WO2015076005A1 - Method for sintering ceramics and method for producing multilayer ceramic electronic component - Google Patents

Method for sintering ceramics and method for producing multilayer ceramic electronic component Download PDF

Info

Publication number
WO2015076005A1
WO2015076005A1 PCT/JP2014/074469 JP2014074469W WO2015076005A1 WO 2015076005 A1 WO2015076005 A1 WO 2015076005A1 JP 2014074469 W JP2014074469 W JP 2014074469W WO 2015076005 A1 WO2015076005 A1 WO 2015076005A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
light
film
light absorption
conductive paste
Prior art date
Application number
PCT/JP2014/074469
Other languages
French (fr)
Japanese (ja)
Inventor
清水 尚
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015549021A priority Critical patent/JP6217760B2/en
Publication of WO2015076005A1 publication Critical patent/WO2015076005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a method for firing a ceramic and a method for producing a multilayer ceramic electronic component carried out using this firing method.
  • Patent Document 1 a method for manufacturing a multilayer ceramic electronic component is described in various documents such as International Publication No. 2004/075216 (Patent Document 1). According to the manufacturing method described in these prior art documents, the multilayer ceramic electronic component is manufactured through the following steps.
  • a conductive paste film having a pattern corresponding to a desired electrode pattern is printed on a ceramic green sheet formed on a film substrate, and then a plurality of ceramic green sheets are laminated to obtain a raw laminate.
  • the film substrate is peeled off before the ceramic green sheets are laminated, or is peeled off every time the ceramic green sheets are laminated while performing the lamination process.
  • the raw laminate is cut into an appropriate size as necessary, and then fired.
  • the resin component in the raw laminate is removed (degreasing), and the ceramic particles in the ceramic green sheet and the metal particles in the conductive paste film are sintered.
  • the external electrode is formed by baking a conductive paste.
  • a batch furnace or a tunnel furnace is applied.
  • the atmosphere in the furnace is heated to a temperature at which the ceramic is sintered (about 1300 ° C.) at a temperature rising rate of several to several tens of degrees per minute, and the electrode layer and the ceramic layer are sintered.
  • the metal particles start sintering earlier than the ceramic particles. Therefore, in the firing process, there is a stage where only the electrode layer shrinks and shrinks, and in such a stage where only the electrode layer shrinks, a relatively large stress is generated at the interface between the electrode layer and the ceramic layer.
  • defects such as delamination between layers (delamination defects) and defects in which the electrode layer contracts into a network and the electrode coverage decreases (coverage defects) occur.
  • the poor coverage causes a problem that desired electrical characteristics cannot be obtained in the obtained multilayer ceramic electronic component.
  • an object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component capable of suppressing the occurrence of the above-mentioned delamination failure and coverage failure.
  • Another object of the present invention is to provide a ceramic firing method that does not depend on atmosphere firing in a batch furnace or a tunnel furnace that may cause the above-mentioned problems of delamination and coverage. .
  • This invention is first directed to a ceramic firing method.
  • the present invention is characterized in that firing using a heating light source capable of instantaneous and rapid heating is applied instead of atmosphere firing such as a batch furnace or a tunnel furnace.
  • a heating light source capable of instantaneous and rapid heating
  • atmosphere firing such as a batch furnace or a tunnel furnace.
  • ceramic sheets such as dielectric ceramic sheets
  • a light absorption film having a light absorption rate higher than that of the ceramic sheet is formed on the ceramic sheet. In this state, the light absorption film is irradiated with light from the heating light source.
  • a step of preparing a ceramic sheet containing ceramic particles and a light absorption film having a light absorption rate higher than that of the ceramic sheet are formed on the ceramic sheet.
  • a light irradiation step of irradiating light from the heating light source toward the light absorption film is formed on the ceramic sheet.
  • the light absorption film is heated and heated by absorbing light.
  • the ceramic particles are sintered by heat transferred from the absorption film to the ceramic sheet.
  • the light absorption film is formed of a film that remains on the ceramic sheet even after the light irradiation step, as in the case of, for example, a conductive paste containing metal particles, As in the case of a paste containing a dark organic pigment, at least a part thereof may be a film that disappears in the light irradiation step.
  • the present invention is also directed to a method for manufacturing a multilayer ceramic electronic component that is carried out by applying the ceramic firing method described above.
  • a method for manufacturing a multilayer ceramic electronic component according to the present invention includes a step of preparing a plurality of ceramic sheets containing ceramic particles, a step of stacking a plurality of ceramic sheets, thereby obtaining a laminate, and a laminate A main firing step of firing.
  • the method of manufacturing a multilayer ceramic electronic component according to the present invention includes a step of forming a light absorption film having a light absorption rate higher than that of the ceramic sheet on the ceramic sheet, and heating.
  • the light irradiation process is a preliminary baking process performed prior to the above-described main baking process.
  • the particle size of the ceramic particles is preferably smaller than the particle size of the metal particles described above. This makes it possible to sinter ceramic particles faster than metal particles, and as a result, it is possible to realize a unique phenomenon that cannot occur in conventional atmosphere firing, in which the ceramic sheet shrinks before the conductive paste film. . This is considered to be effective in suppressing the occurrence of delamination failure and coverage failure.
  • a xenon lamp is preferably used as the heating light source.
  • the xenon lamp as described above, a large irradiation energy can be obtained. Therefore, the temperature of the light absorption film can be instantaneously increased, and accordingly, the ceramic sheet can be brought to a high temperature in a short time. Therefore, the sintering of the ceramic particles contained in the ceramic sheet and the sintering of the metal particles contained in the conductive paste film can be started almost simultaneously, and the occurrence of defective delamination and coverage can be more reliably suppressed.
  • the production yield of the multilayer ceramic electronic component can be improved.
  • the xenon lamp has a higher irradiation energy such that the irradiation energy is 0.5 kW / cm 2 or more.
  • the visible light absorption rate of the light absorption film is 21% or more. This is because the light absorption film is more efficiently heated by the light from the heating light source, and accordingly, the ceramic particles contained in the ceramic sheet can be sintered more rapidly.
  • a light irradiation process is implemented whenever it laminates
  • the ceramic sheets that have finished the light irradiation step are laminated.
  • the light irradiation step is performed every time the ceramic sheets on which the light absorption film is formed are stacked in the stacking step as in the former case.
  • the irradiation time per pulse of the xenon lamp is 10 milliseconds or less so that it is shorter.
  • the thickness of the ceramic sheet is preferably 0.1 to 10 ⁇ m. This is because the ceramic particles contained in the ceramic sheet are sufficiently sintered.
  • the ceramic particles are formed by the light from the heating light source by forming the light absorbing film. Can be sintered.
  • the firing by light can achieve the sintering of the ceramic particles more rapidly than the atmosphere firing using a batch furnace or a tunnel furnace.
  • the ceramic layer provided by the ceramic sheet and the conductivity The stress at the interface between the two due to the difference in contraction behavior between the electrode layer and the electrode layer provided by the paste film can be reduced, and therefore, the occurrence of delamination failure and coverage failure can be suppressed.
  • the conductive paste film also serves as at least a part of the light absorption film, and an electrode layer to be provided in the obtained multilayer ceramic electronic component is provided. It can be provided by at least part of the light absorbing film.
  • a multilayer ceramic capacitor 1 includes a multilayer body 5 including a plurality of laminated ceramic layers 2 and first and second internal electrode layers 3 and 4 disposed along a plurality of interfaces between the ceramic layers 2. It has.
  • the first internal electrode layer 3 and the second internal electrode layer 4 are opposed to each other in a part of each, and are alternately arranged as viewed in the stacking direction.
  • the ceramic layer 2 is made of, for example, a BaTiO 3 based dielectric ceramic, and the internal electrode layers 3 and 4 are mainly made of nickel, for example.
  • the laminate 5 includes first and second main surfaces 6 and 7 facing each other, first and second side surfaces facing each other (a surface parallel to a paper surface not shown), and first and second end surfaces facing each other. It has a substantially rectangular parallelepiped shape with 8 and 9.
  • Each end of the first internal electrode layer 3 is exposed at the first end face 8 of the multilayer body 5.
  • a first external electrode 10 is formed on the first end face 8 of the multilayer body 5 so as to be electrically connected to each end of the first internal electrode layer 3.
  • Each end of the second internal electrode layer 4 is exposed at the second end face 9 of the multilayer body 5.
  • a second external electrode 11 is formed on the second end face 9 of the multilayer body 5 so as to be electrically connected to each end of the second internal electrode layer 4.
  • External electrodes 10 and 11 are formed, for example, by applying a conductive paste containing copper or silver as a conductive component on end faces 8 and 9 of laminate 5 and heat-treating (baking) it.
  • plating films 12 and 13 are formed as necessary.
  • the plating films 12 and 13 include, for example, a nickel plating layer 14 mainly composed of nickel and a tin plating layer 15 mainly composed of tin formed thereon.
  • a raw ceramic sheet 21 (see FIG. 2) to be the ceramic layer 2 is prepared.
  • the ceramic sheet 21 is obtained by forming a ceramic slurry containing ceramic particles, a resin and a dispersant into a sheet shape on a film substrate.
  • a conductive paste for forming the internal electrode layers 3 and 4 is prepared.
  • the conductive paste includes, for example, metal particles made of nickel, a resin, and an organic solvent.
  • the conductive paste is printed with a predetermined pattern on the above-described ceramic sheet 21, thereby forming the conductive paste film 22 (see FIG. 2) to be the internal electrode layers 3 and 4 on the ceramic sheet 21. . If the metal particles contained in the conductive paste have a nano-level particle size, the conductive paste film 22 usually looks blackish. That is, the conductive paste film 22 has a light absorption rate higher than that of the whitish ceramic sheet 21. Therefore, in this embodiment, the conductive paste film 22 itself serves as a light absorption film.
  • a plurality of ceramic sheets 21 including the ceramic sheet 21 on which the conductive paste film 22 is formed are peeled off from a film base material (not shown), and then laminated to form a raw laminate. can get. This lamination process is shown in FIG.
  • a plurality of ceramic sheets 21 that are not formed with a conductive paste film and that are outer layer portions on one side in the stacking direction of the stacked body 5 are stacked.
  • a plurality of ceramic sheets 21 on which the conductive paste film 22 is formed are laminated.
  • a light irradiation process is performed in which the light 24 from the heating light source 23 is irradiated toward the conductive paste film 22 as a light absorption film.
  • the heating light source 23 a light source capable of irradiating a strong light 24 of preferably 0.5 kW / cm 2 or more, more preferably 1 kW / cm 2 or more is used.
  • a xenon lamp is advantageously used.
  • a halogen lamp other than a xenon lamp can be used as the heating light source 23.
  • a condensing optical system including a lens and a mirror may be combined.
  • the heating light source 23 When a xenon lamp is used as the heating light source 23, pulsed light 24 in the order of microseconds to milliseconds is irradiated. At this time, the dark conductive paste film 22 absorbs the light 24 and is heated, and at the same time, the heat is transmitted to the ceramic sheet 21 immediately below the conductive paste film 22.
  • the conductive paste film 22 is usually as thin as several ⁇ m, it can be considered that the conductive paste film 22 and the ceramic sheet 21 are heated almost simultaneously.
  • the energy of the irradiation light 24 is sufficiently large (for example, when it is 1 kW / cm 2 or more for each thickness of 1 ⁇ m of the conductive paste film 22 and the ceramic sheet 21; that is, when it is about 10,000 times or more of sunlight) ).
  • the conductive paste film 22 and the ceramic sheet 21 are instantaneously heated to 1000 ° C. or higher, and the metal contained in the conductive paste film 22 for a short time ( ⁇ several milliseconds) until the temperature starts to drop. Both the particles and the ceramic particles contained in the ceramic sheet 21 are sintered.
  • the conductive paste film 22 is heated by absorbing the light 24, and as a result, the metal particles contained in the conductive paste film 22 are sintered and the heated conductive paste is heated.
  • the ceramic particles contained in the ceramic sheet 21 are sintered by the heat transferred from the film 22 to the ceramic sheet 21.
  • particle sintering occurs from the point of contact necking between particles, and the speed is known to be inversely proportional to the particle size (written by Tsuneo Ishida, “Sintered Materials Engineering”, Morikita Publishing Co., Ltd.) , March 1997, pp. 77-82). Therefore, as described above, the sintering of the metal particles and the sintering of the ceramic particles start almost simultaneously. However, when the ceramic particles are smaller than the metal particles, more precisely, the ceramic particles are more than the metal particles. Sinters as soon as possible. Therefore, it is possible to realize a specific phenomenon that cannot occur in the conventional atmosphere firing, in which the ceramic sheet 21 contracts before the conductive paste film 22. This is considered to be effective in suppressing the occurrence of delamination failure and coverage failure.
  • Photo-firing is a short-time pre-firing process and is intended for necking of ceramic particles. Therefore, the sintering of the metal particles and the full-scale sintering (densification) of the ceramic particles are performed using a conventional atmospheric furnace in the main firing step described later. At this time, since the ceramic particles are preliminarily contracted, the stress at the interface between the conductive paste film 22 and the ceramic sheet 21 in the process of sintering the metal particles and the ceramic particles in this order can be reduced. As a result, it is possible to reduce defects such as delamination and electrode coverage and improve yield.
  • the laminated body 5 A plurality of ceramic sheets 21 on which the conductive paste film is not formed, which is the outer layer portion on the other side in the laminating direction, are laminated.
  • the laminated body obtained as described above is pressed in the laminating direction.
  • a preliminary press may be further performed for each stacking of the ceramic sheets 21 at a stage in the middle of the above-described lamination process.
  • the conductive paste film 22 that absorbs more light serves as a main heat source and the ceramic sheet 21 is heated. Therefore, the ceramic particles are sintered immediately below the conductive paste film 22. There is a high possibility that the ceramic particles are not sintered in the periphery of the ceramic sheet 21, for example, in the peripheral portion. Therefore, there is a high possibility that the resin component as the binder remains in the peripheral portion of the ceramic sheet 21. However, this resin component advantageously acts to further improve the adhesion between the ceramic sheets 21 in the laminated body after pressing.
  • a cutting step is performed as necessary in order to obtain a laminated body before the main firing for the individual multilayer ceramic capacitors 1 shown in FIG. And the main baking process by atmospheric baking using a batch furnace, a tunnel furnace, etc. is implemented, and the laminated body 5 sintered is obtained.
  • a conductive paste is applied on the end faces 8 and 9 of the laminate 5 and baked, whereby external electrodes 10 and 11 are formed. Furthermore, plating films 12 and 13 are formed on the external electrodes 10 and 11 as necessary, and the multilayer ceramic capacitor 1 is completed.
  • the manufacturing method according to the present invention is not limited to the multilayer ceramic capacitor as described above, and can be applied to other multilayer ceramic electronic components such as a positive temperature coefficient thermistor, varistor, and inductor. .
  • FIG. 3 is a view for explaining a manufacturing method according to the second embodiment of the present invention. 3, elements corresponding to those shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
  • This embodiment is characterized in that the ceramic sheets that have undergone the light irradiation step are laminated in the lamination step.
  • FIG. 3 shows a long ceramic sheet 21 lined with a film substrate 25. While the ceramic sheet 21 is intermittently conveyed in the direction of the arrow 26 by a roll-to-roll method (not shown), the conductive paste film 22 is printed at the printing station 27, and then the heater heating and drying station 28 is moved. After that, in the light irradiation station 29, the light 24 from the heating light source 23 is irradiated toward the conductive paste film 22. In this light irradiation station 29, the conductive paste film 22 is heated by absorbing the light 24, the metal particles are sintered, and the heat transferred from the heated conductive paste film 22 to the ceramic sheet 21 The ceramic particles sinter.
  • the ceramic sheet 21 is cut along the cutting line 30 and then subjected to a lamination process (not shown).
  • a lamination process not shown.
  • the same steps as those described with reference to FIG. 2 are performed except that the light irradiation step is not performed.
  • FIG. 4 is a view for explaining a manufacturing method according to the third embodiment of the present invention. 4, elements corresponding to those shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
  • This embodiment is characterized in that not only the conductive paste film remaining on the ceramic sheet after the light irradiation process but also a film that disappears in the light irradiation process is provided as the light absorption film.
  • a conductive paste film 22 is formed on the ceramic sheet 21 with a predetermined pattern. Further, in the region where the conductive paste film 22 is not formed on the ceramic sheet 21, a erasable film 31 made of a paste containing carbon or a dark organic pigment is formed, for example, which disappears in the light irradiation process. Note that the order of forming the conductive paste film 22 and the erasable film 31 is not limited.
  • the conductive paste film 22 and the erasable film 31 are lighted. 24 is absorbed and heated, and at the same time, the heat is transmitted to the ceramic sheet 21 immediately below the conductive paste film 22 and the erasable film 31.
  • the metal particles in the conductive paste film 22 are sintered and the ceramic particles in the ceramic sheet 21 are sintered.
  • the erasable film 31 disappears by heat generated by absorbing the light 24 itself. The disappearance of the lossable film 31 is accompanied by phenomena such as evaporation and combustion.
  • sintering of the ceramic particles can be achieved over the entire region in the main surface direction of the ceramic sheet 21.
  • FIG. 5 illustrates a manufacturing method according to the fourth embodiment of the present invention.
  • elements corresponding to those shown in FIG. 2 or 4 are denoted by the same reference numerals, and redundant description is omitted.
  • this embodiment includes not only a conductive paste film remaining on the ceramic sheet after the light irradiation process but also a film that disappears in the light irradiation process as the light absorption film. It is characterized by that. Further, this embodiment is the same as the third embodiment in that the sintering of the ceramic particles can be achieved over the entire region in the main surface direction of the ceramic sheet.
  • a conductive paste film 22 is formed on the ceramic sheet 21 with a predetermined pattern. Further, the erasable film 31 that disappears in the light irradiation process is formed in the entire region in the main surface direction of the ceramic sheet 21 including the region where the conductive paste film 22 is formed on the ceramic sheet 21.
  • the conductive paste film 22 and the erasable film 31 as the light absorption film are heated by the light 24 from the heating light source 23, and at the same time, the heat is transferred to the conductive paste film 22 and the erasable film. It is transmitted to the ceramic sheet 21 immediately below 31. As a result, the metal particles in the conductive paste film 22 are sintered and the ceramic particles in the ceramic sheet 21 are sintered. Further, the erasable film 31 disappears by heat generated by absorbing the light 24 itself.
  • FIG. 6 illustrates a manufacturing method according to the fifth embodiment of the present invention.
  • elements corresponding to the elements shown in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.
  • This embodiment is characterized in that only a film that disappears in the light irradiation step is provided as the light absorption film. Also in this embodiment, the sintering of the ceramic particles can be achieved over the entire region in the main surface direction of the ceramic sheet.
  • a erasable film 31 that disappears in the light irradiation process is formed in the entire region in the main surface direction of the ceramic sheet 21.
  • the lossable film 31 for example, application by printing or spraying is applied.
  • the light 24 from the heating light source 23 heats the erasable film 31 as a light absorption film, and at the same time, the heat is transmitted to the ceramic sheet 21 immediately below the erasable film 31.
  • the ceramic particles in the ceramic sheet 21 are sintered, and the erasable film 31 disappears by heat generated by absorbing the light 24 itself.
  • BaCO 3 and TiO 2 powders were prepared and prepared so that the composition of BaTiO 3 was obtained.
  • a resin, a dispersant, and water were added to the calcined powder and mixed with zirconia balls for several hours to obtain a ceramic slurry containing the calcined powder as ceramic particles having an average particle diameter of 50 nm.
  • the ceramic slurry was formed into a sheet shape by a doctor blade method on a film substrate and dried to obtain a ceramic sheet having a thickness of 2 ⁇ m.
  • a conductive paste containing nickel powder having an average particle diameter of 200 nm, a resin, and an organic solvent is prepared, and a conductive paste having a thickness of 1.0 ⁇ m serving as an internal electrode layer is formed on a predetermined ceramic sheet by a screen printing method. A film was formed.
  • the particle size of the ceramic particles described above is smaller than the particle size of the nickel powder as the metal powder.
  • the conductive paste film is placed on the ceramic sheet so that the conductive paste film faces the ceramic sheet.
  • a plurality of ceramic sheets formed with the above were laminated.
  • each time one ceramic sheet is stacked light (wavelength 300 to 1200 nm) from a mercury xenon lamp is directed toward the conductive paste film as “irradiation light power” and “irradiation” shown in Table 1.
  • the laser sheet was pre-fired by irradiating 1 pulse with time.
  • an appropriate number of outer layer ceramic sheets on which a conductive paste film is not formed are laminated and pressure-bonded, and then cut into dimensions of 2.2 mm in length and 2.75 mm in width, and 1.2 mm in thickness. A raw laminate was obtained.
  • the raw laminate was degreased at a temperature of 400 ° C. and then baked at a temperature of 1250 ° C. for 20 minutes for main baking.
  • a sintered laminate was obtained in which the ceramic layer was provided by the ceramic sheet and the internal electrode layer was provided by the conductive paste film.
  • the sintered laminate was mixed with a cobblestone having a diameter of 1 mm containing Si and Al, and a predetermined amount of water was added to perform barrel polishing.
  • an external electrode is formed by applying and baking a conductive paste containing Cu as a conductive component on both end faces of the laminate, and then, on the external electrode, an Ni layer and Sn as a plating film are further formed. Layers were sequentially formed by electroplating.
  • the delamination occurrence rate was reduced while maintaining the room temperature resistance as compared with the comparative sample. This is because the ceramic particles were sufficiently sintered by pre-firing with a mercury xenon lamp, and the stress caused by the difference in sintering shrinkage behavior between the internal electrode layer and the ceramic layer in the main firing stage was alleviated. Guessed.
  • the appropriate range of “irradiation light power” is considered to vary depending on the composition, particle size, film thickness, and the like of the ceramic material. However, in this experimental example, it was demonstrated that the ceramic particles can be sufficiently sintered by pre-firing with a mercury xenon lamp at least if the “irradiation light power” is 0.5 kW / cm 2 or more.
  • the light irradiation time per ceramic sheet of the layer is preferably shorter.
  • the “irradiation time” was in the range of 0.5 to 10 milliseconds.
  • the time required for laminating one ceramic sheet is about several hundred milliseconds to several seconds.
  • the “irradiation time” at which the above-mentioned good results were obtained is sufficiently short. Therefore, it is possible to introduce a preliminary baking step using light without reducing the efficiency of the conventional lamination step.
  • FIG. 7 shows an absorption spectrum of visible light (wavelength: 400 nm to 800 nm) for the light absorption film investigated in this experimental example.
  • the light absorption rate was measured using an ultraviolet-visible spectrophotometer (Shimadzu Corporation).
  • nickel is a light absorbing film formed by printing and applying a conductive paste containing nickel powder used in Experimental Example 1 onto the ceramic sheet used in Experimental Example 1.
  • Copper uses a copper powder having an average particle size of 200 nm, and a conductive paste produced by the same manufacturing method as that of the conductive paste containing the nickel powder is printed on the ceramic sheet used in Experimental Example 1. It is the formed light absorption film.
  • Silver foil is a light absorbing film formed on the ceramic sheet used in Experimental Example 1 by sputtering so that the silver foil has a thickness of 200 nm.
  • “None (ceramic)” is the ceramic sheet itself used in Experimental Example 1 in which no light absorption film was formed.
  • Table 2 shows whether or not each sample shown in FIG. 7 is irradiated with light and the ceramic particles contained in the ceramic sheet can be sintered.
  • “nickel” had an average light absorption rate of 63%
  • “copper” had an average light absorption rate of 21%.
  • the ceramic particles were sintered.
  • “silver foil” had an average light absorptivity of 0.7%, which was lower than “none (ceramic)”.
  • the ceramic particles were not sintered. Of course, the ceramic particles were not sintered even in “None (ceramic)”.
  • the average absorption rate of visible light is preferably 21% or more, more preferably 63% or more. I found out.
  • a non-volatile and non-combustible material called a metal material was used in the light absorption film.
  • a volatile material represented by an organic dye or a combustible material represented by carbon was used. It is understood that the same effect can be obtained even when used in a light absorbing film.
  • the thickness of the ceramic sheet as the object of photo-fired is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m.
  • Multilayer ceramic capacitors multilayer ceramic electronic components
  • Ceramic layer 3 Internal electrode layer 5
  • Laminate 21 Ceramic sheet 22
  • Conductive paste film 23 Heating light source 24
  • Light 29 Light irradiation station 30
  • Cutting line 31 Erasable film

Abstract

Provided is a method for producing a multilayer ceramic electronic component which can suppress occurrences of delamination defects in a laminated body and coverage defects of an internal electrode layer. Each time a ceramic sheet (21) on which is formed a conductive paste film (22) having a relatively high light absorption rate is laminated, light (24) from a heating light source (23) such as a Xenon lamp is applied onto the conductive paste film (22). The conductive paste film (22) is heated by absorbing the light (24) and as a result, metal particles in the conductive paste film (22) are sintered and ceramic particles in the ceramic sheet (21) are sintered by the heat transferred from the heated conductive paste film (22) to the ceramic sheet (21). A laminated body obtained by laminating a plurality of the ceramic sheets (21) is further sintered thereafter.

Description

セラミックの焼成方法および積層セラミック電子部品の製造方法Ceramic firing method and multilayer ceramic electronic component manufacturing method
 この発明は、セラミックの焼成方法、およびこの焼成方法を用いて実施される積層セラミック電子部品の製造方法に関するものである。 The present invention relates to a method for firing a ceramic and a method for producing a multilayer ceramic electronic component carried out using this firing method.
 この発明にとって興味ある技術として、積層セラミック電子部品の製造方法が、たとえば国際公開第2004/075216号パンフレット(特許文献1)等の種々の文献に記載されている。これらの先行技術文献に記載される製造方法によれば、積層セラミック電子部品は、以下の工程を経て製造される。 As a technique of interest to the present invention, a method for manufacturing a multilayer ceramic electronic component is described in various documents such as International Publication No. 2004/075216 (Patent Document 1). According to the manufacturing method described in these prior art documents, the multilayer ceramic electronic component is manufactured through the following steps.
 まず、フィルム基材上で成形されたセラミックグリーンシートに、所望の電極パターンに応じたパターンを有する導電性ペースト膜を印刷し、次いで、複数のセラミックグリーンシートを積層し、生の積層体を得る。フィルム基材は、セラミックグリーンシートを積層する前に剥離されたり、あるいは、積層工程を実施しながら、セラミックグリーンシートを積層するごとに剥離されたりする。 First, a conductive paste film having a pattern corresponding to a desired electrode pattern is printed on a ceramic green sheet formed on a film substrate, and then a plurality of ceramic green sheets are laminated to obtain a raw laminate. . The film substrate is peeled off before the ceramic green sheets are laminated, or is peeled off every time the ceramic green sheets are laminated while performing the lamination process.
 次に、生の積層体は、必要に応じて適切な大きさにカットされ、次いで焼成される。焼成工程では、生の積層体中の樹脂成分が除去(脱脂)されるとともに、セラミックグリーンシート中のセラミック粒子および導電性ペースト膜中の金属粒子が焼結する。これによって、所望の電気的特性を有する、セラミック層および電極層が交互に積層された積層体が得られる。その後、たとえば、導電性ペーストの焼き付けにより外部電極が形成される。 Next, the raw laminate is cut into an appropriate size as necessary, and then fired. In the firing step, the resin component in the raw laminate is removed (degreasing), and the ceramic particles in the ceramic green sheet and the metal particles in the conductive paste film are sintered. As a result, a laminated body in which ceramic layers and electrode layers are alternately laminated having desired electrical characteristics can be obtained. Thereafter, for example, the external electrode is formed by baking a conductive paste.
 上述した焼成工程では、バッチ炉やトンネル炉などが適用される。炉内の雰囲気は、毎分数℃~数10℃の昇温速度でセラミックが焼結する温度(1300℃程度)まで加熱され、電極層およびセラミック層が焼結する。このとき、電極層に含まれる金属粒子の融点がセラミック層に含まれるセラミック粒子の融点よりも低いために、セラミック粒子よりも金属粒子が早く焼結を開始する。そのため、焼成過程において、電極層のみが焼結収縮する段階があり、このように電極層のみが収縮する段階では、電極層とセラミック層との界面に比較的大きな応力が生じる。その結果、層間で剥離する不良(デラミネーション不良)や、電極層が収縮して網目状となり、電極被覆率が低下する不良(カバレッジ不良)などが発生していた。カバレッジ不良は、得られた積層セラミック電子部品において所望の電気特性が得られないという問題を招く。 In the above baking process, a batch furnace or a tunnel furnace is applied. The atmosphere in the furnace is heated to a temperature at which the ceramic is sintered (about 1300 ° C.) at a temperature rising rate of several to several tens of degrees per minute, and the electrode layer and the ceramic layer are sintered. At this time, since the melting point of the metal particles contained in the electrode layer is lower than the melting point of the ceramic particles contained in the ceramic layer, the metal particles start sintering earlier than the ceramic particles. Therefore, in the firing process, there is a stage where only the electrode layer shrinks and shrinks, and in such a stage where only the electrode layer shrinks, a relatively large stress is generated at the interface between the electrode layer and the ceramic layer. As a result, defects such as delamination between layers (delamination defects) and defects in which the electrode layer contracts into a network and the electrode coverage decreases (coverage defects) occur. The poor coverage causes a problem that desired electrical characteristics cannot be obtained in the obtained multilayer ceramic electronic component.
 上記のような不良を抑制するために、電極層の焼結を遅らせる手段として、セラミック粒子を電極層形成のための導電性ペーストに混合することが一般的に行なわれているが、必ずしも効果は十分ではなかった。 In order to suppress such defects as described above, as a means for delaying the sintering of the electrode layer, it is generally performed to mix ceramic particles into a conductive paste for electrode layer formation. It was not enough.
国際公開第2004/075216号パンフレットInternational Publication No. 2004/075216 Pamphlet
 そこで、この発明の目的は、上述したデラミネーション不良やカバレッジ不良の発生を抑制できる、積層セラミック電子部品の製造方法を提供しようとすることである。 Therefore, an object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component capable of suppressing the occurrence of the above-mentioned delamination failure and coverage failure.
 この発明の他の目的は、上述したデラミネーション不良やカバレッジ不良の問題を引き起こす可能性のあるバッチ炉やトンネル炉等による雰囲気焼成にはよらない、セラミックの焼成方法を提供しようとすることである。 Another object of the present invention is to provide a ceramic firing method that does not depend on atmosphere firing in a batch furnace or a tunnel furnace that may cause the above-mentioned problems of delamination and coverage. .
 この発明は、まず、セラミックの焼成方法に向けられる。この発明では、バッチ炉やトンネル炉のような雰囲気焼成に代えて、瞬間・急速加熱可能な加熱用光源を用いた焼成が適用されることを特徴としている。ただし、誘電体セラミックシートのような多くのセラミックシートは、白色または白色に近い色調を有しているので、光を吸収しにくく、よって加熱されにくい。そこで、セラミックシートの光吸収率よりも高い光吸収率を有する光吸収膜がセラミックシート上に形成され、この状態で、加熱用光源からの光が光吸収膜に照射される。 This invention is first directed to a ceramic firing method. The present invention is characterized in that firing using a heating light source capable of instantaneous and rapid heating is applied instead of atmosphere firing such as a batch furnace or a tunnel furnace. However, many ceramic sheets, such as dielectric ceramic sheets, have a white color or a color tone close to white, and thus are difficult to absorb light and thus are not easily heated. Therefore, a light absorption film having a light absorption rate higher than that of the ceramic sheet is formed on the ceramic sheet. In this state, the light absorption film is irradiated with light from the heating light source.
 すなわち、この発明に係るセラミックの焼成方法は、セラミック粒子を含むセラミックシートを用意する工程と、セラミックシート上に、当該セラミックシートの光吸収率よりも高い光吸収率を有する光吸収膜を形成する工程と、加熱用光源からの光を光吸収膜に向かって照射する、光照射工程と、を備え、この光照射工程において、光吸収膜は光を吸収することによって加熱され、加熱された光吸収膜からセラミックシートに伝達された熱によって、セラミック粒子を焼結させることを特徴としている。 That is, in the ceramic firing method according to the present invention, a step of preparing a ceramic sheet containing ceramic particles and a light absorption film having a light absorption rate higher than that of the ceramic sheet are formed on the ceramic sheet. And a light irradiation step of irradiating light from the heating light source toward the light absorption film. In this light irradiation step, the light absorption film is heated and heated by absorbing light. The ceramic particles are sintered by heat transferred from the absorption film to the ceramic sheet.
 上記光吸収膜は、たとえば金属粒子を含む導電性ペーストによって形成される場合のように、その少なくとも一部が、光照射工程の後もセラミックシート上に残る膜からなる場合、あるいは、たとえばカーボンや暗色の有機色素を含むペーストからなる場合のように、その少なくとも一部が、光照射工程において消失する膜からなる場合がある。 When the light absorption film is formed of a film that remains on the ceramic sheet even after the light irradiation step, as in the case of, for example, a conductive paste containing metal particles, As in the case of a paste containing a dark organic pigment, at least a part thereof may be a film that disappears in the light irradiation step.
 この発明は、また、上述したセラミックの焼成方法を適用して実施される積層セラミック電子部品の製造方法にも向けられる。 The present invention is also directed to a method for manufacturing a multilayer ceramic electronic component that is carried out by applying the ceramic firing method described above.
 この発明に係る積層セラミック電子部品の製造方法は、セラミック粒子を含む複数のセラミックシートを用意する工程と、複数のセラミックシートを積層し、それによって、積層体を得る、積層工程と、積層体を焼成する、本焼成工程と、を備える。 A method for manufacturing a multilayer ceramic electronic component according to the present invention includes a step of preparing a plurality of ceramic sheets containing ceramic particles, a step of stacking a plurality of ceramic sheets, thereby obtaining a laminate, and a laminate A main firing step of firing.
 そして、特徴的構成として、この発明に係る積層セラミック電子部品の製造方法は、セラミックシート上に、当該セラミックシートの光吸収率よりも高い光吸収率を有する光吸収膜を形成する工程と、加熱用光源からの光を上記光吸収膜に向かって照射する、光照射工程と、をさらに備える。光吸収膜の少なくとも一部は、金属粒子を含む導電性ペーストからなる導電性ペースト膜によって与えられる。また、光照射工程において、光吸収膜は光を吸収することによって加熱され、その結果、前記金属粒子が焼結するとともに、加熱された光吸収膜からセラミックシートに伝達された熱によって、セラミック粒子が焼結することを特徴としている。 And as a characteristic configuration, the method of manufacturing a multilayer ceramic electronic component according to the present invention includes a step of forming a light absorption film having a light absorption rate higher than that of the ceramic sheet on the ceramic sheet, and heating. A light irradiation step of irradiating the light from the light source toward the light absorption film. At least a part of the light absorption film is provided by a conductive paste film made of a conductive paste containing metal particles. Further, in the light irradiation step, the light absorption film is heated by absorbing light, and as a result, the metal particles are sintered and the ceramic particles are heated by the heat transferred from the heated light absorption film to the ceramic sheet. Is characterized by sintering.
 光照射工程は、前述した本焼成工程に先立って実施される予備焼成工程であるということができる。 It can be said that the light irradiation process is a preliminary baking process performed prior to the above-described main baking process.
 セラミック粒子の粒径は、上述の金属粒子の粒径より小さいことが好ましい。これによって、セラミック粒子を金属粒子よりも早く焼結させることができ、その結果、セラミックシートが導電性ペースト膜よりも先に収縮する、従来の雰囲気焼成では起こり得ない特異的な現象を実現できる。このことは、デラミネーション不良やカバレッジ不良の発生の抑制に効果的であると考えられる。 The particle size of the ceramic particles is preferably smaller than the particle size of the metal particles described above. This makes it possible to sinter ceramic particles faster than metal particles, and as a result, it is possible to realize a unique phenomenon that cannot occur in conventional atmosphere firing, in which the ceramic sheet shrinks before the conductive paste film. . This is considered to be effective in suppressing the occurrence of delamination failure and coverage failure.
 この積層セラミック電子部品の製造方法においても、好ましくは、上記加熱用光源として、キセノンランプが用いられる。キセノンランプによれば、前述したように、大きい照射エネルギーを得ることができ、そのため、光吸収膜を瞬間的に昇温し、応じて、セラミックシートをわずかな時間で高温にもたらすことができる。したがって、セラミックシートに含まれるセラミック粒子の焼結と導電性ペースト膜に含まれる金属粒子の焼結をほぼ同時に開始させることができ、デラミネーション不良やカバレッジ不良の発生をより確実に抑制することができ、積層セラミック電子部品の製造の歩留まりを向上させることができる。 Also in this method of manufacturing a multilayer ceramic electronic component, a xenon lamp is preferably used as the heating light source. According to the xenon lamp, as described above, a large irradiation energy can be obtained. Therefore, the temperature of the light absorption film can be instantaneously increased, and accordingly, the ceramic sheet can be brought to a high temperature in a short time. Therefore, the sintering of the ceramic particles contained in the ceramic sheet and the sintering of the metal particles contained in the conductive paste film can be started almost simultaneously, and the occurrence of defective delamination and coverage can be more reliably suppressed. The production yield of the multilayer ceramic electronic component can be improved.
 上述の利点がより確実に奏されるためには、キセノンランプの照射エネルギーが0.5kW/cm以上であるというように、より高い方が好ましい。 In order to achieve the above advantages more reliably, it is preferable that the xenon lamp has a higher irradiation energy such that the irradiation energy is 0.5 kW / cm 2 or more.
 また、加熱用光源として、キセノンランプを用いる場合、光吸収膜の可視光吸収率が21%以上であることが好ましい。加熱用光源からの光によって、光吸収膜がより効率的に加熱され、応じて、セラミックシートに含まれるセラミック粒子をより迅速に焼結させることができるからである。 Further, when a xenon lamp is used as the heating light source, it is preferable that the visible light absorption rate of the light absorption film is 21% or more. This is because the light absorption film is more efficiently heated by the light from the heating light source, and accordingly, the ceramic particles contained in the ceramic sheet can be sintered more rapidly.
 この発明に係る積層セラミック電子部品の製造方法において、光照射工程および積層工程を実施するタイミングとして、典型的には、次の2種類がある。第1に、積層工程において、光吸収膜が形成されたセラミックシートを積層するごとに光照射工程が実施される。第2に、積層工程において、光照射工程を終えたセラミックシートが積層される。 In the method for manufacturing a multilayer ceramic electronic component according to the present invention, there are typically the following two types of timing for performing the light irradiation step and the lamination step. 1stly, in a lamination process, a light irradiation process is implemented whenever it laminates | stacks the ceramic sheet in which the light absorption film was formed. Second, in the laminating step, the ceramic sheets that have finished the light irradiation step are laminated.
 加熱用光源として、キセノンランプを用いたとき、前者のように、積層工程において、光吸収膜が形成されたセラミックシートを積層するごとに光照射工程を実施することが好ましい。この場合、積層工程の能率を低下させないようにするため、キセノンランプの1パルス当たりの照射時間が10ミリ秒以下であるというように、より短い方が好ましい。 When a xenon lamp is used as the heating light source, it is preferable that the light irradiation step is performed every time the ceramic sheets on which the light absorption film is formed are stacked in the stacking step as in the former case. In this case, in order not to reduce the efficiency of the laminating process, it is preferable that the irradiation time per pulse of the xenon lamp is 10 milliseconds or less so that it is shorter.
 また、この発明に係る積層セラミック電子部品の製造方法において、セラミックシートの厚みは、0.1~10μmであることが好ましい。セラミックシートに含まれるセラミック粒子を十分に焼結させるためである。 In the method for manufacturing a multilayer ceramic electronic component according to the present invention, the thickness of the ceramic sheet is preferably 0.1 to 10 μm. This is because the ceramic particles contained in the ceramic sheet are sufficiently sintered.
 以上のように、この発明に係るセラミックの焼成方法によれば、光を十分に吸収し得ないセラミックシートであっても、光吸収膜を形成することにより、加熱用光源からの光によってセラミック粒子を焼結させることが可能となる。また、光による焼成は、バッチ炉やトンネル炉を用いる雰囲気焼成に比べて、セラミック粒子の焼結を迅速に達成することができる。 As described above, according to the ceramic firing method of the present invention, even if the ceramic sheet cannot sufficiently absorb light, the ceramic particles are formed by the light from the heating light source by forming the light absorbing film. Can be sintered. In addition, the firing by light can achieve the sintering of the ceramic particles more rapidly than the atmosphere firing using a batch furnace or a tunnel furnace.
 また、この発明に係る積層セラミック電子部品の製造方法によれば、本焼成工程の段階で、セラミック粒子および金属粒子の各々が予め焼結しているので、セラミックシートによって与えられるセラミック層と導電性ペースト膜によって与えられる電極層との間での収縮挙動の差による両者間の界面での応力を低減でき、そのため、デラミネーション不良やカバレッジ不良の発生を抑制することができる。 Further, according to the method of manufacturing a multilayer ceramic electronic component according to the present invention, since each of the ceramic particles and the metal particles is pre-sintered in the stage of the main firing step, the ceramic layer provided by the ceramic sheet and the conductivity The stress at the interface between the two due to the difference in contraction behavior between the electrode layer and the electrode layer provided by the paste film can be reduced, and therefore, the occurrence of delamination failure and coverage failure can be suppressed.
 また、光吸収膜の少なくとも一部が導電性ペースト膜によって与えられるので、導電性ペースト膜が光吸収膜の少なくとも一部を兼ねることになり、得られた積層セラミック電子部品に備えるべき電極層を光吸収膜の少なくとも一部によって与えることができる。 Further, since at least a part of the light absorption film is provided by the conductive paste film, the conductive paste film also serves as at least a part of the light absorption film, and an electrode layer to be provided in the obtained multilayer ceramic electronic component is provided. It can be provided by at least part of the light absorbing film.
この発明が適用される積層セラミック電子部品の一例としての積層セラミックコンデンサを示す断面図である。It is sectional drawing which shows the laminated ceramic capacitor as an example of the laminated ceramic electronic component to which this invention is applied. この発明の第1の実施形態による製造方法を説明するためのもので、光照射工程を実施している状態を図解的に示す図である。It is a figure for demonstrating the state which is for demonstrating the manufacturing method by 1st Embodiment of this invention, and the light irradiation process is implemented. この発明の第2の実施形態による製造方法を説明するためのもので、光照射工程を実施している状態を図解的に示す図である。It is for demonstrating the manufacturing method by 2nd Embodiment of this invention, and is a figure which shows the state which is implementing the light irradiation process schematically. この発明の第3の実施形態による製造方法を説明するためのもので、光照射工程を実施している状態を図解的に示す図である。It is a figure for demonstrating the state which is for demonstrating the manufacturing method by 3rd Embodiment of this invention, and is implementing the light irradiation process. この発明の第4の実施形態による製造方法を説明するためのもので、光照射工程を実施している状態を図解的に示す図である。It is for demonstrating the manufacturing method by 4th Embodiment of this invention, and is a figure which shows the state which is implementing the light irradiation process schematically. この発明の第5の実施形態による製造方法を説明するためのもので、光照射工程を実施している状態を図解的に示す図である。It is for demonstrating the manufacturing method by 5th Embodiment of this invention, and is a figure which shows the state which is implementing the light irradiation process schematically. 実験例2において調査した光吸収率の互いに異なる4種類の態様についての可視光の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of visible light about four types from which the light absorption rate investigated in Experimental example 2 mutually differs.
 まず、図1を参照して、この発明が適用される積層セラミック電子部品の一例としての積層セラミックコンデンサ1の構造について説明する。 First, the structure of a multilayer ceramic capacitor 1 as an example of a multilayer ceramic electronic component to which the present invention is applied will be described with reference to FIG.
 積層セラミックコンデンサ1は、積層された複数のセラミック層2と、セラミック層2間の複数の界面に沿って配置される第1および第2の内部電極層3および4とをもって構成される積層体5を備えている。第1の内部電極層3と第2の内部電極層4とは、各々の一部において互いに対向し、積層方向に見て交互に配置される。セラミック層2は、たとえばBaTiO系の誘電体セラミックからなり、内部電極層3および4は、たとえば、ニッケルを主成分としている。 A multilayer ceramic capacitor 1 includes a multilayer body 5 including a plurality of laminated ceramic layers 2 and first and second internal electrode layers 3 and 4 disposed along a plurality of interfaces between the ceramic layers 2. It has. The first internal electrode layer 3 and the second internal electrode layer 4 are opposed to each other in a part of each, and are alternately arranged as viewed in the stacking direction. The ceramic layer 2 is made of, for example, a BaTiO 3 based dielectric ceramic, and the internal electrode layers 3 and 4 are mainly made of nickel, for example.
 積層体5は、互いに対向する第1および第2の主面6および7、互いに対向する第1および第2の側面(図示されない紙面に平行な面)ならびに互いに対向する第1および第2の端面8および9を有する、実質的に直方体形状を有している。 The laminate 5 includes first and second main surfaces 6 and 7 facing each other, first and second side surfaces facing each other (a surface parallel to a paper surface not shown), and first and second end surfaces facing each other. It has a substantially rectangular parallelepiped shape with 8 and 9.
 積層体5の第1の端面8には、第1の内部電極層3の各端部が露出している。積層体5の第1の端面8上には、第1の内部電極層3の各端部に電気的に接続されるように、第1の外部電極10が形成されている。 Each end of the first internal electrode layer 3 is exposed at the first end face 8 of the multilayer body 5. A first external electrode 10 is formed on the first end face 8 of the multilayer body 5 so as to be electrically connected to each end of the first internal electrode layer 3.
 積層体5の第2の端面9には、第2の内部電極層4の各端部が露出している。積層体5の第2の端面9上には、第2の内部電極層4の各端部に電気的に接続されるように、第2の外部電極11が形成されている。 Each end of the second internal electrode layer 4 is exposed at the second end face 9 of the multilayer body 5. A second external electrode 11 is formed on the second end face 9 of the multilayer body 5 so as to be electrically connected to each end of the second internal electrode layer 4.
 外部電極10および11は、たとえば銅または銀を導電成分として含む導電性ペーストを、積層体5の端面8および9上に塗布し、これを熱処理(焼付け)することによって形成される。外部電極10および11上には、必要に応じて、それぞれ、めっき膜12および13が形成される。めっき膜12および13は、たとえば、ニッケルを主成分とするニッケルめっき層14、およびその上に形成される、錫を主成分とする錫めっき層15から構成される。 External electrodes 10 and 11 are formed, for example, by applying a conductive paste containing copper or silver as a conductive component on end faces 8 and 9 of laminate 5 and heat-treating (baking) it. On the external electrodes 10 and 11, plating films 12 and 13 are formed as necessary. The plating films 12 and 13 include, for example, a nickel plating layer 14 mainly composed of nickel and a tin plating layer 15 mainly composed of tin formed thereon.
 以下に、積層セラミックコンデンサ1の製造方法について説明する。 Hereinafter, a method for manufacturing the multilayer ceramic capacitor 1 will be described.
 まず、セラミック層2となるべき生のセラミックシート21(図2参照)が用意される。セラミックシート21は、セラミック粒子、樹脂および分散剤を含むセラミックスラリーをフィルム基材上でシート状に成形することによって得られる。 First, a raw ceramic sheet 21 (see FIG. 2) to be the ceramic layer 2 is prepared. The ceramic sheet 21 is obtained by forming a ceramic slurry containing ceramic particles, a resin and a dispersant into a sheet shape on a film substrate.
 他方、内部電極層3および4を形成するための導電性ペーストが用意される。導電性ペーストは、たとえばニッケルからなる金属粒子、樹脂および有機溶剤を含む。導電性ペーストは、上述したセラミックシート21上に所定のパターンをもって印刷され、それによって、セラミックシート21上に内部電極層3および4となるべき導電性ペースト膜22(図2参照)が形成される。導電性ペーストに含まれる金属粒子がナノレベルの粒径を有していると、導電性ペースト膜22は通常黒っぽく見える。すなわち、導電性ペースト膜22は、白っぽいセラミックシート21の光吸収率より高い光吸収率を有する。そのため、この実施形態では、導電性ペースト膜22そのものが光吸収膜の役割を果たす。 On the other hand, a conductive paste for forming the internal electrode layers 3 and 4 is prepared. The conductive paste includes, for example, metal particles made of nickel, a resin, and an organic solvent. The conductive paste is printed with a predetermined pattern on the above-described ceramic sheet 21, thereby forming the conductive paste film 22 (see FIG. 2) to be the internal electrode layers 3 and 4 on the ceramic sheet 21. . If the metal particles contained in the conductive paste have a nano-level particle size, the conductive paste film 22 usually looks blackish. That is, the conductive paste film 22 has a light absorption rate higher than that of the whitish ceramic sheet 21. Therefore, in this embodiment, the conductive paste film 22 itself serves as a light absorption film.
 次に、導電性ペースト膜22が形成されたセラミックシート21を含む複数のセラミックシート21が、フィルム基材(図示せず。)から剥離された後、積層されることによって、生の積層体が得られる。この積層工程が図2に示されている。 Next, a plurality of ceramic sheets 21 including the ceramic sheet 21 on which the conductive paste film 22 is formed are peeled off from a film base material (not shown), and then laminated to form a raw laminate. can get. This lamination process is shown in FIG.
 図2を参照して、まず、積層体5の積層方向での一方側の外層部となる、導電性ペースト膜が形成されていない複数のセラミックシート21が積層される。 Referring to FIG. 2, first, a plurality of ceramic sheets 21 that are not formed with a conductive paste film and that are outer layer portions on one side in the stacking direction of the stacked body 5 are stacked.
 次いで、導電性ペースト膜22が形成された複数のセラミックシート21が積層される。このとき、セラミックシート21を積層するごとに、加熱用光源23からの光24を光吸収膜としての導電性ペースト膜22に向かって照射する、光照射工程が実施される。加熱用光源23としては、好ましくは0.5kW/cm以上、より好ましくは1kW/cm以上の強力な光24を照射できるものが用いられ、たとえばキセノンランプが有利に用いられる。 Next, a plurality of ceramic sheets 21 on which the conductive paste film 22 is formed are laminated. At this time, each time the ceramic sheets 21 are laminated, a light irradiation process is performed in which the light 24 from the heating light source 23 is irradiated toward the conductive paste film 22 as a light absorption film. As the heating light source 23, a light source capable of irradiating a strong light 24 of preferably 0.5 kW / cm 2 or more, more preferably 1 kW / cm 2 or more is used. For example, a xenon lamp is advantageously used.
 加熱用光源23として、キセノンランプ以外のたとえばハロゲンランプを用いることもできる。この場合、照射エネルギーをより高めるため、レンズや鏡を備える集光用光学システムを組み合わせてもよい。 For example, a halogen lamp other than a xenon lamp can be used as the heating light source 23. In this case, in order to further increase the irradiation energy, a condensing optical system including a lens and a mirror may be combined.
 加熱用光源23としてキセノンランプを用いる場合、マイクロ秒~ミリ秒オーダーのパルス光24が照射される。このとき、暗色の導電性ペースト膜22が光24を吸収して加熱されると同時に、その熱が導電性ペースト膜22の直下のセラミックシート21に伝達される。ここで、導電性ペースト膜22は、通常、数μmと薄いために、導電性ペースト膜22とセラミックシート21とは、ほぼ同時に加熱されると考えることができる。 When a xenon lamp is used as the heating light source 23, pulsed light 24 in the order of microseconds to milliseconds is irradiated. At this time, the dark conductive paste film 22 absorbs the light 24 and is heated, and at the same time, the heat is transmitted to the ceramic sheet 21 immediately below the conductive paste film 22. Here, since the conductive paste film 22 is usually as thin as several μm, it can be considered that the conductive paste film 22 and the ceramic sheet 21 are heated almost simultaneously.
 照射光24のエネルギーが十分に大きいとき(たとえば、導電性ペースト膜22およびセラミックシート21の各厚み1μmに対し1kW/cm以上であるとき;すなわち、太陽光の約1万倍以上であるとき)、導電性ペースト膜22およびセラミックシート21は瞬間的に1000℃以上に加熱され、温度が下がり始めるまでのわずかな時間(~数ミリ秒)の間に、導電性ペースト膜22に含まれる金属粒子およびセラミックシート21に含まれるセラミック粒子はともに焼結する。 When the energy of the irradiation light 24 is sufficiently large (for example, when it is 1 kW / cm 2 or more for each thickness of 1 μm of the conductive paste film 22 and the ceramic sheet 21; that is, when it is about 10,000 times or more of sunlight) ), The conductive paste film 22 and the ceramic sheet 21 are instantaneously heated to 1000 ° C. or higher, and the metal contained in the conductive paste film 22 for a short time (˜several milliseconds) until the temperature starts to drop. Both the particles and the ceramic particles contained in the ceramic sheet 21 are sintered.
 このように、光照射工程では、導電性ペースト膜22は光24を吸収することによって加熱され、その結果、導電性ペースト膜22に含まれる金属粒子が焼結するとともに、加熱された導電性ペースト膜22からセラミックシート21に伝達された熱によって、セラミックシート21に含まれるセラミック粒子が焼結する。 As described above, in the light irradiation process, the conductive paste film 22 is heated by absorbing the light 24, and as a result, the metal particles contained in the conductive paste film 22 are sintered and the heated conductive paste is heated. The ceramic particles contained in the ceramic sheet 21 are sintered by the heat transferred from the film 22 to the ceramic sheet 21.
 従来の雰囲気焼成の場合には、焼成対象物を徐々に加熱するため、金属粒子、セラミック粒子の順に焼結が進行するのに対し、上述のいわゆる光焼成の場合には、焼成対象物を瞬時に加熱するために、金属粒子の焼結とセラミック粒子の焼結とがほぼ同時に開始する。 In the case of conventional atmosphere firing, since the firing object is gradually heated, the sintering proceeds in the order of metal particles and ceramic particles, whereas in the case of the so-called light firing described above, the firing object is instantaneously Therefore, the sintering of the metal particles and the sintering of the ceramic particles start almost simultaneously.
 一般に、粒子の焼結は粒子同士の接点のネッキングが起点となって起こり、その速度は粒径に反比例することが知られている(石田恒雄著,「焼結材料工学」,森北出版株式会社,1997年3月,第77頁~第82頁)。したがって、前述したように、金属粒子の焼結とセラミック粒子の焼結とがほぼ同時に開始するとしたが、金属粒子に対して、セラミック粒子が小さい場合、より正確には、セラミック粒子が金属粒子よりも早く焼結する。そのため、セラミックシート21が導電性ペースト膜22よりも先に収縮する、といった従来の雰囲気焼成では起こり得ない特異的な現象を実現できる。このことは、デラミネーション不良やカバレッジ不良の発生の抑制に効果的であると考えられる。 In general, particle sintering occurs from the point of contact necking between particles, and the speed is known to be inversely proportional to the particle size (written by Tsuneo Ishida, “Sintered Materials Engineering”, Morikita Publishing Co., Ltd.) , March 1997, pp. 77-82). Therefore, as described above, the sintering of the metal particles and the sintering of the ceramic particles start almost simultaneously. However, when the ceramic particles are smaller than the metal particles, more precisely, the ceramic particles are more than the metal particles. Sinters as soon as possible. Therefore, it is possible to realize a specific phenomenon that cannot occur in the conventional atmosphere firing, in which the ceramic sheet 21 contracts before the conductive paste film 22. This is considered to be effective in suppressing the occurrence of delamination failure and coverage failure.
 光焼成は、短時間の予備焼成プロセスであり、セラミック粒子のネッキングを目的としている。したがって、金属粒子の焼結およびセラミック粒子の本格的な焼結(緻密化)は、後述する本焼成工程において、従来の雰囲気炉を用いて行なわれる。このとき、セラミック粒子を予備的に収縮させているため、金属粒子、セラミック粒子の順に焼結する過程における、導電性ペースト膜22とセラミックシート21との界面の応力を低減できる。この結果、デラミネーションや電極カバレッジの低下といった不良を低減し、歩留まりを改善できる。 Photo-firing is a short-time pre-firing process and is intended for necking of ceramic particles. Therefore, the sintering of the metal particles and the full-scale sintering (densification) of the ceramic particles are performed using a conventional atmospheric furnace in the main firing step described later. At this time, since the ceramic particles are preliminarily contracted, the stress at the interface between the conductive paste film 22 and the ceramic sheet 21 in the process of sintering the metal particles and the ceramic particles in this order can be reduced. As a result, it is possible to reduce defects such as delamination and electrode coverage and improve yield.
 このように、積層工程において、導電性ペースト膜22が形成されたセラミックシート21を積層するごとに光焼成のための光照射工程を実施することを必要回数繰り返された後、再び、積層体5の積層方向における他方側の外層部となる、導電性ペースト膜が形成されていない複数のセラミックシート21が積層される。 Thus, after repeating the light irradiation process for light baking every time it laminates | stacks the ceramic sheet 21 in which the electrically conductive paste film | membrane 22 was formed in a lamination process, again, the laminated body 5 A plurality of ceramic sheets 21 on which the conductive paste film is not formed, which is the outer layer portion on the other side in the laminating direction, are laminated.
 以上のようにして得られた積層体は、積層方向にプレスされる。なお、このような最終段階でのプレスに加えて、上述した積層工程の途中の段階で、セラミックシート21の積重ねごとに予備的なプレスをさらに実施してもよい。 The laminated body obtained as described above is pressed in the laminating direction. In addition to the press at the final stage, a preliminary press may be further performed for each stacking of the ceramic sheets 21 at a stage in the middle of the above-described lamination process.
 前述した光照射工程では、光をより多く吸収する導電性ペースト膜22が主たる熱源となってセラミックシート21が加熱されるので、セラミック粒子が焼結するのは、導電性ペースト膜22の直下とその周辺においてのみに限定され、セラミックシート21のたとえば周縁部では、セラミック粒子は焼結しない可能性が高い。そのため、セラミックシート21の周縁部では、バインダとしての樹脂成分が残留している可能性が高い。しかしながら、この樹脂成分は、プレス後の積層体において、セラミックシート21間の密着性をより高めるように有利に作用する。 In the light irradiation process described above, the conductive paste film 22 that absorbs more light serves as a main heat source and the ceramic sheet 21 is heated. Therefore, the ceramic particles are sintered immediately below the conductive paste film 22. There is a high possibility that the ceramic particles are not sintered in the periphery of the ceramic sheet 21, for example, in the peripheral portion. Therefore, there is a high possibility that the resin component as the binder remains in the peripheral portion of the ceramic sheet 21. However, this resin component advantageously acts to further improve the adhesion between the ceramic sheets 21 in the laminated body after pressing.
 次いで、図1に示した個々の積層セラミックコンデンサ1のための本焼成前の積層体を得るため、必要に応じて切断工程が実施される。そして、バッチ炉やトンネル炉等を用いた雰囲気焼成による本焼成工程が実施され、焼結した積層体5が得られる。 Next, a cutting step is performed as necessary in order to obtain a laminated body before the main firing for the individual multilayer ceramic capacitors 1 shown in FIG. And the main baking process by atmospheric baking using a batch furnace, a tunnel furnace, etc. is implemented, and the laminated body 5 sintered is obtained.
 次に、積層体5の端面8および9上に、導電性ペーストが付与され、焼き付けられることによって、外部電極10および11が形成される。さらに、外部電極10および11上には、必要に応じて、めっき膜12および13が形成され、積層セラミックコンデンサ1が完成される。 Next, a conductive paste is applied on the end faces 8 and 9 of the laminate 5 and baked, whereby external electrodes 10 and 11 are formed. Furthermore, plating films 12 and 13 are formed on the external electrodes 10 and 11 as necessary, and the multilayer ceramic capacitor 1 is completed.
 なお、この発明に係る製造方法が適用されるのは、上述したような積層セラミックコンデンサに限らず、たとえば、正特性サーミスタ、バリスタ、インダクタなどの他の積層セラミック電子部品にも適用することができる。 The manufacturing method according to the present invention is not limited to the multilayer ceramic capacitor as described above, and can be applied to other multilayer ceramic electronic components such as a positive temperature coefficient thermistor, varistor, and inductor. .
 図3は、この発明の第2の実施形態による製造方法を説明するためのものである。図3において、図2に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。この実施形態は、光照射工程を終えたセラミックシートが積層工程において積層されることを特徴としている。 FIG. 3 is a view for explaining a manufacturing method according to the second embodiment of the present invention. 3, elements corresponding to those shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted. This embodiment is characterized in that the ceramic sheets that have undergone the light irradiation step are laminated in the lamination step.
 図3には、フィルム基材25によって裏打ちされた長尺のセラミックシート21が図示されている。セラミックシート21は、ロール・ツー・ロール方式(図示を省略)で間欠的に矢印26方向へ搬送されながら、印刷ステーション27において、導電性ペースト膜22が印刷され、次いで、ヒーター加熱乾燥ステーション28を経た後、光照射ステーション29において、加熱用光源23からの光24が導電性ペースト膜22に向かって照射される。この光照射ステーション29では、導電性ペースト膜22が光24を吸収することによって加熱され、金属粒子が焼結するとともに、加熱された導電性ペースト膜22からセラミックシート21に伝達された熱によって、セラミック粒子が焼結する。 FIG. 3 shows a long ceramic sheet 21 lined with a film substrate 25. While the ceramic sheet 21 is intermittently conveyed in the direction of the arrow 26 by a roll-to-roll method (not shown), the conductive paste film 22 is printed at the printing station 27, and then the heater heating and drying station 28 is moved. After that, in the light irradiation station 29, the light 24 from the heating light source 23 is irradiated toward the conductive paste film 22. In this light irradiation station 29, the conductive paste film 22 is heated by absorbing the light 24, the metal particles are sintered, and the heat transferred from the heated conductive paste film 22 to the ceramic sheet 21 The ceramic particles sinter.
 その後、セラミックシート21は、切断線30に沿って切断された後、図示しないが、積層工程に付される。積層工程では、光照射工程を実施しないことを除いて、図2を参照して説明した工程と同様の工程が実施される。 After that, the ceramic sheet 21 is cut along the cutting line 30 and then subjected to a lamination process (not shown). In the stacking step, the same steps as those described with reference to FIG. 2 are performed except that the light irradiation step is not performed.
 図4は、この発明の第3の実施形態による製造方法を説明するためのものである。図4において、図2に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。この実施形態は、光吸収膜として、光照射工程の後もセラミックシート上に残る導電性ペースト膜だけでなく、光照射工程において消失する膜をも備えることを特徴としている。 FIG. 4 is a view for explaining a manufacturing method according to the third embodiment of the present invention. 4, elements corresponding to those shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted. This embodiment is characterized in that not only the conductive paste film remaining on the ceramic sheet after the light irradiation process but also a film that disappears in the light irradiation process is provided as the light absorption film.
 図4を参照して、セラミックシート21上には、所定のパターンをもって導電性ペースト膜22が形成される。さらに、セラミックシート21上の、導電性ペースト膜22が形成されない領域には、光照射工程において消失するもので、たとえばカーボンや暗色の有機色素を含むペーストからなる可消失膜31が形成される。なお、導電性ペースト膜22および可消失膜31の形成順序は問わない。 Referring to FIG. 4, a conductive paste film 22 is formed on the ceramic sheet 21 with a predetermined pattern. Further, in the region where the conductive paste film 22 is not formed on the ceramic sheet 21, a erasable film 31 made of a paste containing carbon or a dark organic pigment is formed, for example, which disappears in the light irradiation process. Note that the order of forming the conductive paste film 22 and the erasable film 31 is not limited.
 上述の状態で、加熱用光源23からの光24が、光吸収膜としての導電性ペースト膜22および可消失膜31に向かって照射されると、導電性ペースト膜22および可消失膜31が光24を吸収して加熱されると同時に、その熱が導電性ペースト膜22および可消失膜31の直下のセラミックシート21に伝達される。その結果、導電性ペースト膜22中の金属粒子が焼結するとともに、セラミックシート21中のセラミック粒子が焼結する。また、可消失膜31は、それ自身が光24を吸収して生じた熱によって消失する。可消失膜31の消失には、蒸発や燃焼という現象を伴う。 In the above state, when the light 24 from the heating light source 23 is irradiated toward the conductive paste film 22 and the erasable film 31 as the light absorption film, the conductive paste film 22 and the erasable film 31 are lighted. 24 is absorbed and heated, and at the same time, the heat is transmitted to the ceramic sheet 21 immediately below the conductive paste film 22 and the erasable film 31. As a result, the metal particles in the conductive paste film 22 are sintered and the ceramic particles in the ceramic sheet 21 are sintered. Further, the erasable film 31 disappears by heat generated by absorbing the light 24 itself. The disappearance of the lossable film 31 is accompanied by phenomena such as evaporation and combustion.
 この実施形態では、セラミックシート21の主面方向での全領域にわたって、セラミック粒子の焼結が達成され得る。 In this embodiment, sintering of the ceramic particles can be achieved over the entire region in the main surface direction of the ceramic sheet 21.
 図5は、この発明の第4の実施形態による製造方法を説明するためのものである。図5において、図2または図4に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。この実施形態は、上記第3の実施形態の場合と同様、光吸収膜として、光照射工程の後もセラミックシート上に残る導電性ペースト膜だけでなく、光照射工程において消失する膜をも備えることを特徴としている。また、この実施形態は、セラミックシートの主面方向での全領域にわたって、セラミック粒子の焼結が達成され得る点でも、第3の実施形態と同様である。 FIG. 5 illustrates a manufacturing method according to the fourth embodiment of the present invention. In FIG. 5, elements corresponding to those shown in FIG. 2 or 4 are denoted by the same reference numerals, and redundant description is omitted. As in the case of the third embodiment, this embodiment includes not only a conductive paste film remaining on the ceramic sheet after the light irradiation process but also a film that disappears in the light irradiation process as the light absorption film. It is characterized by that. Further, this embodiment is the same as the third embodiment in that the sintering of the ceramic particles can be achieved over the entire region in the main surface direction of the ceramic sheet.
 図5を参照して、セラミックシート21上には、所定のパターンをもって導電性ペースト膜22が形成される。さらに、セラミックシート21上の、導電性ペースト膜22が形成された領域をも含めて、セラミックシート21の主面方向での全領域には、光照射工程において消失する可消失膜31が形成される。 Referring to FIG. 5, a conductive paste film 22 is formed on the ceramic sheet 21 with a predetermined pattern. Further, the erasable film 31 that disappears in the light irradiation process is formed in the entire region in the main surface direction of the ceramic sheet 21 including the region where the conductive paste film 22 is formed on the ceramic sheet 21. The
 この実施形態では、可消失膜31の形成にあたっては、導電性ペースト膜22との間での位置合わせが不要であり、そのため、印刷に限らず、たとえばスプレーによる塗布をも適用することができる。 In this embodiment, in forming the erasable film 31, alignment with the conductive paste film 22 is not necessary. Therefore, not only printing but also application by spraying, for example, can be applied.
 この実施形態においても、加熱用光源23からの光24によって、光吸収膜としての導電性ペースト膜22および可消失膜31が加熱されると同時に、その熱が導電性ペースト膜22および可消失膜31の直下のセラミックシート21に伝達される。その結果、導電性ペースト膜22中の金属粒子が焼結するとともに、セラミックシート21中のセラミック粒子が焼結する。また、可消失膜31は、それ自身が光24を吸収して生じた熱によって消失する。 Also in this embodiment, the conductive paste film 22 and the erasable film 31 as the light absorption film are heated by the light 24 from the heating light source 23, and at the same time, the heat is transferred to the conductive paste film 22 and the erasable film. It is transmitted to the ceramic sheet 21 immediately below 31. As a result, the metal particles in the conductive paste film 22 are sintered and the ceramic particles in the ceramic sheet 21 are sintered. Further, the erasable film 31 disappears by heat generated by absorbing the light 24 itself.
 上記の第3および第4の実施形態は、図2に示すように、積層工程において、セラミックシート21を積層するごとに光照射工程を実施する場合にも、図3に示すように、光照射工程を終えたセラミックシート21を積層する場合にも適用することができる。 In the above-described third and fourth embodiments, as shown in FIG. 2, in the laminating step, when the light irradiation step is performed every time the ceramic sheets 21 are laminated, as shown in FIG. The present invention can also be applied to the case where the ceramic sheets 21 that have been processed are laminated.
 図6は、この発明の第5の実施形態による製造方法を説明するためのものである。図6において、図4に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。この実施形態は、光吸収膜として、光照射工程において消失する膜のみを備えることを特徴としている。また、この実施形態においても、セラミックシートの主面方向での全領域にわたって、セラミック粒子の焼結が達成され得る。 FIG. 6 illustrates a manufacturing method according to the fifth embodiment of the present invention. In FIG. 6, elements corresponding to the elements shown in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted. This embodiment is characterized in that only a film that disappears in the light irradiation step is provided as the light absorption film. Also in this embodiment, the sintering of the ceramic particles can be achieved over the entire region in the main surface direction of the ceramic sheet.
 図6を参照して、セラミックシート21の主面方向での全領域に、光照射工程において消失する可消失膜31が形成される。可消失膜31の形成には、たとえば印刷またはスプレーによる塗布が適用される。 Referring to FIG. 6, a erasable film 31 that disappears in the light irradiation process is formed in the entire region in the main surface direction of the ceramic sheet 21. For the formation of the lossable film 31, for example, application by printing or spraying is applied.
 この実施形態では、加熱用光源23からの光24によって、光吸収膜としての可消失膜31が加熱されると同時に、その熱が可消失膜31の直下のセラミックシート21に伝達される。その結果、セラミックシート21中のセラミック粒子が焼結し、また、可消失膜31は、それ自身が光24を吸収して生じた熱によって消失する。 In this embodiment, the light 24 from the heating light source 23 heats the erasable film 31 as a light absorption film, and at the same time, the heat is transmitted to the ceramic sheet 21 immediately below the erasable film 31. As a result, the ceramic particles in the ceramic sheet 21 are sintered, and the erasable film 31 disappears by heat generated by absorbing the light 24 itself.
 次に、この発明に従って実施した実験例について説明する。 Next, experimental examples carried out according to the present invention will be described.
 [実験例1]
 この実験例では、試料として積層セラミックコンデンサを作製した。
[Experiment 1]
In this experimental example, a multilayer ceramic capacitor was produced as a sample.
 まず、BaCOおよびTiOの各粉末を用意し、これらをBaTiOの組成が得られるように調合した。 First, BaCO 3 and TiO 2 powders were prepared and prepared so that the composition of BaTiO 3 was obtained.
 次に、この調合粉末に、純水を加えて、ジルコニアボールとともに10時間混合粉砕し、乾燥後、1000℃の温度で2時間仮焼し、次いで、粉砕することによって、仮焼粉末を得た。 Next, pure water was added to the blended powder, mixed and pulverized with zirconia balls for 10 hours, dried, calcined at a temperature of 1000 ° C. for 2 hours, and then pulverized to obtain a calcined powder. .
 次に、この仮焼粉末に、樹脂、分散剤および水を加えて、ジルコニアボールとともに数時間混合することによって、平均粒径50nmのセラミック粒子としての仮焼粉末を含むセラミックスラリーを得た。 Next, a resin, a dispersant, and water were added to the calcined powder and mixed with zirconia balls for several hours to obtain a ceramic slurry containing the calcined powder as ceramic particles having an average particle diameter of 50 nm.
 次に、セラミックスラリーを、フィルム基材上でドクターブレード法によりシート状に成形し、乾燥させることによって、厚み2μmのセラミックシートを得た。 Next, the ceramic slurry was formed into a sheet shape by a doctor blade method on a film substrate and dried to obtain a ceramic sheet having a thickness of 2 μm.
 次に、平均粒径200nmのニッケル粉末と樹脂と有機溶剤とを含む導電性ペーストを用意し、所定のセラミックシート上に、スクリーン印刷法によって、内部電極層となる厚み1.0μmの導電性ペースト膜を形成した。ここで、金属粉末としてのニッケル粉末の粒径より、前述したセラミック粒子の粒径の方が小さいことが注目される。 Next, a conductive paste containing nickel powder having an average particle diameter of 200 nm, a resin, and an organic solvent is prepared, and a conductive paste having a thickness of 1.0 μm serving as an internal electrode layer is formed on a predetermined ceramic sheet by a screen printing method. A film was formed. Here, it is noted that the particle size of the ceramic particles described above is smaller than the particle size of the nickel powder as the metal powder.
 次に、導電性ペースト膜が形成されていない適当数の外層用セラミックシートを積層した後、その上に、導電性ペースト膜がセラミックシートを介して対向する状態となるように、導電性ペースト膜が形成された複数のセラミックシートを積層した。この積層工程において、1枚のセラミックシートを積み重ねるごとに、水銀キセノンランプからの光(波長300~1200nm)を、導電性ペースト膜に向かって、表1に示した「照射光パワー」および「照射時間」をもって1パルス照射し、セラミックシートの予備焼成を行なった。さらに、導電性ペースト膜が形成されていない適当数の外層用セラミックシートをその上に積層し、圧着した後、長さ2.2mmおよび幅2.75mmの寸法に切断し、厚み1.2mmの生の積層体を得た。 Next, after laminating an appropriate number of outer-layer ceramic sheets on which no conductive paste film is formed, the conductive paste film is placed on the ceramic sheet so that the conductive paste film faces the ceramic sheet. A plurality of ceramic sheets formed with the above were laminated. In this laminating process, each time one ceramic sheet is stacked, light (wavelength 300 to 1200 nm) from a mercury xenon lamp is directed toward the conductive paste film as “irradiation light power” and “irradiation” shown in Table 1. The laser sheet was pre-fired by irradiating 1 pulse with time. Further, an appropriate number of outer layer ceramic sheets on which a conductive paste film is not formed are laminated and pressure-bonded, and then cut into dimensions of 2.2 mm in length and 2.75 mm in width, and 1.2 mm in thickness. A raw laminate was obtained.
 次に、生の積層体を、400℃の温度で脱脂した後、本焼成のため、1250℃の温度で20分間焼成した。これによって、セラミックシートによってセラミック層が与えられ、かつ導電性ペースト膜によって内部電極層が与えられた、焼結後の積層体を得た。 Next, the raw laminate was degreased at a temperature of 400 ° C. and then baked at a temperature of 1250 ° C. for 20 minutes for main baking. As a result, a sintered laminate was obtained in which the ceramic layer was provided by the ceramic sheet and the internal electrode layer was provided by the conductive paste film.
 次に、焼結後の積層体を、SiおよびAlを含む直径1mmの玉石と混合し、さらに所定量の水を加えて、バレル研磨を実施した。 Next, the sintered laminate was mixed with a cobblestone having a diameter of 1 mm containing Si and Al, and a predetermined amount of water was added to perform barrel polishing.
 次に、積層体の両端面上に、Cuを導電成分として含む導電性ペーストを塗布し、焼き付けることによって、外部電極を形成した後、さらに、外部電極上に、めっき膜としてのNi層およびSn層を順次電気めっきによって形成した。 Next, an external electrode is formed by applying and baking a conductive paste containing Cu as a conductive component on both end faces of the laminate, and then, on the external electrode, an Ni layer and Sn as a plating film are further formed. Layers were sequentially formed by electroplating.
 以上のようにして、各試料に係る積層セラミックコンデンサを得た。なお、比較試料としての積層セラミックコンデンサを、前述した水銀キセノンランプによる予備焼成を行なわなかったことを除いて同様の条件で作製した。これらの試料について、デラミネーション発生率および室温抵抗を評価した。その結果が表1に示されている。表1において、比較試料に比べて、デラミネーション発生率が低減されかつ室温抵抗が同等に維持された試料については「○」と表示し、デラミネーション発生率が低減されなかったり、室温抵抗が高くなったりした試料については「×」と表示した。 Thus, a multilayer ceramic capacitor according to each sample was obtained. A multilayer ceramic capacitor as a comparative sample was produced under the same conditions except that the preliminary firing with the mercury xenon lamp was not performed. These samples were evaluated for delamination incidence and room temperature resistance. The results are shown in Table 1. In Table 1, “◯” is displayed for samples in which the delamination occurrence rate is reduced and the room temperature resistance is maintained at the same level as the comparative sample, and the delamination occurrence rate is not reduced or the room temperature resistance is high. “×” was displayed for the samples that were lost.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、「照射光パワー」が小さい、または「照射時間」が短い条件では、比較試料に比べて、デラミネーション発生率が低減されなかった。これは、水銀キセノンランプによる予備焼成で、セラミック粒子の焼結が十分に進行しなかったためであると推測される。 As can be seen from Table 1, when the “irradiation light power” is small or the “irradiation time” is short, the delamination occurrence rate is not reduced as compared with the comparative sample. This is presumably because the sintering of the ceramic particles did not proceed sufficiently in the preliminary firing with the mercury xenon lamp.
 これに対して、「照射光パワー」および「照射時間」が適切な条件では、比較試料に比べて、室温抵抗が維持されながら、デラミネーション発生率が低減された。これは、水銀キセノンランプによる予備焼成で、セラミック粒子が十分に焼結し、本焼成段階での内部電極層とセラミック層との焼結収縮挙動の差異に起因する応力が緩和されたためであると推測される。 On the other hand, when the “irradiation light power” and “irradiation time” were appropriate, the delamination occurrence rate was reduced while maintaining the room temperature resistance as compared with the comparative sample. This is because the ceramic particles were sufficiently sintered by pre-firing with a mercury xenon lamp, and the stress caused by the difference in sintering shrinkage behavior between the internal electrode layer and the ceramic layer in the main firing stage was alleviated. Guessed.
 なお、「照射光パワー」が過剰、または「照射時間」が不適切に長い条件では、比較試料に比べて、室温抵抗が高くなる不良が発生した。これは、導電性ペースト膜中の金属粒子が過剰に焼結収縮し、内部電極層に欠陥が発生し、内部電極層のカバレッジが低下したためであると推測される。 Note that when the “irradiation light power” was excessive or the “irradiation time” was inappropriately long, a defect in which the room temperature resistance was higher than that of the comparative sample occurred. This is presumably because the metal particles in the conductive paste film were excessively sintered and contracted, defects were generated in the internal electrode layer, and the coverage of the internal electrode layer was reduced.
 なお、「照射光パワー」の適切な範囲は、セラミック材料の組成、粒径、膜厚などによって変化すると考えられる。しかし、この実験例では、少なくとも、「照射光パワー」が0.5kW/cm以上であれば、水銀キセノンランプによる予備焼成で、セラミック粒子が十分に焼結し得ることが実証された。 The appropriate range of “irradiation light power” is considered to vary depending on the composition, particle size, film thickness, and the like of the ceramic material. However, in this experimental example, it was demonstrated that the ceramic particles can be sufficiently sintered by pre-firing with a mercury xenon lamp at least if the “irradiation light power” is 0.5 kW / cm 2 or more.
 また、光吸収膜として機能する導電性ペースト膜が形成されたセラミックシートを積層するごとに、水銀キセノンランプによる予備焼成が実施される場合、多層の積層体を効率良く生産するためには、1層のセラミックシート当たりの光照射時間は短い方が好ましい。この実験例では、「照射時間」が0.5~10ミリ秒の範囲で良好な結果が得られている。通常、1層のセラミックシートを積層する所要時間は数100ミリ秒~数秒程度であり、これに比べて、上述の良好な結果が得られた「照射時間」は十分に短い。したがって、従来の積層工程の効率を低下させることなく、光による予備焼成工程を導入することができる。 Further, when pre-firing with a mercury xenon lamp is performed every time the ceramic sheets on which the conductive paste film functioning as a light absorption film is formed are laminated, in order to efficiently produce a multilayer laminate, 1 The light irradiation time per ceramic sheet of the layer is preferably shorter. In this experimental example, good results were obtained when the “irradiation time” was in the range of 0.5 to 10 milliseconds. Usually, the time required for laminating one ceramic sheet is about several hundred milliseconds to several seconds. Compared with this, the “irradiation time” at which the above-mentioned good results were obtained is sufficiently short. Therefore, it is possible to introduce a preliminary baking step using light without reducing the efficiency of the conventional lamination step.
 [実験例2]
 この実験例では、光吸収率の異なる複数種類の光吸収膜の各々の性能を調査するため、厚みの異なる複数種類のセラミックシートの各々上に、上記各種類の光吸収膜を形成し、水銀キセノンランプからの光(波長300~1200nm)を光吸収膜に向かって照射し、セラミックシートに含まれるセラミック粒子の焼結の可否を調査した。
[Experiment 2]
In this experimental example, in order to investigate the performance of each of a plurality of types of light absorption films having different light absorption rates, the above-mentioned types of light absorption films are formed on each of a plurality of types of ceramic sheets having different thicknesses, and mercury Light from a xenon lamp (wavelength 300 to 1200 nm) was irradiated toward the light absorption film, and the possibility of sintering of the ceramic particles contained in the ceramic sheet was investigated.
 図7に、この実験例で調査した光吸収膜についての可視光(波長400nm~800nm)の吸収スペクトルを示す。光吸収率は、紫外可視分光光度計(島津製作所)を用いて計測した。 FIG. 7 shows an absorption spectrum of visible light (wavelength: 400 nm to 800 nm) for the light absorption film investigated in this experimental example. The light absorption rate was measured using an ultraviolet-visible spectrophotometer (Shimadzu Corporation).
 図中、「ニッケル」は、実験例1で用いたニッケル粉末を含む導電性ペーストを、実験例1で用いたセラミックシート上に印刷塗布して形成した光吸収膜である。 In the figure, “nickel” is a light absorbing film formed by printing and applying a conductive paste containing nickel powder used in Experimental Example 1 onto the ceramic sheet used in Experimental Example 1.
 「銅」は、平均粒径200nmの銅粉末を用い、上記ニッケル粉末を含む導電性ペーストの場合と同じ製法で作製した導電性ペーストを、実験例1で用いたセラミックシート上に印刷塗布して形成した光吸収膜である。 "Copper" uses a copper powder having an average particle size of 200 nm, and a conductive paste produced by the same manufacturing method as that of the conductive paste containing the nickel powder is printed on the ceramic sheet used in Experimental Example 1. It is the formed light absorption film.
 「銀箔」は、実験例1で用いたセラミックシート上に、スパッタ法で銀箔を厚み200nmとなるように形成した光吸収膜である。 “Silver foil” is a light absorbing film formed on the ceramic sheet used in Experimental Example 1 by sputtering so that the silver foil has a thickness of 200 nm.
 「なし(セラミック)」は、何らの光吸収膜をも形成しなかった、実験例1で用いたセラミックシートそのものである。 “None (ceramic)” is the ceramic sheet itself used in Experimental Example 1 in which no light absorption film was formed.
 図7に示した各試料に対し、光照射を行ない、セラミックシートに含まれるセラミック粒子の焼結の可否が表2に示されている。 Table 2 shows whether or not each sample shown in FIG. 7 is irradiated with light and the ceramic particles contained in the ceramic sheet can be sintered.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、セラミック粒子が焼結した場合を「○」で表示し、焼結しなかった場合を「×」で表示している。 In Table 2, the case where the ceramic particles are sintered is indicated by “◯”, and the case where the ceramic particles are not sintered is indicated by “X”.
 図7に示すように、「ニッケル」は平均光吸収率が63%であり、「銅」は平均光吸収率が21%であった。これら「ニッケル」および「銅」を光吸収膜として用いた場合、セラミック粒子が焼結した。他方、「銀箔」は、平均光吸収率が「なし(セラミック)」より低く、0.7%であった。「銀箔」を光吸収膜として用いた場合、セラミック粒子は焼結しなかった。もちろん、「なし(セラミック)」でも、セラミック粒子は焼結しなかった。 As shown in FIG. 7, “nickel” had an average light absorption rate of 63%, and “copper” had an average light absorption rate of 21%. When these “nickel” and “copper” were used as the light absorbing film, the ceramic particles were sintered. On the other hand, “silver foil” had an average light absorptivity of 0.7%, which was lower than “none (ceramic)”. When “silver foil” was used as the light absorbing film, the ceramic particles were not sintered. Of course, the ceramic particles were not sintered even in “None (ceramic)”.
 これらのことから、光焼成技術によりセラミックを焼成しようとする場合、光吸収率がセラミックシートより高い材質の光吸収膜を用いる必要があることがわかった。また、光吸収膜は、光吸収率がより高い方が好ましく、より具体的には、可視光(波長400~800nm)の平均吸収率が、好ましくは21%以上、より好ましくは63%以上であることがわかった。 From these facts, it was found that when a ceramic is fired by a light firing technique, it is necessary to use a light absorption film made of a material having a light absorption rate higher than that of the ceramic sheet. In addition, the light absorption film preferably has a higher light absorption rate. More specifically, the average absorption rate of visible light (wavelength 400 to 800 nm) is preferably 21% or more, more preferably 63% or more. I found out.
 なお、この実験例では、金属材料という不揮発性、非燃焼性の材料を光吸収膜において用いていたが、有機色素に代表される揮発性の材料、またはカーボンに代表される燃焼可能な材料を光吸収膜において用いても同様の効果が得られることが理解される。 In this experimental example, a non-volatile and non-combustible material called a metal material was used in the light absorption film. However, a volatile material represented by an organic dye or a combustible material represented by carbon was used. It is understood that the same effect can be obtained even when used in a light absorbing film.
 また、セラミックシートの厚みが過剰に大きいと、セラミック粒子を十分に焼結させ得ないこともわかった。すなわち、光焼成対象としてのセラミックシートの厚みは、好ましくは0.1~10μm、より好ましくは0.1~3μmであることがわかった。 It was also found that if the thickness of the ceramic sheet is excessively large, the ceramic particles cannot be sufficiently sintered. That is, it was found that the thickness of the ceramic sheet as the object of photo-fired is preferably 0.1 to 10 μm, more preferably 0.1 to 3 μm.
1 積層セラミックコンデンサ(積層セラミック電子部品)
2 セラミック層
3,4 内部電極層
5 積層体
21 セラミックシート
22 導電性ペースト膜
23 加熱用光源
24 光
29 光照射ステーション
30 切断線
31 可消失膜
1 Multilayer ceramic capacitors (multilayer ceramic electronic components)
2 Ceramic layer 3, 4 Internal electrode layer 5 Laminate 21 Ceramic sheet 22 Conductive paste film 23 Heating light source 24 Light 29 Light irradiation station 30 Cutting line 31 Erasable film

Claims (13)

  1.  セラミック粒子を含むセラミックシートを用意する工程と、
     前記セラミックシート上に、当該セラミックシートの光吸収率よりも高い光吸収率を有する光吸収膜を形成する工程と、
     加熱用光源からの光を前記光吸収膜に向かって照射する、光照射工程と、
    を備え、
     前記光照射工程において、前記光吸収膜は前記光を吸収することによって加熱され、加熱された前記光吸収膜から前記セラミックシートに伝達された熱によって、前記セラミック粒子を焼結させる、
    セラミックの焼成方法。
    Preparing a ceramic sheet containing ceramic particles;
    Forming a light absorption film having a light absorption rate higher than the light absorption rate of the ceramic sheet on the ceramic sheet;
    Irradiating light from a light source for heating toward the light absorbing film;
    With
    In the light irradiation step, the light absorption film is heated by absorbing the light, and the ceramic particles are sintered by the heat transferred from the heated light absorption film to the ceramic sheet.
    Ceramic firing method.
  2.  前記加熱用光源として、キセノンランプが用いられる、請求項1に記載のセラミックの焼成方法。 The ceramic firing method according to claim 1, wherein a xenon lamp is used as the heating light source.
  3.  前記光吸収膜の少なくとも一部は、前記光照射工程の後も前記セラミックシート上に残る膜からなる、請求項1または2に記載のセラミックの焼成方法。 3. The ceramic firing method according to claim 1, wherein at least a part of the light absorbing film is made of a film remaining on the ceramic sheet after the light irradiation step.
  4.  前記光吸収膜の少なくとも一部は、前記光照射工程において消失する膜からなる、請求項1または2に記載のセラミックの焼成方法。 The ceramic firing method according to claim 1 or 2, wherein at least a part of the light absorbing film is formed of a film that disappears in the light irradiation step.
  5.  セラミック粒子を含む複数のセラミックシートを用意する工程と、
     複数の前記セラミックシートを積層し、それによって、積層体を得る、積層工程と、
     前記積層体を焼成する、本焼成工程と、
    を備える、積層セラミック電子部品の製造方法であって、
     前記セラミックシート上に、当該セラミックシートの光吸収率よりも高い光吸収率を有する光吸収膜を形成する工程と、
     加熱用光源からの光を前記光吸収膜に向かって照射する、光照射工程と、
    をさらに備え、
     前記光吸収膜の少なくとも一部は、金属粒子を含む導電性ペーストからなる導電性ペースト膜によって与えられ、
     前記光照射工程において、前記光吸収膜は前記光を吸収することによって加熱され、その結果、前記金属粒子が焼結するとともに、加熱された前記光吸収膜から前記セラミックシートに伝達された熱によって、前記セラミック粒子が焼結する、
    積層セラミック電子部品の製造方法。
    Preparing a plurality of ceramic sheets containing ceramic particles;
    Laminating a plurality of the ceramic sheets, thereby obtaining a laminate, and a laminating step;
    A main firing step of firing the laminate;
    A method for producing a multilayer ceramic electronic component comprising:
    Forming a light absorption film having a light absorption rate higher than the light absorption rate of the ceramic sheet on the ceramic sheet;
    Irradiating light from a light source for heating toward the light absorbing film;
    Further comprising
    At least a part of the light absorption film is provided by a conductive paste film made of a conductive paste containing metal particles,
    In the light irradiation step, the light absorption film is heated by absorbing the light, and as a result, the metal particles are sintered, and by heat transferred from the heated light absorption film to the ceramic sheet. The ceramic particles are sintered;
    Manufacturing method of multilayer ceramic electronic component.
  6.  前記セラミック粒子の粒径は、前記金属粒子の粒径より小さい、請求項5に記載の積層セラミック電子部品の製造方法。 The method for manufacturing a multilayer ceramic electronic component according to claim 5, wherein the ceramic particles have a particle size smaller than that of the metal particles.
  7.  前記加熱用光源として、キセノンランプが用いられる、請求項5または6に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 5 or 6, wherein a xenon lamp is used as the heating light source.
  8.  前記キセノンランプの照射エネルギーが0.5kW/cm以上である、請求項7に記載の積層セラミック電子部品の製造方法。 The manufacturing method of the multilayer ceramic electronic component of Claim 7 whose irradiation energy of the said xenon lamp is 0.5 kW / cm < 2 > or more.
  9.  前記光吸収膜の可視光吸収率が21%以上である、請求項7または8に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 7 or 8, wherein the visible light absorption rate of the light absorption film is 21% or more.
  10.  前記積層工程において、前記光吸収膜が形成された前記セラミックシートを積層するごとに前記光照射工程が実施される、請求項7ないし9のいずれかに記載の積層セラミック電子部品の製造方法。 10. The method of manufacturing a multilayer ceramic electronic component according to claim 7, wherein in the stacking step, the light irradiation step is performed every time the ceramic sheet on which the light absorption film is formed is stacked.
  11.  前記キセノンランプの1パルス当たりの照射時間が10ミリ秒以下である、請求項10に記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 10, wherein the irradiation time per pulse of the xenon lamp is 10 milliseconds or less.
  12.  前記積層工程において、前記光照射工程を終えた前記セラミックシートが積層される、請求項5ないし9のいずれかに記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to claim 5, wherein the ceramic sheet that has finished the light irradiation step is stacked in the stacking step.
  13.  前記セラミックシートの厚みは、0.1~10μmである、請求項5ないし12のいずれかに記載の積層セラミック電子部品の製造方法。 13. The method for producing a multilayer ceramic electronic component according to claim 5, wherein the ceramic sheet has a thickness of 0.1 to 10 μm.
PCT/JP2014/074469 2013-11-20 2014-09-17 Method for sintering ceramics and method for producing multilayer ceramic electronic component WO2015076005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015549021A JP6217760B2 (en) 2013-11-20 2014-09-17 Ceramic firing method and multilayer ceramic electronic component manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239431 2013-11-20
JP2013-239431 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076005A1 true WO2015076005A1 (en) 2015-05-28

Family

ID=53179277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074469 WO2015076005A1 (en) 2013-11-20 2014-09-17 Method for sintering ceramics and method for producing multilayer ceramic electronic component

Country Status (2)

Country Link
JP (1) JP6217760B2 (en)
WO (1) WO2015076005A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102634A1 (en) * 2018-11-17 2020-05-22 Utility Global, Inc. Method of making electrochemical reactors
US20200303749A1 (en) * 2018-11-12 2020-09-24 Utility Global, Inc. Copper Electrode and Method of Making
EP3877152A4 (en) * 2018-11-06 2022-10-12 Utility Global, Inc. System and method for integrated deposition and heating
US11603324B2 (en) 2018-11-06 2023-03-14 Utility Global, Inc. Channeled electrodes and method of making
US11611097B2 (en) 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181008A (en) * 1985-02-07 1986-08-13 住友金属鉱山株式会社 Manufacture of dielectric ceramics
JPS63230802A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Method of sintering and fusion welding for electronic part and sensor
JPH09124382A (en) * 1995-10-30 1997-05-13 Kyocera Corp Production of ceramic substrate
CN103108499A (en) * 2013-01-17 2013-05-15 中国科学院苏州纳米技术与纳米仿生研究所 Packaging method and packaging device of flexible electronic circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012867A (en) * 2009-07-01 2011-01-20 Murata Mfg Co Ltd Solar energy absorber, and method and device for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181008A (en) * 1985-02-07 1986-08-13 住友金属鉱山株式会社 Manufacture of dielectric ceramics
JPS63230802A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Method of sintering and fusion welding for electronic part and sensor
JPH09124382A (en) * 1995-10-30 1997-05-13 Kyocera Corp Production of ceramic substrate
CN103108499A (en) * 2013-01-17 2013-05-15 中国科学院苏州纳米技术与纳米仿生研究所 Packaging method and packaging device of flexible electronic circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3877152A4 (en) * 2018-11-06 2022-10-12 Utility Global, Inc. System and method for integrated deposition and heating
EP3877180A4 (en) * 2018-11-06 2022-12-14 Utility Global, Inc. Method and system for making a fuel cell
US11557784B2 (en) 2018-11-06 2023-01-17 Utility Global, Inc. Method of making a fuel cell and treating a component thereof
US11575142B2 (en) 2018-11-06 2023-02-07 Utility Global, Inc. Method and system for making a fuel cell
US11603324B2 (en) 2018-11-06 2023-03-14 Utility Global, Inc. Channeled electrodes and method of making
US11611097B2 (en) 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
US11735755B2 (en) 2018-11-06 2023-08-22 Utility Global, Inc. System and method for integrated deposition and heating
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making
US20200303749A1 (en) * 2018-11-12 2020-09-24 Utility Global, Inc. Copper Electrode and Method of Making
US11539053B2 (en) 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
WO2020102634A1 (en) * 2018-11-17 2020-05-22 Utility Global, Inc. Method of making electrochemical reactors

Also Published As

Publication number Publication date
JPWO2015076005A1 (en) 2017-03-16
JP6217760B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6217760B2 (en) Ceramic firing method and multilayer ceramic electronic component manufacturing method
US8332996B2 (en) Conductive paste composition for inner electrodes and method of manufacturing multilayer capacitor
JP2012227260A (en) Multilayer ceramic capacitor
TW201302660A (en) Sintering of high temperature conductive and resistive pastes onto temperature sensitive and atmospheric sensitive materials
KR20110065623A (en) Multilayer ceramic capacitor
KR20110067509A (en) Paste compound for termination electrode and multilayer ceramic capacitor comprising the same and manufactuaring method thereof
JP3785966B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
KR101964368B1 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR20190118957A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP5083409B2 (en) Manufacturing method of multilayer ceramic electronic component
WO2005036571A1 (en) Electrode paste, ceramic electronic component and method for producing same
JPH09106925A (en) Method of manufacturing layered ceramic capacitor
JP2004096010A (en) Laminated ceramic electronic component fabricating process
JP5251589B2 (en) Manufacturing method of ceramic capacitor
JP2004289090A (en) Method for manufacturing laminated ceramic electronic component
JP2005286014A (en) Conductive paste
JP4702972B2 (en) Multilayer electronic component and manufacturing method thereof
JP2005303029A (en) Method of manufacturing laminated ceramic electronic part
KR101376912B1 (en) Conductive paste composition for inner electrode and multilayer ceramic capacitor using the same
JP2005109218A (en) Electrode paste and manufacturing method of ceramic electronic component using it
JP2018056433A (en) Method for evaluation of internal electrode film of multilayer ceramic electronic part, and a method for manufacturing multilayer ceramic electronic part
JP2005142352A (en) Sheet for internal electrode and its manufacturing method
JP2005101318A (en) Conductive paste and manufacturing method of ceramic electronic component using it
JP2005251612A (en) Nickel powder for conductive paste, conductive paste, and ceramic electronic component using the same
JP4808534B2 (en) Conductive paste and method for manufacturing ceramic electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864400

Country of ref document: EP

Kind code of ref document: A1