WO2021189396A1 - 一种镜头组件、摄像头模组、终端及镜头组件的组装方法 - Google Patents

一种镜头组件、摄像头模组、终端及镜头组件的组装方法 Download PDF

Info

Publication number
WO2021189396A1
WO2021189396A1 PCT/CN2020/081560 CN2020081560W WO2021189396A1 WO 2021189396 A1 WO2021189396 A1 WO 2021189396A1 CN 2020081560 W CN2020081560 W CN 2020081560W WO 2021189396 A1 WO2021189396 A1 WO 2021189396A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
optical axis
connecting portion
assembly
Prior art date
Application number
PCT/CN2020/081560
Other languages
English (en)
French (fr)
Inventor
邹海荣
吴俊甫
胡德忠
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2020/081560 priority Critical patent/WO2021189396A1/zh
Publication of WO2021189396A1 publication Critical patent/WO2021189396A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets

Definitions

  • This application relates to the field of optical technology, and in particular to a method for assembling a lens assembly, a camera module, a terminal, and a lens assembly.
  • the pixels of the image sensor have become higher and higher, and the resolution of the optical lens matched with the image sensor has become higher and higher.
  • the number of lenses included in the optical lens is increasing, and the increase in the number of lenses easily affects the success rate of the assembly of the optical lens.
  • the embodiments of the present application provide a method for assembling a lens assembly, a camera module, a terminal, and a lens assembly, which can solve the problem that when assembling an optical lens, all lenses need to be installed in the same lens barrel in sequence. After the end, the arrangement of the lenses cannot be adjusted, so that there are many problems with poor resolution products in the assembled optical lens.
  • the technical solution is as follows;
  • an embodiment of the present application provides a lens assembly, including:
  • the first lens includes a first lens barrel and a first lens group located in the first lens barrel, the image side of the first lens group is a first surface, and the first surface is provided with a first connecting portion; and,
  • the second lens is located on the image side of the first lens.
  • the second lens includes a second lens barrel and a second lens group located in the second lens barrel.
  • the object side of the second lens group is a second surface, and the second surface is provided with A second connecting portion, the second connecting portion and the first connecting portion are adjustablely connected;
  • the image side of the first lens barrel is the third surface
  • the object side of the second lens barrel is the fourth surface
  • the second lens has a second optical axis
  • the third surface is on the reference surface where the second optical axis is located.
  • the orthographic projection is the first projection; the orthographic projection of the fourth surface on the reference surface is the second projection, and the first projection and the second projection do not overlap.
  • the beneficial effect of the embodiments of the present application is that by splitting the lens assembly into multiple lenses, two adjacent lenses can be pre-positioned through the first connecting part and the second connecting part first, and then through relative rotation, tilting or The movement can realize the adjustment of the eccentricity, tilt or gap of two adjacent lenses, so as to offset the influence of the inconsistent size of various parts on the assembly yield, so as to achieve the effect of improving the resolution of the lens assembly.
  • the assembly method of the embodiment of the present application can reduce the cost of mold processing, reduce the dimensional tolerance requirements of various parts, and improve the utilization rate of components.
  • the first projection and the second projection do not overlap, and the first lens barrel and the second lens barrel are not embedded.
  • the combined connection can ensure that the adjustable range of the relative adjustment of the first lens and the second lens is large enough, and the scope of application of this type of lens barrel is wider.
  • the first projection and the second projection do not overlap, which can make the size of the first lens barrel and the second lens barrel smaller, and realize the miniaturization of the lens assembly; and compared with the first lens barrel and the second lens barrel embedded
  • the outer circumference of the lens barrel can have enough space for opening a dispensing groove, so that the dispensing amount is sufficient.
  • the first connecting portion is a flange with an annular cross section provided on the first surface, and the central axis of the flange is collinear with the first optical axis of the first lens;
  • the second connecting portion is an annular groove provided on the second surface, and the central axis of the annular groove is collinear with the second optical axis; the flange is arranged in the annular groove.
  • the beneficial effect of the above-mentioned further solution is that by setting the first connecting part as a flange and the second connecting part as an annular groove, the first connecting part and the second connecting part can be connected to each other, Pre-positioning is more reliable.
  • the central axis of the flange By defining the central axis of the flange to be collinear with the first optical axis, and the central axis of the annular groove is collinear with the second optical axis, the flange can be arranged in the annular groove and the first lens relative to the second lens During the rotation, the distance between the first optical axis and the second optical axis will not change significantly.
  • first inner peripheral surface of the flange is a truncated cone-shaped surface with a gradually increasing radius in the direction from the first surface to the second surface;
  • second inner peripheral surface of the annular groove is from the first surface to the second surface In the direction of, a truncated cone-shaped surface with a gradually increasing radius;
  • first inner circumferential surface is located on the outer circumference of the second inner circumferential surface, and the angle between the generatrix of the first inner circumferential surface and the first optical axis is equal to the second inner circumferential surface The angle between the bus bar and the second optical axis.
  • first inner circumferential surface and the second inner circumferential surface are both configured as truncated cone-shaped surfaces, and the angle between the generatrix of the first inner circumferential surface and the first optical axis is equal to the second inner circumferential surface.
  • the angle between the bus bar of the surface and the second optical axis facilitates the disassembly and assembly of the first connecting portion and the second connecting portion.
  • the included angle between the generatrix of the first inner peripheral surface and the first optical axis is 0° to 60°.
  • the beneficial effect of the above further solution is that by limiting the included angle between the generatrix of the first inner peripheral surface and the first optical axis to be 0° to 60°, it is possible to prevent the included angle from being too large, that is, the first inner peripheral surface is too inclined, causing The flange is separated from the annular groove, which can ensure the reliability of the connection between the flange and the annular groove.
  • the second inner peripheral surface includes a connecting section located in the flange, and the length dimension of the connecting section along the generatrix direction of the second inner peripheral surface is 0.03 mm to 0.2 mm.
  • the beneficial effect of the above further solution is that by limiting the length dimension of the connecting section along the generatrix direction of the second inner peripheral surface to 0.03mm to 0.2mm, the reliability of the connection between the flange and the annular groove can be further ensured.
  • the thickness dimension of the flange in the direction perpendicular to the first optical axis is the first dimension
  • the width dimension of the annular groove in the direction perpendicular to the second optical axis is the second dimension
  • the second dimension is 0.05 mm to 0.5 mm larger than the first dimension. mm.
  • the beneficial effect of the above-mentioned further solution is that by setting the second size larger than the first size, it can be ensured that after the first lens and the second lens are connected to the annular groove through the flange, the flange may have an edge perpendicular to the first lens in the annular groove.
  • the movement strokes in the directions of the two optical axes are used to realize the eccentric calibration of the first lens relative to the second lens.
  • the second size By limiting the second size to be 0.05mm to 0.5mm larger than the first size, it can be ensured that the lens assembly can be miniaturized under the premise that the first lens has an eccentrically calibrated movement stroke relative to the second lens.
  • the edge area of the second surface is recessed to form a step
  • the step has a step surface facing the first surface
  • the step surface is located on the image side of the fourth surface, so that an annular groove is formed between the second surface, the step surface and the fourth surface.
  • the beneficial effect of the above-mentioned further solution is that only by forming a step on the second surface of the second lens group and positioning the step surface of the step on the image side of the fourth surface, an annular groove can be formed on the second lens, thereby achieving convexity.
  • the connection of the rim and the annular groove makes the processing technology of the second lens simple and the manufacturing cost is reduced.
  • the third surface is parallel to the fourth surface.
  • the beneficial effect of the above further solution is that by setting the third surface parallel to the fourth surface, the structure of the lens assembly can be made more orderly.
  • the distance from the third surface to the fourth surface is a third dimension, and the third dimension is 0 mm to 0.3 mm.
  • the beneficial effect of the above further solution is that by limiting the distance from the third surface to the fourth surface to 0 mm to 0.3 mm, the miniaturization of the lens assembly can be achieved on the premise that the first lens can be smoothly rotated relative to the second lens.
  • the first lens barrel has a third outer peripheral surface arranged around the third surface, the orthographic projection of the boundary line between the third outer peripheral surface and the third surface on the fourth surface is a third projection, and the third projection is located in the fourth surface , And the angle between the third outer peripheral surface and the fourth surface is 10° to 80°.
  • the beneficial effect of the above-mentioned further solution is: by limiting the orthographic projection of the boundary line of the third outer peripheral surface and the third surface on the fourth surface to be in the fourth surface, the fourth surface has the first outer boundary line and the first outer boundary line.
  • the glue can easily enter between the third outer peripheral surface and the fourth surface, and the connection is more convenient; it can also avoid the angle between the third outer peripheral surface and the fourth surface from being too large, so that the third outer peripheral surface and the fourth surface When the fourth surface is connected by glue, only an appropriate amount of glue is needed to fasten the third outer peripheral surface and the fourth surface, which reduces the investment cost of glue.
  • the distance from the third projection to the first outer boundary line of the fourth surface is the fourth dimension, and the fourth dimension is 0.1 mm to 0.6 mm.
  • the beneficial effect of the above-mentioned further solution is: through the above-mentioned limitation, the reserved area of the fourth surface between the third projection and the first outer boundary line can be sufficient, so that the reserved area can be used to make the first The lens is connected with the second lens; the miniaturization of the lens assembly can be ensured.
  • an embodiment of the present application provides a camera module including any of the above-mentioned lens components.
  • the beneficial effect of the embodiments of the present application is that by splitting the lens assembly into multiple lenses, two adjacent lenses can be pre-positioned through the first connecting part and the second connecting part first, and then through relative rotation, tilting or The movement can realize the adjustment of the eccentricity, tilt or gap of two adjacent lenses, so as to offset the influence of the inconsistent size of various parts on the assembly yield, so as to achieve the effect of improving the resolution of the lens assembly.
  • the assembly method of the embodiment of the present application can reduce the cost of mold processing, reduce the dimensional tolerance requirements of various parts, and improve the utilization rate of components.
  • the first projection and the second projection do not overlap, and the first lens barrel and the second lens barrel are not embedded.
  • the combined connection can ensure that the adjustable range of the relative adjustment of the first lens and the second lens is large enough, and the scope of application of this type of lens barrel is wider.
  • the first projection and the second projection do not overlap, which can make the size of the first lens barrel and the second lens barrel smaller, and realize the miniaturization of the lens assembly; and compared with the first lens barrel and the second lens barrel embedded
  • the outer circumference of the lens barrel can have enough space for opening a dispensing groove, so that the dispensing amount is sufficient.
  • an embodiment of the present application provides a terminal including any of the above-mentioned camera modules.
  • the beneficial effect of the embodiments of the present application is that by splitting the lens assembly into multiple lenses, two adjacent lenses can be pre-positioned through the first connecting part and the second connecting part first, and then through relative rotation, tilting or The movement can realize the adjustment of the eccentricity, tilt or gap of two adjacent lenses, so as to offset the influence of the inconsistent size of various parts on the assembly yield, so as to achieve the effect of improving the resolution of the lens assembly.
  • the assembly method of the embodiment of the present application can reduce the cost of mold processing, reduce the dimensional tolerance requirements of various parts, and improve the utilization rate of components.
  • the first projection and the second projection do not overlap, and the first lens barrel and the second lens barrel are not embedded.
  • the combined connection can ensure that the adjustable range of the relative adjustment of the first lens and the second lens is large enough, and the scope of application of this type of lens barrel is wider.
  • the first projection and the second projection do not overlap, which can make the size of the first lens barrel and the second lens barrel smaller, and realize the miniaturization of the lens assembly; and compared with the first lens barrel and the second lens barrel embedded
  • the outer circumference of the lens barrel can have enough space for opening a dispensing groove, so that the dispensing amount is sufficient.
  • an embodiment of the present application provides a method for assembling a lens assembly, including the following steps:
  • the first lens and the second lens are fixedly connected.
  • the beneficial effect of the embodiments of the present application is that by splitting the lens assembly into multiple lenses, two adjacent lenses can be pre-positioned through the first connecting part and the second connecting part first, and then through relative rotation, tilting or The movement can realize the adjustment of the eccentricity, tilt or gap of two adjacent lenses, so as to offset the influence of the inconsistent size of various parts on the assembly yield, so as to achieve the effect of improving the resolution of the lens assembly.
  • the assembly method of the embodiment of the present application can reduce the cost of mold processing, reduce the dimensional tolerance requirements of various parts, and improve the utilization rate of components.
  • the first projection and the second projection do not overlap, and the first lens barrel and the second lens barrel are not embedded.
  • the combined connection can ensure that the adjustable range of the relative adjustment of the first lens and the second lens is large enough, and the scope of application of this type of lens barrel is wider.
  • the first projection and the second projection do not overlap, which can make the size of the first lens barrel and the second lens barrel smaller, and realize the miniaturization of the lens assembly; and compared with the first lens barrel and the second lens barrel embedded
  • the outer circumference of the lens barrel can have enough space for opening a dispensing groove, so that the dispensing amount is sufficient.
  • FIG. 1 is a schematic structural diagram of a first lens in a lens assembly provided by an embodiment of the present application
  • FIG. 2 is an exploded view of a first lens in a lens assembly provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a second lens in a lens assembly provided by an embodiment of the present application.
  • FIG. 4 is an exploded view of a second lens in a lens assembly provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a lens assembly provided by an embodiment of the present application.
  • Fig. 6 is an enlarged schematic diagram of the structure at A in Fig. 5;
  • FIG. 7 is a schematic diagram of the distribution of the third projection on the fourth surface in a lens assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the distribution of a first projection and a second projection on a reference surface in a lens assembly provided by an embodiment of the present application;
  • FIG. 9 is a structural block diagram of a terminal provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a method for assembling a lens assembly provided by an embodiment of the present application.
  • an embodiment of the present application provides a lens assembly 100 including a first lens 110 and a second lens 120, and the second lens 120 is located on the image side of the first lens 110.
  • the lens assembly 100 may also include a third lens, a fourth lens, etc.
  • the assembly methods between two adjacent lenses are similar. Therefore, in the embodiment of the present application, only the lens assembly 100 includes The first lens 110 and the second lens 120 are taken as an example for detailed description.
  • the first lens 110 may include a first lens barrel 111 and a first lens group 112 located in the first lens barrel 111.
  • the first lens group 112 includes at least one first lens, all the first lenses are installed in the first lens barrel 111, and all the first lenses are arranged in sequence along the first optical axis m.
  • the first optical axis m may be aligned with the first lens barrel.
  • the central axis of 111 is collinear.
  • the maximum outer diameter size of the first lens group 112 may be 1 mm to 8 mm. Specifically, the maximum outer diameter size of the first lens group 112 may be 3 mm, 5 mm, 7 mm, and so on. In order to smoothly fix the first lens group 112 in the first lens barrel 111, the maximum outer diameter of the first lens barrel 111 may be 1.05 to 1.8 times the maximum outer diameter of the first lens group 112. Specifically, the maximum outer diameter of the first lens barrel 111 may be 1.2 times, 1.4 times, or 1.6 times the maximum outer diameter of the first lens group 112.
  • the maximum height dimension of the first lens barrel 111 in a direction parallel to the first optical axis m may be 0.5 mm to 5 mm. Specifically, the maximum height dimension of the first lens barrel 111 in a direction parallel to the first optical axis m may be 1 mm, 2 mm, 3 mm, 4 mm, or the like.
  • the second lens 120 may include a second lens barrel 121 and a second lens group 122 located in the second lens barrel 121.
  • the second lens group 122 includes at least one second lens, all the second lenses are installed in the second lens barrel 121, and all the second lenses are sequentially arranged along the second optical axis n.
  • the second optical axis n can be connected to the second lens barrel.
  • the central axis of 121 is collinear.
  • the second lens barrel 121 includes a wall plate 1212 facing the first lens barrel 111, and the object side of the second lens group 122 is a second surface 1221, so that the second lens group 122 is located in the second lens barrel 121.
  • the second surface 1221 will abut the wall plate 1212.
  • the height dimension of the wall plate 1212 along the direction parallel to the first optical axis m may be 0.18 mm to 0.6 mm.
  • the height dimension of the wall plate 1212 along the direction parallel to the first optical axis m may be 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, etc.
  • the image side surface of the first lens group 112 is the first surface 1121.
  • the first surface 1121 may be located on all the first lenses, the one closest to the second lens group 122. Specifically, the first surface 1121 may be the image side of the first lens.
  • the object side of the second lens group 122 is the second surface 1221.
  • the second surface 1221 may be located on all the second lenses, the one closest to the first lens group 112. Specifically, the second surface 1221 may be the object side of the second lens.
  • the image side surface of the first lens barrel 111 is the third surface 1111.
  • the object side surface of the second lens barrel 121 is the fourth surface 1211.
  • the fourth surface 1211 may be the object side of the wall panel 1212.
  • the third surface 1111 and the fourth surface 1211 are both annular surfaces.
  • the first surface 1121 is provided with a first connecting portion
  • the second surface 1221 is provided with a second connecting portion
  • the first connecting portion and the second connecting portion are adjustable and connected.
  • the movement stroke of the first lens 110 relative to the second lens 120 along the direction perpendicular to the second optical axis n is sufficiently large, and the first lens 110 can be relative to the second lens 120.
  • the orthographic projection of the third surface 1111 on the reference plane 123 passing through the second optical axis n is the first projection 11111
  • the orthographic projection of the fourth surface 1211 on the reference plane 123 passing through The projection is the second projection 12111
  • the first projection 11111 and the second projection 12111 do not overlap.
  • the first projection 11111 and the second projection 12111 do not overlap.
  • the first projection 11111 and the second projection 12111 may be separated from each other, or a part of the boundary line of the first projection 11111 may overlap with the part of the boundary line of the second projection 12111.
  • the third surface 1111 and the fourth The surface 1211 does not cause obstruction.
  • the reference surface 123 may be any surface where the second optical axis n is located.
  • the third surface 1111 may be an annular surface whose center is located on the first optical axis m
  • the fourth surface 1211 may be an annular surface whose center is located on the second optical axis n.
  • the first projection 111111 can be regarded as the third surface 1111
  • the second projection 12111 is the orthographic projection of half of the fourth surface 1211 on the reference plane 123
  • the second projection 12111 is the orthographic projection of half of the fourth surface 1211 on the reference plane 123.
  • the third surface 1111 may have any shape.
  • the third surface 1111 may be flat or non-planar.
  • the third surface 1111 may be perpendicular to the second optical axis n, or not perpendicular to the second optical axis n.
  • the first projection 11111 may be a line segment or a region with a certain area.
  • the first projection 11111 is a line segment.
  • the third surface 1111 is a plane and is not perpendicular to the second optical axis n
  • the first projection 11111 is an area with a certain area.
  • the third surface 1111 is non-planar
  • the first projection 11111 is an area with a certain area.
  • the fourth surface 1211 may have any shape.
  • the fourth surface 1211 may be flat or non-planar.
  • the fourth surface 1211 may be perpendicular to the second optical axis n or not.
  • the second projection 12111 may be a line segment or a region with a certain area.
  • the fourth surface 1211 is a plane and is perpendicular to the second optical axis n
  • the second projection 12111 is a line segment.
  • the fourth surface 1211 is a plane and is not perpendicular to the second optical axis n
  • the second projection 12111 is an area with a certain area.
  • the fourth surface 1211 is non-planar
  • the second projection 12111 is an area with a certain area.
  • the adjustable connection between the second connecting portion and the first connecting portion may be that the first connecting portion is arranged in the second connecting portion, or the second connecting portion is arranged in the first connecting portion.
  • the height dimension of the first connecting portion along the direction parallel to the first optical axis m may be 0.1 mm to 0.5 mm. Specifically, the height dimension of the first connecting portion along the direction parallel to the first optical axis m may be 0.2 mm, 0.3 mm, 0.4 mm, or the like. In order to ensure a reliable connection between the first connecting portion and the second connecting portion, the image side surface of the first connecting portion may abut against the object side surface of the second connecting portion.
  • the first connecting portion may be a protrusion provided in the middle of the first surface 1121
  • the second connecting portion may be a groove provided in the middle of the second surface 1221.
  • the outer peripheral surface of the protrusion may be a cylindrical surface, or may be from the first surface 1121 to the second surface 1221.
  • the inner peripheral surface of the groove may be a cylindrical surface matching the outer peripheral surface of the protrusion.
  • the inner peripheral surface of the groove may be a truncated cone-shaped surface matching the outer peripheral surface of the protrusion.
  • the first optical axis m and the second optical axis The pitch of n will not change significantly, the central axis of the protrusion can be collinear with the first optical axis m, and the central axis of the groove can be collinear with the second optical axis n.
  • the first connecting portion may be provided on the first surface 1121
  • the cross section is an annular flange 11211
  • the second connecting portion may be an annular groove 12211 provided on the second surface 1221
  • the flange 11211 is arranged in the annular groove 12211.
  • the flange 11211 is a member whose all cross-sections in the direction perpendicular to the first optical axis m are ring-shaped.
  • the central axis of the flange 11211 may be collinear with the first optical axis m, and the central axis of the annular groove 12211 may be collinear with the second optical axis n.
  • the flange 11211 has a first annular surface 11211a facing away from the first surface 1121, a first inner peripheral surface 11211b arranged around the inner ring of the first annular surface 11211a, and a first annular surface 11211b arranged around the outer ring of the first annular surface 11211a. Outer peripheral surface.
  • the annular groove 12211 has a second annular surface 12211a facing the first surface 1121, a second inner peripheral surface 12211b arranged around the inner ring of the second annular surface 12211a, and a second annular surface 12211a arranged around the outer ring of the second annular surface 12211a. Outer peripheral surface.
  • the first annular surface 11211a can abut against the second annular surface 12211a.
  • the first inner peripheral surface 11211b of the flange 11211 may be a cylindrical surface or It is a truncated cone-shaped surface with a gradually increasing radius from the first surface 1121 to the second surface 1221.
  • the second inner peripheral surface 12211b of the annular groove 12211 may be a truncated cone whose radius gradually increases in the direction from the first surface 1121 to the second surface 1221
  • the first inner circumferential surface 11211b is located on the outer circumference of the second inner circumferential surface 12211b.
  • the included angle between the generatrix of the first inner circumferential surface 11211b and the first optical axis m ⁇ 1 may be equal to the angle between the generatrix of the second inner peripheral surface 12211b and the second optical axis n.
  • the included angle ⁇ 1 between the generatrix of the first inner circumferential surface 11211b and the first optical axis m may be 0° to 60°.
  • the included angle ⁇ 1 between the generatrix of the first inner circumferential surface 11211b and the first optical axis m is 0° to 60°, it is possible to prevent the included angle from being too large, that is, the first inner circumferential surface 11211b is too inclined, causing the flange 11211 to fall from
  • the detachment of the annular groove 12211 can ensure the reliability of the connection between the flange 11211 and the annular groove 12211.
  • the second inner peripheral surface 12211b may be entirely located within the first inner peripheral surface 11211b, or partly located within the first inner peripheral surface 11211b.
  • the part of the second inner peripheral surface 12211b located in the first inner peripheral surface 11211b is defined as a connecting section. See FIG.
  • the length dimension h5 of the surface 12211b in the generatrix direction may be 0.03 mm to 0.2 mm.
  • the length h5 of the connecting section along the generatrix direction of the second inner circumferential surface 12211b may be 0.07 mm, 0.1 mm, or the like.
  • the thickness dimension of the flange 11211 along the direction perpendicular to the first optical axis m is a first dimension h1
  • the width dimension of the annular groove 12211 along the direction perpendicular to the second optical axis n is a second dimension h2
  • the second dimension h2 Greater than the first size h1.
  • the movement strokes of the two optical axes in the n direction are used to realize the eccentric calibration of the first lens 110 relative to the second lens 120.
  • the second size h2 may be 0.05 mm to 0.5 mm larger than the first size h1.
  • the second size h2 may be 0.05mm to 0.5mm larger than the first size h1.
  • the second size h2 may be 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, etc. larger than the first size h1.
  • the annular groove 12211 may be formed by directly recessing the second surface 1221 inward.
  • the edge area of the second surface 1221 may be recessed to form a step 12212.
  • the step 12212 has a stepped surface 12212a facing the first surface 1121, and the stepped surface 12212a It is located on the image side of the fourth surface 1211, so that the second surface 1221, the stepped surface 12212a and the fourth surface 1211 are enclosed to form an annular groove 12211.
  • an annular groove 12211 can be formed on the second lens 120, thereby achieving The connection of the flange 11211 and the annular groove 12211 makes the processing technology of the second lens 120 simple and the manufacturing cost is reduced.
  • the step surface 12212 a abuts on the image side surface of the wall plate 1212.
  • the edge area of the second surface 1221 may be a portion extending inward a third predetermined distance from the third outer boundary line of the second surface 1221.
  • the third predetermined distance may be 0.6 mm to 1.2 mm; specifically, it may be 0.8 mm, 1.0 mm, or the like.
  • the third surface 1111 and the fourth surface 1211 may have any structure, and it is only necessary to ensure that the first projection 1111 and the second projection 12111 do not overlap.
  • the third surface 1111 may be parallel to the fourth surface 1211.
  • the distance from the third surface 1111 to the fourth surface 1211 is a third dimension h3, and the third dimension h3 may be 0 mm to 0.3 mm.
  • the third dimension h3 may be 0.1 mm, 0.2 mm, or the like.
  • the entire third surface 1111 is set parallel to the entire fourth surface 1211, the molding is more difficult.
  • only the edge area of the third surface 1111 can be set It is parallel to the edge area of the fourth surface 1211. The part outside the edge area of the third surface 1111 only needs to be separated from the part outside the edge area of the fourth surface 1211.
  • the edge area of the third surface 1111 may be a portion extending inward from the second outer boundary line of the third surface 1111 by a first predetermined distance.
  • the edge area of the fourth surface 1211 may be a portion extending inward from the first outer boundary line 12112 of the fourth surface 1211 by a second predetermined distance.
  • the first predetermined distance may be 0.6 mm to 1.2 mm; specifically, it may be 0.8 mm, 1.0 mm, or the like.
  • the second predetermined distance may be 0.1 mm to 0.5 mm; specifically, it may be 0.2 mm, 0.3 mm, 0.4 mm, or the like.
  • the first lens barrel 111 has a third outer circumferential surface 1112 arranged around the third surface 1111, and the boundary line between the third outer circumferential surface 1112 and the third surface 1111 is on the fourth surface 1211.
  • the projection is a third projection 1113, and the third projection 1113 may be located in the fourth surface 1211.
  • the included angle ⁇ 2 between the third outer circumferential surface 1112 and the fourth surface 1211 may be 10° to 80°.
  • the angle ⁇ 2 between the third outer circumferential surface 1112 and the fourth surface 1211 is 10° to 80°.
  • glue is used to connect between 1112 and the fourth surface 1211, the glue can easily enter between the third outer circumferential surface 1112 and the fourth surface 1211, and the connection is more convenient; it can also avoid the third outer circumferential surface 1112 and the fourth surface 1211.
  • the included angle ⁇ 2 is too large, so that when the third outer circumferential surface 1112 and the fourth surface 1211 are connected by glue, only an appropriate amount of glue is needed to fasten the third outer circumferential surface 1112 and the fourth surface 1211, reducing the amount of glue. Input costs.
  • the included angle ⁇ 2 between the third outer circumferential surface 1112 and the fourth surface 1211 may be 15°, 30°, 45°, 60°, 75°, and so on.
  • the third projection in order to make the reserved area of the fourth surface 1211 between the third projection 1113 and the first outer boundary line 12112 evenly distributed, in the straight line direction perpendicular to the second optical axis n, the third projection The distance from 1113 to the first outer boundary line 12112 can be equal everywhere.
  • the reserved area of the fourth surface 1211 between the third projection 1113 and the first outer boundary line 12112 can be evenly distributed, so that glue is used in the reserved area to connect the first lens 110 and the second lens 120 At this time, the connection of each part of the reserved area is relatively reliable.
  • the distance from the third projection 1113 to the first outer boundary line 12112 is a fourth dimension h4, and the fourth dimension h4 may be 0.1 mm to 0.6 mm.
  • the fourth dimension h4 may be 0.2mm, 0.3mm, 0.4mm, 0.5mm, etc.
  • an embodiment of the present application provides a camera module 10 including any of the aforementioned lens assemblies 100.
  • an embodiment of the present application provides a terminal 1, including any of the aforementioned camera modules 10.
  • the terminal 1 may be any device with a function of acquiring images.
  • the terminal 1 may be a smart phone, a wearable device, a computer device, a television, a vehicle, a camera, a monitoring device, etc.
  • the camera module 10 cooperates with the terminal 1 to realize image collection and reproduction of a target object.
  • an embodiment of the present application provides a method for assembling a lens assembly, including the following steps:
  • S102 Adjustably connect the first connecting portion of the first lens 110 and the second connecting portion of the second lens 120 to realize the pre-positioning of the first lens 110 and the second lens 120.
  • the first lens 110 and the second lens 120 are moved relative to each other, so as to calibrate the eccentricity, tilt, or gap between the first lens 110 and the second lens 120.
  • the relative movement of the first lens 110 and the second lens 120 may include rotation, tilt or movement.
  • the fixed connection between the first lens 110 and the second lens 120 may be a glue connection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种镜头组件(100)、摄像头模组(10)、终端(1)及镜头组件(100)的组装方法;包括第一镜头(110),包括第一镜筒(111)及第一镜片组(112),第一镜片组(112)的像侧面为第一表面(1121),第一表面(1121)设有第一连接部;第二镜头(120),位于第一镜头(110)的像侧,第二镜头(120)包括第二镜筒(121)及第二镜片组(122),第二镜片组(122)的物侧面为第二表面(1221),第二表面(1221)设有第二连接部,第二连接部与第一连接部可调整连接;第一镜筒(111)的像侧面为第三表面(1111),第二镜筒(121)的物侧面为第四表面(1211),第二镜头(120)具有第二光轴(n),第三表面(1111)在第二光轴(n)所处的参考面(123)上的正投影为第一投影(11111);第四表面(1211)在参考面(123)上的正投影为第二投影(12111),第一投影(11111)与第二投影(12111)不重合。能够提升镜头组件(100)的解析力的效果且可调节范围足够大。

Description

一种镜头组件、摄像头模组、终端及镜头组件的组装方法 技术领域
本申请涉及光学技术领域,尤其涉及一种镜头组件、摄像头模组、终端及镜头组件的组装方法。
背景技术
近些年,随着半导体工艺的发展,影像传感器的像素越来越高,与影像传感器配合的光学镜头的解像度也越来越高。然而,为了达到高像素,光学镜头包含的镜片的数量越来越多,镜片数量的增加容易影响光学镜头组装的成功率。现有技术中在组装光学镜头时需将所有的镜片依次安装于同一个镜筒内,这样在组装结束后镜片的排列情况将无法调整,使得组装后的光学镜头中存在很多解析力不良品。
发明内容
本申请实施例提供了一种镜头组件、摄像头模组、终端及镜头组件的组装方法,可以解决现有的在组装光学镜头时需将所有的镜片依次安装于同一个镜筒内,这样在组装结束后镜片的排列情况将无法调整,使得组装后的光学镜头中存在很多解析力不良品的问题。所述技术方案如下;
第一方面,本申请实施例提供了一种镜头组件,包括:
第一镜头,包括第一镜筒及位于第一镜筒内的第一镜片组,第一镜片组的像侧面为第一表面,第一表面设置有第一连接部;及,
第二镜头,位于第一镜头的像侧,第二镜头包括第二镜筒及位于第二镜筒内的第二镜片组,第二镜片组的物侧面为第二表面,第二表面设置有第二连接部,第二连接部与第一连接部可调整连接;
其中,第一镜筒的像侧面为第三表面,第二镜筒的物侧面为第四表面,第二镜头具有第二光轴,第三表面在第二光轴所处的参考面上的正投影为第一投影;第四表面在参考面上的正投影为第二投影,第一投影与第二投影不重合。
本申请实施例的有益效果是:通过将镜头组件拆分为包括多个镜头,可以使相邻两个镜头首先可通过第一连接部和第二连接部预定位,之后通过相对旋转、倾斜或移动能够实 现相邻两个镜头的偏心、倾斜或间隙的调整,以抵消各部品尺寸不一致对组装良率带来的影响,以实现提升镜头组件的解析力的效果。本申请实施例的组装方式,能够减少模具加工成本,降低各部品的尺寸公差要求,提升部件的使用率。同时本申请实施例使第一镜头与第二镜头通过第一连接部与第二连接部预定位后,第一投影与第二投影不重合,而没有使第一镜筒与第二镜筒嵌合连接,能够保证第一镜头与第二镜头相对调整时的可调节范围足够大,且这种类型的镜筒的适用范围更广。同时第一投影与第二投影不重合,能够使第一镜筒与第二镜筒的尺寸做到更小,实现镜头组件的小型化;且相较于第一镜筒与第二镜筒嵌合连接,镜筒的外周能够具有足够空间用来开设点胶槽,使点胶量充足,确保第一镜头与第二镜头的可靠连接。
进一步,第一连接部为第一表面上设置的横截面呈环形的凸缘,凸缘的中轴线与第一镜头的第一光轴共线;
第二连接部为第二表面上设置的环形槽,环形槽的中轴线与第二光轴共线;凸缘设置于环形槽内。
上述进一步方案的有益效果是:通过将第一连接部设置为凸缘,第二连接部设置为环形槽,能够使第一连接部与第二连接部连接后,第一镜头与第二镜头的预定位更加可靠。通过将凸缘的中轴线限定为与第一光轴共线,环形槽的中轴线与第二光轴共线,能够使凸缘设置于环形槽内后,在第一镜头相对于第二镜头转动的过程中,第一光轴与第二光轴的间距不会出现较大的变动。
进一步,凸缘的第一内周面呈从第一表面至第二表面的方向上,半径逐渐增大的圆台状的面;环形槽的第二内周面呈从第一表面至第二表面的方向上,半径逐渐增大的圆台状的面;第一内周面位于第二内周面的外周,且第一内周面的母线与第一光轴的夹角等于第二内周面的母线与第二光轴的夹角。
上述进一步方案的有益效果是:通过将第一内周面和第二内周面均设置为圆台状的面,且第一内周面的母线与第一光轴的夹角等于第二内周面的母线与第二光轴的夹角,利于第一连接部与第二连接部的拆装。
进一步,第一内周面的母线与第一光轴的夹角为0°至60°。
上述进一步方案的有益效果是:通过将第一内周面的母线与第一光轴的夹角限定为0°至60°,能够避免夹角过大,即第一内周面过于倾斜,造成凸缘从环形槽内脱离,能够保证凸缘与环形槽连接的可靠性。
进一步,第二内周面包括位于凸缘内的连接段,连接段沿第二内周面的母线方向的长度尺寸为0.03mm至0.2mm。
上述进一步方案的有益效果是:通过将连接段的沿第二内周面的母线方向的长度尺寸限定为0.03mm至0.2mm,能够进一步的保证凸缘与环形槽连接的可靠性。
进一步,凸缘沿垂直于第一光轴方向的厚度尺寸为第一尺寸,环形槽沿垂直于第二光轴方向的宽度尺寸为第二尺寸,第二尺寸比第一尺寸大0.05mm至0.5mm。
上述进一步方案的有益效果是:通过将第二尺寸设置为大于第一尺寸,能够保证第一镜头与第二镜头通过凸缘与环形槽连接后,凸缘在环形槽内可以具有沿垂直于第二光轴方向的运动行程,以实现第一镜头相对于第二镜头的偏心校准。通过将第二尺寸限定为比第一尺寸大0.05mm至0.5mm,能够保证在第一镜头相对于第二镜头具有偏心校准的运动行程的前提下,实现镜头组件的小型化。
进一步,第二表面的边缘区域凹陷形成台阶,台阶具有面向第一表面的台阶面,台阶面位于第四表面的像侧,以使第二表面、台阶面和第四表面之间形成环形槽。
上述进一步方案的有益效果是:仅通过在第二镜片组的第二表面形成台阶,且使台阶的台阶面位于第四表面的像侧,即可在第二镜头上形成环形槽,从而实现凸缘与环形槽的连接,使得第二镜头的加工工艺简单,制造成本降低。
进一步,第三表面与第四表面平行。
上述进一步方案的有益效果是:通过将第三表面设置为与第四表面平行,能够使镜头组件的结构更加整齐。
进一步,第三表面至第四表面的距离为第三尺寸,第三尺寸为0mm至0.3mm。
上述进一步方案的有益效果是:通过将第三表面至第四表面的距离限定为0mm至0.3mm,能够在保证第一镜头相对于第二镜头能够顺利转动的前提下实现镜头组件的小型化。
进一步,第一镜筒具有绕第三表面设置的第三外周面,第三外周面与第三表面的交界线在第四表面上的正投影为第三投影,第三投影位于第四表面内,且第三外周面与第四表面的夹角为10°至80°。
上述进一步方案的有益效果是:通过将第三外周面与第三表面的交界线在第四表面上的正投影限定为位于第四表面内,使第四表面具有位于其第一外边界线与第三投影之间的预留区域,当第一镜头与第二镜头调整到位后可通过在该预留区域采用胶水使第一镜头与 第二镜头连接在一起,保证第一镜头与第二镜头之间的有效连接。通过将第三外周面与第四表面的夹角限定为10°至80°,既可以避免第三外周面与第四表面的夹角过小,使在第三外周面与第四表面之间采用胶水连接时,胶水能够容易的进入到第三外周面与第四表面之间,连接更加方便;又可以避免第三外周面与第四表面的夹角过大,使在第三外周面与第四表面之间采用胶水连接时,仅需要适量的胶水就能够将第三外周面与第四表面紧固连接,减少胶水的投入成本。
进一步,在垂直于第二光轴的直线方向上,第三投影至第四表面的第一外边界线的距离为第四尺寸,第四尺寸为0.1mm至0.6mm。
上述进一步方案的有益效果是:通过上述限定,既能够使第四表面的位于第三投影与第一外边界线之间的预留区域足够,以便于在该预留区域采用胶水等方式使第一镜头与第二镜头连接;又能够保证镜头组件的小型化。
第二方面,本申请实施例提供了一种摄像头模组,包括上述任意的镜头组件。
本申请实施例的有益效果是:通过将镜头组件拆分为包括多个镜头,可以使相邻两个镜头首先可通过第一连接部和第二连接部预定位,之后通过相对旋转、倾斜或移动能够实现相邻两个镜头的偏心、倾斜或间隙的调整,以抵消各部品尺寸不一致对组装良率带来的影响,以实现提升镜头组件的解析力的效果。本申请实施例的组装方式,能够减少模具加工成本,降低各部品的尺寸公差要求,提升部件的使用率。同时本申请实施例使第一镜头与第二镜头通过第一连接部与第二连接部预定位后,第一投影与第二投影不重合,而没有使第一镜筒与第二镜筒嵌合连接,能够保证第一镜头与第二镜头相对调整时的可调节范围足够大,且这种类型的镜筒的适用范围更广。同时第一投影与第二投影不重合,能够使第一镜筒与第二镜筒的尺寸做到更小,实现镜头组件的小型化;且相较于第一镜筒与第二镜筒嵌合连接,镜筒的外周能够具有足够空间用来开设点胶槽,使点胶量充足,确保第一镜头与第二镜头的可靠连接。
第三方面,本申请实施例提供了一种终端,包括上述任意的摄像头模组。
本申请实施例的有益效果是:通过将镜头组件拆分为包括多个镜头,可以使相邻两个镜头首先可通过第一连接部和第二连接部预定位,之后通过相对旋转、倾斜或移动能够实现相邻两个镜头的偏心、倾斜或间隙的调整,以抵消各部品尺寸不一致对组装良率带来的影响,以实现提升镜头组件的解析力的效果。本申请实施例的组装方式,能够减少模具加工成本,降低各部品的尺寸公差要求,提升部件的使用率。同时本申请实施例使第一镜头 与第二镜头通过第一连接部与第二连接部预定位后,第一投影与第二投影不重合,而没有使第一镜筒与第二镜筒嵌合连接,能够保证第一镜头与第二镜头相对调整时的可调节范围足够大,且这种类型的镜筒的适用范围更广。同时第一投影与第二投影不重合,能够使第一镜筒与第二镜筒的尺寸做到更小,实现镜头组件的小型化;且相较于第一镜筒与第二镜筒嵌合连接,镜筒的外周能够具有足够空间用来开设点胶槽,使点胶量充足,确保第一镜头与第二镜头的可靠连接。
第四方面,本申请实施例提供了一种镜头组件的组装方法,包括以下步骤:
将第一镜头的第一连接部与第二镜头的第二连接部可调整连接,以实现第一镜头与第二镜头的预定位;
使第一镜头与第二镜头相对运动,以对第一镜头与第二镜头的偏心、倾斜或间隙进行校准;
将第一镜头与第二镜头固定连接。
本申请实施例的有益效果是:通过将镜头组件拆分为包括多个镜头,可以使相邻两个镜头首先可通过第一连接部和第二连接部预定位,之后通过相对旋转、倾斜或移动能够实现相邻两个镜头的偏心、倾斜或间隙的调整,以抵消各部品尺寸不一致对组装良率带来的影响,以实现提升镜头组件的解析力的效果。本申请实施例的组装方式,能够减少模具加工成本,降低各部品的尺寸公差要求,提升部件的使用率。同时本申请实施例使第一镜头与第二镜头通过第一连接部与第二连接部预定位后,第一投影与第二投影不重合,而没有使第一镜筒与第二镜筒嵌合连接,能够保证第一镜头与第二镜头相对调整时的可调节范围足够大,且这种类型的镜筒的适用范围更广。同时第一投影与第二投影不重合,能够使第一镜筒与第二镜筒的尺寸做到更小,实现镜头组件的小型化;且相较于第一镜筒与第二镜筒嵌合连接,镜筒的外周能够具有足够空间用来开设点胶槽,使点胶量充足,确保第一镜头与第二镜头的可靠连接。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根 据这些附图获得其他的附图。
图1是本申请实施例提供的一种镜头组件中第一镜头的结构示意图;
图2是本申请实施例提供的一种镜头组件中第一镜头的爆炸图;
图3是本申请实施例提供的一种镜头组件中第二镜头的结构示意图;
图4是本申请实施例提供的一种镜头组件中第二镜头的爆炸图;
图5是本申请实施例提供的一种镜头组件的结构示意图;
图6是图5中A处结构的放大示意图;
图7是本申请实施例提供的一种镜头组件中第三投影在第四表面上的分布示意图;
图8是本申请实施例提供的一种镜头组件中第一投影和第二投影在参考面上的分布示意图;
图9是本申请实施例提供的一种终端的结构框图;
图10是本申请实施例提供的一种镜头组件的组装方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
第一方面,参见图5,本申请实施例提供了一种镜头组件100,包括第一镜头110和第二镜头120,第二镜头120位于第一镜头110的像侧。为提升镜头组件100的解析力,镜头组件100还可以包括第三镜头、第四镜头等,相邻的两个镜头之间的组装方式相似,因此,本申请实施例中仅以镜头组件100包括第一镜头110和第二镜头120为例进行详细说明。
参见图1和图2,第一镜头110可以包括第一镜筒111及位于第一镜筒111内的第一镜片组112。第一镜片组112包括至少一个第一镜片,所有的第一镜片均安装于第一镜筒111内,且所有的第一镜片均沿第一光轴m顺序排列。为便于第一镜筒111内成型用于安装第 一镜片的第一安装槽以及确保每个第一镜片在对应的第一安装槽内的平稳固定,第一光轴m可以与第一镜筒111的中轴线共线。
第一镜片组112的最大外径尺寸可以为1mm至8mm。具体地,第一镜片组112的最大外径尺寸可以为3mm、5mm、7mm等。为使第一镜片组112在第一镜筒111内的平稳固定,第一镜筒111的最大外径尺寸可以为第一镜片组112的最大外径尺寸的1.05倍至1.8倍。具体地,第一镜筒111的最大外径尺寸可以为第一镜片组112的最大外径尺寸的1.2倍、1.4倍或1.6倍。第一镜筒111沿平行于第一光轴m方向的最大高度尺寸可以为0.5mm至5mm。具体地,第一镜筒111沿平行于第一光轴m方向的最大高度尺寸可以为1mm、2mm、3mm、4mm等。
参见图3和图4,第二镜头120可以包括第二镜筒121及位于第二镜筒121内的第二镜片组122。第二镜片组122包括至少一个第二镜片,所有的第二镜片均安装于第二镜筒121内,且所有的第二镜片均沿第二光轴n顺序排列。为便于第二镜筒121内成型用于安装第二镜片的第二安装槽以及确保每个第二镜片在对应的第二安装槽内的平稳固定,第二光轴n可以与第二镜筒121的中轴线共线。
参见图4,第二镜筒121包括面向第一镜筒111的壁板1212,第二镜片组122的物侧面为第二表面1221,为使第二镜片组122在第二镜筒121内的平稳固定,第二镜片组122在安装于第二镜筒121内时,第二表面1221将抵接于壁板1212。为确保壁板1212能够固定第二镜片组122,壁板1212沿平行于第一光轴m方向的高度尺寸可以为0.18mm至0.6mm。具体地,壁板1212沿平行于第一光轴m方向的高度尺寸可以为0.2mm、0.3mm、0.4mm、0.5mm等。
参见图1至图4,第一镜片组112的像侧面为第一表面1121。第一表面1121可以位于所有的第一镜片中,最靠近第二镜片组122的一个第一镜片上。具体地,第一表面1121可以为该第一镜片的像侧面。第二镜片组122的物侧面为第二表面1221。第二表面1221可以位于所有的第二镜片中,最靠近第一镜片组112的一个第二镜片上。具体地,第二表面1221可以为该第二镜片的物侧面。第一镜筒111的像侧面为第三表面1111。第二镜筒121的物侧面为第四表面1211。第四表面1211可以为壁板1212的物侧面。第三表面1111和第四表面1211均为环形面。
第一表面1121设置有第一连接部,第二表面1221设置有第二连接部,第一连接部与第二连接部可调整连接。为使第一连接部与第二连接部连接后,第一镜头110相对于第二镜头120沿垂直于第二光轴n方向的运动行程足够大且第一镜头110相对于第二镜头120能够在垂直于第二光轴n的方向顺利移动,第三表面1111在经过第二光轴n的参考面123上的正投影为第一投影11111,第四表面1211在经过参考面123上的正投影为第二投影12111,第一投影11111与第二投影12111不重合,可参见图8。第一投影11111和第二投影12111不重合可以为第一投影11111和第二投影12111相互隔开,也可以为第一投影11111的部分边界线与第二投影12111的部分边界线重合。通过将第一投影11111限定为与第二投影12111不重合,能够使第一镜筒111相对于第二镜筒121沿垂直于第二光轴n的方向运动时,第三表面1111和第四表面1211不会造成阻碍。
参考面123可以为第二光轴n所处的任意表面。第三表面1111可以为圆心位于第一光轴m上的环形面,第四表面1211可以为圆心位于第二光轴n上的环形面,当第一镜头110与第二镜头120经第一连接部与第二连接部连接预定位后,第一镜头110的第一光轴m与第二镜头120的第二光轴n就接近重合,参见图5,因参考面123为第二光轴n所处的表面,因此参考面123会将第三表面1111拆分为几乎完全相同的两部分,将第四表面1211拆分为完全相同的两部分,第一投影111111可以看作为第三表面1111的一半在参考面123上的正投影,第二投影12111为第四表面1211的一半在参考面123上的正投影。
第三表面1111可以为任意的形状。如,第三表面1111可以为平面,也可以为非平面。当第三表面1111为平面时,第三表面1111可以与第二光轴n垂直,也可以不与第二光轴n垂直。第一投影11111可以为一条线段也可以为具有一定面积的一块区域。如,当第三表面1111为平面且与第二光轴n垂直时,第一投影11111为一条线段。当第三表面1111为平面且不与第二光轴n垂直时,第一投影11111为具有一定面积的一块区域。当第三表面1111为非平面时,第一投影11111为具有一定面积的一块区域。
第四表面1211可以为任意的形状。如,第四表面1211可以为平面,也可以为非平面。当第四表面1211为平面时,第四表面1211可以与第二光轴n垂直,也可以不与第二光轴n垂直。第二投影12111可以为一条线段也可以为具有一定面积的一块区域。如,当第四表面1211为平面且与第二光轴n垂直时,第二投影12111为一条线段。当第四表面1211为 平面且不与第二光轴n垂直时,第二投影12111为具有一定面积的一块区域。当第四表面1211为非平面时,第二投影12111为具有一定面积的一块区域。
第二连接部和第一连接部可调整连接可以为第一连接部设置于第二连接部内,也可以为第二连接部设置于第一连接部内。以下以第一连接部设置于第二连接部内为例进行详细的说明:
为保证第一连接部与第二连接部的可靠连接,第一连接部沿平行于第一光轴m方向的高度尺寸可以为0.1mm至0.5mm。具体地,第一连接部沿平行于第一光轴m方向的高度尺寸可以为0.2mm、0.3mm、0.4mm等。为使第一连接部与第二连接部的可靠连接,第一连接部的像侧面可以抵接于第二连接部的物侧面。
第一连接部可以为第一表面1121的中部设置的凸起,第二连接部可以为第二表面1221的中部设置的凹槽。为使凸起与凹槽连接后,第一镜头110相对于第二镜头120能够顺利的转动,凸起的外周面可以为圆柱状的面,也可以为从第一表面1121至第二表面1221的方向上,半径逐渐减小的圆台状的面。当凸起的外周面为圆柱状的面时,凹槽的内周面可以为与凸起的外周面相匹配的圆柱状的面。当凸起的外周面为圆台状的面时,凹槽的内周面可以为与凸起的外周面相匹配的圆台状的面。为使凸起嵌设于凹槽内后,在第一镜头110相对于第二镜头120转动的过程中,即凸起相对于凹槽转动的过程中,第一光轴m与第二光轴n的间距不会出现较大的变动,凸起的中轴线可以与第一光轴m共线,凹槽的中轴线可以与第二光轴n共线。
参见图1至图6,为使经第一连接部和第二连接部连接后,第一镜头110与第二镜头120的预定位较为可靠,第一连接部可以为第一表面1121上设置的横截面为环形的凸缘11211,第二连接部可以为第二表面1221上设置的环形槽12211,凸缘11211设置于环形槽12211内。凸缘11211为在垂直于第一光轴m方向的所有截面均为环形的部件。为使凸缘11211设置于环形槽12211内后,在第一镜头110相对于第二镜头120转动的过程中,即凸缘11211相对于环形槽12211转动的过程中,第一光轴m与第二光轴n的间距不会出现较大的变动,凸缘11211的中轴线可以与第一光轴m共线,环形槽12211的中轴线可以与第二光轴n共线。凸缘11211具有背离第一表面1121的第一圆环面11211a、绕第一圆环面11211a的内圈设置的第一内周面11211b及绕第一圆环面11211a的外圈设置的第一外周面。 环形槽12211具有面向第一表面1121的第二圆环面12211a、绕第二圆环面12211a的内圈设置的第二内周面12211b及绕第二圆环面12211a的外圈设置的第二外周面。第一圆环面11211a可以抵接于第二圆环面12211a。
参见图6,为使凸缘11211与环形槽12211连接后,第一镜头110相对于第二镜头120能够顺利的转动,凸缘11211的第一内周面11211b可以为圆柱状的面,也可以为从第一表面1121至第二表面1221的方向上,半径逐渐增大的圆台状的面。当凸缘11211的第一内周面11211b为圆台状的面时,环形槽12211的第二内周面12211b可以为从第一表面1121至第二表面1221的方向上,半径逐渐增大的圆台状的面,第一内周面11211b位于第二内周面12211b的外周,为便于凸缘11211与环形槽12211的拆装,第一内周面11211b的母线与第一光轴m的夹角θ1可以与第二内周面12211b的母线与第二光轴n的夹角相等。第一内周面11211b的母线与第一光轴m的夹角θ1可以为0°至60°。通过将第一内周面11211b的母线与第一光轴m的夹角θ1限定为0°至60°,能够避免夹角过大,即第一内周面11211b过于倾斜,造成凸缘11211从环形槽12211内脱离,能够保证凸缘11211与环形槽12211连接的可靠性。
第二内周面12211b可以全部位于第一内周面11211b内,也可以部分位于第一内周面11211b内。将第二内周面12211b的位于第一内周面11211b内的部分定义为连接段,参见图6,为进一步的保证凸缘11211与环形槽12211连接的可靠性,连接段沿第二内周面12211b的母线方向的长度尺寸h5可以为0.03mm至0.2mm。具体地,连接段沿第二内周面12211b的母线方向的长度尺寸h5可以为0.07mm、0.1mm等。
参见图6,凸缘11211沿垂直于第一光轴m方向的厚度尺寸为第一尺寸h1,环形槽12211沿垂直于第二光轴n方向的宽度尺寸为第二尺寸h2,第二尺寸h2大于第一尺寸h1。通过将第二尺寸h2限定为大于第一尺寸h1,能够保证第一镜头110与第二镜头120通过凸缘11211与环形槽12211连接后,凸缘11211在环形槽12211内可以具有沿垂直于第二光轴n方向的运动行程,以实现第一镜头110相对于第二镜头120的偏心校准。第二尺寸h2可以比第一尺寸h1大0.05mm至0.5mm。通过将第二尺寸h2限定为比第一尺寸h1大0.05mm至0.5mm,能够保证在第一镜头110相对于第二镜头120具有偏心校准的运动行程的前提下,实现镜头组件100的小型化。具体地,第二尺寸h2可以比第一尺寸h1大0.1mm、0.2mm、 0.3mm、0.4mm等。
环形槽12211可以为第二表面1221直接向内凹陷形成。当然,参见图3和图4,为降低第二镜片组122的成型难度,第二表面1221的边缘区域可以凹陷形成台阶12212,台阶12212具有面向第一表面1121的台阶面12212a,且台阶面12212a位于第四表面1211的像侧,以使第二表面1221、台阶面12212a和第四表面1211之间围合形成环形槽12211。这样仅通过在第二镜片组122的第二表面1221形成台阶12212,且使台阶12212的台阶面12212a位于第四表面1211的像侧,即可在第二镜头120上形成环形槽12211,从而实现凸缘11211与环形槽12211的连接,使得第二镜头120的加工工艺简单,制造成本降低。台阶面12212a抵接于壁板1212的像侧面。
第二表面1221的边缘区域可以为从第二表面1221的第三外边界线向内延伸第三预定距离的部分。第三预定距离可以为0.6mm至1.2mm;具体地,可以为0.8mm、1.0mm等。
参见图6,第三表面1111和第四表面1211可以为任意结构,只需保证第一投影11111与第二投影12111不重合即可。当然,为使镜头组件100的结构整齐,第三表面1111可以与第四表面1211平行。第三表面1111至第四表面1211的距离为第三尺寸h3,第三尺寸h3可以为0mm至0.3mm。通过将第三表面1111至第四表面1211的距离限定为0mm至0.3mm,能够在保证第一镜头110相对于第二镜头120能够顺利转动的前提下实现镜头组件100的小型化。具体地,第三尺寸h3可以为0.1mm、0.2mm等。当然,将整个第三表面1111设置为与整个第四表面1211平行,则成型难度较大,为降低第三表面1111和第四表面1211的成型难度,可以仅将第三表面1111的边缘区域设置为与第四表面1211的边缘区域平行。而第三表面1111的边缘区域以外的部分只需保证与第四表面1211的边缘区域以外的部分相隔开即可。
第三表面1111的边缘区域可以为从第三表面1111的第二外边界线向内延伸第一预定距离的部分。第四表面1211的边缘区域可以为从第四表面1211的第一外边界线12112向内延伸第二预定距离的部分。第一预定距离可以为0.6mm至1.2mm;具体地,可以为0.8mm、1.0mm等。第二预定距离可以为0.1mm至0.5mm;具体地,可以为0.2mm、0.3mm、0.4mm等。
参见图1、图2和图7,第一镜筒111具有绕第三表面1111设置的第三外周面1112, 第三外周面1112与第三表面1111的交界线在第四表面1211上的正投影为第三投影1113,第三投影1113可以位于第四表面1211内。通过将第三外周面1112与第三表面1111的交界线在第四表面1211上的正投影限定为位于第四表面1211内,使第四表面1211具有位于其第一外边界线12112与第三投影1113之间的预留区域,当第一镜头110与第二镜头120调整到位后可通过在该预留区域采用胶水使第一镜头110与第二镜头120连接在一起,保证第一镜头110与第二镜头120之间的有效连接。
参见图6,为便于第一镜头110和第二镜头120调整到位后的安装固定,第三外周面1112与第四表面1211的夹角θ2可以为10°至80°。通过将第三外周面1112与第四表面1211的夹角θ2限定为10°至80°,既可以避免第三外周面1112与第四表面1211的夹角θ2过小,使在第三外周面1112与第四表面1211之间采用胶水连接时,胶水能够容易的进入到第三外周面1112与第四表面1211之间,连接更加方便;又可以避免第三外周面1112与第四表面1211的夹角θ2过大,使在第三外周面1112与第四表面1211之间采用胶水连接时,仅需要适量的胶水就能够将第三外周面1112与第四表面1211紧固连接,减少胶水的投入成本。具体地,第三外周面1112与第四表面1211的夹角θ2可以为15°、30°、45°、60°、75°等。
参见图6和图7,为使第四表面1211的位于第三投影1113与第一外边界线12112之间的预留区域分布均匀,在垂直于第二光轴n的直线方向上,第三投影1113至第一外边界线12112的距离可以处处相等。通过上述限定,能够使第四表面1211的位于第三投影1113与第一外边界线12112之间的预留区域分布均匀,使在该预留区域采用胶水使第一镜头110与第二镜头120连接时,该预留区域的各个部位的连接均较为可靠。在垂直于第二光轴n的直线方向上,第三投影1113至第一外边界线12112的距离为第四尺寸h4,第四尺寸h4可以为0.1mm至0.6mm。通过将第三投影1113至第一外边界线12112的距离限定为0.1mm至0.6mm,既能够保证镜头组件100的小型化又能够保证第一镜头110与第二镜头120之间连接的稳固性。具体地,第四尺寸h4可以为0.2mm、0.3mm、0.4mm、0.5mm等。
第二方面,参见图9,本申请实施例提供了一种摄像头模组10,包括上述任意的镜头组件100。
第三方面,参见图9,本申请实施例提供了一种终端1,包括上述任意的摄像头模组 10。终端1可以为具有获取图像功能的任意设备。如,终端1可以是智能手机、可穿戴设备、电脑设备、电视机、交通工具、照相机、监控装置等,摄像头模组10配合终端1实现对目标对象的图像采集和再现。
第四方面,参见图10,本申请实施例提供了一种镜头组件的组装方法,包括以下步骤:
S102,将第一镜头110的第一连接部与第二镜头120的第二连接部可调整连接,以实现第一镜头110与第二镜头120的预定位。
S104,使第一镜头110与第二镜头120相对运动,以对第一镜头110与第二镜头120的偏心、倾斜或间隙进行校准。第一镜头110与第二镜头120的相对运动可以包括旋转、倾斜或移动。
S106,将第一镜头110与第二镜头120固定连接。第一镜头110与第二镜头120的固定连接可以为通过胶水连接。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (14)

  1. 一种镜头组件,其特征在于,包括:
    第一镜头,包括第一镜筒及位于所述第一镜筒内的第一镜片组,所述第一镜片组的像侧面为第一表面,所述第一表面设置有第一连接部;及,
    第二镜头,位于所述第一镜头的像侧,所述第二镜头包括第二镜筒及位于所述第二镜筒内的第二镜片组,所述第二镜片组的物侧面为第二表面,所述第二表面设置有第二连接部,所述第二连接部与所述第一连接部可调整连接;
    其中,所述第一镜筒的像侧面为第三表面,所述第二镜筒的物侧面为第四表面,所述第二镜头具有第二光轴,所述第三表面在所述第二光轴所处的参考面上的正投影为第一投影;所述第四表面在所述参考面上的正投影为第二投影,所述第一投影与所述第二投影不重合。
  2. 如权利要求1所述的镜头组件,其特征在于,
    所述第一连接部为所述第一表面上设置的横截面为环形的凸缘,所述凸缘的中轴线与所述第一镜头的第一光轴共线;
    所述第二连接部为所述第二表面上设置的环形槽,所述环形槽的中轴线与所述第二光轴共线;所述凸缘设置于所述环形槽内。
  3. 如权利要求2所述的镜头组件,其特征在于,所述凸缘的第一内周面呈从所述第一表面至所述第二表面的方向上,半径逐渐增大的圆台状的面;所述环形槽的第二内周面呈从所述第一表面至所述第二表面的方向上,半径逐渐增大的圆台状的面;所述第一内周面位于所述第二内周面的外周,且所述第一内周面的母线与所述第一光轴的夹角等于所述第二内周面的母线与所述第二光轴的夹角。
  4. 如权利要求3所述的镜头组件,其特征在于,所述第一内周面的母线与所述第一光轴的夹角为0°至60°。
  5. 如权利要求4所述的镜头组件,其特征在于,所述第二内周面包括位于所述凸缘内的连接段,所述连接段沿所述第二内周面的母线方向的长度尺寸为0.03mm至0.2mm。
  6. 如权利要求2所述的镜头组件,其特征在于,所述凸缘沿垂直于所述第一光轴方向的厚度尺寸为第一尺寸,所述环形槽沿垂直于所述第二光轴方向的宽度尺寸为第二尺寸,所述第二尺寸比所述第一尺寸大0.05mm至0.5mm。
  7. 如权利要求2所述的镜头组件,其特征在于,
    所述第二表面的边缘区域凹陷形成台阶,所述台阶具有面向第一表面的台阶面,所述台阶面位于所述第四表面的像侧,以使所述第二表面、所述台阶面和所述第四表面之间形成所述环形槽。
  8. 如权利要求1所述的镜头组件,其特征在于,所述第三表面与所述第四表面平行。
  9. 如权利要求8所述的镜头组件,其特征在于,所述第三表面至所述第四表面的距离为第三尺寸,所述第三尺寸为0mm至0.3mm。
  10. 如权利要求1所述的镜头组件,其特征在于,所述第一镜筒具有绕所述第三表面设置的第三外周面,所述第三外周面与所述第三表面的交界线在所述第四表面上的正投影为第三投影,所述第三投影位于所述第四表面内,且所述第三外周面与所述第四表面的夹角为10°至80°。
  11. 如权利要求10所述的镜头组件,其特征在于,在垂直于所述第二光轴的直线方向上,所述第三投影至所述第四表面的第一外边界线的距离为第四尺寸,所述第四尺寸为0.1mm至0.6mm。
  12. 一种摄像头模组,其特征在于,包括权利要求1至11中任一项所述的镜头组件。
  13. 一种终端,其特征在于,包括权利要求12所述的摄像头模组。
  14. 一种权利要求1至11中任一项所述的镜头组件的组装方法,其特征在于,包括以下步骤:
    将所述第一镜头的所述第一连接部与所述第二镜头的所述第二连接部可调整连接,以实现所述第一镜头与所述第二镜头的预定位;
    使所述第一镜头与所述第二镜头相对运动,以对所述第一镜头与所述第二镜头的偏心、倾斜或间隙进行校准;
    将所述第一镜头与所述第二镜头固定连接。
PCT/CN2020/081560 2020-03-27 2020-03-27 一种镜头组件、摄像头模组、终端及镜头组件的组装方法 WO2021189396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081560 WO2021189396A1 (zh) 2020-03-27 2020-03-27 一种镜头组件、摄像头模组、终端及镜头组件的组装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081560 WO2021189396A1 (zh) 2020-03-27 2020-03-27 一种镜头组件、摄像头模组、终端及镜头组件的组装方法

Publications (1)

Publication Number Publication Date
WO2021189396A1 true WO2021189396A1 (zh) 2021-09-30

Family

ID=77889873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081560 WO2021189396A1 (zh) 2020-03-27 2020-03-27 一种镜头组件、摄像头模组、终端及镜头组件的组装方法

Country Status (1)

Country Link
WO (1) WO2021189396A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201344989Y (zh) * 2009-01-07 2009-11-11 上海微电子装备有限公司 光学镜头及镜头组
US20160282580A1 (en) * 2013-11-20 2016-09-29 Sharp Kabushiki Kaisha Imaging module and manufacturing method therefor
CN106547066A (zh) * 2017-01-13 2017-03-29 北京热刺激光技术有限责任公司 非球面光学镜片调节系统
CN107664802A (zh) * 2017-10-25 2018-02-06 瑞声科技(新加坡)有限公司 镜头模组
CN108398760A (zh) * 2017-02-06 2018-08-14 光宝电子(广州)有限公司 光学组件及相机模块
CN109884766A (zh) * 2019-04-09 2019-06-14 中山联合光电科技股份有限公司 一种快速调节群组同轴度的结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201344989Y (zh) * 2009-01-07 2009-11-11 上海微电子装备有限公司 光学镜头及镜头组
US20160282580A1 (en) * 2013-11-20 2016-09-29 Sharp Kabushiki Kaisha Imaging module and manufacturing method therefor
CN106547066A (zh) * 2017-01-13 2017-03-29 北京热刺激光技术有限责任公司 非球面光学镜片调节系统
CN108398760A (zh) * 2017-02-06 2018-08-14 光宝电子(广州)有限公司 光学组件及相机模块
CN107664802A (zh) * 2017-10-25 2018-02-06 瑞声科技(新加坡)有限公司 镜头模组
CN109884766A (zh) * 2019-04-09 2019-06-14 中山联合光电科技股份有限公司 一种快速调节群组同轴度的结构

Similar Documents

Publication Publication Date Title
US20200409111A1 (en) Optical lens module
JP2009163120A (ja) 撮像装置用レンズの連結方法及びその連結方法を用いたレンズユニット並びにそのレンズユニットを内蔵した撮像装置
US11029500B2 (en) Lens module
US20200409108A1 (en) Optical lens module
JP6688428B1 (ja) レンズモジュール
CN212111941U (zh) 一种镜筒组件、镜头组件、摄像头模组及电子设备
US11428907B2 (en) Optical lens module
WO2021189396A1 (zh) 一种镜头组件、摄像头模组、终端及镜头组件的组装方法
JP2017053932A (ja) レンズユニット
JP2021009385A (ja) レンズモジュール及び電子機器
WO2020140588A1 (zh) 镜头模组及电子设备
CN111381340A (zh) 一种镜头组件、摄像头模组、终端及镜头组件的组装方法
US9465186B2 (en) Lens module
CN102298187A (zh) 镜头模组
US20200409024A1 (en) Lens module and electronic device
CN212540824U (zh) 一种镜头组件、摄像头模组、终端
CN113568126A (zh) 一种镜筒组件、镜头组件、摄像头模组及电子设备
JP6667036B2 (ja) レンズモジュール
US8351140B2 (en) Lens barrel and lens module
US9554026B2 (en) Image-capturing apparatus
WO2021217370A1 (zh) 一种镜筒组件、镜头组件、摄像头模组及电子设备
WO2020103600A1 (zh) 镜头模组
WO2020258326A1 (zh) 镜头模组
CN210090781U (zh) 镜头模组及电子设备
CN211180368U (zh) 镜头模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927537

Country of ref document: EP

Kind code of ref document: A1