流を流すことにより、第1レンズ群1を光軸方向に変位させることができる。
 ベース8は、カメラモジュール50と同じ構成である。
 OIS機構23bは、例えば上下が開口した中空の部材であり、ホルダ4とカバー16とベース8との間に配置されている。OIS機構23bの内周壁には、マグネット6が固定されている。さらに、OIS機構23bの外周壁には、OIS用コイルと対向するように所定の隙間をおいてOIS用マグネット(図示なし)が固定されている。また、OIS機構23bは、ベース8に対して光軸に垂直な方向に変位可能に支持されている。なお、OIS機構23bの支持方法は、特に限定されない。例えば、サスペンションワイヤを用いてOIS機構23bを支持してもよい。
 ここで、OIS用コイルに電流を流すことにより、OIS用コイルとOIS用マグネットとの間で電磁力が生じる。この電磁力がOIS機構23bに作用すると、OIS機構23bは、ホルダ4、上部バレル3aおよび第1レンズ群1と一体となって、光軸に垂直な方向に変位させる。つまり、OIS用コイルに電流を流すことにより、第1レンズ群1を光軸に垂直な方向に変位させることができる。
 アクチュエータ20Cにおいて、フォーカシング時に光軸方向に変位するのはホルダ4、コイル5のみであり、マグネット6、カバー16、ベース8、OIS機構23bはフォーカシング時に変位しない。つまり、ホルダ4およびコイル5はフォーカシング時に光軸方向に変位するフォーカス可動部(可動部)として機能し、マグネット6、カバー16、ベース8、およびOIS機構23bはフォーカス時に変位しないフォーカス固定部(非可動部)として機能する。
 したがって、フォーカス可動部に固定されている第1レンズ群1は、フォーカシング時に光軸方向に変位する。それに対して、フォーカス固定部に固定されている第2レンズ群2はフォーカシング時に変位しない。その結果、カメラモジュール53は、フォーカシング時は、第1レンズ群1のみが変位する構成を持つので、実施形態1のカメラモジュール50と同じ効果を奏する。
 また、アクチュエータ20Cにおいて、手振れ補正時に光軸に垂直な方向に変位するのは、ホルダ4、コイル5、マグネット6、およびOIS機構23bであり、カバー16およびベース8は手振れ補正時に変位しない。つまり、ホルダ4、コイル5、マグネット6、およびOIS機構23bは手振れ補正時に変位するOIS可動部として機能し、カバー16およびベース8は、手振れ補正時に変位しないOIS固定部として機能する。
 言い換えると、OIS機構23b(手振れ補正機構)は、フォーカス可動部(可動部)を、ベース8およびカバー16に対して光軸に垂直な方向に変位させる。
 したがって、手振れ補正時は、OIS可動部に固定されている第1レンズ群1のみが光軸に垂直な方向に変位し、OIS固定部に固定されている第2レンズ群2は変位しない。その結果、OIS可動部の重量が軽量になるため、手振れ補正時の消費電力を低くすることができる。
 ここで、上述したように、カメラモジュール53において、手振れ補正時に第2レンズ群2は第1レンズ群1と一体となって変位しない。このため、手振れ補正により光軸に垂直な方向に変位する第1レンズ群1の光軸に対し、光軸に垂直な方向に変位しない第2レンズ群2の光軸がずれてしまう。その結果、光の集光に不具合が発生する可能性あり、画質が劣化することが考えらえる。
 上記画質の劣化に対し、本実施形態では、第2レンズ群2に曲率の大きなレンズを採用することにより、画質の劣化を防止する。
 詳しくは、手振れ補正による補正量は+/-0.1mm等、絶対値であり、第1レンズ群1に対し曲率の大きなレンズを第2レンズ群2に採用することで、上記光軸のずれ量に対する第2レンズ群2の感度が低下する。これにより、第1レンズ群1と第2レンズ群2との光軸のずれの影響を減少させることができる。なお、第2レンズ群2の曲率の設定に関しては特に限定されないが、例えば、第1レンズ群1の全体を負のパワーを有する(凹タイプレンズ)レンズ設計とし、そのパワーをできるだけ大きくする、すなわち曲率をできるだけ小さくすることで、第2レンズ群2の曲率を第1レンズ群1の曲率よりも大きく設定してもよい。
 したがって、上記構成により手振れ補正時における第1レンズ群1および第2レンズ群2の光軸のずれが発生した場合の画質劣化を防止することができる。また、フォーカシング時および手振れ補正時に第2レンズ群2を変位させないことにより、可動部を軽量化できるので消費電力を抑えることができる。その結果、シェージングや片ぼけ抑え、フォーカシング時および手振れ補正時の消費電力を抑えた、AFおよびOIS機構付のカメラモジュール53を提供することができる。
 〔まとめ〕
 本発明の態様1に係る撮像モジュール(カメラモジュール50・51・52・53)は、撮像素子(センサチップ10)が実装された基板(9)と、上記撮像素子に被写体からの光を結像させる複数のレンズ(光学レンズ1a・1b・2a)と、上記複数のレンズのフォーカスを調整し、かつ上記基板に固定されるフォーカス調整機構(アクチュエータ20A・20B・20C)とを備える撮像モジュールにおいて、上記フォーカス調整機構は、上記複数のレンズの光軸の方向に変位する可動部(ホルダ4、コイル5)と、上記光軸の方向に変位しない非可動部(マグネット6、ヨーク7、ベース8、OIS機構23a、OIS機構24b)とを備え、上記複数のレンズから選ばれる2つ以上のレンズからなる第1レンズ群(1)が上記可動部に固定され、上記第1レンズ群に含まれず、かつ上記複数のレンズから選ばれる1つ以上のレンズからなる第2レンズ群(2)が上記非可動部に固定されている。
 上記構成によれば、第1レンズ群が可動部、第2レンズ群がフォーカス調整機構の光軸の方向に変位しない非可動部に固定されている。このため、第2レンズ群が非可動部に固定された後に第1レンズ群を可動部に固定することができる。そのため、光学的なアクテイブアライメントを実行してから第1レンズ群を可動部に固定することができる。したがって、第1レンズ群と第2レンズ群との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 また、第1レンズ群と第2レンズ群との位置が調整されたフォーカス調整機構が基板に固定されている。このため、電気的なアクテイブアライメントを実行してからフォーカス調整機構を基板に固定することができる。したがって、基板に搭載される撮像素子と第1レンズ群および第2レンズ群との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 その結果、第1レンズ群と第2レンズ群とを高精度で位置決めすることができ、さらに、第1レンズ群および第2レンズ群と撮像素子とを高精度で位置決めすることができる。また、レンズおよび撮像素子を高精度で位置決めできるので、カメラモジュールのシェージングや片ぼけを防止することができる。
 また、上記構成によれば、第1レンズ群は、光軸方向に変位する可動部に固定され、第2レンズ群は光軸方向に変位しない非可動部に固定されている。このため、カメラモジュールはフォーカシング時の重量を軽量化することができる。その結果、フォーカス調整機構で発生するムービングチルトが抑えられ、片ぼけ等の画質劣化が改善される。また、フォーカシング時の消費電力を低くすることができる。
 本発明の態様2に係る撮像モジュール(カメラモジュール50・51・52・53)は、上記態様1において、上記第2レンズ群(2)は、上記第1レンズ群(1)と上記撮像素子(センサチップ10)との間に配置され、上記第1レンズ群から上記第2レンズ群へ入射する光と上記光軸とのなす角が、上記第2レンズ群から上記撮像素子へ出射する光と上記光軸とのなす角よりも大きくてもよい。
 上記構成によれば、第2レンズ群は、第1レンズ群と撮像素子との間に配置されている。このため、強度の衝撃等により生じる異物によるしみ不良の発生を抑えることができる。
 また、上記構成によれば、上記第1レンズ群から上記第2レンズ群へ入射する光と上記光軸とのなす角が、上記第2レンズ群から上記撮像素子へ出射する光と上記光軸とのなす角よりも大きくなる。このため、撮像モジュールはフォーカシング時のストロークを小さくできる。その結果、下記の効果を奏する。(1)少ないストローク量で被写体から得られる像を撮像面で結像させることができるので、効率的なフォーカシングができる。(2)フォーカス調整機構で発生するムービングチルトが抑えられ、片ぼけ等の画質劣化が改善される。(3)マクロ時に得られる像の画質が比較的良好に保たれる。(4)小さくなったストローク量だけ撮像モジュールの高さを低くすることができる。(5)フォーカシング時の消費電力を低くすることができる。
 本発明の態様3に係る撮像モジュール(カメラモジュール51)は、上記態様1または2において、上記フォーカス調整機構(アクチュエータ20A)は、上記撮像素子(センサチップ10)の表面と当接する当接部をさらに備えていてもよい。
 上記構成によれば、フォーカス調整機構の当接部と撮像素子とが当接している。このため、電気的なアクテイブアライメントを実行しなくとも、フォーカス調整機構と撮像素子とを高精度に固定することができる。
 本発明の態様4に係る撮像モジュール(カメラモジュール52)は、上記態様1から3のいずれかにおいて、上記可動部(ホルダ4、コイル5)および上記第2レンズ群(2)を上記光軸に垂直な方向に変位させる手振れ補正機構(OIS機構23a)を備えていてもよい。
 上記構成によれば、手振れ補正時において、第1レンズ群が固定されている可動部は、第2レンズ群と共に上記光軸に垂直な方向に変位する。このため、手振れ補正時には、第1レンズ群と第2レンズ群が一体となって変位するので、第1レンズ群と第2レンズ群との光軸がずれない。その結果、シェージングや片ぼけを抑えたフォーカス機能および手振れ補正機構付のカメラモジュールを提供することができる。
 本発明の態様5に係る撮像モジュール(カメラモジュール53)は、上記態様1から3のいずれかにおいて、上記可動部(ホルダ4、コイル5)を上記光軸に垂直な方向に変位させる手振れ補正機構(OIS機構23b)を備え、上記第2レンズ群(2)のレンズは、上記第1レンズ群(1)のレンズより曲率が大きくてもよい。
 上記構成によれば、手振れ補正時において、第1レンズ群が固定されている可動部は、上記光軸に垂直な方向に変位する。このため、フォーカシング時および手振れ補正時には、第1レンズ群のみが変位するので、フォーカシング時および手振れ補正時に可動する重量が軽量化できる。その結果、フォーカシング時および手振れ補正時の消費電力が抑えられる。
 本発明の態様6に係る撮像モジュール(カメラモジュール50・51・52・53)の製造方法は、上記態様1から5のいずれか1項に記載の撮像モジュールを製造する撮像モジュールの製造方法であって、上記第2レンズ群(2)を上記非可動部(マグネット6、ヨーク7、ベース8、OIS機構23a、OIS機構24b)に固定する第2レンズ群固定ステップ(ステップ1)と、上記第1レンズ群(1)および上記第2レンズ群により上記撮像素子(センサチップ10)に結像された像のデータをフィードバックすることにより、上記第1レンズ群が上記可動部(ホルダ4、コイル5)に固定される位置および角度を調整するアクテイブアライメント(光学的なアクテイブアライメント)を実行する第1レンズ群調整ステップと、上記第1レンズ群を上記可動部における上記位置に上記角度で固定する第1レンズ群固定ステップ(ステップ2)と、を含んでもよい。
 上記構成によれば、第2レンズ群を非可動部に固定させた後に第1レンズ群を可動部に固定する際、光学的なアクテイブアライメントを実行してから固定することができる。そのため、第1レンズ群と第2レンズ群との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 その結果、第1レンズ群と第2レンズ群とを高精度で位置決めすることができる。
 本発明の態様7に係る撮像モジュール(カメラモジュール50・51・52・53)の製造方法は、上記態様1から5のいずれか1項に記載の撮像モジュールを製造する撮像モジュールの製造方法であって、上記第1レンズ群(1)および上記第2レンズ群(2)により結像された像のデータをフィードバックすることにより、上記フォーカス調整機構(アクチュエータ20A・20B・20C)が上記基板(9)に固定される位置および角度を調整するアクテイブアライメント(電気的なアクテイブアライメント)を実行するフォーカス調整機構調整ステップと、上記フォーカス調整機構を上記基板における上記位置に上記角度で固定するフォーカス調整機構固定ステップ(ステップ3)と、を含んでもよい。
 上記構成によれば、フォーカス調整機構を基板に固定する際、電気的なアクテイブアライメントを実行してから固定することができる。そのため、基板に搭載される撮像素子と第1レンズ群および第2レンズ群との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 その結果、第1レンズ群および第2レンズ群と撮像素子とを高精度で位置決めすることができる。
 本発明の態様8に係る撮像モジュール(カメラモジュール50・51・52・53)の製造方法は、上記態様1から5のいずれか1項に記載の撮像モジュールを製造する撮像モジュールの製造方法であって、上記第1レンズ群(1)を上記可動部(ホルダ4、コイル5)に固定する第1レンズ群固定ステップ(ステップ1)と、上記第1レンズ群および上記第2レンズ群(2)により上記撮像素子(センサチップ10)に結像された像のデータをフィードバックすることにより、上記第2レンズ群が上記非可動部(マグネット6、ヨーク7、ベース8、OIS機構23a、OIS機構24b)に固定される位置および角度を調整するアクテイブアライメント(光学的なアクテイブアライメント)を実行する第2レンズ群調整ステップと、上記第2レンズ群を上記非可動部における上記位置に上記角度で固定する第2レンズ群固定ステップ(ステップ2)と、を含んでもよい。
 上記構成によれば、第1レンズ群を可動部に固定させた後に第2レンズ群を非可動部に固定する際、光学的なアクテイブアライメントを実行してから固定することができる。そのため、第1レンズ群と第2レンズ群との間に生じる位置ずれや光軸のずれの発生を防止することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、固体撮像装置およびこれを備える撮像機器を用いる分野において広く応用することができる。具体的には、本発明は、カメラ付きの携帯電話装置や携帯端末装置(PDA)等の携帯機器に用いられる、フォーカス調整が必要な小型撮像モジュールにおいて、小型化、高画質化、低消費電力化等に利用することができる。
 1 第1レンズ群
 1a・1b 光学レンズ(第レンズ)
 2 第2レンズ群
 2a 光学レンズ(レンズ)
 3 バレル
 3a 上部バレル
 3b 下部バレル
 4 ホルダ(可動部)
 5 コイル(可動部)
 6 マグネット(非可動部)
 7 ヨーク(非可動部)
 8 ベース(非可動部)
 8b・8c 凸部
 8d カバー部
 9 基板
 10 センサチップ(撮像素子)
 15 チップ当て部(当接部)
 16 カバー(非可動部)
 20A・20B・20C アクチュエータ(フォーカス調整機構)
 21 撮像部
 22 合同レンズ群
 23a OIS機構(手振れ補正機構、非可動部)
 23b OIS機構(手振れ補正機構、非可動部)
 50・51・52・53 カメラモジュール

Claims (6)

  1.  撮像素子が実装された基板と、
     上記撮像素子に被写体からの光を結像させる複数のレンズと、
     上記複数のレンズのフォーカスを調整し、かつ上記基板に固定されるフォーカス調整機構とを備える撮像モジュールにおいて、
     上記フォーカス調整機構は、上記複数のレンズの光軸の方向に変位する可動部と、上記光軸の方向に変位しない非可動部とを備え、
     上記複数のレンズから選ばれる2つ以上のレンズからなる第1レンズ群が上記可動部に固定され、上記第1レンズ群に含まれず、かつ上記複数のレンズから選ばれる1つ以上のレンズからなる第2レンズ群が上記非可動部に固定されていることを特徴とする撮像モジュール。
  2.  上記第2レンズ群は、上記第1レンズ群と上記撮像素子との間に配置され、
     上記第1レンズ群から上記第2レンズ群へ入射する光と上記光軸とのなす角が、上記第2レンズ群から上記撮像素子へ出射する光と上記光軸とのなす角よりも大きくなることを特徴とする請求項1に記載の撮像モジュール。
  3.  上記フォーカス調整機構は、上記撮像素子の表面と当接する当接部をさらに備えていることを特徴とする請求項1または2に記載の撮像モジュール。
  4.  請求項1から3のいずれか1項に記載の撮像モジュールを製造する撮像モジュールの製造方法であって、
     上記第2レンズ群を上記非可動部に固定する第2レンズ群固定ステップと、
     上記第1レンズ群および上記第2レンズ群により上記撮像素子に結像された像のデータをフィードバックすることにより、上記第1レンズ群が上記可動部に固定される位置および角度を調整するアクテイブアライメントを実行する第1レンズ群調整ステップと、
     上記第1レンズ群を上記可動部における上記位置に上記角度で固定する第1レンズ群固定ステップと、を含むことを特徴とする撮像モジュールの製造方法。
  5.  請求項1から3のいずれか1項に記載の撮像モジュールを製造する撮像モジュールの製造方法であって、
     上記第1レンズ群および上記第2レンズ群により結像された像のデータをフィードバックすることにより、上記フォーカス調整機構が上記基板に固定される位置および角度を調整するアクテイブアライメントを実行するフォーカス調整機構調整ステップと、
     上記フォーカス調整機構を上記基板における上記位置に上記角度で固定するフォーカス調整機構固定ステップと、を含むことを特徴とする撮像モジュールの製造方法。
  6.  請求項1から3のいずれか1項に記載の撮像モジュールを製造する撮像モジュールの製造方法であって、
     上記第1レンズ群を上記可動部に固定する第1レンズ群固定ステップと、
     上記第1レンズ群および上記第2レンズ群により上記撮像素子に結像された像のデータをフィードバックすることにより、上記第2レンズ群が上記非可動部に固定される位置および角度を調整するアクテイブアライメントを実行する第2レンズ群調整ステップと、
     上記第2レンズ群を上記非可動部における上記位置に上記角度で固定する第2レンズ群固定ステップと、を含むことを特徴とする撮像モジュールの製造方法。
PCT/JP2014/078215 2013-11-20 2014-10-23 撮像モジュールおよびその製造方法 WO2015076056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/037,505 US9733447B2 (en) 2013-11-20 2014-10-23 Imaging module and manufacturing method therefor
JP2015549043A JP6215348B2 (ja) 2013-11-20 2014-10-23 撮像モジュールの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013240378 2013-11-20
JP2013-240378 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076056A1 true WO2015076056A1 (ja) 2015-05-28

Family

ID=53179326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078215 WO2015076056A1 (ja) 2013-11-20 2014-10-23 撮像モジュールおよびその製造方法

Country Status (3)

Country Link
US (1) US9733447B2 (ja)
JP (1) JP6215348B2 (ja)
WO (1) WO2015076056A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190092803A (ko) * 2018-01-31 2019-08-08 삼성전자주식회사 카메라 모듈
KR20200033328A (ko) * 2017-08-11 2020-03-27 닝보 써니 오포테크 코., 엘티디. 광학 렌즈, 카메라 모듈 및 이의 조립 방법
CN110998405A (zh) * 2017-08-11 2020-04-10 宁波舜宇光电信息有限公司 光学镜头、摄像模组及其组装方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10382698B2 (en) * 2015-09-30 2019-08-13 Apple Inc. Mobile zoom using multiple optical image stabilization cameras
CN105445885B (zh) * 2015-10-30 2019-06-18 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN105445888B (zh) 2015-12-21 2020-04-03 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其校准方法
CN109709747B (zh) * 2015-12-02 2021-08-10 宁波舜宇光电信息有限公司 采用分体式镜头的摄像模组及其组装方法
US10732376B2 (en) 2015-12-02 2020-08-04 Ningbo Sunny Opotech Co., Ltd. Camera lens module and manufacturing method thereof
KR102290916B1 (ko) * 2015-12-16 2021-08-17 닝보 써니 오포테크 코., 엘티디. 초점 조정 장치가 통합된 렌즈 어셈블리, 카메라 모듈 및 그의 조립 방법
WO2017179803A1 (en) 2016-04-15 2017-10-19 Lg Electronics Inc. Displacement sensor and camera module having the same
US9869840B1 (en) * 2016-06-27 2018-01-16 Ming-Jui LI Disposable lens applied to electronic operation device for recognition
TWI595781B (zh) * 2016-10-26 2017-08-11 光寶電子(廣州)有限公司 相機模組
CN107995386B (zh) * 2016-10-26 2021-01-26 光宝电子(广州)有限公司 相机模块
CN108398760A (zh) * 2017-02-06 2018-08-14 光宝电子(广州)有限公司 光学组件及相机模块
US10859784B2 (en) 2017-02-06 2020-12-08 Lite-On Electronics (Guangzhou) Limited Optical assembly and camera module
CN108873234A (zh) * 2017-05-12 2018-11-23 台湾东电化股份有限公司 镜头驱动机构
US10866385B2 (en) * 2017-05-12 2020-12-15 Tdk Taiwan Corp. Optical system
EP3633447B1 (en) * 2017-05-22 2023-08-02 LG Innotek Co., Ltd. Lens driving device, camera module and optical device
CN107238909A (zh) * 2017-07-25 2017-10-10 浙江舜宇光学有限公司 分体式镜头及摄像模组
CN109495673B (zh) * 2017-09-11 2020-09-25 宁波舜宇光电信息有限公司 摄像模组及其组装方法
DE102017216573A1 (de) * 2017-09-19 2019-03-21 Robert Bosch Gmbh Verfahren zum Herstellen einer Kamera und Kamera
EP3787274A4 (en) * 2018-05-30 2021-06-16 Ningbo Sunny Opotech Co., Ltd. CAMERA MODULARRAY AND METHOD OF ASSEMBLING THEREOF
TWI760550B (zh) * 2018-08-16 2022-04-11 先進光電科技股份有限公司 光學成像模組
TWI774824B (zh) * 2018-08-16 2022-08-21 先進光電科技股份有限公司 光學成像模組
TWI763909B (zh) * 2018-08-16 2022-05-11 先進光電科技股份有限公司 光學成像模組
TWI773831B (zh) * 2018-09-21 2022-08-11 先進光電科技股份有限公司 光學成像模組
TWI769317B (zh) * 2018-09-21 2022-07-01 先進光電科技股份有限公司 光學成像模組
TWI774845B (zh) * 2018-09-21 2022-08-21 先進光電科技股份有限公司 光學成像模組
TWI754809B (zh) * 2019-04-11 2022-02-11 大陸商廣州立景創新科技有限公司 影像感測裝置
WO2021189396A1 (zh) * 2020-03-27 2021-09-30 南昌欧菲精密光学制品有限公司 一种镜头组件、摄像头模组、终端及镜头组件的组装方法
CN112004013B (zh) * 2020-08-31 2022-05-10 维沃移动通信有限公司 一种摄像模组及移动终端
CN112822380A (zh) * 2021-01-22 2021-05-18 南昌欧菲光电技术有限公司 感光芯片及封装结构与其制造方法、摄像模组和电子设备
US11906806B2 (en) * 2021-06-30 2024-02-20 Zebra Technologies Corporation Imaging lens check and active alignment method to maintain consistent rear focusing distance for an autofocus lens
CN116794791A (zh) * 2022-03-17 2023-09-22 华为技术有限公司 镜头组件、摄像模组以及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017923A (ja) * 2004-06-30 2006-01-19 Mitsumi Electric Co Ltd 小型カメラ
JP2007104288A (ja) * 2005-10-04 2007-04-19 Konica Minolta Opto Inc 撮像装置及び撮像装置の組立方法
JP2009147898A (ja) * 2007-11-20 2009-07-02 Sharp Corp 撮像モジュールおよびその製造方法、電子情報機器
JP2009533701A (ja) * 2006-04-14 2009-09-17 博立碼杰通訊(深▲せん▼)有限公司 一種類の一体化光学設備フォーカス・コントロール/ズームシステム
WO2010143459A1 (ja) * 2009-06-08 2010-12-16 コニカミノルタオプト株式会社 撮像レンズ、撮像レンズを備えた撮像装置及び撮像装置を備えた携帯端末機
US20110008038A1 (en) * 2009-07-13 2011-01-13 Stmicroelectronics (Research & Development) Limited Lens assembly and method of assembling lens elements in a lens mounting
JP2011101091A (ja) * 2009-11-04 2011-05-19 Konica Minolta Opto Inc 撮像装置
JP2013200459A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc カメラモジュールの製造方法及びカメラモジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080035601A (ko) * 2005-08-08 2008-04-23 코니카 미놀타 옵토 인코포레이티드 촬상 장치 및 촬상 장치의 조립 방법
JP2009098462A (ja) 2007-10-17 2009-05-07 Sharp Corp 固体撮像装置およびこれを搭載する撮像機器、並びに、固体撮像装置の製造方法
JP2009116176A (ja) 2007-11-08 2009-05-28 Sharp Corp カメラモジュールおよびこれを備える撮像機器
US8411192B2 (en) * 2007-11-15 2013-04-02 Sharp Kabushiki Kaisha Image capturing module, method for manufacturing the image capturing module, and electronic information device
CN101452103B (zh) * 2007-11-30 2011-03-23 鸿富锦精密工业(深圳)有限公司 镜头模组
KR20110110581A (ko) * 2010-04-01 2011-10-07 삼성테크윈 주식회사 카메라 모듈 및 그 제조방법
KR20100080886A (ko) * 2010-06-21 2010-07-13 엘지이노텍 주식회사 카메라 모듈
WO2013136053A1 (en) * 2012-03-10 2013-09-19 Digitaloptics Corporation Miniature camera module with mems-actuated autofocus
US8988586B2 (en) * 2012-12-31 2015-03-24 Digitaloptics Corporation Auto-focus camera module with MEMS closed loop compensator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017923A (ja) * 2004-06-30 2006-01-19 Mitsumi Electric Co Ltd 小型カメラ
JP2007104288A (ja) * 2005-10-04 2007-04-19 Konica Minolta Opto Inc 撮像装置及び撮像装置の組立方法
JP2009533701A (ja) * 2006-04-14 2009-09-17 博立碼杰通訊(深▲せん▼)有限公司 一種類の一体化光学設備フォーカス・コントロール/ズームシステム
JP2009147898A (ja) * 2007-11-20 2009-07-02 Sharp Corp 撮像モジュールおよびその製造方法、電子情報機器
WO2010143459A1 (ja) * 2009-06-08 2010-12-16 コニカミノルタオプト株式会社 撮像レンズ、撮像レンズを備えた撮像装置及び撮像装置を備えた携帯端末機
US20110008038A1 (en) * 2009-07-13 2011-01-13 Stmicroelectronics (Research & Development) Limited Lens assembly and method of assembling lens elements in a lens mounting
JP2011101091A (ja) * 2009-11-04 2011-05-19 Konica Minolta Opto Inc 撮像装置
JP2013200459A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc カメラモジュールの製造方法及びカメラモジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033328A (ko) * 2017-08-11 2020-03-27 닝보 써니 오포테크 코., 엘티디. 광학 렌즈, 카메라 모듈 및 이의 조립 방법
CN110998405A (zh) * 2017-08-11 2020-04-10 宁波舜宇光电信息有限公司 光学镜头、摄像模组及其组装方法
JP2020530592A (ja) * 2017-08-11 2020-10-22 ▲寧▼波舜宇光▲電▼信息有限公司 光学レンズ、カメラモジュール及びその組み立て方法
US11106006B2 (en) 2017-08-11 2021-08-31 Ningbo Sunny Opotech Co., Ltd. Lens assembly, camera module and method for assembling same
KR102443493B1 (ko) * 2017-08-11 2022-09-14 닝보 써니 오포테크 코., 엘티디. 광학 렌즈, 카메라 모듈 및 이의 조립 방법
KR20190092803A (ko) * 2018-01-31 2019-08-08 삼성전자주식회사 카메라 모듈
KR102470853B1 (ko) * 2018-01-31 2022-11-28 삼성전자주식회사 카메라 모듈

Also Published As

Publication number Publication date
US20160282580A1 (en) 2016-09-29
US9733447B2 (en) 2017-08-15
JPWO2015076056A1 (ja) 2017-03-16
JP6215348B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6215348B2 (ja) 撮像モジュールの製造方法
KR102226299B1 (ko) 렌즈 구동장치
KR101012720B1 (ko) 카메라 모듈
CN112534347B (zh) 摄像机模块及摄像机搭载装置
US8982274B2 (en) Camera module including handshaking correcting device
WO2009142149A1 (ja) レンズ駆動装置
KR20170102246A (ko) 렌즈 구동장치, 카메라 모듈, 및 카메라 탑재 장치
KR20100066678A (ko) 손떨림 보정장치를 구비한 카메라 모듈
JP6174157B2 (ja) カメラモジュールの製造方法
JP2013072892A (ja) カメラモジュール
JP6479857B2 (ja) カメラモジュールの製造方法
US11627253B2 (en) Camera actuator and a camera module including the same
CN113243102B (zh) 相机模块
JP6207955B2 (ja) カメラモジュール、およびカメラモジュールの製造方法
WO2013035514A1 (ja) カメラモジュールの製造方法及びカメラモジュール
US20210397017A1 (en) A camera actuator and a camera module including the same
WO2015001954A1 (ja) レンズ駆動装置
KR20110110581A (ko) 카메라 모듈 및 그 제조방법
JP2012018319A (ja) アクチュエータユニット、撮像装置及びアクチュエータユニットの調整方法
JP2013046260A (ja) 電子機器
JP2014089265A (ja) カメラモジュールの組み立て方法およびカメラモジュール
KR20100068701A (ko) 렌즈 액츄에이터용 탄성 부재 및 이를 포함하는 렌즈 액츄에이터
CN217932225U (zh) 镜头模组、摄像头模组以及电子设备
US20230229061A1 (en) Camera module
US20230269453A1 (en) Camera actuator and camera device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037505

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863717

Country of ref document: EP

Kind code of ref document: A1